1
|
Weller CA, Andreev I, Chambers MJ, Park M, Bloom JS, Sadhu MJ. Highly complete long-read genomes reveal pangenomic variation underlying yeast phenotypic diversity. Genome Res 2023; 33:729-740. [PMID: 37127330 PMCID: PMC10317115 DOI: 10.1101/gr.277515.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/26/2023] [Indexed: 05/03/2023]
Abstract
Understanding the genetic causes of trait variation is a primary goal of genetic research. One way that individuals can vary genetically is through variable pangenomic genes: genes that are only present in some individuals in a population. The presence or absence of entire genes could have large effects on trait variation. However, variable pangenomic genes can be missed in standard genotyping workflows, owing to reliance on aligning short-read sequencing to reference genomes. A popular method for studying the genetic basis of trait variation is linkage mapping, which identifies quantitative trait loci (QTLs), regions of the genome that harbor causative genetic variants. Large-scale linkage mapping in the budding yeast Saccharomyces cerevisiae has found thousands of QTLs affecting myriad yeast phenotypes. To enable the resolution of QTLs caused by variable pangenomic genes, we used long-read sequencing to generate highly complete de novo genome assemblies of 16 diverse yeast isolates. With these assemblies, we resolved QTLs for growth on maltose, sucrose, raffinose, and oxidative stress to specific genes that are absent from the reference genome but present in the broader yeast population at appreciable frequency. Copies of genes also duplicate onto chromosomes where they are absent in the reference genome, and we found that these copies generate additional QTLs whose resolution requires pangenome characterization. Our findings show the need for highly complete genome assemblies to identify the genetic basis of trait variation.
Collapse
Affiliation(s)
- Cory A Weller
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ilya Andreev
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Michael J Chambers
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Morgan Park
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Joshua S Bloom
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, California 90095, USA
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
- Institute for Quantitative and Computational Biology, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Computational Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Meru J Sadhu
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
2
|
Mao Y, Chen Z, Ren Y, Sun Y, Wang Y. Whole-Cell Biocatalyst for Rubusoside Production in Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13155-13163. [PMID: 34699718 DOI: 10.1021/acs.jafc.1c04873] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rubusoside (Rub) is a highly sweet diterpene glycoside mainly isolated from the leaves of Rubus suavissimus (Rosaceae). It has been used as a low-calorie natural sweetener for decades and was recently found to be a potential drug lead. In this study, we designed a whole-cell biocatalyst to achieve the glycosylation of steviol to Rub in Saccharomyces cerevisiae. The sucrose synthases were applied to construct a uridine diphosphate glucose regeneration system, which were coupled with optimal combinations of different uridine diphosphate (UDP) glycosyltransferases from multiple plant species. After optimization of reaction conditions, the residues in SrUGT74G1 probably influencing glycosylation efficiency were subjected to site-directed mutagenesis. Double mutations of S84A/E87A reduced the accumulation of intermediates, finally glucosylating 1.27 g/L steviol to 0.45 ± 0.06 g/L steviolmonoside (conversion rate = 23.3%) and 1.92 ± 0.17 g/L Rub (conversion rate = 74.9%). A high efficiency of Rub biosynthesis could be achieved without supply of additional UDPG. This work provided the first example of multi-step glycosylation reactions in whole-cell biocatalysis, which laid a foundation of scalable production of the value-added diterpene sweetener in the future.
Collapse
Affiliation(s)
- Yaping Mao
- East China University of Science and Technology, Shanghai 200237, China
- University of Chinese Academy of Sciences, Beijing 100039, China
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhuo Chen
- University of Chinese Academy of Sciences, Beijing 100039, China
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuhong Ren
- East China University of Science and Technology, Shanghai 200237, China
| | - Yuwei Sun
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yong Wang
- East China University of Science and Technology, Shanghai 200237, China
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
3
|
Abstract
Microorganisms live in dense and diverse communities, with interactions between cells guiding community development and phenotype. The ability to perturb specific intercellular interactions in space and time provides a powerful route to determining the critical interactions and design rules for microbial communities. Approaches using optogenetic tools to modulate these interactions offer promise, as light can be exquisitely controlled in space and time. We report new plasmids for rapid integration of an optogenetic system into Saccharomyces cerevisiae to engineer light control of expression of a gene of interest. In a proof-of-principle study, we demonstrate the ability to control a model cooperative interaction, namely, the expression of the enzyme invertase (SUC2) which allows S. cerevisiae to hydrolyze sucrose and utilize it as a carbon source. We demonstrate that the strength of this cooperative interaction can be tuned in space and time by modulating light intensity and through spatial control of illumination. Spatial control of light allows cooperators and cheaters to be spatially segregated, and we show that the interplay between cooperative and inhibitory interactions in space can lead to pattern formation. Our strategy can be applied to achieve spatiotemporal control of expression of a gene of interest in S. cerevisiae to perturb both intercellular and interspecies interactions. IMPORTANCE Recent advances in microbial ecology have highlighted the importance of intercellular interactions in controlling the development, composition, and resilience of microbial communities. In order to better understand the role of these interactions in governing community development, it is critical to be able to alter them in a controlled manner. Optogenetically controlled interactions offer advantages over static perturbations or chemically controlled interactions, as light can be manipulated in space and time and does not require the addition of nutrients or antibiotics. Here, we report a system for rapidly achieving light control of a gene of interest in the important model organism Saccharomyces cerevisiae and demonstrate that by controlling expression of the enzyme invertase, we can control cooperative interactions. This approach will be useful for understanding intercellular and interspecies interactions in natural and synthetic microbial consortia containing S. cerevisiae and serves as a proof of principle for implementing this approach in other consortia.
Collapse
|
4
|
Laurent J, Aerts A, Gordon J, Gupta P, Voet ARD, Verstrepen KJ, Courtin CM. Small Differences in SUC Gene Sequences Impact Saccharomyces cerevisiae Invertase Activity and Specificity toward Fructans with Different Chain Lengths. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1925-1935. [PMID: 33533594 DOI: 10.1021/acs.jafc.0c07015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Saccharomyces cerevisiae (S. cerevisiae)invertase is encoded by a family of closely related SUC genes. To identify and understand the molecular basis for differences in substrate specificity, we examined 29 SUC alleles from industrialS. cerevisiaestrains and cloned alleles with small sequence differences into an invertase-negative strain. Our study showed that an F102Y substitution in Suc-enzymes lowers yeast invertase activity toward fructo-oligosaccharides (FOS) by 36% and the specificity factor by 43%. By contrast, an A409P substitution in Suc-enzymes resulted in an increased capacity of the yeast to hydrolyze FOS and Fibruline by 17 and 41%, respectively, likely because of a change in the loop conformation resulting in a wider active site. Bread dough fermentation experiments revealed that sucrose and fructan hydrolysis during fermentation is influenced by this natural variation in SUC sequences. Our research thus opens the door for the selection or engineering of yeasts and Suc-enzymes with specific activities that may ultimately allow controlling fructan hydrolysis.
Collapse
Affiliation(s)
- Jitka Laurent
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Anouk Aerts
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Jonathan Gordon
- VIB-KU Leuven Laboratory for Systems Biology & CMPG Laboratory for Genetics and Genomics, Department of Microbial and Molecular Systems (M2S) and VIB-KU Leuven Center for Microbiology, Bio-Incubator Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium
| | - Purvi Gupta
- Laboratory for Biomolecular Modelling and Design, Department of Chemistry, KU Leuven, Celestijnenlaan 200G, B-3001 Leuven, Belgium
| | - Arnout R D Voet
- Laboratory for Biomolecular Modelling and Design, Department of Chemistry, KU Leuven, Celestijnenlaan 200G, B-3001 Leuven, Belgium
| | - Kevin J Verstrepen
- VIB-KU Leuven Laboratory for Systems Biology & CMPG Laboratory for Genetics and Genomics, Department of Microbial and Molecular Systems (M2S) and VIB-KU Leuven Center for Microbiology, Bio-Incubator Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium
| | - Christophe M Courtin
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| |
Collapse
|
5
|
Borovkova AN, Michailova YV, Naumova ES. Molecular Genetic Features of Biological Species of the Genus Saccharomyces. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720040037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
6
|
Korhola M, Naumova ES, Partti E, Aittamaa M, Turakainen H, Naumov GI. Exploiting heterozygosity in industrial yeasts to create new and improved baker's yeasts. Yeast 2019; 36:571-587. [PMID: 31243797 DOI: 10.1002/yea.3428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/31/2019] [Accepted: 06/11/2019] [Indexed: 01/24/2023] Open
Abstract
The main aim of the work was to utilize heterozygosity of industrial yeast strains to construct new baker's yeast strains. Commercial baker's yeast strain ALKO 743, its more ethanol tolerant descendant ALKO 554 selected initially for growth over 300 generations in increasing ethanol concentrations in a glucose medium, and ALKO 3460 from an old domestic sour dough starter were used as starting strains. Isolated meiotic segregants of the strains were characterized genetically for sporulation ability and mating type, and the ploidy was determined physically. Heterozygosity of the segregant strains was estimated by a variety of molecular characterizations and fermentation and growth assays. The results showed wide heterozygosity and that the segregants were clustered into subgroups. This clustering was used for choosing distantly or closely related partners for strain construction crosses. Intrastrain hybrids made with segregants of ALKO 743 showed 16-24% hybrid vigour or heterosis. Interstrain hybrids with segregants of ALKO 743 and ALKO 3460 showed a wide variety of characteristics but also clear heterosis of 27-31% effects as assayed by lean and sugar dough raising. Distiller's yeast ALKO 554 turned out to be a diploid genetic segregant and not just a more ethanol tolerant mutant of the tetraploid parent strain ALKO 743.
Collapse
Affiliation(s)
- Matti Korhola
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Alkomohr Biotech Ltd., Helsinki, Finland
| | - Elena S Naumova
- State Research Institute of Genetics and Selection of Industrial Microorganisms of National Research Centre "Kurchatov Institute", Moscow, Russia
| | - Edvard Partti
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Alkomohr Biotech Ltd., Helsinki, Finland
| | - Marja Aittamaa
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Alkomohr Biotech Ltd., Helsinki, Finland
| | - Hilkka Turakainen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Alkomohr Biotech Ltd., Helsinki, Finland
| | - Gennadi I Naumov
- State Research Institute of Genetics and Selection of Industrial Microorganisms of National Research Centre "Kurchatov Institute", Moscow, Russia
| |
Collapse
|
7
|
Brouwers N, Gorter de Vries AR, van den Broek M, Weening SM, Elink Schuurman TD, Kuijpers NGA, Pronk JT, Daran JMG. In vivo recombination of Saccharomyces eubayanus maltose-transporter genes yields a chimeric transporter that enables maltotriose fermentation. PLoS Genet 2019; 15:e1007853. [PMID: 30946741 PMCID: PMC6448828 DOI: 10.1371/journal.pgen.1007853] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/26/2018] [Indexed: 11/18/2022] Open
Abstract
Saccharomyces eubayanus is the non-S. cerevisiae parent of the lager-brewing hybrid S. pastorianus. In contrast to most S. cerevisiae and Frohberg-type S. pastorianus strains, S. eubayanus cannot utilize the α-tri-glucoside maltotriose, a major carbohydrate in brewer’s wort. In Saccharomyces yeasts, utilization of maltotriose is encoded by the subtelomeric MAL gene family, and requires transporters for maltotriose uptake. While S. eubayanus strain CBS 12357T harbors four SeMALT genes which enable uptake of the α-di-glucoside maltose, it lacks maltotriose transporter genes. In S. cerevisiae, sequence identity indicates that maltotriose and maltose transporters likely evolved from a shared ancestral gene. To study the evolvability of maltotriose utilization in S. eubayanus CBS 12357T, maltotriose-assimilating mutants obtained after UV mutagenesis were subjected to laboratory evolution in carbon-limited chemostat cultures on maltotriose-enriched wort. An evolved strain showed improved maltose and maltotriose fermentation in 7 L fermenter experiments on industrial wort. Whole-genome sequencing revealed a novel mosaic SeMALT413 gene, resulting from repeated gene introgressions by non-reciprocal translocation of at least three SeMALT genes. The predicted tertiary structure of SeMalT413 was comparable to the original SeMalT transporters, but overexpression of SeMALT413 sufficed to enable growth on maltotriose, indicating gene neofunctionalization had occurred. The mosaic structure of SeMALT413 resembles the structure of S. pastorianus maltotriose-transporter gene SpMTY1, which has high sequences identity to alternatingly S. cerevisiae MALx1, S. paradoxus MALx1 and S. eubayanus SeMALT3. Evolution of the maltotriose transporter landscape in hybrid S. pastorianus lager-brewing strains is therefore likely to have involved mechanisms similar to those observed in the present study. Fermentation of the wort sugar maltotriose is critical for the flavor profile obtained during beer brewing. The recently discovered yeast Saccharomyces eubayanus is gaining popularity as an alternative to S. pastorianus and S. cerevisiae for brewing, however it is unable to utilize maltotriose. Here, a combination of non-GMO mutagenesis and laboratory evolution of the S. eubayanus type strain CBS 12357T was used to enable maltotriose fermentation and improve brewing performance. The improved strain expressed a novel transporter gene, SeMALT413, which was formed by recombination between three different SeMALT maltose-transporter genes. Overexpression of SeMALT413 in CBS 12357T confirmed its neofunctionalization as a maltotriose transporter. As the S. pastorianus maltotriose transporter SpMty1 has a mosaic structure similar to SeMalT413, maltotriose utilization likely involved similar recombination events during the domestication of current lager brewing strains. Based on a posteriori sequence analysis, the emergence of gene functions has been attributed to gene neofunctionalization in a broad range of organisms. The real-time observation of neofunctionalization during laboratory evolution constitutes an important validation of the relevance and importance of this mechanism for Darwinian evolution.
Collapse
Affiliation(s)
- Nick Brouwers
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Arthur R. Gorter de Vries
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Marcel van den Broek
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Susan M. Weening
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | | | - Niels G. A. Kuijpers
- HEINEKEN Supply Chain B.V., Global Innovation and Research, Zoeterwoude, Netherlands
| | - Jack T. Pronk
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Jean-Marc G. Daran
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
- * E-mail:
| |
Collapse
|
8
|
Gonçalves C, Wisecaver JH, Kominek J, Oom MS, Leandro MJ, Shen XX, Opulente DA, Zhou X, Peris D, Kurtzman CP, Hittinger CT, Rokas A, Gonçalves P. Evidence for loss and reacquisition of alcoholic fermentation in a fructophilic yeast lineage. eLife 2018; 7:33034. [PMID: 29648535 PMCID: PMC5897096 DOI: 10.7554/elife.33034] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/27/2018] [Indexed: 11/13/2022] Open
Abstract
Fructophily is a rare trait that consists of the preference for fructose over other carbon sources. Here, we show that in a yeast lineage (the Wickerhamiella/Starmerella, W/S clade) comprised of fructophilic species thriving in the high-sugar floral niche, the acquisition of fructophily is concurrent with a wider remodeling of central carbon metabolism. Coupling comparative genomics with biochemical and genetic approaches, we gathered ample evidence for the loss of alcoholic fermentation in an ancestor of the W/S clade and subsequent reinstatement through either horizontal acquisition of homologous bacterial genes or modification of a pre-existing yeast gene. An enzyme required for sucrose assimilation was also acquired from bacteria, suggesting that the genetic novelties identified in the W/S clade may be related to adaptation to the high-sugar environment. This work shows how even central carbon metabolism can be remodeled by a surge of HGT events. Cells build their components, such as the molecular machinery that helps them obtain energy from their environment, by following the instructions contained in genes. This genetic information is usually transferred from parents to offspring. Over the course of several generations, genes can accumulate small changes and the molecules they code for can acquire new roles: yet, this process is normally slow. However, certain organisms can also obtain completely new genes by ‘stealing’ them from other species. For example, yeasts, such as the ones used to make bread and beer, can take genes from nearby bacteria. This ‘horizontal gene transfer’ helps organisms to rapidly gain new characteristics, which is particularly useful if the environment changes quickly. One way that yeasts get the energy they need is by breaking down sugars through a process called alcoholic fermentation. To do this, most yeast species prefer to use a sugar called glucose, but a small group of ‘fructophilic’ species instead favors a type of sugar known as fructose. Scientists do not know exactly how fructophilic yeasts came to be, but there is some evidence horizontal gene transfers may have been involved in the process. Now, Gonçalves et al. have compared the genetic material of fructophilic yeasts with that of other groups of yeasts . Comparing genetic material helps scientists identify similarities and differences between species, and gives clues about why specific genetic features first evolved. The experiments show that, early in their history, fructophilic yeasts lost the genes that allowed them to do alcoholic fermentation, probably since they could obtain energy in a different way. However, at a later point in time, these yeasts had to adapt to survive in flower nectar, an environment rich in sugar. They then favored fructose as their source of energy, possibly because this sugar can compensate more effectively for the absence of alcoholic fermentation. Later, the yeasts acquired a gene from nearby bacteria, which allowed them to do alcoholic fermentation again: this improved their ability to use the other sugars present in flower nectars. When obtaining energy, yeasts and other organisms produce substances that are relevant to industry. Studying natural processes of evolution can help scientists understand how organisms can change the way they get their energy and adapt to new challenges. In turn, this helps to engineer yeasts into ‘cell factories’ that produce valuable chemicals in environmentally friendly and cost-effective ways.
Collapse
Affiliation(s)
- Carla Gonçalves
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Jennifer H Wisecaver
- Department of Biological Sciences, Vanderbilt University, Nashville, United States.,Department of Biochemistry, Purdue Center for Plant Biology, Purdue University, West Lafayette, United States
| | - Jacek Kominek
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, United States.,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, United States.,J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, United States.,Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, United States
| | - Madalena Salema Oom
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal.,Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Caparica, Portugal
| | - Maria José Leandro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal.,LNEG - Laboratório Nacional de Energia e Geologia, Unidade de Bioenergia (UB), Lisboa, Portugal
| | - Xing-Xing Shen
- Department of Biological Sciences, Vanderbilt University, Nashville, United States
| | - Dana A Opulente
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, United States.,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, United States.,J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, United States.,Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, United States
| | - Xiaofan Zhou
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - David Peris
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, United States.,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, United States.,J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, United States.,Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, United States.,Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA), CSIC, Valencia, Spain
| | - Cletus P Kurtzman
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, United States
| | - Chris Todd Hittinger
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, United States.,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, United States.,J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, United States.,Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, United States
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, United States
| | - Paula Gonçalves
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| |
Collapse
|
9
|
Salazar AN, Gorter de Vries AR, van den Broek M, Wijsman M, de la Torre Cortés P, Brickwedde A, Brouwers N, Daran JMG, Abeel T. Nanopore sequencing enables near-complete de novo assembly of Saccharomyces cerevisiae reference strain CEN.PK113-7D. FEMS Yeast Res 2017; 17:4157789. [PMID: 28961779 PMCID: PMC5812507 DOI: 10.1093/femsyr/fox074] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/11/2017] [Indexed: 11/25/2022] Open
Abstract
The haploid Saccharomyces cerevisiae strain CEN.PK113-7D is a popular model system for metabolic engineering and systems biology research. Current genome assemblies are based on short-read sequencing data scaffolded based on homology to strain S288C. However, these assemblies contain large sequence gaps, particularly in subtelomeric regions, and the assumption of perfect homology to S288C for scaffolding introduces bias. In this study, we obtained a near-complete genome assembly of CEN.PK113-7D using only Oxford Nanopore Technology's MinION sequencing platform. Fifteen of the 16 chromosomes, the mitochondrial genome and the 2-μm plasmid are assembled in single contigs and all but one chromosome starts or ends in a telomere repeat. This improved genome assembly contains 770 Kbp of added sequence containing 248 gene annotations in comparison to the previous assembly of CEN.PK113-7D. Many of these genes encode functions determining fitness in specific growth conditions and are therefore highly relevant for various industrial applications. Furthermore, we discovered a translocation between chromosomes III and VIII that caused misidentification of a MAL locus in the previous CEN.PK113-7D assembly. This study demonstrates the power of long-read sequencing by providing a high-quality reference assembly and annotation of CEN.PK113-7D and places a caveat on assumed genome stability of microorganisms.
Collapse
Affiliation(s)
- Alex N. Salazar
- Delft Bioinformatics Lab, Delft University of Technology, 2628 CD Delft, The Netherlands
- Broad Institute of MIT and Harvard, Boston, MA 02142, USA
| | | | - Marcel van den Broek
- Department of Biotechnology, Delft University of Technology, 2628 BC Delft, The Netherlands
| | - Melanie Wijsman
- Department of Biotechnology, Delft University of Technology, 2628 BC Delft, The Netherlands
| | | | - Anja Brickwedde
- Department of Biotechnology, Delft University of Technology, 2628 BC Delft, The Netherlands
| | - Nick Brouwers
- Department of Biotechnology, Delft University of Technology, 2628 BC Delft, The Netherlands
| | - Jean-Marc G. Daran
- Department of Biotechnology, Delft University of Technology, 2628 BC Delft, The Netherlands
| | - Thomas Abeel
- Delft Bioinformatics Lab, Delft University of Technology, 2628 CD Delft, The Netherlands
- Broad Institute of MIT and Harvard, Boston, MA 02142, USA
| |
Collapse
|
10
|
Struyf N, Van der Maelen E, Hemdane S, Verspreet J, Verstrepen KJ, Courtin CM. Bread Dough and Baker's Yeast: An Uplifting Synergy. Compr Rev Food Sci Food Saf 2017; 16:850-867. [DOI: 10.1111/1541-4337.12282] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/22/2017] [Accepted: 05/29/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Nore Struyf
- Lab. of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe); KU Leuven; Kasteelpark Arenberg 20 B-3001 Leuven Belgium
- VIB Lab. for Systems Biology & CMPG Laboratory for Genetics and Genomics; KU Leuven; Bio-Incubator, Gaston Geenslaan 1 B-3001 Leuven Belgium
| | - Eva Van der Maelen
- Lab. of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe); KU Leuven; Kasteelpark Arenberg 20 B-3001 Leuven Belgium
| | - Sami Hemdane
- Lab. of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe); KU Leuven; Kasteelpark Arenberg 20 B-3001 Leuven Belgium
| | - Joran Verspreet
- Lab. of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe); KU Leuven; Kasteelpark Arenberg 20 B-3001 Leuven Belgium
| | - Kevin J. Verstrepen
- VIB Lab. for Systems Biology & CMPG Laboratory for Genetics and Genomics; KU Leuven; Bio-Incubator, Gaston Geenslaan 1 B-3001 Leuven Belgium
| | - Christophe M. Courtin
- Lab. of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe); KU Leuven; Kasteelpark Arenberg 20 B-3001 Leuven Belgium
| |
Collapse
|
11
|
Abstract
Chromosomal copy number variation (CCNV) plays a key role in evolution and health of eukaryotes. The unicellular yeast Saccharomyces cerevisiae is an important model for studying the generation, physiological impact, and evolutionary significance of CCNV. Fundamental studies of this yeast have contributed to an extensive set of methods for analyzing and introducing CCNV. Moreover, these studies provided insight into the balance between negative and positive impacts of CCNV in evolutionary contexts. A growing body of evidence indicates that CCNV not only frequently occurs in industrial strains of Saccharomyces yeasts but also is a key contributor to the diversity of industrially relevant traits. This notion is further supported by the frequent involvement of CCNV in industrially relevant traits acquired during evolutionary engineering. This review describes recent developments in genome sequencing and genome editing techniques and discusses how these offer opportunities to unravel contributions of CCNV in industrial Saccharomyces strains as well as to rationally engineer yeast chromosomal copy numbers and karyotypes.
Collapse
|
12
|
Zhang CY, Lin X, Feng B, Liu XE, Bai XW, Xu J, Pi L, Xiao DG. Enhanced leavening properties of baker's yeast by reducing sucrase activity in sweet dough. Appl Microbiol Biotechnol 2016; 100:6375-6383. [PMID: 27041690 DOI: 10.1007/s00253-016-7449-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/06/2016] [Accepted: 03/08/2016] [Indexed: 11/29/2022]
Abstract
Leavening ability in sweet dough is required for the commercial applications of baker's yeast. This property depends on many factors, such as glycolytic activity, sucrase activity, and osmotolerance. This study explored the importance of sucrase level on the leavening ability of baker's yeast in sweet dough. Furthermore, the baker's yeast strains with varying sucrase activities were constructed by deleting SUC2, which encodes sucrase or replacing the SUC2 promoter with the VPS8/TEF1 promoter. The results verify that the sucrase activity negatively affects the leavening ability of baker's yeast strains under high-sucrose conditions. Based on a certain level of osmotolerance, sucrase level plays a significant role in the fermentation performance of baker's yeast, and appropriate sucrase activity is an important determinant for the leavening property of baker's yeast in sweet dough. Therefore, modification on sucrase activity is an effective method for improving the leavening properties of baker's yeast in sweet dough. This finding provides guidance for the breeding of industrial baker's yeast strains for sweet dough leavening. The transformants BS1 with deleted SUC2 genetic background provided decreased sucrase activity (a decrease of 39.3 %) and exhibited enhanced leavening property (an increase of 12.4 %). Such a strain could be useful for industrial applications.
Collapse
Affiliation(s)
- Cui-Ying Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China. .,College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| | - Xue Lin
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Bing Feng
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Xiao-Er Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Xiao-Wen Bai
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Jia Xu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Li Pi
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Dong-Guang Xiao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China. .,College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
13
|
Naumov GI, Naumova ES. Invertase overproduction may provide for inulin fermentation by selection strains of Saccharomyces cerevisiae. Microbiology (Reading) 2015. [DOI: 10.1134/s0026261715020095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
14
|
Marie-Nelly H, Marbouty M, Cournac A, Flot JF, Liti G, Parodi DP, Syan S, Guillén N, Margeot A, Zimmer C, Koszul R. High-quality genome (re)assembly using chromosomal contact data. Nat Commun 2014; 5:5695. [PMID: 25517223 PMCID: PMC4284522 DOI: 10.1038/ncomms6695] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 10/29/2014] [Indexed: 01/08/2023] Open
Abstract
Closing gaps in draft genome assemblies can be costly and time-consuming, and published genomes are therefore often left ‘unfinished.’ Here we show that genome-wide chromosome conformation capture (3C) data can be used to overcome these limitations, and present a computational approach rooted in polymer physics that determines the most likely genome structure using chromosomal contact data. This algorithm—named GRAAL—generates high-quality assemblies of genomes in which repeated and duplicated regions are accurately represented and offers a direct probabilistic interpretation of the computed structures. We first validated GRAAL on the reference genome of Saccharomyces cerevisiae, as well as other yeast isolates, where GRAAL recovered both known and unknown complex chromosomal structural variations. We then applied GRAAL to the finishing of the assembly of Trichoderma reesei and obtained a number of contigs congruent with the know karyotype of this species. Finally, we showed that GRAAL can accurately reconstruct human chromosomes from either fragments generated in silico or contigs obtained from de novo assembly. In all these applications, GRAAL compared favourably to recently published programmes implementing related approaches. The correct assembly of genomes from sequencing data remains a challenge due to difficulties in correctly assigning the location of repeated DNA elements. Here the authors describe GRAAL, an algorithm that utilizes genome-wide chromosome contact data within a probabilistic framework to produce accurate genome assemblies.
Collapse
Affiliation(s)
- Hervé Marie-Nelly
- 1] Institut Pasteur, Department of Genomes and Genetics, Groupe Régulation Spatiale des Génomes, 75015 Paris, France [2] CNRS, UMR 3525, 75015 Paris, France [3] Institut Pasteur, Unité Imagerie et Modélisation, 75015 Paris, France [4] CNRS, URA 2582, 75015 Paris, France [5] Sorbonne Universités, UPMC Univ Paris06, IFD, 4 place Jussieu, 75252 Paris, France
| | - Martial Marbouty
- 1] Institut Pasteur, Department of Genomes and Genetics, Groupe Régulation Spatiale des Génomes, 75015 Paris, France [2] CNRS, UMR 3525, 75015 Paris, France
| | - Axel Cournac
- 1] Institut Pasteur, Department of Genomes and Genetics, Groupe Régulation Spatiale des Génomes, 75015 Paris, France [2] CNRS, UMR 3525, 75015 Paris, France
| | - Jean-François Flot
- Max Planck Institute for Dynamics and Self-Organization, Group Biological Physics and Evolutionary Dynamics, Bunsenstr. 10, 37073 Göttingen, Germany
| | - Gianni Liti
- Institute for Research on Cancer and Ageing of Nice (IRCAN), CNRS UMR 7284-INSERM U108, Université de Nice Sophia Antipolis, 06107 Nice, France
| | - Dante Poggi Parodi
- 1] Sorbonne Universités, UPMC Univ Paris06, IFD, 4 place Jussieu, 75252 Paris, France [2] IFP Energies Nouvelles, 1 et 4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France
| | - Sylvie Syan
- Institut Pasteur, Unité Cell Biology of Parasitism, 75015 Paris, France
| | - Nancy Guillén
- Institut Pasteur, Unité Cell Biology of Parasitism, 75015 Paris, France
| | - Antoine Margeot
- IFP Energies Nouvelles, 1 et 4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France
| | - Christophe Zimmer
- 1] Institut Pasteur, Unité Imagerie et Modélisation, 75015 Paris, France [2] CNRS, URA 2582, 75015 Paris, France
| | - Romain Koszul
- 1] Institut Pasteur, Department of Genomes and Genetics, Groupe Régulation Spatiale des Génomes, 75015 Paris, France [2] CNRS, UMR 3525, 75015 Paris, France
| |
Collapse
|
15
|
Bozdag GO, Greig D. The genetics of a putative social trait in natural populations of yeast. Mol Ecol 2014; 23:5061-71. [PMID: 25169714 PMCID: PMC4285311 DOI: 10.1111/mec.12904] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 08/21/2014] [Accepted: 08/25/2014] [Indexed: 11/29/2022]
Abstract
The sharing of secreted invertase by yeast cells is a well-established laboratory model for cooperation, but the only evidence that such cooperation occurs in nature is that the SUC loci, which encode invertase, vary in number and functionality. Genotypes that do not produce invertase can act as ‘cheats’ in laboratory experiments, growing on the glucose that is released when invertase producers, or ‘cooperators’, digest sucrose. However, genetic variation for invertase production might instead be explained by adaptation of different populations to different local availabilities of sucrose, the substrate for invertase. Here we find that 110 wild yeast strains isolated from natural habitats, and all contained a single SUC locus and produced invertase; none were ‘cheats’. The only genetic variants we found were three strains isolated instead from sucrose-rich nectar, which produced higher levels of invertase from three additional SUC loci at their subtelomeres. We argue that the pattern of SUC gene variation is better explained by local adaptation than by social conflict.
Collapse
Affiliation(s)
- G O Bozdag
- Max Planck Institute for Evolutionary Biology, August Thienemann Strasse 2, Plön, 24306, Germany
| | | |
Collapse
|
16
|
Naumova ES, Sadykova AZ, Martynenko NN, Naumov GI. Molecular polymorphism of β-fructosidase SUC genes in the Saccharomyces yeasts. Mol Biol 2014. [DOI: 10.1134/s0026893314040086] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Harrington KI, Sanchez A. Eco-evolutionary dynamics of complex social strategies in microbial communities. Commun Integr Biol 2014; 7:e28230. [PMID: 24778764 PMCID: PMC3995729 DOI: 10.4161/cib.28230] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 11/23/2022] Open
Abstract
Microbial communities abound with examples of complex social interactions that shape microbial ecosystems. One particularly striking example is microbial cooperation via the secretion of public goods. It has been suggested by theory, and recently demonstrated experimentally, that microbial population dynamics and the evolutionary dynamics of cooperative social genes take place with similar timescales, and are linked to each other via an eco-evolutionary feedback loop. We overview this recent evidence, and discuss the possibility that a third process may be also part of this loop: phenotypic dynamics. Complex social strategies may be implemented at the single-cell level by means of gene regulatory networks. Thus gene expression plasticity or stochastic gene expression, both of which may occur with a timescale of one to a few generations, can potentially lead to a three-way coupling between behavioral dynamics, population dynamics, and evolutionary dynamics
Collapse
Affiliation(s)
- Kyle I Harrington
- DEMO Lab; Department of Computer Science; Brandeis University; Waltham MA USA; The Rowland Institute; Harvard University; Cambridge, MA USA
| | - Alvaro Sanchez
- The Rowland Institute; Harvard University; Cambridge, MA USA
| |
Collapse
|
18
|
Naumova ES, Sadykova AZ, Martynenko NN, Naumov GI. Molecular genetic characteristics of Saccharomyces cerevisiae distillers’ yeasts. Microbiology (Reading) 2013. [DOI: 10.1134/s0026261713020112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
19
|
Chuma I, Isobe C, Hotta Y, Ibaragi K, Futamata N, Kusaba M, Yoshida K, Terauchi R, Fujita Y, Nakayashiki H, Valent B, Tosa Y. Multiple translocation of the AVR-Pita effector gene among chromosomes of the rice blast fungus Magnaporthe oryzae and related species. PLoS Pathog 2011; 7:e1002147. [PMID: 21829350 PMCID: PMC3145791 DOI: 10.1371/journal.ppat.1002147] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 05/17/2011] [Indexed: 01/22/2023] Open
Abstract
Magnaporthe oryzae is the causal agent of rice blast disease, a devastating problem worldwide. This fungus has caused breakdown of resistance conferred by newly developed commercial cultivars. To address how the rice blast fungus adapts itself to new resistance genes so quickly, we examined chromosomal locations of AVR-Pita, a subtelomeric gene family corresponding to the Pita resistance gene, in various isolates of M. oryzae (including wheat and millet pathogens) and its related species. We found that AVR-Pita (AVR-Pita1 and AVR-Pita2) is highly variable in its genome location, occurring in chromosomes 1, 3, 4, 5, 6, 7, and supernumerary chromosomes, particularly in rice-infecting isolates. When expressed in M. oryzae, most of the AVR-Pita homologs could elicit Pita-mediated resistance, even those from non-rice isolates. AVR-Pita was flanked by a retrotransposon, which presumably contributed to its multiple translocation across the genome. On the other hand, family member AVR-Pita3, which lacks avirulence activity, was stably located on chromosome 7 in a vast majority of isolates. These results suggest that the diversification in genome location of AVR-Pita in the rice isolates is a consequence of recognition by Pita in rice. We propose a model that the multiple translocation of AVR-Pita may be associated with its frequent loss and recovery mediated by its transfer among individuals in asexual populations. This model implies that the high mobility of AVR-Pita is a key mechanism accounting for the rapid adaptation toward Pita. Dynamic adaptation of some fungal plant pathogens may be achieved by deletion and recovery of avirulence genes using a population as a unit of adaptation.
Collapse
Affiliation(s)
- Izumi Chuma
- Graduate School of Agricultural Sciences, Kobe University, Kobe, Japan
| | - Chihiro Isobe
- Graduate School of Agricultural Sciences, Kobe University, Kobe, Japan
| | - Yuma Hotta
- Graduate School of Agricultural Sciences, Kobe University, Kobe, Japan
| | - Kana Ibaragi
- Graduate School of Agricultural Sciences, Kobe University, Kobe, Japan
| | - Natsuru Futamata
- Graduate School of Agricultural Sciences, Kobe University, Kobe, Japan
| | | | | | | | | | | | - Barbara Valent
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, United States of America
| | - Yukio Tosa
- Graduate School of Agricultural Sciences, Kobe University, Kobe, Japan
- * E-mail:
| |
Collapse
|
20
|
Naumov GI, Naumova ES. Comparative genetics of yeast Saccharomyces cerevisiae. Chromosomal translocations carrying the SUC2 marker. RUSS J GENET+ 2011. [DOI: 10.1134/s102279541011102x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Naumova ES, Naumov GI, Michailova YV, Martynenko NN, Masneuf-Pomarède I. Genetic diversity study of the yeast Saccharomyces bayanus var. uvarum reveals introgressed subtelomeric Saccharomyces cerevisiae genes. Res Microbiol 2011; 162:204-13. [DOI: 10.1016/j.resmic.2010.09.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 09/22/2010] [Indexed: 11/28/2022]
|
22
|
Oda Y, Mikumo D, Leo F, Urashima T. Discrimination of Saccharomyces cerevisiae and Saccharomyces paradoxus strains by the SUC2 gene sequences. J GEN APPL MICROBIOL 2010; 56:355-8. [PMID: 20953100 DOI: 10.2323/jgam.56.355] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Yuji Oda
- Department of Food Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan.
| | | | | | | |
Collapse
|
23
|
Wang CT, Ho CH, Hseu MJ, Chen CM. The subtelomeric region of the Arabidopsis thaliana chromosome IIIR contains potential genes and duplicated fragments from other chromosomes. PLANT MOLECULAR BIOLOGY 2010; 74:155-166. [PMID: 20652368 DOI: 10.1007/s11103-010-9664-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 07/05/2010] [Indexed: 05/29/2023]
Abstract
The subtelomere and a portion of the associated telomeric region (together named 3RTAS) of chromosome IIIR from the Arabidopsis thaliana ecotypes Columbia (Col) and Wassilewskija (Ws) were specifically amplified by polymerase chain reaction and subsequently cloned and sequenced. The centromere-proximal portion of 3RTAS from both ecotypes contained two newly identified potential genes, one encoding the chloroplast luminal 19-kDa protein precursor and the other encoding three potential alternatively spliced CCCH-type zinc finger proteins. The telomere-proximal portion of 3RTAS from the Col ecotype contained short duplicated fragments derived from chromosomes I, II, and III, and that from the Ws ecotype contained a duplicated fragment derived from chromosome V. Each duplicated fragment has diverged somewhat in sequence from that of the ectopic template. Small patches of homologous nucleotides were found within the flanking sequences of both the duplicated fragments and the corresponding ectopic template sequences. The structural characteristics of these duplicated fragments suggest that they are filler DNAs captured by non-homologous end joining during double-strand break repair. Our characterization of 3RTAS not only filled up a gap in the chromosome IIIR sequence of A. thaliana but also identified new genes with unknown functions.
Collapse
Affiliation(s)
- Chi-Ting Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|
24
|
Vaudano E, Costantini A, Noti O, Garcia-Moruno E. An RT-qPCR approach to study the expression of genes responsible for sugar assimilation during rehydration of active dry yeast. Food Microbiol 2010; 27:802-8. [DOI: 10.1016/j.fm.2010.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 03/30/2010] [Accepted: 04/20/2010] [Indexed: 11/27/2022]
|
25
|
Lin Z, Li WH. Expansion of hexose transporter genes was associated with the evolution of aerobic fermentation in yeasts. Mol Biol Evol 2010; 28:131-42. [PMID: 20660490 DOI: 10.1093/molbev/msq184] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The genetic basis of organisms' adaptation to different environments is a central issue of molecular evolution. The budding yeast Saccharomyces cerevisiae and its relatives predominantly ferment glucose into ethanol even in the presence of oxygen. This was suggested to be an adaptation to glucose-rich habitats, but the underlying genetic basis of the evolution of aerobic fermentation remains unclear. In S. cerevisiae, the first step of glucose metabolism is transporting glucose across the plasma membrane, which is carried out by hexose transporter proteins. Although several studies have recognized that the rate of glucose uptake can affect how glucose is metabolized, the role of HXT genes in the evolution of aerobic fermentation has not been fully explored. In this study, we identified all members of the HXT gene family in 23 fully sequenced fungal genomes, reconstructed their evolutionary history to pinpoint gene gain and loss events, and evaluated their adaptive significance in the evolution of aerobic fermentation. We found that the HXT genes have been extensively amplified in the two fungal lineages that have independently evolved aerobic fermentation. In contrast, reduction of the number of HXT genes has occurred in aerobic respiratory species. Our study reveals a strong positive correlation between the copy number of HXT genes and the strength of aerobic fermentation, suggesting that HXT gene expansion has facilitated the evolution of aerobic fermentation.
Collapse
Affiliation(s)
- Zhenguo Lin
- Department of Ecology and Evolution, University of Chicago, USA
| | | |
Collapse
|
26
|
Hauser NC, Fellenberg K, Gil R, Bastuck S, Hoheisel JD, Pérez-Ortín JE. Whole genome analysis of a wine yeast strain. Comp Funct Genomics 2010; 2:69-79. [PMID: 18628902 PMCID: PMC2447197 DOI: 10.1002/cfg.73] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2000] [Accepted: 02/21/2001] [Indexed: 11/28/2022] Open
Abstract
Saccharomyces cerevisiae strains frequently exhibit rather specific phenotypic features
needed for adaptation to a special environment. Wine yeast strains are able to ferment
musts, for example, while other industrial or laboratory strains fail to do so. The genetic
differences that characterize wine yeast strains are poorly understood, however. As a first
search of genetic differences between wine and laboratory strains, we performed DNA-array
analyses on the typical wine yeast strain T73 and the standard laboratory
background in S288c. Our analysis shows that even under normal conditions, logarithmic
growth in YPD medium, the two strains have expression patterns that differ significantly in
more than 40 genes. Subsequent studies indicated that these differences correlate with
small changes in promoter regions or variations in gene copy number. Blotting copy
numbers vs. transcript levels produced patterns, which were specific for the individual
strains and could be used for a characterization of unknown samples.
Collapse
Affiliation(s)
- N C Hauser
- Functional Genome Analysis, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 506, Heidelberg D-69120, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Naumov GI, Naumova ES. Polygenic control for fermentation of β-fructosides in the yeast Saccharomyces cerevisiae: New genes SUC9 and SUC10. Microbiology (Reading) 2010. [DOI: 10.1134/s0026261710020050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
28
|
Naumov GI, Naumova ES. Comparative genetics of yeasts: A novel β-fructosidase gene SUC8 in Saccharomyces cerevisiae. RUSS J GENET+ 2010. [DOI: 10.1134/s1022795410030099] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Ogihara F, Kitagaki H, Wang Q, Shimoi H. Common industrial sake yeast strains have three copies of the AQY1-ARR3 region of chromosome XVI in their genomes. Yeast 2008; 25:419-32. [PMID: 18509847 DOI: 10.1002/yea.1596] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Genomic analysis of industrial yeast strains is important for exploitation of their potential. We analysed the genomic structure of the most widely used sake yeast strain, Kyokai no. 7 (K7), by DNA microarray. Since the analysis suggested that the copy number of the AQY1-ARR3 region in the right arm of chromosome XVI was amplified, we performed Southern blot analysis using the AQY1 gene as a probe. The probe hybridized to three bands in the widely used sake strains derived from K7, but only to one band of 1.4 kb in the laboratory strains. Since the extra two bands were not observed in old sake strains, or in other industrial strains, the amplification of this region appeared to be specific for the widely used sake strains. The copy number of the AQY1-ARR3 region appeared to have increased by chromosomal translocation, since chromosomal Southern blot analysis revealed that the AQY1 probe hybridized to chromosomes IV and XIII, in addition to chromosome XVI, in which AQY1 of the laboratory strain is encoded. The chromosomal translocation was also confirmed by PCR analysis using primers that amplify the region containing the breakpoint. Cloning and sequencing of cosmids that encode the AQY1-ARR3 region revealed that this region is flanked by TG(1-3) repeats on the centromere-proximal side in chromosomes IV and XIII, suggesting that amplification of this region occurred by homologous recombination through TG(1-3) repeats. These results demonstrate the genomic characteristics of the modern widely used sake strains that discriminate them from other strains.
Collapse
Affiliation(s)
- Fukashi Ogihara
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima 739-8530, Japan
| | | | | | | |
Collapse
|
30
|
Craig Maclean R, Brandon C. Stable public goods cooperation and dynamic social interactions in yeast. J Evol Biol 2008; 21:1836-43. [PMID: 18643862 DOI: 10.1111/j.1420-9101.2008.01579.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite long-standing theoretical interest in the evolution of cooperation, empirical data on the evolutionary dynamics of cooperative traits remain limited. Here, we investigate the evolutionary dynamics of a simple public goods cooperative trait, invertase secretion, using a long-term selection experiment in Saccharomyces cerevisiae. We show that average investment in cooperation remains essentially constant over a period of hundreds of generations in viscous populations with high relatedness. Average cooperation remains constant despite transient local selection for high and low levels of cooperation that generate dynamic social interactions. Natural populations of yeast show similar variation in social strategies, which is consistent with the existence of similar selective pressures on public goods cooperation in nature.
Collapse
Affiliation(s)
- R Craig Maclean
- NERC Centre for Population Biology, Imperial College London, Silwood Park, Ascot, UK.
| | | |
Collapse
|
31
|
Khang CH, Park SY, Lee YH, Valent B, Kang S. Genome organization and evolution of the AVR-Pita avirulence gene family in the Magnaporthe grisea species complex. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:658-670. [PMID: 18393625 DOI: 10.1094/mpmi-21-5-0658] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The avirulence (AVR) gene AVR-Pita in Magnaporthe oryzae prevents the fungus from infecting rice cultivars containing the resistance gene Pi-ta. A survey of isolates of the M. grisea species complex from diverse hosts showed that AVR-Pita is a member of a gene family, which led us to rename it to AVR-Pita1. Avirulence function, distribution, and genomic context of two other members, named AVR-Pita2 and AVR-Pita3, were characterized. AVR-Pita2, but not AVR-Pita3, was functional as an AVR gene corresponding to Pi-ta. The AVR-Pita1 and AVR-Pita2 genes were present in isolates of both M. oryzae and M. grisea, whereas the AVR-Pita3 gene was present only in isolates of M. oryzae. Orthologues of members of the AVR-Pita family could not be found in any fungal species sequenced to date, suggesting that the gene family may be unique to the M. grisea species complex. The genomic context of its members was analyzed in eight strains. The AVR-Pita1 and AVR-Pita2 genes in some isolates appeared to be located near telomeres and flanked by diverse repetitive DNA elements, suggesting that frequent deletion or amplification of these genes within the M. grisea species complex might have resulted from recombination mediated by repetitive DNA elements.
Collapse
Affiliation(s)
- Chang Hyun Khang
- Department of Plant Pathology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
32
|
Rehmeyer C, Li W, Kusaba M, Kim YS, Brown D, Staben C, Dean R, Farman M. Organization of chromosome ends in the rice blast fungus, Magnaporthe oryzae. Nucleic Acids Res 2006; 34:4685-701. [PMID: 16963777 PMCID: PMC1635262 DOI: 10.1093/nar/gkl588] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Eukaryotic pathogens of humans often evade the immune system by switching the expression of surface proteins encoded by subtelomeric gene families. To determine if plant pathogenic fungi use a similar mechanism to avoid host defenses, we sequenced the 14 chromosome ends of the rice blast pathogen, Magnaporthe oryzae. One telomere is directly joined to ribosomal RNA-encoding genes, at the end of the ∼2 Mb rDNA array. Two are attached to chromosome-unique sequences, and the remainder adjoin a distinct subtelomere region, consisting of a telomere-linked RecQ-helicase (TLH) gene flanked by several blocks of tandem repeats. Unlike other microbes, M.oryzae exhibits very little gene amplification in the subtelomere regions—out of 261 predicted genes found within 100 kb of the telomeres, only four were present at more than one chromosome end. Therefore, it seems unlikely that M.oryzae uses switching mechanisms to evade host defenses. Instead, the M.oryzae telomeres have undergone frequent terminal truncation, and there is evidence of extensive ectopic recombination among transposons in these regions. We propose that the M.oryzae chromosome termini play more subtle roles in host adaptation by promoting the loss of terminally-positioned genes that tend to trigger host defenses.
Collapse
Affiliation(s)
- Cathryn Rehmeyer
- Department of Plant Pathology, University of KentuckyLexington, KY 40546 USA
| | - Weixi Li
- Department of Biology, University of KentuckyLexington, KY 40546 USA
| | - Motoaki Kusaba
- Department of Plant Pathology, University of KentuckyLexington, KY 40546 USA
| | - Yun-Sik Kim
- Department of Plant Pathology, University of KentuckyLexington, KY 40546 USA
| | - Doug Brown
- Center for Integrated Fungal Research, North Carolina State UniversityRaleigh, NC 27695 USA
| | - Chuck Staben
- Department of Biology, University of KentuckyLexington, KY 40546 USA
| | - Ralph Dean
- Center for Integrated Fungal Research, North Carolina State UniversityRaleigh, NC 27695 USA
| | - Mark Farman
- Department of Plant Pathology, University of KentuckyLexington, KY 40546 USA
- To whom correspondence should be addressed. Tel: 859 257 7445, ext. 80728; Fax: 859 323 1961;
| |
Collapse
|
33
|
Mizuno H, Wu J, Kanamori H, Fujisawa M, Namiki N, Saji S, Katagiri S, Katayose Y, Sasaki T, Matsumoto T. Sequencing and characterization of telomere and subtelomere regions on rice chromosomes 1S, 2S, 2L, 6L, 7S, 7L and 8S. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 46:206-17. [PMID: 16623884 DOI: 10.1111/j.1365-313x.2006.02684.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Telomeres, which are important for chromosome maintenance, are composed of long, repetitive DNA sequences associated with a variety of telomere-binding proteins. We characterized the organization and structure of rice telomeres and adjacent subtelomere regions on the basis of cytogenetic and sequence analyses. The length of the rice telomeres ranged from 5.1 to 10.8 kb, as revealed by both fibre-fluorescent in situ hybridization and terminal restriction-fragment assay. Physical maps of the chromosomal ends were constructed from a fosmid library. This facilitated sequencing of the telomere regions of chromosomes 1S, 2S, 2L, 6L, 7S, 7L and 8S. The resulting sequences contained conserved TTTAGGG telomere repeats, which indicates that the physical maps partly covered the telomere regions of the respective chromosome arms. These repeats were organized in the order of 5'-TTTAGGG-3' from the chromosome-specific region, except in chromosome 7S, in which seven inverted copies also existed in tandem array. Analysis of the telomere-flanking regions revealed the occurrence of deletions, insertions, or chromosome-specific substitutions of single nucleotides within the repeat sequences at the junction between the telomere and subtelomere. The sequences of the 500-kb regions of the seven chromosome ends were analysed in detail. A total of 598 genes were predicted in the telomeric regions. In addition, repetitive sequences derived from various kinds of retrotransposon were identified. No significant evidence for segmental duplication could be detected within or among the subtelomere regions. These results indicate that the rice chromosome ends are heterogeneous in both sequence and characterization.
Collapse
Affiliation(s)
- Hiroshi Mizuno
- National Institute of Agrobiological Sciences, 1-2, Kannondai 2-chome, Tsukuba, Ibaraki 305-8602, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Korshunova IV, Naumova ES, Naumov GI. Comparative Molecular Genetic Analysis of β-Fructosidases of Yeasts Saccharomyces. Mol Biol 2005. [DOI: 10.1007/s11008-005-0051-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Nguyen HV, Gaillardin C. Evolutionary relationships between the former species and the hybrids and ; reinstatement of (Beijerinck) as a distinct species. FEMS Yeast Res 2005; 5:471-83. [PMID: 15691752 DOI: 10.1016/j.femsyr.2004.12.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Revised: 12/03/2004] [Accepted: 12/03/2004] [Indexed: 10/26/2022] Open
Abstract
Analysis of the nucleotide sequence of the GDH1 homologues from Saccharomyces bayanus strain CBS 380T and S. pastorianus strains showed that they share an almost identical sequence, SuGDH1*, which is a diverged form of the SuGDH1 from the type strain of the former species S. uvarum, considered as synonym of S. bayanus. SuGDH1* is close to but differs from SuGDH1 by the accumulation of a high number of neutral substitutions designated as Multiple Neutral Mutations Accumulation (MNMA). Further analysis carried out with three other markers, BAP2, HO and MET2 showed that they have also diverged from their S. uvarum counterparts by MNMA. S. bayanus CBS 380T is placed between S. uvarum and S. pastorianus sharing MET2, CDC91 sequences with the former and BAP2, GDH1, HO sequences with the latter. S. bayanus CBS 380T has been proposed to be a S. uvarum/S. cerevisiae hybrid and this proposal is confirmed by the presence in its genome a S. cerevisiae SUC4 gene. Strain S. bayanus CBS 380T, with a composite genome, is genetically isolated from strains of the former S. uvarum species, thus justifying the reinstatement of S. uvarum as a distinct species.
Collapse
Affiliation(s)
- Huu-Vang Nguyen
- Laboratoire de Microbiologie et Génétique Moléculaire, Collection de Levures d'Intérêt Biotechnologique, INRA UMR1238-CNRS UMR2585, INA-PG, Centre Versailles-Grignon, BP 01, F-78850 Thiverval-Grignon, France.
| | | |
Collapse
|
36
|
Naumova ES, Naumov GI, Masneuf-Pomarède I, Aigle M, Dubourdieu D. Molecular genetic study of introgression betweenSaccharomyces bayanus andS. cerevisiae. Yeast 2005; 22:1099-115. [PMID: 16240458 DOI: 10.1002/yea.1298] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The genomic constitution of different S. bayanus strains and natural interspecific Saccharomyces hybrids has been studied by genetic and molecular methods. Unlike S. bayanus var. uvarum, some S. bayanus var. bayanus strains (the type culture CBS 380, CBS 378, CBS 425, CBS 1548) harbour a number of S. cerevisiae subtelomeric sequences: Y', pEL50, SUC, RTM and MAL. The two varieties, having 86-100% nDNA-nDNA reassociation, are partly genetically isolated from one another but completely isolated from S. cerevisiae. Genetic and molecular data support the maintaining of var. bayanus and var. uvarum strains in the species S. bayanus. Using Southern hybridization with species-specific molecular markers, RFLP of the MET2 gene and flow cytometry analysis, we showed that the non-S. cerevisiae parents are different in lager brewing yeasts and in wine hybrid strains. Our results suggest that S. pastorianus is a hybrid between S. cerevisiae and S. bayanus var. bayanus, while S. bayanus var. uvarum contributed to the formation of the wine hybrids S6U and CID1. According to the partial sequence of ACT1 gene and flow cytometry analysis, strain CID1 is a triple hybrid between S. cerevisiae, S. kudriavzevii and S. bayanus var. uvarum.
Collapse
Affiliation(s)
- Elena S Naumova
- State Institute for Genetics and Selection of Industrial Microorganisms, Moscow 117545, Russia
| | | | | | | | | |
Collapse
|
37
|
Abstract
For decades, unicellular yeasts have been general models to help understand the eukaryotic cell and also our own biology. Recently, over a dozen yeast genomes have been sequenced, providing the basis to resolve several complex biological questions. Analysis of the novel sequence data has shown that the minimum number of genes from each species that need to be compared to produce a reliable phylogeny is about 20. Yeast has also become an attractive model to study speciation in eukaryotes, especially to understand molecular mechanisms behind the establishment of reproductive isolation. Comparison of closely related species helps in gene annotation and to answer how many genes there really are within the genomes. Analysis of non-coding regions among closely related species has provided an example of how to determine novel gene regulatory sequences, which were previously difficult to analyse because they are short and degenerate and occupy different positions. Comparative genomics helps to understand the origin of yeasts and points out crucial molecular events in yeast evolutionary history, such as whole-genome duplication and horizontal gene transfer(s). In addition, the accumulating sequence data provide the background to use more yeast species in model studies, to combat pathogens and for efficient manipulation of industrial strains.
Collapse
Affiliation(s)
- Jure Piskur
- BioCentrum-DTU, Building 301, Technical University of Denmark, DK-2800 Kgl. Lyngby, Denmark.
| | | |
Collapse
|
38
|
Abstract
Subtelomeres are extraordinarily dynamic and variable regions near the ends of chromosomes. They are defined by their unusual structure: patchworks of blocks that are duplicated near the ends of multiple chromosomes. Duplications among subtelomeres have spawned small gene families, making inter-individual variation in subtelomeres a potential source of phenotypic diversity. The ectopic recombination that occurs between subtelomeres might also have a role in reconstituting telomeres in the absence of telomerase. However, the propensity for subtelomeres to interchange is a double-edged sword, as extensive subtelomeric homology can mediate deleterious rearrangements of the ends of chromosomes to cause human disease.
Collapse
Affiliation(s)
- Heather C Mefford
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | |
Collapse
|
39
|
Bell PJ, Higgins VJ, Attfield PV. Comparison of fermentative capacities of industrial baking and wild-type yeasts of the species Saccharomyces cerevisiae in different sugar media. Lett Appl Microbiol 2001; 32:224-9. [PMID: 11298930 DOI: 10.1046/j.1472-765x.2001.00894.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To compare the fermentative capacity of wild and domesticated isolates of the genus Saccharomyces. METHODS AND RESULTS The fermentative capacity of yeasts from a variety of wild and domesticated sources was tested in synthetic dough media that mimic major bread dough types. Domesticated yeast strains were found to have better maltose-utilizing capacity than wild yeast strains. The capacity to ferment sugars under high osmotic stress was randomly distributed amongst wild and baking strains of Saccharomyces. CONCLUSION The domestication of bakers' yeast has enhanced the ability of yeasts to ferment maltose, without a similar impact on the fermentative capacity under high osmotic conditions. SIGNIFICANCE AND IMPACT OF THE STUDY This study, combined with molecular studies of both wild and domesticated yeast, showed that domestication of bakers' yeast has resulted in improved maltose utilization, apparently via the duplication and mutation of the MAL genes.
Collapse
Affiliation(s)
- P J Bell
- Department of Biological Sciences, Macquarie University, Sydney, Australia.
| | | | | |
Collapse
|
40
|
Riethman HC, Xiang Z, Paul S, Morse E, Hu XL, Flint J, Chi HC, Grady DL, Moyzis RK. Integration of telomere sequences with the draft human genome sequence. Nature 2001; 409:948-51. [PMID: 11237019 DOI: 10.1038/35057180] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Telomeres are the ends of linear eukaryotic chromosomes. To ensure that no large stretches of uncharacterized DNA remain between the ends of the human working draft sequence and the ends of each chromosome, we would need to connect the sequences of the telomeres to the working draft sequence. But telomeres have an unusual DNA sequence composition and organization that makes them particularly difficult to isolate and analyse. Here we use specialized linear yeast artificial chromosome clones, each carrying a large telomere-terminal fragment of human DNA, to integrate most human telomeres with the working draft sequence. Subtelomeric sequence structure appears to vary widely, mainly as a result of large differences in subtelomeric repeat sequence abundance and organization at individual telomeres. Many subtelomeric regions appear to be gene-rich, matching both known and unknown expressed genes. This indicates that human subtelomeric regions are not simply buffers of nonfunctional 'junk DNA' next to the molecular telomere, but are instead functional parts of the expressed genome.
Collapse
Affiliation(s)
- H C Riethman
- The Wistar Institute, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Orbach MJ, Farrall L, Sweigard JA, Chumley FG, Valent B. A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. THE PLANT CELL 2000. [PMID: 11090206 DOI: 10.2307/3871102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Genetic mapping showed that the rice blast avirulence gene AVR-Pita is tightly linked to a telomere on chromosome 3 in the plant pathogenic fungus Magnaporthe grisea. AVR-Pita corresponds in gene-for-gene fashion to the disease resistance (R) gene Pi-ta. Analysis of spontaneous avr-pita(-) mutants indicated that the gene is located in a telomeric 6.5-kb BglII restriction fragment. Cloning and DNA sequencing led to the identification of a candidate gene with features typical of metalloproteases. This gene is located entirely within the most distal 1.5 kb of the chromosome. When introduced into virulent rice pathogens, the cloned gene specifically confers avirulence toward rice cultivars that contain Pi-ta. Frequent spontaneous loss of AVR-Pita appears to be the result of its telomeric location. Diverse mutations in AVR-Pita, including point mutations, insertions, and deletions, permit the fungus to avoid triggering resistance responses mediated by Pi-ta. A point mutation in the protease consensus sequence abolishes the AVR-Pita avirulence function.
Collapse
Affiliation(s)
- M J Orbach
- DuPont Central Research and Development, P.O. Box 80402, Wilmington, Delaware 19880-0402, USA
| | | | | | | | | |
Collapse
|
42
|
Mönch J, Stahl U. Polymorphisms of industrial strains ofsaccharomycesyeasts: Genotypic and phenotypic features. FOOD BIOTECHNOL 2000. [DOI: 10.1080/08905430009549984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Orbach MJ, Farrall L, Sweigard JA, Chumley FG, Valent B. A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. THE PLANT CELL 2000; 12:2019-32. [PMID: 11090206 PMCID: PMC152363 DOI: 10.1105/tpc.12.11.2019] [Citation(s) in RCA: 315] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2000] [Accepted: 09/01/2000] [Indexed: 05/18/2023]
Abstract
Genetic mapping showed that the rice blast avirulence gene AVR-Pita is tightly linked to a telomere on chromosome 3 in the plant pathogenic fungus Magnaporthe grisea. AVR-Pita corresponds in gene-for-gene fashion to the disease resistance (R) gene Pi-ta. Analysis of spontaneous avr-pita(-) mutants indicated that the gene is located in a telomeric 6.5-kb BglII restriction fragment. Cloning and DNA sequencing led to the identification of a candidate gene with features typical of metalloproteases. This gene is located entirely within the most distal 1.5 kb of the chromosome. When introduced into virulent rice pathogens, the cloned gene specifically confers avirulence toward rice cultivars that contain Pi-ta. Frequent spontaneous loss of AVR-Pita appears to be the result of its telomeric location. Diverse mutations in AVR-Pita, including point mutations, insertions, and deletions, permit the fungus to avoid triggering resistance responses mediated by Pi-ta. A point mutation in the protease consensus sequence abolishes the AVR-Pita avirulence function.
Collapse
Affiliation(s)
- M J Orbach
- DuPont Central Research and Development, P.O. Box 80402, Wilmington, Delaware 19880-0402, USA
| | | | | | | | | |
Collapse
|
44
|
Rachidi N, Martinez MJ, Barre P, Blondin B. Saccharomyces cerevisiae PAU genes are induced by anaerobiosis. Mol Microbiol 2000; 35:1421-30. [PMID: 10760143 DOI: 10.1046/j.1365-2958.2000.01807.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Saccharomyces cerevisiae PAU genes constitute the largest multigene family in yeast, with 23 members located mainly in subtelomeric regions. The role and regulation of these genes were previously unknown. We detected PAU gene expression during alcoholic fermentation. An analysis of PAU gene regulation using PAU-lacZ fusions and Northern analyses revealed that they were regulated by anaerobiosis. PAU genes display, however, different abilities to be induced by anaerobiosis and this appears to be related to their chromosomal localization; two subtelomeric copies are more weakly inducible than an interstitial one. We show that PAU genes are negatively regulated by oxygen and repressed by haem. Examination of PAU gene expression in rox1Delta and tup1Delta strains indicates that PAU repression by oxygen is mediated by an unknown, haem-dependent pathway, which does not involve the Rox1p anaerobic repressor but requires Tup1p. Given the size of the gene family, PAU genes could be expected to be important during yeast life and some of them probably help the yeast to cope with anaerobiosis.
Collapse
Affiliation(s)
- N Rachidi
- Laboratoire de Microbiologie et Technologie des Fermentations, IPV, INRA-ENSA.M, 2 place Viala, 34060 Montpellier Cedex, France
| | | | | | | |
Collapse
|
45
|
Delneri D, Gardner DC, Oliver SG. Analysis of the seven-member AAD gene set demonstrates that genetic redundancy in yeast may be more apparent than real. Genetics 1999; 153:1591-600. [PMID: 10581269 PMCID: PMC1460870 DOI: 10.1093/genetics/153.4.1591] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Saccharomyces cerevisiae has seven genes encoding proteins with a high degree (>85%) of amino-acid sequence identity to the aryl-alcohol dehydrogenase of the lignin-degrading, filamentous fungus, Phanerochaete chrysosporium. All but one member of this gene set are telomere associated. Moreover, all contain a sequence similar to the DNA-binding site of the Yap1p transcriptional activator either upstream of or within their coding sequences. The expression of the AAD genes was found to be induced by chemicals, such as diamide and diethyl maleic acid ester (DEME), that cause an oxidative shock by inactivating the glutathione (GSH) reservoir of the cells. In contrast, the oxidizing agent hydrogen peroxide has no effect on the expression of these genes. We found that the response to anti-GSH agents was Yap1p dependent. The very high level of nucleotide sequence similarity between the AAD genes makes it difficult to determine if they are all involved in the oxidative-stress response. The use of single and multiple aad deletants demonstrated that only AAD4 (YDL243c) and AAD6 (YFL056/57c) respond to the oxidative stress. Of these two genes, only AAD4 is likely to be functional since the YFL056/57c open reading frame is interrupted by a stop codon. Thus, in terms of the function in response to oxidative stress, the sevenfold redundancy of the AAD gene set is more apparent than real.
Collapse
Affiliation(s)
- D Delneri
- Department Biomolecular Sciences, University of Manchester Institute of Science and Technology, Manchester M60 1QD, United Kingdom
| | | | | |
Collapse
|
46
|
Vincent SF, Bell PJ, Bissinger P, Nevalainen KM. Comparison of melibiose utilizing baker's yeast strains produced by genetic engineering and classical breeding. Lett Appl Microbiol 1999; 28:148-52. [PMID: 10063644 DOI: 10.1046/j.1365-2672.1999.00487.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Yeast strains currently used in the baking industry cannot fully utilize the trisaccharide raffinose found in beet molasses due to the absence of melibiase (alpha-galactosidase) activity. To overcome this deficiency, the MEL1 gene encoding melibiase enzyme was introduced into baker's yeast by both classical breeding and recombinant DNA technology. Both types of yeast strains were capable of vigorous fermentation in the presence of high levels of sucrose, making them suitable for the rapidly developing Asian markets where high levels of sugar are used in bread manufacture. Melibiase expression appeared to be dosage-dependent, with relatively low expression sufficient for complete melibiose utilization in a model fermentation system.
Collapse
Affiliation(s)
- S F Vincent
- Burns Philp Technology and Research Centre, North Ryde, Sydney, Australia
| | | | | | | |
Collapse
|
47
|
Bosco G, Haber JE. Chromosome break-induced DNA replication leads to nonreciprocal translocations and telomere capture. Genetics 1998; 150:1037-47. [PMID: 9799256 PMCID: PMC1460379 DOI: 10.1093/genetics/150.3.1037] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In yeast, broken chromosomes can be repaired by recombination, resulting in nonreciprocal translocations. In haploid cells suffering an HO endonuclease-induced, double-strand break (DSB), nearly 2% of the broken chromosome ends recombined with a sequence near the opposite chromosome end, which shares only 72 bp of homology with the cut sequence. This produced a repaired chromosome with the same 20-kb sequence at each end. Diploid strains were constructed in which the broken chromosome shared homology with the unbroken chromosome only on the centromere-proximal side of the DSB. More than half of these cells repaired the DSB by copying sequences distal to the break from the unbroken template chromosome. All these events were RAD52 dependent. Pedigree analysis established that DSBs occurring in G1 were repaired by a replicative mechanism, producing two identical daughter cells. We discuss the implications of these data in understanding telomerase-independent replication of telomeres, gene amplification, and the evolution of chromosomal ends.
Collapse
Affiliation(s)
- G Bosco
- Rosenstiel Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02454-9110, USA
| | | |
Collapse
|
48
|
|
49
|
SSU1-R, a sulfite resistance gene of wine yeast, is an allele of SSU1 with a different upstream sequence. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s0922-338x(98)80146-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Molecular Cloning of Chromosome I DNA fromSaccharomyces cerevisiae: Characterization of the 54 kb Right TerminalCDC15-FLO1-PHO11 Region. Yeast 1997. [DOI: 10.1002/(sici)1097-0061(199710)13:13<1251::aid-yea174>3.0.co;2-f] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|