1
|
Isoda T, Takeda E, Hosokawa S, Hotta-Ren S, Ohsumi Y. Atg45 is an autophagy receptor for glycogen, a non-preferred cargo of bulk autophagy in yeast. iScience 2024; 27:109810. [PMID: 38832010 PMCID: PMC11145338 DOI: 10.1016/j.isci.2024.109810] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/03/2023] [Accepted: 04/22/2024] [Indexed: 06/05/2024] Open
Abstract
The mechanisms governing autophagy of proteins and organelles have been well studied, but how other cytoplasmic components such as RNA and polysaccharides are degraded remains largely unknown. In this study, we examine autophagy of glycogen, a storage form of glucose. We find that cells accumulate glycogen in the cytoplasm during nitrogen starvation and that this carbohydrate is rarely observed within autophagosomes and autophagic bodies. However, sequestration of glycogen by autophagy is observed following prolonged nitrogen starvation. We identify a yet-uncharacterized open reading frame, Yil024c (herein Atg45), as encoding a cytosolic receptor protein that mediates autophagy of glycogen (glycophagy). Furthermore, we show that, during sporulation, Atg45 is highly expressed and is associated with an increase in glycophagy. Our results suggest that cells regulate glycophagic activity by controlling the expression level of Atg45.
Collapse
Affiliation(s)
- Takahiro Isoda
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- Frontier Research Center, POLA Chemical Industries, Inc, Yokohama 244-0812, Japan
| | - Eigo Takeda
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Sachiko Hosokawa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Shukun Hotta-Ren
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Yoshinori Ohsumi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| |
Collapse
|
2
|
Miao J, Regan J, Cai C, Palmer GE, Williams DL, Kruppa MD, Peters BM. Glycogen Metabolism in Candida albicans Impacts Fitness and Virulence during Vulvovaginal and Invasive Candidiasis. mBio 2023; 14:e0004623. [PMID: 36840583 PMCID: PMC10127583 DOI: 10.1128/mbio.00046-23] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
The polymorphic fungus Candida albicans remains a leading cause of both invasive and superficial mycoses, including vulvovaginal candidiasis (VVC). Metabolic plasticity, including carbohydrate catabolism, confers fitness advantages at anatomical site-specific host niches. C. albicans possesses the capacity to accumulate and store carbohydrates as glycogen and can consume intracellular glycogen stores when nutrients become limited. In the vaginal environment, estrogen promotes epithelial glycogen accumulation and C. albicans colonization. However, whether these factors are mechanistically linked is unexplored. Here, we characterized the glycogen metabolism pathways in C. albicans and investigated whether these impact the long-term survival of C. albicans, both in vitro and in vivo during murine VVC, or virulence during systemic infection. SC5314 and 6 clinical isolates demonstrated impaired growth when glycogen was used as the sole carbon source, suggesting that environmental glycogen acquisition is limited. The genetic deletion and complementation of key genes involved in glycogen metabolism in Saccharomyces cerevisiae confirmed that GSY1 and GLC3, as well as GPH1 and GDB1, are essential for glycogen synthesis and catabolism in C. albicans, respectively. Potential compensatory roles for a glucoamylase encoded by SGA1 were also explored. Competitive survival assays revealed that gsy1Δ/Δ, gph1Δ/Δ, and gph1Δ/Δ sga1Δ/Δ mutants exhibited long-term survival defects in vitro under starvation conditions and in vivo during vaginal colonization. A complete inability to catabolize glycogen (gph1Δ/Δ sga1Δ/Δ) also rendered C. albicans significantly less virulent during disseminated infections. This is the first study fully validating the glycogen metabolism pathways in C. albicans, and the results further suggest that intracellular glycogen catabolism positively impacts the long-term fitness of C. albicans in nutrient deficient environments and is important for full virulence. IMPORTANCE Glycogen is a highly branched polymer of glucose and is used across the tree of life as an efficient and compact form of energy storage. Whereas glycogen metabolism pathways have been studied in model yeasts, they have not been extensively explored in pathogenic fungi. Using a combination of microbiologic, molecular genetic, and biochemical approaches, we reveal orthologous functions of glycogen metabolism genes in the fungal pathogen Candida albicans. We also provide evidence that extracellular glycogen poorly supports growth across the Candida species and clinical isolates. Competitive fitness assays reveal that the loss of glycogen synthesis or catabolism significantly impacts survival during both in vitro starvation and the colonization of the mouse vagina. Moreover, a global glycogen catabolism mutant is rendered less virulent during murine invasive candidiasis. Therefore, this work demonstrates that glycogen metabolism in C. albicans contributes to survival and virulence in the mammalian host and may be a novel antifungal target.
Collapse
Affiliation(s)
- Jian Miao
- Pharmaceutical Sciences Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jessica Regan
- Pharmaceutical Sciences Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Chun Cai
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Glen E. Palmer
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - David L. Williams
- Department of Surgery, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
- Center of Excellence in Inflammation, Infectious Disease, and Immunity, East Tennessee State University, Johnson City, Tennessee, USA
| | - Michael D. Kruppa
- Center of Excellence in Inflammation, Infectious Disease, and Immunity, East Tennessee State University, Johnson City, Tennessee, USA
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Brian M. Peters
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
3
|
Brouwers N, Gorter de Vries AR, van den Broek M, Weening SM, Elink Schuurman TD, Kuijpers NGA, Pronk JT, Daran JMG. In vivo recombination of Saccharomyces eubayanus maltose-transporter genes yields a chimeric transporter that enables maltotriose fermentation. PLoS Genet 2019; 15:e1007853. [PMID: 30946741 PMCID: PMC6448828 DOI: 10.1371/journal.pgen.1007853] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/26/2018] [Indexed: 11/18/2022] Open
Abstract
Saccharomyces eubayanus is the non-S. cerevisiae parent of the lager-brewing hybrid S. pastorianus. In contrast to most S. cerevisiae and Frohberg-type S. pastorianus strains, S. eubayanus cannot utilize the α-tri-glucoside maltotriose, a major carbohydrate in brewer’s wort. In Saccharomyces yeasts, utilization of maltotriose is encoded by the subtelomeric MAL gene family, and requires transporters for maltotriose uptake. While S. eubayanus strain CBS 12357T harbors four SeMALT genes which enable uptake of the α-di-glucoside maltose, it lacks maltotriose transporter genes. In S. cerevisiae, sequence identity indicates that maltotriose and maltose transporters likely evolved from a shared ancestral gene. To study the evolvability of maltotriose utilization in S. eubayanus CBS 12357T, maltotriose-assimilating mutants obtained after UV mutagenesis were subjected to laboratory evolution in carbon-limited chemostat cultures on maltotriose-enriched wort. An evolved strain showed improved maltose and maltotriose fermentation in 7 L fermenter experiments on industrial wort. Whole-genome sequencing revealed a novel mosaic SeMALT413 gene, resulting from repeated gene introgressions by non-reciprocal translocation of at least three SeMALT genes. The predicted tertiary structure of SeMalT413 was comparable to the original SeMalT transporters, but overexpression of SeMALT413 sufficed to enable growth on maltotriose, indicating gene neofunctionalization had occurred. The mosaic structure of SeMALT413 resembles the structure of S. pastorianus maltotriose-transporter gene SpMTY1, which has high sequences identity to alternatingly S. cerevisiae MALx1, S. paradoxus MALx1 and S. eubayanus SeMALT3. Evolution of the maltotriose transporter landscape in hybrid S. pastorianus lager-brewing strains is therefore likely to have involved mechanisms similar to those observed in the present study. Fermentation of the wort sugar maltotriose is critical for the flavor profile obtained during beer brewing. The recently discovered yeast Saccharomyces eubayanus is gaining popularity as an alternative to S. pastorianus and S. cerevisiae for brewing, however it is unable to utilize maltotriose. Here, a combination of non-GMO mutagenesis and laboratory evolution of the S. eubayanus type strain CBS 12357T was used to enable maltotriose fermentation and improve brewing performance. The improved strain expressed a novel transporter gene, SeMALT413, which was formed by recombination between three different SeMALT maltose-transporter genes. Overexpression of SeMALT413 in CBS 12357T confirmed its neofunctionalization as a maltotriose transporter. As the S. pastorianus maltotriose transporter SpMty1 has a mosaic structure similar to SeMalT413, maltotriose utilization likely involved similar recombination events during the domestication of current lager brewing strains. Based on a posteriori sequence analysis, the emergence of gene functions has been attributed to gene neofunctionalization in a broad range of organisms. The real-time observation of neofunctionalization during laboratory evolution constitutes an important validation of the relevance and importance of this mechanism for Darwinian evolution.
Collapse
Affiliation(s)
- Nick Brouwers
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Arthur R. Gorter de Vries
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Marcel van den Broek
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Susan M. Weening
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | | | - Niels G. A. Kuijpers
- HEINEKEN Supply Chain B.V., Global Innovation and Research, Zoeterwoude, Netherlands
| | - Jack T. Pronk
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Jean-Marc G. Daran
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
- * E-mail:
| |
Collapse
|
4
|
Parzych KR, Klionsky DJ. Vacuolar hydrolysis and efflux: current knowledge and unanswered questions. Autophagy 2018; 15:212-227. [PMID: 30422029 DOI: 10.1080/15548627.2018.1545821] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Hydrolysis within the vacuole in yeast and the lysosome in mammals is required for the degradation and recycling of a multitude of substrates, many of which are delivered to the vacuole/lysosome by autophagy. In humans, defects in lysosomal hydrolysis and efflux can have devastating consequences, and contribute to a class of diseases referred to as lysosomal storage disorders. Despite the importance of these processes, many of the proteins and regulatory mechanisms involved in hydrolysis and efflux are poorly understood. In this review, we describe our current knowledge of the vacuolar/lysosomal degradation and efflux of a vast array of substrates, focusing primarily on what is known in the yeast Saccharomyces cerevisiae. We also highlight many unanswered questions, the answers to which may lead to new advances in the treatment of lysosomal storage disorders. Abbreviations: Ams1: α-mannosidase; Ape1: aminopeptidase I; Ape3: aminopeptidase Y; Ape4: aspartyl aminopeptidase; Atg: autophagy related; Cps1: carboxypeptidase S; CTNS: cystinosin, lysosomal cystine transporter; CTSA: cathepsin A; CTSD: cathepsin D; Cvt: cytoplasm-to-vacuole targeting; Dap2: dipeptidyl aminopeptidase B; GS-bimane: glutathione-S-bimane; GSH: glutathione; LDs: lipid droplets; MVB: multivesicular body; PAS: phagophore assembly site; Pep4: proteinase A; PolyP: polyphosphate; Prb1: proteinase B; Prc1: carboxypeptidase Y; V-ATPase: vacuolar-type proton-translocating ATPase; VTC: vacuolar transporter chaperone.
Collapse
Affiliation(s)
- Katherine R Parzych
- a Life Sciences Institute, and Department of Molecular, Cellular and Developmental Biology , University of Michigan , Ann Arbor , MI , USA
| | - Daniel J Klionsky
- a Life Sciences Institute, and Department of Molecular, Cellular and Developmental Biology , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
5
|
Brickwedde A, Brouwers N, van den Broek M, Gallego Murillo JS, Fraiture JL, Pronk JT, Daran JMG. Structural, Physiological and Regulatory Analysis of Maltose Transporter Genes in Saccharomyces eubayanus CBS 12357 T. Front Microbiol 2018; 9:1786. [PMID: 30147677 PMCID: PMC6097016 DOI: 10.3389/fmicb.2018.01786] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 07/17/2018] [Indexed: 11/13/2022] Open
Abstract
Saccharomyces pastorianus lager brewing yeasts are domesticated hybrids of Saccharomyces cerevisiae and cold-tolerant Saccharomyces eubayanus. To understand the contribution of both parental genomes to maltose metabolism in brewing wort, this study focuses on maltose transport in the S. eubayanus type strain CBS 12357T/FM1318. To obtain complete sequences of the MAL loci of this strain, a near-complete genome assembly was generated using the Oxford Nanopore Technology MinION sequencing platform. Except for CHRXII, all sixteen chromosomes were assembled as single contigs. Four loci harboring putative maltose transporter genes (SeMALT1-4), located in subtelomeric regions of CHRII, CHRV, CHRXIII, and CHRXVI, were completely resolved. The near-identical loci on CHRV and CHRXVI strongly resembled canonical S. cerevisiae MAL loci, while those on CHRII and CHRXIII showed different structures suggestive of gene loss. Overexpression of SeMALT1-4 in a maltose-transport-deficient S. cerevisiae strain restored growth on maltose, but not on maltotriose, indicating maltose-specific transport functionality of all four transporters. Simultaneous CRISPR-Cas9-assisted deletion of only SeMALT2 and SeMALT4, which shared 99.7% sequence identity, eliminated growth of S. eubayanus CBS 12357T on maltose. Transcriptome analysis of S. eubayanus CBS 12357T established that SeMALT1 and SeMALT3, are poorly expressed in maltose-grown cultures, while SeMALT2 and SeMALT4 were expressed at much higher levels than SeMALT1 and SeMALT3, indicating that only SeMALT2/4 are responsible for maltose consumption in CBS 12357T. These results represent a first genomic and physiological characterization of maltose transport in S. eubayanus CBS 12357T and provides a valuable resource for further industrial exploitation of this yeast.
Collapse
Affiliation(s)
- Anja Brickwedde
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Nick Brouwers
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | | | | | - Julie L Fraiture
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Jean-Marc G Daran
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
6
|
van Rossum HM, Kozak BU, Niemeijer MS, Duine HJ, Luttik MAH, Boer VM, Kötter P, Daran JMG, van Maris AJA, Pronk JT. Alternative reactions at the interface of glycolysis and citric acid cycle in Saccharomyces cerevisiae. FEMS Yeast Res 2016; 16:fow017. [PMID: 26895788 PMCID: PMC5815053 DOI: 10.1093/femsyr/fow017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2016] [Indexed: 11/14/2022] Open
Abstract
Pyruvate and acetyl-coenzyme A, located at the interface between glycolysis and TCA cycle, are important intermediates in yeast metabolism and key precursors for industrially relevant products. Rational engineering of their supply requires knowledge of compensatory reactions that replace predominant pathways when these are inactivated. This study investigates effects of individual and combined mutations that inactivate the mitochondrial pyruvate-dehydrogenase (PDH) complex, extramitochondrial citrate synthase (Cit2) and mitochondrial CoA-transferase (Ach1) in Saccharomyces cerevisiae. Additionally, strains with a constitutively expressed carnitine shuttle were constructed and analyzed. A predominant role of the PDH complex in linking glycolysis and TCA cycle in glucose-grown batch cultures could be functionally replaced by the combined activity of the cytosolic PDH bypass and Cit2. Strongly impaired growth and a high incidence of respiratory deficiency in pda1Δ ach1Δ strains showed that synthesis of intramitochondrial acetyl-CoA as a metabolic precursor requires activity of either the PDH complex or Ach1. Constitutive overexpression of AGP2, HNM1, YAT2, YAT1, CRC1 and CAT2 enabled the carnitine shuttle to efficiently link glycolysis and TCA cycle in l-carnitine-supplemented, glucose-grown batch cultures. Strains in which all known reactions at the glycolysis-TCA cycle interface were inactivated still grew slowly on glucose, indicating additional flexibility at this key metabolic junction.
Collapse
Affiliation(s)
- Harmen M van Rossum
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, NL-2628 BC Delft, The Netherlands
| | - Barbara U Kozak
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, NL-2628 BC Delft, The Netherlands
| | - Matthijs S Niemeijer
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, NL-2628 BC Delft, The Netherlands
| | - Hendrik J Duine
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, NL-2628 BC Delft, The Netherlands
| | - Marijke A H Luttik
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, NL-2628 BC Delft, The Netherlands
| | - Viktor M Boer
- DSM Biotechnology Center, Alexander Fleminglaan 1, NL-2613 AX Delft, The Netherlands
| | - Peter Kötter
- Institute for Molecular Bio Sciences, Goethe University, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Jean-Marc G Daran
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, NL-2628 BC Delft, The Netherlands
| | - Antonius J A van Maris
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, NL-2628 BC Delft, The Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, NL-2628 BC Delft, The Netherlands
| |
Collapse
|
7
|
Walther T, Létisse F, Peyriga L, Alkim C, Liu Y, Lardenois A, Martin-Yken H, Portais JC, Primig M, François J. Developmental stage dependent metabolic regulation during meiotic differentiation in budding yeast. BMC Biol 2014; 12:60. [PMID: 25178389 PMCID: PMC4176597 DOI: 10.1186/s12915-014-0060-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Indexed: 12/12/2022] Open
Abstract
Background The meiotic developmental pathway in yeast enables both differentiation of vegetative cells into haploid spores that ensure long-term survival, and recombination of the parental DNA to create genetic diversity. Despite the importance of proper metabolic regulation for the supply of building blocks and energy, little is known about the reprogramming of central metabolic pathways in meiotically differentiating cells during passage through successive developmental stages. Results Metabolic regulation during meiotic differentiation in budding yeast was analyzed by integrating information on genome-wide transcriptional activity, 26 enzymatic activities in the central metabolism, the dynamics of 67 metabolites, and a metabolic flux analysis at mid-stage meiosis. Analyses of mutants arresting sporulation at defined stages demonstrated that metabolic reprogramming is tightly controlled by the progression through the developmental pathway. The correlation between transcript levels and enzymatic activities in the central metabolism varies significantly in a developmental stage-dependent manner. The complete loss of phosphofructokinase activity at mid-stage meiosis enables a unique setup of the glycolytic pathway which facilitates carbon flux repartitioning into synthesis of spore wall precursors during the co-assimilation of glycogen and acetate. The need for correct homeostasis of purine nucleotides during the meiotic differentiation was demonstrated by the sporulation defect of the AMP deaminase mutant amd1, which exhibited hyper-accumulation of ATP accompanied by depletion of guanosine nucleotides. Conclusions Our systems-level analysis shows that reprogramming of the central metabolism during the meiotic differentiation is controlled at different hierarchical levels to meet the metabolic and energetic needs at successive developmental stages. Electronic supplementary material The online version of this article (doi:10.1186/s12915-014-0060-x) contains supplementary material, which is available to authorized users.
Collapse
|
8
|
Developmental cell fate and virulence are linked to trehalose homeostasis in Cryptococcus neoformans. EUKARYOTIC CELL 2014; 13:1158-68. [PMID: 25001408 DOI: 10.1128/ec.00152-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Among pathogenic environmental fungi, spores are thought to be infectious particles that germinate in the host to cause disease. The meningoencephalitis-causing yeast Cryptococcus neoformans is found ubiquitously in the environment and sporulates in response to nutrient limitation. While the yeast form has been studied extensively, relatively little is known about spore biogenesis, and spore germination has never been evaluated at the molecular level. Using genome transcript analysis of spores and molecular genetic approaches, we discovered that trehalose homeostasis plays a key role in regulating sporulation of C. neoformans, is required for full spore viability, and influences virulence. Specifically, we found that genes involved in trehalose metabolism, including a previously uncharacterized secreted trehalase (NTH2), are highly overrepresented in dormant spores. Deletion of the two predicted trehalases in the C. neoformans genome, NTH1 and NTH2, resulted in severe defects in spore production, a decrease in spore germination, and an increase in the production of alternative developmental structures. This shift in cell types suggests that trehalose levels modulate cell fate decisions during sexual development. We also discovered that deletion of the NTH2 trehalase results in hypervirulence in a murine model of infection. Taken together, these data show that the metabolic adaptations that allow this fungus to proliferate ubiquitously in the environment play unexpected roles in virulence in the mammalian host and highlight the complex interplay among the processes of metabolism, development, and pathogenesis.
Collapse
|
9
|
Wilson WA, Roach PJ, Montero M, Baroja-Fernández E, Muñoz FJ, Eydallin G, Viale AM, Pozueta-Romero J. Regulation of glycogen metabolism in yeast and bacteria. FEMS Microbiol Rev 2011; 34:952-85. [PMID: 20412306 DOI: 10.1111/j.1574-6976.2010.00220.x] [Citation(s) in RCA: 255] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Microorganisms have the capacity to utilize a variety of nutrients and adapt to continuously changing environmental conditions. Many microorganisms, including yeast and bacteria, accumulate carbon and energy reserves to cope with the starvation conditions temporarily present in the environment. Glycogen biosynthesis is a main strategy for such metabolic storage, and a variety of sensing and signaling mechanisms have evolved in evolutionarily distant species to ensure the production of this homopolysaccharide. At the most fundamental level, the processes of glycogen synthesis and degradation in yeast and bacteria share certain broad similarities. However, the regulation of these processes is sometimes quite distinct, indicating that they have evolved separately to respond optimally to the habitat conditions of each species. This review aims to highlight the mechanisms, both at the transcriptional and at the post-transcriptional level, that regulate glycogen metabolism in yeast and bacteria, focusing on selected areas where the greatest increase in knowledge has occurred during the last few years. In the yeast system, we focus particularly on the various signaling pathways that control the activity of the enzymes of glycogen storage. We also discuss our recent understanding of the important role played by the vacuole in glycogen metabolism. In the case of bacterial glycogen, special emphasis is placed on aspects related to the genetic regulation of glycogen metabolism and its connection with other biological processes.
Collapse
Affiliation(s)
- Wayne A Wilson
- Biochemistry and Nutrition Department, Des Moines University, Des Moines, IA, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Wilson WA, Boyer MP, Davis KD, Burke M, Roach PJ. The subcellular localization of yeast glycogen synthase is dependent upon glycogen content. Can J Microbiol 2010; 56:408-20. [PMID: 20555403 PMCID: PMC2888498 DOI: 10.1139/w10-027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The budding yeast, Saccharomyces cerevisiae, accumulates the storage polysaccharide glycogen in response to nutrient limitation. Glycogen synthase, the major form of which is encoded by the GSY2 gene, catalyzes the key regulated step in glycogen storage. Here, we utilized Gsy2p fusions to green fluorescent protein (GFP) to determine where glycogen synthase was located within cells. We demonstrated that the localization pattern of Gsy2-GFP depended upon the glycogen content of the cell. When glycogen was abundant, Gsy2-GFP was found uniformly throughout the cytoplasm, but under low glycogen conditions, Gsy2-GFP localized to discrete spots within cells. Gsy2p is known to bind to glycogen, and we propose that the subcellular distribution of Gsy2-GFP reflects the distribution of glycogen particles. In the absence of glycogen, Gsy2p translocates into the nucleus. We hypothesize that Gsy2p is normally retained in the cytoplasm through its interaction with glycogen particles. When glycogen levels are reduced, Gsy2p loses this anchor and can traffic into the nucleus.
Collapse
Affiliation(s)
- Wayne A Wilson
- Biochemistry and Nutrition Department, Des Moines University, 3200 Grand Avenue, Des Moines, IA 50312, USA.
| | | | | | | | | |
Collapse
|
11
|
Hepworth SR, Friesen H, Segall J. NDT80 and the meiotic recombination checkpoint regulate expression of middle sporulation-specific genes in Saccharomyces cerevisiae. Mol Cell Biol 1998; 18:5750-61. [PMID: 9742092 PMCID: PMC109161 DOI: 10.1128/mcb.18.10.5750] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Distinct classes of sporulation-specific genes are sequentially expressed during the process of spore formation in Saccharomyces cerevisiae. The transition from expression of early meiotic genes to expression of middle sporulation-specific genes occurs at about the time that cells exit from pachytene and form the meiosis I spindle. To identify genes encoding potential regulators of middle sporulation-specific gene expression, we screened for mutants that expressed early meiotic genes but failed to express middle sporulation-specific genes. We identified mutant alleles of RPD3, SIN3, and NDT80 in this screen. Rpd3p, a histone deacetylase, and Sin3p are global modulators of gene expression. Ndt80p promotes entry into the meiotic divisions. We found that entry into the meiotic divisions was not required for activation of middle sporulation genes; these genes were efficiently expressed in a clb1 clb3 clb4 strain, which fails to enter the meiotic divisions due to reduced Clb-dependent activation of Cdc28p kinase. In contrast, middle sporulation genes were not expressed in a dmc1 strain, which fails to enter the meiotic divisions because a defect in meiotic recombination leads to a RAD17-dependent checkpoint arrest. Expression of middle sporulation genes, as well as entry into the meiotic divisions, was restored to a dmc1 strain by mutation of RAD17. Our studies also revealed that NDT80 was a temporally distinct, pre-middle sporulation gene and that its expression was reduced, but not abolished, on mutation of DMC1, RPD3, SIN3, or NDT80 itself. In summary, our data indicate that Ndt80p is required for expression of middle sporulation genes and that the activity of Ndt80p is controlled by the meiotic recombination checkpoint. Thus, middle genes are expressed only on completion of meiotic recombination and subsequent generation of an active form of Ndt80p.
Collapse
Affiliation(s)
- S R Hepworth
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | | | | |
Collapse
|
12
|
Lo WS, Dranginis AM. FLO11, a yeast gene related to the STA genes, encodes a novel cell surface flocculin. J Bacteriol 1996; 178:7144-51. [PMID: 8955395 PMCID: PMC178626 DOI: 10.1128/jb.178.24.7144-7151.1996] [Citation(s) in RCA: 166] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We report the characterization of a gene encoding a novel flocculin related to the STA genes of yeast, which encode secreted glucoamylase. The STA genes comprise sequences that are homologous to the sporulation-specific glucoamylase SGA and to two other sequences, S2 and S1. We find that S2 and S1 are part of a single gene which we have named FLO11. The sequence of FLO11 reveals a 4,104-bp open reading frame on chromosome IX whose predicted product is similar in overall structure to the class of yeast serine/threonine-rich GPI-anchored cell wall proteins. An amino-terminal domain containing a signal sequence and a carboxy-terminal domain with homology to GPI (glycosyl-phosphatidyl-inositol) anchor-containing proteins are separated by a central domain containing a highly repeated threonine- and serine-rich sequence. Yeast cells that express FLO11 aggregate in the calcium-dependent process of flocculation. Flocculation is abolished when FLO11 is disrupted. The product of STA1 also is shown to have flocculating activity. When a green fluorescent protein fusion of FLO11 was expressed from the FLO11 promoter on a single-copy plasmid, fluorescence was observed in vivo at the periphery of cells. We propose that FLO11 encodes a flocculin because of its demonstrated role in flocculation, its structural similarity to other members of the FLO gene family, and the cell surface location of its product. FLO11 gene sequences are present in all yeast strains tested, including all standard laboratory strains, unlike the STA genes which are present only in the variant strain Saccharomyces cerevisiae var. diastaticus. FLO11 differs from all other yeast flocculins in that it is located near a centromere rather than a telomere, and its expression is regulated by mating type. Repression of FLO11-dependent flocculation in diploids is conferred by the mating-type repressor al/alpha2.
Collapse
Affiliation(s)
- W S Lo
- Department of Biological Sciences, St. John's University, Jamaica, New York 11439, USA
| | | |
Collapse
|
13
|
Abstract
Sporulation of the yeast Saccharomyces cerevisiae is restricted to one type of cell, the a/alpha cell, and is initiated after starvation for nitrogen in the absence of a fermentable carbon source. More than 25 characterized genes are expressed only during sporulation and are referred to as meiotic genes or sporulation-specific genes. These genes are in the early, middle, and late expression classes. Most early genes have a 5' regulatory site, URS1, and one of two additional sequences, UASH or a T4C site. URS1 is required both to repress meiotic genes during vegetative growth and to activate these genes during meiosis. UASH and the T4C site also contribute to meiotic expression. A different type of site, the NRE, is found in at least two late genes. The NRE behaves as a repression site in vegetative cells and is neutral in meiotic cells. Many regulatory genes that either repress or activate meiotic genes have been identified. One group of regulators affects the expression of IME1, which specifies a positive regulator of meiotic genes and is expressed at the highest levels in meiotic cells. A second group of regulators acts in parallel with or downstream of IME1 to influence meiotic gene expression. This group includes UME6, which is required both for repression through the URS1 site in vegetative cells and for IME1-dependent activation of an upstream region containing URS1 and T4C sites. IME1 may activate meiotic genes by modifying a UME6-dependent repression complex at a URS1 site. Several additional mechanisms restrict functional expression of some genes to meiotic cells. Translation of IME1 has been proposed to occur only in meiotic cells; several meiotic transcripts are more stable in acetate medium than in glucose medium; and splicing of MER2 RNA depends on a meiosis-specific gene, MER1.
Collapse
Affiliation(s)
- A P Mitchell
- Institute of Cancer Research, Columbia University, New York, New York 10032
| |
Collapse
|
14
|
San Segundo P, Correa J, Vazquez de Aldana CR, del Rey F. SSG1, a gene encoding a sporulation-specific 1,3-beta-glucanase in Saccharomyces cerevisiae. J Bacteriol 1993; 175:3823-37. [PMID: 8509335 PMCID: PMC204799 DOI: 10.1128/jb.175.12.3823-3837.1993] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In Saccharomyces cerevisiae, the meiotic process is accompanied by a large increase in 1,3-beta-glucan-degradative activity. The molecular cloning of the gene (SSG1) encoding a sporulation-specific exo-1,3-beta-glucanase was achieved by screening a genomic library with a DNA probe obtained by polymerase chain reaction amplification using synthetic oligonucleotides designed according to the nucleotide sequence predicted from the amino-terminal region of the purified protein. DNA sequencing indicates that the SSG1 gene specifies a 445-amino-acid polypeptide (calculated molecular mass, 51.8 kDa) showing extensive similarity to the extracellular exo-1,3-beta-glucanases encoded by the EXG1 gene (C. R. Vazquez de Aldana, J. Correa, P. San Segundo, A. Bueno, A. R. Nebreda, E. Mendez, and F. del Rey, Gene 97:173-182, 1991). The N-terminal domain of the putative precursor is a very hydrophobic segment with structural features resembling those of signal peptides of secreted proteins. Northern (RNA) analysis reveals a unique SSG1-specific transcript, 1.7 kb long, which can be detected only in sporulating diploids (MATa/MAT alpha) but does not appear in vegetatively growing cells or in nonsporulating diploids (MAT alpha/MAT alpha) when incubated under nitrogen starvation conditions. The meiotic time course of SSG1 induction indicates that the gene is transcribed only in the late stages of the process, beginning at the time of meiosis I and reaching a maximum during spore formation. Homozygous ssg1/ssg1 mutant diploids are able to complete sporulation, although with a significant delay in the appearance of mature asci.
Collapse
Affiliation(s)
- P San Segundo
- Instituto de Microbiología-Bioquímica, Facultad de Biología, Universidad de Salamanca, Consejo Superior de Investigaciones Cientificas, Spain
| | | | | | | |
Collapse
|
15
|
GLC3 and GHA1 of Saccharomyces cerevisiae are allelic and encode the glycogen branching enzyme. Mol Cell Biol 1992. [PMID: 1729600 DOI: 10.1128/mcb.12.1.22] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, glycogen serves as a major storage carbohydrate. In a previous study, mutants with altered glycogen metabolism were isolated on the basis of the altered iodine-staining properties of colonies. We found that when glycogen produced by strains carrying the glc-1p (previously called gha1-1) mutation is stained with iodine, the absorption spectrum resembles that of starch rather than that of glycogen, suggesting that this mutation might reduce the level of branching in the glycogen particles. Indeed, glycogen branching activity was undetectable in extracts from a glc3-1p strain but was elevated in strains which expressed GLC3 from a high-copy-number plasmid. These observations suggest that GLC3 encodes the glycogen branching enzyme. In contrast to glc3-1p, the glc3-4 mutation greatly reduces the ability of yeast to accumulate glycogen. These mutations appear to be allelic despite the striking difference in the phenotypes which they produce. The GLC3 clone complemented both glc3-1p and glc3-4. Deletions and transposon insertions in this clone had parallel effects on its ability to complement glc3-1p and glc3-4. Finally, a fragment of the cloned gene was able to direct the repair of both glc3-1p and glc3-4. Disruption of GLC3 yielded the glycogen-deficient phenotype, indicating that glycogen deficiency is the null phenotype. The glc3-1p allele appears to encode a partially functional product, since it is dominant over glc3-4 but recessive to GLC3. These observations suggest that the ability to introduce branches into glycogen greatly increases the ability of the cell to accumulate that polysaccharide. Northern (RNA) blot analysis identified a single mRNA of 2,300 nucleotides that increased in abundance ca. 20-fold as the culture approached stationary phase. It thus appears that the expression of GLC3 is regulated, probably at the level of transcription.
Collapse
|
16
|
Rowen DW, Meinke M, LaPorte DC. GLC3 and GHA1 of Saccharomyces cerevisiae are allelic and encode the glycogen branching enzyme. Mol Cell Biol 1992; 12:22-9. [PMID: 1729600 PMCID: PMC364065 DOI: 10.1128/mcb.12.1.22-29.1992] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, glycogen serves as a major storage carbohydrate. In a previous study, mutants with altered glycogen metabolism were isolated on the basis of the altered iodine-staining properties of colonies. We found that when glycogen produced by strains carrying the glc-1p (previously called gha1-1) mutation is stained with iodine, the absorption spectrum resembles that of starch rather than that of glycogen, suggesting that this mutation might reduce the level of branching in the glycogen particles. Indeed, glycogen branching activity was undetectable in extracts from a glc3-1p strain but was elevated in strains which expressed GLC3 from a high-copy-number plasmid. These observations suggest that GLC3 encodes the glycogen branching enzyme. In contrast to glc3-1p, the glc3-4 mutation greatly reduces the ability of yeast to accumulate glycogen. These mutations appear to be allelic despite the striking difference in the phenotypes which they produce. The GLC3 clone complemented both glc3-1p and glc3-4. Deletions and transposon insertions in this clone had parallel effects on its ability to complement glc3-1p and glc3-4. Finally, a fragment of the cloned gene was able to direct the repair of both glc3-1p and glc3-4. Disruption of GLC3 yielded the glycogen-deficient phenotype, indicating that glycogen deficiency is the null phenotype. The glc3-1p allele appears to encode a partially functional product, since it is dominant over glc3-4 but recessive to GLC3. These observations suggest that the ability to introduce branches into glycogen greatly increases the ability of the cell to accumulate that polysaccharide. Northern (RNA) blot analysis identified a single mRNA of 2,300 nucleotides that increased in abundance ca. 20-fold as the culture approached stationary phase. It thus appears that the expression of GLC3 is regulated, probably at the level of transcription.
Collapse
Affiliation(s)
- D W Rowen
- Department of Biochemistry, University of Minnesota, Minneapolis 55455
| | | | | |
Collapse
|
17
|
Kihara K, Nakamura M, Akada R, Yamashita I. Positive and negative elements upstream of the meiosis-specific glucoamylase gene in Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1991; 226:383-92. [PMID: 2038303 DOI: 10.1007/bf00260650] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The SGA1 gene encoding glucoamylase is specifically expressed late in meiotic development of the yeast Saccharomyces cerevisiae. We found that accumulation of both enzyme activity and transcripts was regulated negatively by both nutritional signals and a haploid-specific negative regulator gene of meiosis. RME1, and positively by the inducer genes for meiosis, IME1 and IME2. To study the role of sequences upstream of the SGA1 gene in its expression and regulation, we generated internal deletions in the 5' non-coding region of the gene and chimeric genes with portions of the upstream sequence inserted into a reporter gene. By analyzing the expression of these genes, we have identified both a 19 bp upstream activation sequence (UAS) and a 49 bp negatively regulating element (NRE). The UAS activated transcription with no requirement for heterozygosity at the mating-type locus, but this activation was still under negative control by nutrients. The NRE showed no UAS-like activity but conferred IME2-dependent (or meiosis-specific) expression on a heterologous promoter. These results suggest that meiosis-specific expression of the SGA1 gene is established by a regulatory hierarchy including positive and negative factors, the actions of which are mediated through the two separate upstream regulatory elements, UAS and NRE, respectively. Also, that two independently acting cascades exist for the regulation of SGA1 expression: one transduces both the mating-type and nutritional signals and includes the IME2 product, which acts to relieve the repression through NRE; and another transduces only the nutritional signal independently of the above pathway and inhibits positive factors acting on UAS.
Collapse
Affiliation(s)
- K Kihara
- Center for Gene Science, Hiroshima University, Japan
| | | | | | | |
Collapse
|
18
|
Abstract
Two signals are required for meiosis and spore formation in the yeast Saccharomyces cerevisiae: starvation and the MAT products a1 and alpha 2, which determine the a/alpha cell type. These signals lead to increased expression of the IME1 (inducer of meiosis) gene, which is required for sporulation and sporulation-specific gene expression. We report here the sequence of the IME1 gene and the consequences of IME1 expression from the GAL1 promoter. The deduced IME1 product is a 360-amino-acid protein with a tyrosine-rich C-terminal region. Expression of PGAL1-IME1 in vegetative a/alpha cells led to moderate accumulation of four early sporulation-specific transcripts (IME2, SPO11, SPO13, and HOP1); the transcripts accumulated 3- to 10-fold more after starvation. Two sporulation-specific transcripts normally expressed later (SPS1 and SPS2) did not accumulate until PGAL1-IME1 strains were starved, and the intact IME1 gene was not activated by PGAL1-IME1 expression. In a or alpha cells, which lack alpha 2 or a1, expression of PGAL1-IME1 led to the same pattern of IME2 and SPO13 expression as in a/alpha cells, as measured with ime2::lacZ and spo13::lacZ fusions. Thus, in wild-type strains, the increased expression of IME1 in starved a/alpha cells can account entirely for cell type control, but only partially for nutritional control, of early sporulation-specific gene expression. PGAL1-IME1 expression did not cause growing cells to sporulate but permitted efficient sporulation of amino acid-limited cells, which otherwise sporulated poorly. We suggest that IME1 acts primarily as a positive regulator of early sporulation-specific genes and that growth arrest is an independent prerequisite for execution of the sporulation program.
Collapse
|
19
|
Smith HE, Su SS, Neigeborn L, Driscoll SE, Mitchell AP. Role of IME1 expression in regulation of meiosis in Saccharomyces cerevisiae. Mol Cell Biol 1990; 10:6103-13. [PMID: 2247050 PMCID: PMC362885 DOI: 10.1128/mcb.10.12.6103-6113.1990] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Two signals are required for meiosis and spore formation in the yeast Saccharomyces cerevisiae: starvation and the MAT products a1 and alpha 2, which determine the a/alpha cell type. These signals lead to increased expression of the IME1 (inducer of meiosis) gene, which is required for sporulation and sporulation-specific gene expression. We report here the sequence of the IME1 gene and the consequences of IME1 expression from the GAL1 promoter. The deduced IME1 product is a 360-amino-acid protein with a tyrosine-rich C-terminal region. Expression of PGAL1-IME1 in vegetative a/alpha cells led to moderate accumulation of four early sporulation-specific transcripts (IME2, SPO11, SPO13, and HOP1); the transcripts accumulated 3- to 10-fold more after starvation. Two sporulation-specific transcripts normally expressed later (SPS1 and SPS2) did not accumulate until PGAL1-IME1 strains were starved, and the intact IME1 gene was not activated by PGAL1-IME1 expression. In a or alpha cells, which lack alpha 2 or a1, expression of PGAL1-IME1 led to the same pattern of IME2 and SPO13 expression as in a/alpha cells, as measured with ime2::lacZ and spo13::lacZ fusions. Thus, in wild-type strains, the increased expression of IME1 in starved a/alpha cells can account entirely for cell type control, but only partially for nutritional control, of early sporulation-specific gene expression. PGAL1-IME1 expression did not cause growing cells to sporulate but permitted efficient sporulation of amino acid-limited cells, which otherwise sporulated poorly. We suggest that IME1 acts primarily as a positive regulator of early sporulation-specific genes and that growth arrest is an independent prerequisite for execution of the sporulation program.
Collapse
Affiliation(s)
- H E Smith
- Institute of Cancer Research, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | | | | | | | | |
Collapse
|
20
|
Kallal LA, Bhattacharyya M, Grove SN, Iannacone RF, Pugh TA, Primerano DA, Clancy MJ. Functional analysis of the sporulation-specific SPR6 gene of Saccharomyces cerevisiae. Curr Genet 1990; 18:293-301. [PMID: 2253272 DOI: 10.1007/bf00318210] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The SPR6 gene of Saccharomyces cerevisiae encodes a moderately abundant RNA that is present at high levels only during sporulation. The gene contains a long open reading frame that could encode a hydrophilic protein approximately 21 kDa in size. This protein is probably produced by the yeast, because the lacZ gene of Escherichia coli is expressed during sporulation when fused to SPR6 in the expected reading frame. SPR6 is inessential for sporulation; mutants that lack SPR6 activity sporulate normally and produce viable ascospores. Nonetheless, the SPR6 gene encodes a function that is relevant to sporulating cells; the wild-type allele can enhance sporulation in strains that are defective for several SPR functions. SPR6 is located on chromosome V, 14.4 centimorgans centromere-distal to MET6.
Collapse
Affiliation(s)
- L A Kallal
- Department of Biological Sciences, University of New Orleans, LA 70148
| | | | | | | | | | | | | |
Collapse
|
21
|
Complementary transcripts from two genes necessary for normal meiosis in the yeast Saccharomyces cerevisiae. Mol Cell Biol 1990. [PMID: 2188099 DOI: 10.1128/mcb.10.6.2809] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The SPO12 gene, which is required for meiosis I chromosome division during sporulation of the yeast Saccharomyces cerevisiae, has been isolated. DNA sequencing has identified an open reading frame of 173 codons that encodes the putative SPO12 protein and has no significant sequence similarities to known genes. The last 15 amino acids of this putative protein have a high negative charge, which appears to be required for function. A second sporulation-specific gene, designated SPO16, was found adjacent to SPO12 and shown to be necessary for efficient spore formation. The two genes are encoded on opposite DNA strands with only 103 nucleotides between the termination codons. Up to 700 nucleotides of the SPO12 and SPO16 transcripts are complementary, and the 3' untranslated region of the longest SPO16 transcript is complementary to all or nearly all of the SPO12 mRNA. A strain homozygous for an insertion which removes the complementarity between the SPO12 and SPO16 mRNAs has an efficiency of sporulation, number of spores per ascus, and spore viability identical to those of a wild-type strain. The complementarity therefore has either no function or only a subtle function in meiosis and sporulation.
Collapse
|
22
|
Malavasic MJ, Elder RT. Complementary transcripts from two genes necessary for normal meiosis in the yeast Saccharomyces cerevisiae. Mol Cell Biol 1990; 10:2809-19. [PMID: 2188099 PMCID: PMC360642 DOI: 10.1128/mcb.10.6.2809-2819.1990] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The SPO12 gene, which is required for meiosis I chromosome division during sporulation of the yeast Saccharomyces cerevisiae, has been isolated. DNA sequencing has identified an open reading frame of 173 codons that encodes the putative SPO12 protein and has no significant sequence similarities to known genes. The last 15 amino acids of this putative protein have a high negative charge, which appears to be required for function. A second sporulation-specific gene, designated SPO16, was found adjacent to SPO12 and shown to be necessary for efficient spore formation. The two genes are encoded on opposite DNA strands with only 103 nucleotides between the termination codons. Up to 700 nucleotides of the SPO12 and SPO16 transcripts are complementary, and the 3' untranslated region of the longest SPO16 transcript is complementary to all or nearly all of the SPO12 mRNA. A strain homozygous for an insertion which removes the complementarity between the SPO12 and SPO16 mRNAs has an efficiency of sporulation, number of spores per ascus, and spore viability identical to those of a wild-type strain. The complementarity therefore has either no function or only a subtle function in meiosis and sporulation.
Collapse
Affiliation(s)
- M J Malavasic
- Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637
| | | |
Collapse
|
23
|
Dowhanick TM, Russell I, Scherer SW, Stewart GG, Seligy VL. Expression and regulation of glucoamylase from the yeast Schwanniomyces castellii. J Bacteriol 1990; 172:2360-6. [PMID: 2110140 PMCID: PMC208870 DOI: 10.1128/jb.172.5.2360-2366.1990] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Expression of the 146-kilodalton (kDa) extracellular glucoamylase by the budding yeast Schwanniomyces castellii is induced by maltose and starch. By use of antiglucoamylase antisera, we found that this expression was regulated at the level of the mRNA, taking place within 30 min after exposure of yeast cells to the respective sugars. Polyacrylamide gel electrophoresis analysis of the in vitro-translated products of total RNA from maltose-treated cells established that the glucoamylase precursor was approximately 120 kDa in size. Stable glucoamylase transcript was not produced in cells exposed to glucose, 2-deoxyglucose, and heat shock. Cells exposed to these two sugars also degraded intracellular and extracellular glucoamylase. In the presence of sugars such as cellobiose, galactose, lactose, and xylose or in the absence of any carbohydrate, a low-level, constitutive-like expression of this preglucoamylase occurred. The nascent glucoamylase underwent at least two posttranslational modifications, resulting in a 138-kDa cell-associated form and the 146-kDa active form that was found free in the medium. These results suggest that glucoamylase expression is tightly regulated similarly to expression of the enzymes responsible for maltose metabolism in Saccharomyces yeasts.
Collapse
Affiliation(s)
- T M Dowhanick
- Research Department, Labatt Brewing Company Limited, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
24
|
Regulation of STA1 gene expression by MAT during the life cycle of Saccharomyces cerevisiae. Mol Cell Biol 1989. [PMID: 2506439 DOI: 10.1128/mcb.9.9.3992] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
STA1 encodes a secreted glucoamylase of the yeast Saccharomyces cerevisiae var. diastaticus. Glucoamylase secretion is controlled by the mating type locus MAT; a and alpha haploid yeast cells secrete high levels of the enzyme, but a/alpha diploid cells produce undetectable amounts. It has been suggested that STA1 is regulated by MATa2 (I. Yamashita, Y. Takano, and S. Fukui, J. Bacteriol. 164:769-773, 1985), which is a MAT transcript of previously unknown function. In contrast, this work shows that deletion of the entire MATa2 gene had no effect on STA1 regulation but that deletion of MATa1 sequences completely abolished mating-type control. In all cases, glucoamylase activity levels reflected STA1 mRNA levels. It appears that STA1 is a haploid-specific gene that is regulated by MATa1 and a product of the MAT alpha locus and that this regulation occurs at the level of RNA accumulation. STA1 expression was also shown to be glucose repressible. STA1 mRNA was induced in diploids during sporulation along with SGA, a closely linked gene that encodes an intracellular sporulation-specific glucoamylase of S. cerevisiae. A diploid strain with a MATa1 deletion showed normal induction of STA1 in sporulation medium, but SGA expression was abolished. Therefore, these two homologous and closely linked glucoamylase genes are induced by different mechanisms during sporulation. STA1 induction may be a response to the starvation conditions necessary for sporulation, while SGA induction is governed by the pathway by which MAT regulates sporulation. The strain containing a complete deletion of MATa2 grew, mated, and sporulated normally.
Collapse
|
25
|
Dranginis AM. Regulation of STA1 gene expression by MAT during the life cycle of Saccharomyces cerevisiae. Mol Cell Biol 1989; 9:3992-8. [PMID: 2506439 PMCID: PMC362461 DOI: 10.1128/mcb.9.9.3992-3998.1989] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
STA1 encodes a secreted glucoamylase of the yeast Saccharomyces cerevisiae var. diastaticus. Glucoamylase secretion is controlled by the mating type locus MAT; a and alpha haploid yeast cells secrete high levels of the enzyme, but a/alpha diploid cells produce undetectable amounts. It has been suggested that STA1 is regulated by MATa2 (I. Yamashita, Y. Takano, and S. Fukui, J. Bacteriol. 164:769-773, 1985), which is a MAT transcript of previously unknown function. In contrast, this work shows that deletion of the entire MATa2 gene had no effect on STA1 regulation but that deletion of MATa1 sequences completely abolished mating-type control. In all cases, glucoamylase activity levels reflected STA1 mRNA levels. It appears that STA1 is a haploid-specific gene that is regulated by MATa1 and a product of the MAT alpha locus and that this regulation occurs at the level of RNA accumulation. STA1 expression was also shown to be glucose repressible. STA1 mRNA was induced in diploids during sporulation along with SGA, a closely linked gene that encodes an intracellular sporulation-specific glucoamylase of S. cerevisiae. A diploid strain with a MATa1 deletion showed normal induction of STA1 in sporulation medium, but SGA expression was abolished. Therefore, these two homologous and closely linked glucoamylase genes are induced by different mechanisms during sporulation. STA1 induction may be a response to the starvation conditions necessary for sporulation, while SGA induction is governed by the pathway by which MAT regulates sporulation. The strain containing a complete deletion of MATa2 grew, mated, and sporulated normally.
Collapse
MESH Headings
- Chromosome Deletion
- Gene Expression Regulation
- Genes, Fungal
- Genes, Mating Type, Fungal
- Glucan 1,4-alpha-Glucosidase/genetics
- Glucan 1,4-alpha-Glucosidase/metabolism
- Glucose/pharmacology
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/growth & development
- Saccharomyces cerevisiae/physiology
- Spores, Fungal
Collapse
Affiliation(s)
- A M Dranginis
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892
| |
Collapse
|
26
|
Molecular analysis of GPH1, the gene encoding glycogen phosphorylase in Saccharomyces cerevisiae. Mol Cell Biol 1989. [PMID: 2657401 DOI: 10.1128/mcb.9.4.1659] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In yeast cells, the activity of glycogen phosphorylase is regulated by cyclic AMP-mediated phosphorylation of the enzyme. We have previously cloned the gene for glycogen phosphorylase (GPH1) in Saccharomyces cerevisiae. To assess the role of glycogen and phosphorylase-catalyzed glycogenolysis in the yeast life cycle, yeast strains lacking a functional GPH1 gene or containing multiple copies of the gene were constructed. GPH1 was found not to be an essential gene in yeast cells. Haploid cells disrupted in GPH1 lacked phosphorylase activity and attained higher levels of intracellular glycogen but otherwise were similar to wild-type cells. Diploid cells homozygous for the disruption were able to sporulate and give rise to viable ascospores. Absence of functional GPH1 did not impair cells from synthesizing and storing trehalose. Increases in phosphorylase activity of 10- to 40-fold were detected in cells carrying multiple copies of GPH1-containing 2 microns plasmid. Northern (RNA) analysis indicated that GPH1 transcription was induced at the late exponential growth phase, almost simultaneous with the onset of intracellular glycogen accumulation. Thus, the low level of glycogen in exponential cells was not primarily maintained through regulating the phosphorylation state of a constitutive amount of phosphorylase. GPH1 did not appear to be under formal glucose repression, since transcriptional induction occurred well in advance of glucose depletion from the medium.
Collapse
|
27
|
Hwang PK, Tugendreich S, Fletterick RJ. Molecular analysis of GPH1, the gene encoding glycogen phosphorylase in Saccharomyces cerevisiae. Mol Cell Biol 1989; 9:1659-66. [PMID: 2657401 PMCID: PMC362584 DOI: 10.1128/mcb.9.4.1659-1666.1989] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In yeast cells, the activity of glycogen phosphorylase is regulated by cyclic AMP-mediated phosphorylation of the enzyme. We have previously cloned the gene for glycogen phosphorylase (GPH1) in Saccharomyces cerevisiae. To assess the role of glycogen and phosphorylase-catalyzed glycogenolysis in the yeast life cycle, yeast strains lacking a functional GPH1 gene or containing multiple copies of the gene were constructed. GPH1 was found not to be an essential gene in yeast cells. Haploid cells disrupted in GPH1 lacked phosphorylase activity and attained higher levels of intracellular glycogen but otherwise were similar to wild-type cells. Diploid cells homozygous for the disruption were able to sporulate and give rise to viable ascospores. Absence of functional GPH1 did not impair cells from synthesizing and storing trehalose. Increases in phosphorylase activity of 10- to 40-fold were detected in cells carrying multiple copies of GPH1-containing 2 microns plasmid. Northern (RNA) analysis indicated that GPH1 transcription was induced at the late exponential growth phase, almost simultaneous with the onset of intracellular glycogen accumulation. Thus, the low level of glycogen in exponential cells was not primarily maintained through regulating the phosphorylation state of a constitutive amount of phosphorylase. GPH1 did not appear to be under formal glucose repression, since transcriptional induction occurred well in advance of glucose depletion from the medium.
Collapse
Affiliation(s)
- P K Hwang
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0448
| | | | | |
Collapse
|
28
|
Kao G, Mannix DG, Holaway BL, Finn MC, Bonny AE, Clancy MJ. Dependence of inessential late gene expression on early meiotic events in Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1989; 215:490-500. [PMID: 2651894 DOI: 10.1007/bf00427048] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
SPR3 is one of at least nine genes which are expressed in sporulating Saccharomyces cerevisiae cells at the time of meiosis I. We show below that strains homozygous for null alleles of SPR3 are capable of normal meiosis and the production of viable ascospores. We have also monitored SPR3 expression in a series of strains that are defective in meiotic development, using an SPR3:lacZ fusion carried on a single copy plasmid. beta-Galactosidase activity occurred at wild-type levels in diploid strains homozygous for mutations in spo13, rad50, rad57 and cdc9, but was greatly reduced in strains carrying cdc8 or spo7 defects. We conclude that SPR3 expression is a valid monitor of early meiotic development, even though the gene is inessential for the sporulation process.
Collapse
Affiliation(s)
- G Kao
- Department of Biological Sciences, University of Notre Dame, IN 46556
| | | | | | | | | | | |
Collapse
|
29
|
|
30
|
The SPS100 gene of Saccharomyces cerevisiae is activated late in the sporulation process and contributes to spore wall maturation. Mol Cell Biol 1988. [PMID: 3280971 DOI: 10.1128/mcb.8.2.912] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously described the use of a differential hybridization screen of a genomic DNA library of Saccharomyces cerevisiae to identify sporulation-specific (SPS) genes (A. Percival-Smith and J. Segall, Mol. Cell. Biol. 4:142-150, 1984). This initial screen identified 14 SPS genes that are first expressed 6 to 8 h after transfer of cells to sporulation medium. Accumulation of transcripts corresponding to these genes becomes maximal at 8 to 12 h of sporulation, the time at which meiotic events are nearing completion, and by 15 h of sporulation, transcript levels are beginning to decrease. In the present study two additional SPS genes, first expressed at 12 h of sporulation, were isolated. The steady-state level of transcripts corresponding to these two genes, termed SPS100 and SPS101, remains unchanged from 15 to 35 h, a time coincident with spore wall maturation. The nature of the putative 34.2-kilodalton protein encoded by the SPS100 gene is consistent with its being a component of the glycoprotein matrix of the spore wall; the protein contains a potential signal sequence and cleavage site and numerous sites for potential glycosylation. A MATa sps100/MAT alpha sps100 strain was found to be indistinguishable from the wild-type strain when assessed for efficiency of ascus formation and spore viability. However, a more detailed analysis of the mutant strain revealed that the SPS100 gene product serves a protective role during the early stages of spore wall formation. The time at which resistance to ether could first be detected in developing spores was delayed by 5 h in the mutant strain relative to the wild-type strain. This phenotype is presumably a reflection of a defect in spore wall maturation. This study has confirmed that temporally distinct classes of sporulation-specific genes are sequentially activated during the process of meiosis and spore formation and has shown that the SPS100 gene, identified on the basis of its developmental-specific expression pattern, contributes to spore development.
Collapse
|
31
|
Law DT, Segall J. The SPS100 gene of Saccharomyces cerevisiae is activated late in the sporulation process and contributes to spore wall maturation. Mol Cell Biol 1988; 8:912-22. [PMID: 3280971 PMCID: PMC363223 DOI: 10.1128/mcb.8.2.912-922.1988] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We previously described the use of a differential hybridization screen of a genomic DNA library of Saccharomyces cerevisiae to identify sporulation-specific (SPS) genes (A. Percival-Smith and J. Segall, Mol. Cell. Biol. 4:142-150, 1984). This initial screen identified 14 SPS genes that are first expressed 6 to 8 h after transfer of cells to sporulation medium. Accumulation of transcripts corresponding to these genes becomes maximal at 8 to 12 h of sporulation, the time at which meiotic events are nearing completion, and by 15 h of sporulation, transcript levels are beginning to decrease. In the present study two additional SPS genes, first expressed at 12 h of sporulation, were isolated. The steady-state level of transcripts corresponding to these two genes, termed SPS100 and SPS101, remains unchanged from 15 to 35 h, a time coincident with spore wall maturation. The nature of the putative 34.2-kilodalton protein encoded by the SPS100 gene is consistent with its being a component of the glycoprotein matrix of the spore wall; the protein contains a potential signal sequence and cleavage site and numerous sites for potential glycosylation. A MATa sps100/MAT alpha sps100 strain was found to be indistinguishable from the wild-type strain when assessed for efficiency of ascus formation and spore viability. However, a more detailed analysis of the mutant strain revealed that the SPS100 gene product serves a protective role during the early stages of spore wall formation. The time at which resistance to ether could first be detected in developing spores was delayed by 5 h in the mutant strain relative to the wild-type strain. This phenotype is presumably a reflection of a defect in spore wall maturation. This study has confirmed that temporally distinct classes of sporulation-specific genes are sequentially activated during the process of meiosis and spore formation and has shown that the SPS100 gene, identified on the basis of its developmental-specific expression pattern, contributes to spore development.
Collapse
Affiliation(s)
- D T Law
- Department of Biochemistry, University of Toronto, Ontario, Canada
| | | |
Collapse
|
32
|
Identification of sequence elements that confer cell-type-specific control of MF alpha 1 expression in Saccharomyces cerevisiae. Mol Cell Biol 1987. [PMID: 2959859 DOI: 10.1128/mcb.7.9.3185] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The MF alpha 1 gene of Saccharomyces cerevisiae, a major structural gene for mating pheromone alpha factor, is an alpha-specific gene whose expression is regulated by the mating-type locus. To study the role of sequences upstream of MF alpha 1 in its expression and regulation, we generated two sets of promoter deletions: upstream deletions and internal deletions. By analyzing these deletions, we have identified a TATA box and two closely related, tandemly arranged upstream activation sites as necessary elements for MF alpha 1 expression. Two upstream activation sites were located ca. 300 and 250 base pairs upstream of the MF alpha 1 transcription start points, which were also determined in this study. Each site contained a homologous 22-base-pair sequence, and both sites were required for maximum transcription level. The distance between the upstream activation sites and the transcription start points could be altered without causing loss of transcription efficiency, and the sites were active in either orientation with respect to the coding region. These elements conferred cell type-specific expression on a heterologous promoter. Analysis with host mating-type locus mutants indicates that these sequences are the sites through which the MAT alpha 1 product exerts its action to activate the MF alpha 1 gene. Homologous sequences with these elements were found in other alpha-specific genes, MF alpha 2 and STE3, and may mediate activation of this set of genes by MAT alpha 1.
Collapse
|
33
|
Inokuchi K, Nakayama A, Hishinuma F. Identification of sequence elements that confer cell-type-specific control of MF alpha 1 expression in Saccharomyces cerevisiae. Mol Cell Biol 1987; 7:3185-93. [PMID: 2959859 PMCID: PMC367953 DOI: 10.1128/mcb.7.9.3185-3193.1987] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The MF alpha 1 gene of Saccharomyces cerevisiae, a major structural gene for mating pheromone alpha factor, is an alpha-specific gene whose expression is regulated by the mating-type locus. To study the role of sequences upstream of MF alpha 1 in its expression and regulation, we generated two sets of promoter deletions: upstream deletions and internal deletions. By analyzing these deletions, we have identified a TATA box and two closely related, tandemly arranged upstream activation sites as necessary elements for MF alpha 1 expression. Two upstream activation sites were located ca. 300 and 250 base pairs upstream of the MF alpha 1 transcription start points, which were also determined in this study. Each site contained a homologous 22-base-pair sequence, and both sites were required for maximum transcription level. The distance between the upstream activation sites and the transcription start points could be altered without causing loss of transcription efficiency, and the sites were active in either orientation with respect to the coding region. These elements conferred cell type-specific expression on a heterologous promoter. Analysis with host mating-type locus mutants indicates that these sequences are the sites through which the MAT alpha 1 product exerts its action to activate the MF alpha 1 gene. Homologous sequences with these elements were found in other alpha-specific genes, MF alpha 2 and STE3, and may mediate activation of this set of genes by MAT alpha 1.
Collapse
Affiliation(s)
- K Inokuchi
- Laboratory of Molecular Genetics, Mitsubishi-Kasei Institute of Life Sciences, Tokyo, Japan
| | | | | |
Collapse
|
34
|
Developmental regulation of SPO13, a gene required for separation of homologous chromosomes at meiosis I. Mol Cell Biol 1987. [PMID: 3299047 DOI: 10.1128/mcb.7.4.1425] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have demonstrated that the SPO13 gene is required for chromosome separation during meiosis I in Saccharomyces cerevisiae. In the presence of the spo13-1 nonsense mutation, MATa/MAT alpha diploid cells complete a number of events typical of meiosis I including premeiotic DNA synthesis, genetic recombination, and spindle formation. Disjunction of homologous chromosomes, however, fails to occur. Instead, cells proceed through a single meiosis II-like division and form two diploid spores. In this paper, we report the cloning of this essential meiotic gene and an analysis of its transcription during vegetative growth and sporulation. Disruptions of SPO13 in haploid and diploid cells show that it is dispensible for mitotic cell division. Diploids homozygous for the disruptions behave similarly to spo13-1 mutants; they sporulate at wild-type levels and produce two-spored asci. The DNA region complementing spo13-1 encodes two overlapping transcripts, which have the same 3' end but different 5' ends. The major transcript is 400 bases shorter than the larger, less abundant one. The shorter RNA is sufficient to complement the spo13-1 mutation. While both transcripts are undetectable or just barely detectable in vegetative cultures, they each undergo a greater than 70-fold induction early during sporulation, reaching a maximum level about the time of the first meiotic division. In synchronously sporulating populations, the transcripts nearly disappear before the completion of ascus formation. Nonsporulating cells homozygous for the mating-type locus show a small increase in abundance (less than 5% of the increase in sporulating cells) of both transcripts in sporulation medium. These results indicate that expression of the SPO13 gene is developmentally regulated and starvation alone, independent of the genotype at MAT, can trigger initial induction.
Collapse
|
35
|
Yamashita I, Nakamura M, Fukui S. Gene fusion is a possible mechanism underlying the evolution of STA1. J Bacteriol 1987; 169:2142-9. [PMID: 3106330 PMCID: PMC212114 DOI: 10.1128/jb.169.5.2142-2149.1987] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
DNA from the STA1 (extracellular glucoamylase) gene of Saccharomyces diastaticus was used as a probe to enable the cloning by colony hybridization of three DNA fragments from Saccharomyces cerevisiae; these were designated S1, S2, and SGA (intracellular, sporulation-specific glucoamylase gene). To examine the evolutionary relationship among these sequences at the nucleotide level, we sequenced S2, S1, SGA and compared them with STA1. These data and RNA blot analysis revealed that the following regions of STA1 were highly conserved in S2, S1, and SGA: upstream regulatory sequences responsible for transcription, a signal sequence for protein secretion, a threonine- and serine-rich domain, and a catalytic domain for glucoamylase activity. These results suggest that an ancestral STA gene was generated relatively recently in an evolutionary time scale by the sequential fusions of S2, S1, and SGA, with S1 functioning as a connector for S2 and SGA. We describe a model for the involvement of short nucleotide sequences flanking the junctions in the gene fusions.
Collapse
|
36
|
Wang HT, Frackman S, Kowalisyn J, Esposito RE, Elder R. Developmental regulation of SPO13, a gene required for separation of homologous chromosomes at meiosis I. Mol Cell Biol 1987; 7:1425-35. [PMID: 3299047 PMCID: PMC365230 DOI: 10.1128/mcb.7.4.1425-1435.1987] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Previous studies have demonstrated that the SPO13 gene is required for chromosome separation during meiosis I in Saccharomyces cerevisiae. In the presence of the spo13-1 nonsense mutation, MATa/MAT alpha diploid cells complete a number of events typical of meiosis I including premeiotic DNA synthesis, genetic recombination, and spindle formation. Disjunction of homologous chromosomes, however, fails to occur. Instead, cells proceed through a single meiosis II-like division and form two diploid spores. In this paper, we report the cloning of this essential meiotic gene and an analysis of its transcription during vegetative growth and sporulation. Disruptions of SPO13 in haploid and diploid cells show that it is dispensible for mitotic cell division. Diploids homozygous for the disruptions behave similarly to spo13-1 mutants; they sporulate at wild-type levels and produce two-spored asci. The DNA region complementing spo13-1 encodes two overlapping transcripts, which have the same 3' end but different 5' ends. The major transcript is 400 bases shorter than the larger, less abundant one. The shorter RNA is sufficient to complement the spo13-1 mutation. While both transcripts are undetectable or just barely detectable in vegetative cultures, they each undergo a greater than 70-fold induction early during sporulation, reaching a maximum level about the time of the first meiotic division. In synchronously sporulating populations, the transcripts nearly disappear before the completion of ascus formation. Nonsporulating cells homozygous for the mating-type locus show a small increase in abundance (less than 5% of the increase in sporulating cells) of both transcripts in sporulation medium. These results indicate that expression of the SPO13 gene is developmentally regulated and starvation alone, independent of the genotype at MAT, can trigger initial induction.
Collapse
|
37
|
Abstract
The SPS4 gene of Saccharomyces cerevisiae, a sporulation-specific gene identified previously in a differential hybridization screen of a genomic yeast DNA library, has been characterized further. The protein encoded by this gene was inferred from its nucleotide sequence to be 38,600 daltons with an isoelectric pH of 8.2. Consistent with this, two-dimensional polyacrylamide gel electrophoresis of the in vitro translation products of RNA purified by hybridization with the cloned SPS4 DNA indicated that the SPS4 gene product is a 39-kilodalton, basic protein. This protein was found to be identical in size and charge to a major, sporulation-specific protein identified in a two-dimensional polyacrylamide gel electrophoretic comparison of the in vitro translation products of total RNA from sporulating MATa/MAT alpha cells and asporogenous MAT alpha/MAT alpha cells. A MATa/MAT alpha strain homozygous for a partial deletion of the SPS4 gene appeared, however, to be unaffected in its ability to form viable ascospores.
Collapse
|
38
|
Characterization and mutational analysis of a cluster of three genes expressed preferentially during sporulation of Saccharomyces cerevisiae. Mol Cell Biol 1987. [PMID: 3023934 DOI: 10.1128/mcb.6.7.2443] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A differential hybridization screen of a genomic yeast DNA library previously identified 14 genes of Saccharomyces cerevisiae that are expressed preferentially during sporulation. Three of these sporulation-specific genes, SPS1, SPS2, and SPS3, have been shown to be closely linked. A mutational analysis has demonstrated that expression of the SPS1 gene, but not the SPS2 gene, is essential for the completion of sporulation. A diploid MATa/MAT alpha strain homozygous for a disruption of the SPS1 gene failed to form asci when subjected to sporulation conditions. The 3' end of the transcript encoded by the SPS1 gene was found to map only 185 base pairs from the 5' end of the SPS2 gene. The SPS1-SPS2 intergenic region was shown to contain all of the regulatory sequences necessary for the sporulation-specific activation of the SPS2 gene as assessed by expression of a translational SPS2-lacZ fusion gene present on a replicating, centromere-containing plasmid. The fusion gene was found to be expressed at the same time during sporulation as the chromosomal wild-type SPS2 gene.
Collapse
|
39
|
Isolation and functional analysis of sporulation-induced transcribed sequences from Saccharomyces cerevisiae. Mol Cell Biol 1986. [PMID: 3537714 DOI: 10.1128/mcb.6.6.2185] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Strains of the yeast Saccharomyces cerevisiae that are heterozygous for the mating-type locus (MATa/MAT alpha) undergo meiosis and spore formation when they are starved for nitrogen and are provided with a nonfermentable carbon source such as potassium acetate. Haploids and diploids homozygous for the mating-type locus (MAT alpha/MAT alpha or MATa/MATa) are asporogenous and undergo neither meiosis nor spore formation when incubated under the same conditions. A small number of genes produce transcripts that appear to be induced specifically in sporulating cells. These transcripts either are not found or are present at much lower levels both in vegetatively growing cells and in cells from asporogenous strains that have been incubated in sporulation medium. Several genes complementary to these MATa/MAT alpha-dependent sporulation-induced transcripts were isolated from a gene-size insert yeast-lambda recombinant DNA library, by differential-plaque filter hybridization. An attempt was made to determine the function of three of these genes by mutating them in the yeast genome with in vitro mutagenesis and one-step gene replacement techniques. One gene was extensively disrupted by both a 0.3-kilobase deletion and the insertion of two large DNA sequences at different sites within the gene. Surprisingly, this compound mutation did not appear to affect meiosis or the production of viable ascospores, indicating that this gene was dispensable for differentiation. The other two genes were disrupted by simple insertion mutations at a site where it was possible that they might still possess some gene activity. These mutations also did not appear to affect sporulation. These results suggest that not all sporulation-induced genes are essential for meiosis and the production of viable ascospores under the conditions examined.
Collapse
|
40
|
Transcriptional control of glucoamylase synthesis in vegetatively growing and sporulating Saccharomyces species. Mol Cell Biol 1986. [PMID: 3097516 DOI: 10.1128/mcb.6.9.3034] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Three unlinked, homologous genes, STA1, STA2, and STA3, encode the extracellular glycosylated glucoamylase isozymes I, II, and III, respectively, in Saccharomyces species. S. cerevisiae, which is sta0 (absence of functional STA genes in haploids), does carry a glucoamylase gene, delta sta, expressed only during sporulation (W. J. Colonna and P. T. Magee, J. Bacteriol. 134:844-853, 1978; I. Yamashita and S. Fukui, Mol. Cell. Biol. 5:3069-3073, 1985). In this study we examined some of the physiological and genetic factors that affect glucoamylase expression. It was found that STA2 strains grown in synthetic medium produce glucoamylase only in the presence of either Maltrin M365 (a mixture of maltooligosaccharides) or starch. Maximal levels of glucoamylase activity were found in cells grown in rich medium supplemented with glycerol plus ethanol, starch, or Maltrin. When various sugars served as carbon sources they all supported glucoamylase synthesis, although at reduced levels. In any given growth medium glucoamylase isozyme II synthesis was modulated by functionality of the mitochondria. Synthesis of glucoamylase is continuous throughout the growth phases, with maximal secretion taking place in the early stationary phase. In the various regimens, the differences in enzyme accumulation are accounted for by differences in the levels of glucoamylase mRNA. Both glucoamylase mRNA and enzyme activity were drastically and coordinately inhibited in MATa/MAT alpha diploids and by the presence of the regulatory gene STA10. Both effects were partially overcome when the STA2 gene was present on a multicopy plasmid. The STA2 mRNA and glucoamylase were coinduced in sporulating STA2/STA2 diploids. A smaller, coinduced RNA species was also detected by Northern blotting with a STA2 probe. The same mRNA species was detected in sporulating sta0 diploids and is likely to encode the sporulation-specific glucoamylase.
Collapse
|
41
|
Garber AT, Segall J. The SPS4 gene of Saccharomyces cerevisiae encodes a major sporulation-specific mRNA. Mol Cell Biol 1986; 6:4478-85. [PMID: 3540611 PMCID: PMC367231 DOI: 10.1128/mcb.6.12.4478-4485.1986] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The SPS4 gene of Saccharomyces cerevisiae, a sporulation-specific gene identified previously in a differential hybridization screen of a genomic yeast DNA library, has been characterized further. The protein encoded by this gene was inferred from its nucleotide sequence to be 38,600 daltons with an isoelectric pH of 8.2. Consistent with this, two-dimensional polyacrylamide gel electrophoresis of the in vitro translation products of RNA purified by hybridization with the cloned SPS4 DNA indicated that the SPS4 gene product is a 39-kilodalton, basic protein. This protein was found to be identical in size and charge to a major, sporulation-specific protein identified in a two-dimensional polyacrylamide gel electrophoretic comparison of the in vitro translation products of total RNA from sporulating MATa/MAT alpha cells and asporogenous MAT alpha/MAT alpha cells. A MATa/MAT alpha strain homozygous for a partial deletion of the SPS4 gene appeared, however, to be unaffected in its ability to form viable ascospores.
Collapse
|
42
|
Pretorius IS, Modena D, Vanoni M, Englard S, Marmur J. Transcriptional control of glucoamylase synthesis in vegetatively growing and sporulating Saccharomyces species. Mol Cell Biol 1986; 6:3034-41. [PMID: 3097516 PMCID: PMC367037 DOI: 10.1128/mcb.6.9.3034-3041.1986] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Three unlinked, homologous genes, STA1, STA2, and STA3, encode the extracellular glycosylated glucoamylase isozymes I, II, and III, respectively, in Saccharomyces species. S. cerevisiae, which is sta0 (absence of functional STA genes in haploids), does carry a glucoamylase gene, delta sta, expressed only during sporulation (W. J. Colonna and P. T. Magee, J. Bacteriol. 134:844-853, 1978; I. Yamashita and S. Fukui, Mol. Cell. Biol. 5:3069-3073, 1985). In this study we examined some of the physiological and genetic factors that affect glucoamylase expression. It was found that STA2 strains grown in synthetic medium produce glucoamylase only in the presence of either Maltrin M365 (a mixture of maltooligosaccharides) or starch. Maximal levels of glucoamylase activity were found in cells grown in rich medium supplemented with glycerol plus ethanol, starch, or Maltrin. When various sugars served as carbon sources they all supported glucoamylase synthesis, although at reduced levels. In any given growth medium glucoamylase isozyme II synthesis was modulated by functionality of the mitochondria. Synthesis of glucoamylase is continuous throughout the growth phases, with maximal secretion taking place in the early stationary phase. In the various regimens, the differences in enzyme accumulation are accounted for by differences in the levels of glucoamylase mRNA. Both glucoamylase mRNA and enzyme activity were drastically and coordinately inhibited in MATa/MAT alpha diploids and by the presence of the regulatory gene STA10. Both effects were partially overcome when the STA2 gene was present on a multicopy plasmid. The STA2 mRNA and glucoamylase were coinduced in sporulating STA2/STA2 diploids. A smaller, coinduced RNA species was also detected by Northern blotting with a STA2 probe. The same mRNA species was detected in sporulating sta0 diploids and is likely to encode the sporulation-specific glucoamylase.
Collapse
|
43
|
Percival-Smith A, Segall J. Characterization and mutational analysis of a cluster of three genes expressed preferentially during sporulation of Saccharomyces cerevisiae. Mol Cell Biol 1986; 6:2443-51. [PMID: 3023934 PMCID: PMC367798 DOI: 10.1128/mcb.6.7.2443-2451.1986] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A differential hybridization screen of a genomic yeast DNA library previously identified 14 genes of Saccharomyces cerevisiae that are expressed preferentially during sporulation. Three of these sporulation-specific genes, SPS1, SPS2, and SPS3, have been shown to be closely linked. A mutational analysis has demonstrated that expression of the SPS1 gene, but not the SPS2 gene, is essential for the completion of sporulation. A diploid MATa/MAT alpha strain homozygous for a disruption of the SPS1 gene failed to form asci when subjected to sporulation conditions. The 3' end of the transcript encoded by the SPS1 gene was found to map only 185 base pairs from the 5' end of the SPS2 gene. The SPS1-SPS2 intergenic region was shown to contain all of the regulatory sequences necessary for the sporulation-specific activation of the SPS2 gene as assessed by expression of a translational SPS2-lacZ fusion gene present on a replicating, centromere-containing plasmid. The fusion gene was found to be expressed at the same time during sporulation as the chromosomal wild-type SPS2 gene.
Collapse
|
44
|
Pardo JM, Polaina J, Jiménez A. Cloning of the STA2 and SGA genes encoding glucoamylases in yeasts and regulation of their expression by the STA10 gene of Saccharomyces cerevisiae. Nucleic Acids Res 1986; 14:4701-18. [PMID: 3014435 PMCID: PMC311485 DOI: 10.1093/nar/14.12.4701] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The Saccharomyces STA2 and SGA genes, encoding the extracellular and intracellular sporulation-specific glucoamylase respectively, have been cloned and their transcription and regulation studied. The STA2 gene differs from the SGA gene in that it contains an extra piece of DNA, which encodes the domain for exportation of the extracellular glucoamylase. The STA2 gene produces a single 2.85 kb transcript. Transcription of the SGA gene is initiated from two different sites, yielding two transcripts of 1.95 and 2.40 kb. Transcription of both STA2 and SGA genes is repressed by the STA10 gene of Saccharomyces cerevisiae.
Collapse
|
45
|
Gottlin-Ninfa E, Kaback DB. Isolation and functional analysis of sporulation-induced transcribed sequences from Saccharomyces cerevisiae. Mol Cell Biol 1986; 6:2185-97. [PMID: 3537714 PMCID: PMC367759 DOI: 10.1128/mcb.6.6.2185-2197.1986] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Strains of the yeast Saccharomyces cerevisiae that are heterozygous for the mating-type locus (MATa/MAT alpha) undergo meiosis and spore formation when they are starved for nitrogen and are provided with a nonfermentable carbon source such as potassium acetate. Haploids and diploids homozygous for the mating-type locus (MAT alpha/MAT alpha or MATa/MATa) are asporogenous and undergo neither meiosis nor spore formation when incubated under the same conditions. A small number of genes produce transcripts that appear to be induced specifically in sporulating cells. These transcripts either are not found or are present at much lower levels both in vegetatively growing cells and in cells from asporogenous strains that have been incubated in sporulation medium. Several genes complementary to these MATa/MAT alpha-dependent sporulation-induced transcripts were isolated from a gene-size insert yeast-lambda recombinant DNA library, by differential-plaque filter hybridization. An attempt was made to determine the function of three of these genes by mutating them in the yeast genome with in vitro mutagenesis and one-step gene replacement techniques. One gene was extensively disrupted by both a 0.3-kilobase deletion and the insertion of two large DNA sequences at different sites within the gene. Surprisingly, this compound mutation did not appear to affect meiosis or the production of viable ascospores, indicating that this gene was dispensable for differentiation. The other two genes were disrupted by simple insertion mutations at a site where it was possible that they might still possess some gene activity. These mutations also did not appear to affect sporulation. These results suggest that not all sporulation-induced genes are essential for meiosis and the production of viable ascospores under the conditions examined.
Collapse
|