1
|
Barwell T, DeVeale B, Poirier L, Zheng J, Seroude F, Seroude L. Regulating the UAS/GAL4 system in adult Drosophila with Tet-off GAL80 transgenes. PeerJ 2017; 5:e4167. [PMID: 29259847 PMCID: PMC5733373 DOI: 10.7717/peerj.4167] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/24/2017] [Indexed: 01/16/2023] Open
Abstract
The UAS/GAL4 system is the most used method in Drosophila melanogaster for directing the expression of a gene of interest to a specific tissue. However, the ability to control the temporal activity of GAL4 with this system is very limited. This study constructed and characterized Tet-off GAL80 transgenes designed to allow temporal control of GAL4 activity in aging adult muscles. By placing GAL80 under the control of a Tet-off promoter, GAL4 activity is regulated by the presence or absence of tetracycline in the diet. Almost complete inhibition of the expression of UAS transgenes during the pre-adult stages of the life cycle is obtained by using four copies and two types of Tet-off GAL80 transgenes. Upon treatment of newly emerged adults with tetracycline, induction of GAL4 activity is observed but the level of induction is influenced by the concentration of the inducer, the age, the sex and the anatomical location of the expression. The inhibition of GAL4 activity and the maintenance of induced expression are altered in old animals. This study reveals that the repressive ability of GAL80 is affected by the age and sex of the animal which is a major limitation to regulate gene expression with GAL80 in aged Drosophila.
Collapse
Affiliation(s)
- Taylor Barwell
- Department of Biology, Queen's University, Kingston, ON, Canada
| | - Brian DeVeale
- Department of Biology, Queen's University, Kingston, ON, Canada.,Department of Biology, Queen's University, Kingston, ON, Canada
| | - Luc Poirier
- Department of Biology, Queen's University, Kingston, ON, Canada
| | - Jie Zheng
- Department of Biology, Queen's University, Kingston, ON, Canada.,Department of Biology, Queen's University, Kingston, ON, Canada
| | | | - Laurent Seroude
- Department of Biology, Queen's University, Kingston, ON, Canada
| |
Collapse
|
2
|
Actin genes and their expression in pacific white shrimp, Litopenaeus vannamei. Mol Genet Genomics 2017; 293:479-493. [PMID: 29189957 DOI: 10.1007/s00438-017-1397-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/18/2017] [Indexed: 10/18/2022]
Abstract
Actin is a multi-functional gene family that can be divided into muscle-type actins and non-muscle-type actins. In this study, 37 unigenes encoding actins were identified from RNA-Seq data of Pacific white shrimp, Litopenaeus vannamei. According to phylogenetic analysis, four and three cDNAs belong to cytoplasmic- and heart-type actins and were named LvActinCT and LvActinHT, respectively. 10 cDNAs belong to the slow-type skeletal muscle actins, and 18 belong to the fast-type skeletal muscle actins; they were designated LvActinSSK and LvActinFSK, respectively. Some muscle actin genes formed gene clusters in the genome. Multiple alternative transcription starts sites (ATSSs) were found for LvActinCT1. Based on the early developmental expression profile, almost all LvActins were highly expressed between the early limb bud and post-larval stages. Using LvActinSSK5 as probes, slow-type muscle was localized in pleopod muscle and superficial ventral muscle. We also found three actin genes that were down-regulated in the hemocytes of white spot syndrome virus (WSSV)- and Vibrio parahaemolyticus-infected L. vannamei. This study provides valuable information on the actin gene structure of shrimp, furthers our understanding of the shrimp muscle system and helps us develop strategies for disease control and sustainable shrimp farming.
Collapse
|
3
|
Characterization of actin and tubulin promoters from two sap-sucking pests, Nilaparvata lugens (Stål) and Nephotettix cincticeps (Uhler). Biochem Biophys Res Commun 2016; 470:831-7. [DOI: 10.1016/j.bbrc.2016.01.124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 01/20/2016] [Indexed: 11/23/2022]
|
4
|
Harris RM, Pfeiffer BD, Rubin GM, Truman JW. Neuron hemilineages provide the functional ground plan for the Drosophila ventral nervous system. eLife 2015; 4. [PMID: 26193122 PMCID: PMC4525104 DOI: 10.7554/elife.04493] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 07/15/2015] [Indexed: 01/03/2023] Open
Abstract
Drosophila central neurons arise from neuroblasts that generate neurons in a pair-wise fashion, with the two daughters providing the basis for distinct A and B hemilineage groups. 33 postembryonically-born hemilineages contribute over 90% of the neurons in each thoracic hemisegment. We devised genetic approaches to define the anatomy of most of these hemilineages and to assessed their functional roles using the heat-sensitive channel dTRPA1. The simplest hemilineages contained local interneurons and their activation caused tonic or phasic leg movements lacking interlimb coordination. The next level was hemilineages of similar projection cells that drove intersegmentally coordinated behaviors such as walking. The highest level involved hemilineages whose activation elicited complex behaviors such as takeoff. These activation phenotypes indicate that the hemilineages vary in their behavioral roles with some contributing to local networks for sensorimotor processing and others having higher order functions of coordinating these local networks into complex behavior.
Collapse
Affiliation(s)
- Robin M Harris
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Barret D Pfeiffer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - James W Truman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
5
|
Schulte C, Leboulle G, Otte M, Grünewald B, Gehne N, Beye M. Honey bee promoter sequences for targeted gene expression. INSECT MOLECULAR BIOLOGY 2013; 22:399-410. [PMID: 23668189 DOI: 10.1111/imb.12031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The honey bee, Apis mellifera, displays a rich behavioural repertoire, social organization and caste differentiation, and has an interesting mode of sex determination, but we still know little about its underlying genetic programs. We lack stable transgenic tools in honey bees that would allow genetic control of gene activity in stable transgenic lines. As an initial step towards a transgenic method, we identified promoter sequences in the honey bee that can drive constitutive, tissue-specific and cold shock-induced gene expression. We identified the promoter sequences of Am-actin5c, elp2l, Am-hsp83 and Am-hsp70 and showed that, except for the elp2l sequence, the identified sequences were able to drive reporter gene expression in Sf21 cells. We further demonstrated through electroporation experiments that the putative neuron-specific elp2l promoter sequence can direct gene expression in the honey bee brain. The identification of these promoter sequences is an important initial step in studying the function of genes with transgenic experiments in the honey bee, an organism with a rich set of interesting phenotypes.
Collapse
Affiliation(s)
- C Schulte
- Institute of Evolutionary Genetics, Heinrich Heine University Duesseldorf, Duesseldorf, Germany.
| | | | | | | | | | | |
Collapse
|
6
|
Zhang Y, Arcia S, Perez B, Fernandez-Funez P, Rincon-Limas DE. p∆TubHA4C, a new versatile vector for constitutive expression in Drosophila. Mol Biol Rep 2013; 40:5407-15. [PMID: 23681549 DOI: 10.1007/s11033-013-2639-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 05/02/2013] [Indexed: 11/27/2022]
Abstract
Several vectors for gene expression are available in Drosophila, a hub for genetics and genomics innovation. However, the vectors for ubiquitous expression have a complex structure, including coding exons, that makes in-frame cloning of cDNAs very complicated. In this report we describe a new Drosophila expression vector (p∆TubHA4C) for ubiquitous expression of coding sequences under the control of a minimal 0.9 kb promoter of α1 tubulin (α1t). This plasmid was designed to include optimized multiple cloning sites (polylinker) to provide flexibility in cloning strategies. We also added the option of double labeling the expressed proteins with two C-terminal tags, the viral epitope hemagglutinin and a synthetic tetracysteine (4C) tag that binds small fluorescent compounds. This dual tag allows both in situ and biochemical detection of the desired protein. In particular, the new 4C tag technology combines easy fluorescent labeling with small arsenical compounds in live or fixed cells and tissues, while producing minimal alterations to the tagged protein due to its small size. To demonstrate the potent and ubiquitous expression under the control of the ∆Tub promoter, bacterial lacZ was expressed and monitored in cell culture and transgenic flies. We found that the modified 0.9 kb ΔTub promoter induced similar expression levels to the intact 2.6 kb α1t promoter, supporting the inclusion of all critical regulatory elements in the new and flexible ∆TubHA4C vector.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Neurology, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | | | | | | | | |
Collapse
|
7
|
Roy Choudhury S, Roy S, Das R, Sengupta DN. Differential transcriptional regulation of banana sucrose phosphate synthase gene in response to ethylene, auxin, wounding, low temperature and different photoperiods during fruit ripening and functional analysis of banana SPS gene promoter. PLANTA 2008; 229:207-23. [PMID: 18830708 DOI: 10.1007/s00425-008-0821-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Accepted: 09/04/2008] [Indexed: 05/10/2023]
Abstract
Sucrose phosphate synthase (SPS) (EC 2.3.1.14) is the key regulatory component in sucrose formation in banana (Musa acuminata subgroup Cavendish, cv Giant governor) fruit during ripening. This report illustrates differential transcriptional responses of banana SPS gene following ethylene, auxin, wounding, low temperature and different photoperiods during ripening in banana fruit. Whereas ethylene strongly stimulated SPS transcript accumulation, auxin and cold treatment only marginally increased the abundance of SPS mRNA level, while wounding negatively regulated SPS gene expression. Conversely, SPS transcript level was distinctly increased by constant exposure to white light. Protein level, enzymatic activity of SPS and sucrose synthesis were substantially increased by ethylene and increased exposure to white light conditions as compared to other treatments. To further study the transcriptional regulation of SPS in banana fruit, the promoter region of SPS gene was cloned and some cis-acting regulatory elements such as a reverse GCC-box ERE, two ARE motifs (TGTCTC), one LTRE (CCGAA), a GAGA-box (GAGA...) and a GATA-box LRE (GATAAG) were identified along with the TATA and CAAT-box. DNA-protein interaction studies using these cis-elements indicated a highly specific cis-trans interaction in the banana nuclear extract. Furthermore, we specifically studied the light responsive characteristics of GATA-box containing synthetic as well as native banana SPS promoter. Transient expression assays using banana SPS promoter have also indicated the functional importance of the SPS promoter in regulating gene expression. Together, these results provide insights into the transcriptional regulation of banana SPS gene in response to phytohormones and other environmental factors during fruit ripening.
Collapse
MESH Headings
- Base Sequence
- Blotting, Southern
- Cold Temperature
- DNA, Plant/metabolism
- Ethylenes/pharmacology
- Fruit/drug effects
- Fruit/genetics
- Fruit/radiation effects
- Gene Expression Profiling
- Gene Expression Regulation, Plant/drug effects
- Gene Expression Regulation, Plant/radiation effects
- Genes, Plant
- Glucosyltransferases/genetics
- Glucosyltransferases/metabolism
- Indoleacetic Acids/pharmacology
- Molecular Sequence Data
- Musa/drug effects
- Musa/enzymology
- Musa/genetics
- Musa/radiation effects
- Photoperiod
- Promoter Regions, Genetic/genetics
- Protein Binding
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Response Elements/genetics
- Sequence Deletion
- Sucrose/metabolism
- Nicotiana/genetics
- Transcription, Genetic/drug effects
- Transcription, Genetic/radiation effects
Collapse
Affiliation(s)
- Swarup Roy Choudhury
- Department of Botany, Bose Institute, 93/1, Acharya Prafulla Chandra Road, Kolkata, West Bengal 700 009, India
| | | | | | | |
Collapse
|
8
|
Nybakken K, Vokes SA, Lin TY, McMahon AP, Perrimon N. A genome-wide RNA interference screen in Drosophila melanogaster cells for new components of the Hh signaling pathway. Nat Genet 2005; 37:1323-32. [PMID: 16311596 PMCID: PMC6429564 DOI: 10.1038/ng1682] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Accepted: 08/06/2005] [Indexed: 01/03/2023]
Abstract
Members of the Hedgehog (Hh) family of signaling proteins are powerful regulators of developmental processes in many organisms and have been implicated in many human disease states. Here we report the results of a genome-wide RNA interference screen in Drosophila melanogaster cells for new components of the Hh signaling pathway. The screen identified hundreds of potential new regulators of Hh signaling, including many large protein complexes with pleiotropic effects, such as the coat protein complex I (COPI) complex, the ribosome and the proteasome. We identified the multimeric protein phosphatase 2A (PP2A) and two new kinases, the D. melanogaster orthologs of the vertebrate PITSLRE and cyclin-dependent kinase-9 (CDK9) kinases, as Hh regulators. We also identified a large group of constitutive and alternative splicing factors, two nucleoporins involved in mRNA export and several RNA-regulatory proteins as potent regulators of Hh signal transduction, indicating that splicing regulation and mRNA transport have a previously unrecognized role in Hh signaling. Finally, we showed that several of these genes have conserved roles in mammalian Hh signaling.
Collapse
Affiliation(s)
- Kent Nybakken
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA.
| | | | | | | | | |
Collapse
|
9
|
Toba G, Qui J, Koushika SP, White K. Ectopic expression ofDrosophilaELAV and human HuD inDrosophilawing disc cells reveals functional distinctions and similarities. J Cell Sci 2002; 115:2413-21. [PMID: 12006625 DOI: 10.1242/jcs.115.11.2413] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Drosophila ELAV and human HuD are two neuronal RNA binding proteins that show remarkable sequence homology, yet differ in their respective documented roles in post-transcriptional regulation. ELAV regulates neural-specific alternative splicing of specific transcripts, and HuD stabilizes specific mRNAs that are otherwise unstable due to AU-rich elements(AREs) in their 3′ untranslated region (UTR). AREs are major determinants of transcript stability in mammalian cells. The role of each of these proteins was investigated and compared, by ectopically expressing them in Drosophila imaginal wing disc cells, which lack endogenous expression of either protein. The effect of the ectopic expression of ELAV and HuD was assessed on two sets of green fluorescent protein reporter transgenes,which were all driven with a broadly expressing promoter. Each set consisted of three reporter transgenes: (1) with an uninterrupted open reading frame(ORF); (2) with a constitutively spliced intron inserted into the ORF; and (3)with the intron nASI whose splicing is regulated in neurons by ELAV,inserted into the ORF. The two sets differed from each other only in their 3′UTR: Heat-shock-protein-70Ab (Hsp70Ab) trailer with ARE-like characteristics or Actin 5C (Act5C) trailer. Our results show that:(1) both ectopically expressed ELAV and HuD can enhance expression of transgenes with the Hsp70Ab 3′UTR, but not of transgenes with Act5C 3′UTR; (2) this enhancement is accompanied by an increase in mRNA level; (3) only ELAV can induce neural-specific splicing of nASI; and (4) although HuD is localized primarily to the cytoplasm,ELAV is localized to both the cytoplasm and the nucleus.
Collapse
Affiliation(s)
- Gakuta Toba
- Department of Biology and Center for Complex Systems, MS 008, Brandeis University, Waltham Massachusetts 02454, USA
| | | | | | | |
Collapse
|
10
|
Wheeler JC, King V, Tower J. Sequence requirements for upregulated expression of Drosophila hsp70 transgenes during aging. Neurobiol Aging 1999; 20:545-53. [PMID: 10638528 DOI: 10.1016/s0197-4580(99)00088-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
hsp70 protein and hsp70:lacZ fusion reporters are upregulated during aging and in response to oxidative stress in the thorax of Drosophila. hsp70 expression was increased during aging in each of seven different Drosophila genetic backgrounds tested, 2.6-4.8-fold. DNA sequence requirements were investigated by analysis of nine distinct hsp70:lacZ fusion reporter constructs in multiple independent transgenic lines. hsp70 sequences -194 to +276 supported an average 2.7-fold increase during aging. This increase was reduced or eliminated by deletion or point mutation of the heat shock response elements, consistent with a transcriptional mechanism. Similar sequence requirements were observed for increased expression in response to catalase null mutation as a model of oxidative stress. hsp70 5'UTR sequences were required for efficient basal expression of transgenes, but were not sufficient to confer detectable upregulation during aging. Inclusion of additional hsp70 coding region sequences from +276 to + 1011 created a larger hsp70:lacZ fusion protein and had two effects: dramatic reduction of the overall expression level of the fusion protein, and an additional three to fourfold upregulation during aging. These results suggest that the coding region sequences reduce fusion protein abundance and that this negative effect decreases as a function of age. The data support a model for increased expression of hsp70 transgenes during aging involving both transcriptional and posttranscriptional components.
Collapse
Affiliation(s)
- J C Wheeler
- Department of Biological Sciences, University of Southern California, Los Angeles 90089-1340, USA
| | | | | |
Collapse
|
11
|
Huynh CQ, Zieler H. Construction of modular and versatile plasmid vectors for the high-level expression of single or multiple genes in insects and insect cell lines. J Mol Biol 1999; 288:13-20. [PMID: 10329122 DOI: 10.1006/jmbi.1999.2674] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have constructed a series of plasmid vectors for the expression of foreign genes in insects or insect cell lines. We incorporated the Drosophila hsp70 and actin 5C promoters, as well as the hr5 enhancer-driven baculovirus ie1 promoter, into plasmids that allow convenient cloning of heterologous genes into multiple cloning sites. We combined these promoters with either a short, double poly-adenylation site derived from the Heliothis virescens p63 chaperonin gene, or with a fusion of the small t intron with the early 3' untranslated region and poly-adenylation sites of SV40. Unique eight base cutter restriction sites flanking the promoters and poly-adenylation sequences make it possible to transfer the entire transcription units into other sequence contexts, for example, into transposable elements or into other plasmids bearing selectable marker genes. It is also convenient to combine two of our transcription units on the same plasmid in order to express multiple genes simultaneously. To test the ability of our vectors to drive expression of reporter genes, luciferase derivatives were made of the expression plasmids and introduced into Aedes albopictus C6/36 cells by electroporation or into Anopheles gambiae embryos by biolistic particle bombardment. All three promoters directed high levels of luciferase expression. However, there were differences in their relative activities in the two experimental systems. In C6/36 cells, the actin 5C and hr5-ie1 promoters were significantly more active than the hsp70 promoter. In Anopheles embryos, hsp70 and actin 5C had maximal activities, while hr5-ie1 was weaker. We also found that the constructs containing the SV40 small t intron and early 3' untranslated region sequences had higher expression levels than their counterparts containing the Heliothis poly-adenylation sequence. Our most active construct combines the actin 5C promoter with the SV40 intron and 3' untranslated region sequences. This vector was also used to drive expression of a visible marker, the enhanced green fluorescent protein gene, resulting in readily visible green fluorescent protein expression in C6/36 cells.
Collapse
Affiliation(s)
- C Q Huynh
- Medical Entomology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0425, USA
| | | |
Collapse
|
12
|
Kamei D, Tsuchiya N, Yamazaki M, Meguro H, Yamada M. Two forms of expression and genomic structure of the human heterogeneous nuclear ribonucleoprotein D-like JKTBP gene (HNRPDL). Gene X 1999; 228:13-22. [PMID: 10072754 DOI: 10.1016/s0378-1119(99)00020-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The human DNA- and RNA-binding protein JKTBP is a member of a 2xRNA-binding domain (RBD)-glycine family of heterogeneous nuclear ribonucleoproteins that are involved in mRNA biogenesis. Northern and Western blottings revealed that mRNAs of approx. 1.4 and 2.8kb and proteins of approx. 38 and 53kDa were present in HL-60 cells and various tissues. Cloning and characterization of a previously unknown cDNA for the 2.8kb mRNA indicated that the cDNA encodes a 420 amino acid JKTBP polypeptide. Isolation and characterization of the genomic DNA showed that the gene (HNRPDL) had nine exons and had two separate transcription start sites for the two transcripts. The features of the 5' flanking sequences of these sites showed that the gene is a housekeeping gene. Fluorescence in situ hybridization mapped the gene to 4q13-q21. From its gene organization, the JKTBP seems to be most closely related to hnRNP D/AUF1.
Collapse
Affiliation(s)
- D Kamei
- Graduate School of Integrated Science, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | | | | | | | | |
Collapse
|
13
|
Kritzik MR, Ziober AF, Dicharry S, Conrad DJ, Sigal E. Characterization and sequence of an additional 15-lipoxygenase transcript and of the human gene. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1352:267-81. [PMID: 9224951 DOI: 10.1016/s0167-4781(97)00005-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
15-lipoxygenase is a lipid-peroxidating enzyme that oxidizes fatty acids, such as those esterified to cellular membranes. It has been implicated in the oxidative modification of low-density lipoprotein and is thus thought to contribute to the development of atherosclerosis. The enzyme has also been shown to be specifically induced by interleukin-4 in human blood monocytes. Two 15-lipoxygenase-hybridizing messages were detected in these cells; one (2.7 kb) corresponds to the previously isolated cDNA for 15-lipoxygenase, while the other (4 kb) was of unknown origin. We have isolated and characterized this 4 kb transcript. Our experiments show that it has 1.2 kb additional sequence in its 3' untranslated region, and that it is generated from genomic sequences through differential polyA site selection. We present studies to address the functional significance of the extended 3'UTR. Selection of an upstream polyadenylation signal results in production of the 2.7 kb transcript. In addition, we present here for the first time the cloning and sequence of the human 15-lipoxygenase gene, as well as the identification of regulatory elements in the promoter region of this gene.
Collapse
Affiliation(s)
- M R Kritzik
- Institute of Biochemistry and Cell Biology, Syntex Discovery Research, Palo Alto, CA, USA
| | | | | | | | | |
Collapse
|
14
|
Ryu JR, Choi TY, Kwon EJ, Lee WH, Nishida Y, Hayashi Y, Matsukage A, Yamaguchi M, Yoo MA. Transcriptional regulation of the Drosophila-raf proto-oncogene by the DNA replication-related element (DRE)/DRE-binding factor (DREF) system. Nucleic Acids Res 1997; 25:794-9. [PMID: 9016631 PMCID: PMC146497 DOI: 10.1093/nar/25.4.794] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The DRE/DREF system plays an important role in transcription of DNA replication genes such as those encoding the 180 and 73 kDa subunits of DNA polymerase alpha as well as that for encoding PCNA. In this study, we found two sequences homologous to DRE (5'-TATCGATA-3') in the 5'-flanking region (-370 to -357 with respect to the transcription initiation site) of the D-raf gene and confirmed transcriptional activity through gel mobility shift assays, transient CAT assays, and spatial patterns of lacZ expression in transgenic larval tissues carrying D-raf and lacZ fusion genes. Further, we demonstrated that the D-raf gene is another target of the Zerknüllt (Zen) protein with observation of D-raf repression by Zen protein in cultured cells and its ectopic expression in the dorsal region of the homozygous zen mutant embryo. The evidence of DRE/DREF involvement in regulation of the D-raf gene obtained in this study strongly supports the idea that the DRE/DREF system is responsible for the coordinated regulation of cell proliferation-related genes in Drosophila.
Collapse
Affiliation(s)
- J R Ryu
- Department of Molecular Biology, College of Natural Science, Pusan National University, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Mangé A, Couble P, Prudhomme JC. Two alternative promoters drive the expression of the cytoplasmic actin A4 gene of Bombyx mori. Gene X 1996; 183:191-9. [PMID: 8996106 DOI: 10.1016/s0378-1119(96)00558-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
By screening cDNA and genomic libraries, we have cloned A4, the fourth and last actin gene of Bombyx mori, which encodes a typical cytoskeleton actin and is expressed in all larval tissues. A4 is closely related to A3, another cytoplasmic actin gene of the silkworm, in its encoded amino-acid sequence, and the location as well as the sequence of a single intron. Both A3 and A4 have possibly arisen from the recent duplication of an intron-containing ancestral gene. The two genes display different organization of their 5' untranslated and flanking sequences. In contrast to A3, which harbours a single promoter, A4 exhibits two leader exons transcribed by the use of alternative promoters. A3 and A4 actins differ only by two amino acids at positions known to vary among cytoplasmic actins of other species, and are likely to be functionally equivalent. We speculate that transcriptional constraints are actually the target of a selective pressure that maintains two distinct cytoplasmic actin genes in insects, as well as in other animals.
Collapse
Affiliation(s)
- A Mangé
- Centre de Génétique Moléculaire et Cellulaire, CNRS-Université Claude Bernard Lyon, Villeurbanne, France
| | | | | |
Collapse
|
16
|
Ackermann R, Brack C. A strong ubiquitous promoter-enhancer for development and aging of Drosophila melanogaster. Nucleic Acids Res 1996; 24:2452-3. [PMID: 8710521 PMCID: PMC145933 DOI: 10.1093/nar/24.12.2452] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- R Ackermann
- Biozentrum, Department of Cell Biology, Basel, Switzerland
| | | |
Collapse
|
17
|
LeMotte PK, Keidel S, Apfel CM. Characterization of synthetic retinoids with selectivity for retinoic acid or retinoid X nuclear receptors. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1289:298-304. [PMID: 8600988 DOI: 10.1016/0304-4165(95)00179-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The broad spectrum of physiological activities of retinoids is mediate d by two types of receptors, the retinoic acid receptors (RARs) and the retinoid X receptors (RXRs). Though they have 9-cis retinoic acid as a common ligand, the amino acid sequence of their ligand binding domains is only distantly related (27%). This fact makes it probable that the ligand binding pockets of RARs and RXRs differ significantly with respect to their three dimensional structure. Therefore, one can expect that selective ligands for these receptor subclasses do exit. A clear example of a naturally existing RAR-selective retinoid is all-trans retinoic acid. Here we report on two synthetic retinoids which are very closely related to retinoic acid in structure yet show good receptor subclass selectivity. These compounds have a saturated double bond in the polyene side chain between either the 7, 8 or 9, 10 carbon atoms and are highly RAR or RXR selective, respectively (as shown by receptor binding, transactivation activity and the ability to induce RXR homodimer formation). In addition, we present compounds of the synthetic arotinoid class which are highly RAR selective. Interestingly the corresponding '9-cis analogs' are not able to bind or activate RXR alpha and show greatly reduced activity on the RARs.
Collapse
Affiliation(s)
- P K LeMotte
- F. Hoffmann-LaRoche Ltd., Basel, Switzerland
| | | | | |
Collapse
|
18
|
Lemotte PK, Keidel S, Apfel CM. Phytanic acid is a retinoid X receptor ligand. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 236:328-33. [PMID: 8617282 DOI: 10.1111/j.1432-1033.1996.00328.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Metabolic defects in phytanic acid catabolism have been shown to be connected with a number of human diseases which can lead to lethal defects of the nervous system and other organs. These effects are probably a result of the very high accumulation of phytanic acid in tissues throughout the body, due to defects in phytanic acid oxidation, the peroxisome being a major site for this process. The nuclear hormone receptors peroxisome proliferator-activated receptor and retinoid X receptor (RXR) have been shown to function as transcription factors in the control of the peroxisomal enzyme expression. Known activators of peroxisome proliferator-activated receptor include polyunsaturated fatty acids and, for RXR, the 9-cis isomer of retinoic acid. Here we report that phytanic acid is also a natural ligand for RXR alpha, being able to activate a RXR-responsive promoter. We present evidence that phytanic acid binds to RXR alpha, promotes formation of an RXR alpha/RXR response element complex (as detected by gel retardation), and induces a RXR alpha conformational change similar to that induced by 9-cis-retinoic acid (as detected by protease sensitivity). These results suggest an involvement of RXR alpha in the control of fatty acid metabolism and could imply that RXRs have a role in the disease effects resulting from defective phytanic acid catabolism.
Collapse
Affiliation(s)
- P K Lemotte
- Department of Dermatology, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | | |
Collapse
|
19
|
Apfel CM, Kamber M, Klaus M, Mohr P, Keidel S, LeMotte PK. Enhancement of HL-60 differentiation by a new class of retinoids with selective activity on retinoid X receptor. J Biol Chem 1995; 270:30765-72. [PMID: 8530518 DOI: 10.1074/jbc.270.51.30765] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Cellular responsiveness to retinoic acid and its metabolites is conferred through two distinct families of receptors: the retinoic acid receptors (RARs) and the retinoid X receptors (RXRs). Herein, we report on the identification and characterization of several conformationally restricted retinoids, which selectively bind and activate RX receptors. Under the influence of retinoids, HL-60 myelocytic leukemia cells differentiate into granulocytes. This effect is mediated by RAR alpha, as has been demonstrated through the use of a selective RAR alpha antagonist (Apfel, C., Bauer, F., Crettaz, M., Forni, L., Kamber, M., Kaufmann, F., LeMotte, P., Pirson, W., and Klaus, M. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 7129-7133). Here, we show that conformationally restricted RXR-specific retinoids, at doses that are per se inactive, are able to potentiate by up to one order of magnitude the pro-differentiating effects of all-trans retinoic acid and an RAR alpha-selective synthetic retinoid. We also present evidence that these RXR-selective ligands are able to bind to a DNA RXR.RAR heterodimer complex. This finding demonstrates that agonists for RARs and RXRs can synergistically promote HL-60 differentiation, which could be mediated through a heterodimer of these receptors.
Collapse
Affiliation(s)
- C M Apfel
- Department of Dermatology, F. Hoffmann-LaRoche, Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
20
|
Hu J, Qazzaz H, Brennan MD. A transcriptional role for conserved footprinting sequences within the larval promoter of a Drosophila alcohol dehydrogenase gene. J Mol Biol 1995; 249:259-69. [PMID: 7783192 DOI: 10.1006/jmbi.1995.0295] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
All Drosophila alcohol dehydrogenase (Adh) genes that are expressed in larvae display strong transcription in the larval fat body. To identify and characterize elements needed for Adh promoter function, footprinting analysis of the Drosophila affinidisjuncta Adh gene was performed with stage-specific nuclear proteins from embryos and larvae. Multiple sites upstream of the larval promoter were protected from deoxyribonuclease digestion by both embryonic and larval extracts. Comparison with foot-printing results for Adh genes from other Drosophila species revealed only one nuclease-protected region that is conserved in both sequence and position. Clustered point mutations in this sequence were analyzed by footprinting analysis, transient transformation and in vitro transcription. Two separate sequences in this footprinting region exerted positive effects on transcription from the Adh proximal promoter in the larval fat body. The effects of these sequences on gene expression were synergistic. One of these sequences, TGATAA, bound in vitro to Drosophila melanogaster box A binding factor protein, as shown by gel mobility shift assays. This is the first direct demonstration of specific protein-DNA interactions influencing transcription of a Drosophila Adh gene in the larval fat body.
Collapse
Affiliation(s)
- J Hu
- Department of Biochemistry, School of Medicine, University of Louisville, KY 40292, USA
| | | | | |
Collapse
|
21
|
Akhmanova AS, Bindels PC, Xu J, Miedema K, Kremer H, Hennig W. Structure and expression of histone H3.3 genes in Drosophila melanogaster and Drosophila hydei. Genome 1995; 38:586-600. [PMID: 7557364 DOI: 10.1139/g95-075] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We demonstrate that in Drosophila melanogaster the histone H3.3 replacement variant is encoded by two genes, H3.3A and H3.3B. We have isolated cDNA clones for H3.3A and cDNA and genomic clones for H3.3B. The genes encode exactly the same protein but are widely divergent in their untranslated regions (UTR). Both genes are expressed in embryos and adults; they are expressed in the gonads as well as in somatic tissues of the flies. However, only one of them, H3.3A, shows strong testes expression. The 3' UTR of the H3.3A gene is relatively short (approximately 250 nucleotides (nt)). H3.3B transcripts can be processed at several polyadenylation sites, the longest with a 3' UTR of more than 1500 nt. The 3' processing sites, preferentially used in the gonads and somatic tissues, are different. We have also isolated the Drosophila hydei homologues of the two H3.3 genes. They are quite similar to the D. melanogaster genes in their expression patterns. However, in contrast to their vertebrate counterparts, which are highly conserved in their noncoding regions, the Drosophila genes display only limited sequence similarity in these regions.
Collapse
Affiliation(s)
- A S Akhmanova
- Department of Molecular and Developmental Genetics, Faculty of Sciences, Catholic University of Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
22
|
Li W, Ohlmeyer JT, Lane ME, Kalderon D. Function of protein kinase A in hedgehog signal transduction and Drosophila imaginal disc development. Cell 1995; 80:553-62. [PMID: 7867063 DOI: 10.1016/0092-8674(95)90509-x] [Citation(s) in RCA: 265] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Reduced protein kinase A (PKA) activity in anterior imaginal disc cells leads to cell-autonomous induction of decapentaplegic (dpp), wingless (wg), and patched (ptc) transcription that is independent of hedgehog (hh) gene activity. The resulting nonautonomous adult wing and leg pattern duplications are largely due to induced dpp and wg expression and resemble phenotypes elicited by ectopic hh expression. Inhibition of PKA in anterior cells close to the posterior compartment can substitute for hh activity to promote growth of imaginal discs, whereas overexpression of PKA can counteract transcriptional induction of ptc by hh in these cells. PKA therefore appears to be an integral component of the mechanism by which hh regulates the expression of key patterning molecules in imaginal discs.
Collapse
Affiliation(s)
- W Li
- Department of Biological Sciences, Columbia University, New York, New York 10027
| | | | | | | |
Collapse
|
23
|
Yoo MA, Lee WH, Ha HY, Ryu JR, Yamaguchi M, Fujikawa K, Matsukage A, Kondo S, Nishida Y. Effects of DNA polymerase beta gene over-expressed in transgenic Drosophila on DNA repair and recombination. IDENGAKU ZASSHI 1994; 69:21-33. [PMID: 8037925 DOI: 10.1266/jjg.69.21] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
DNA polymerase beta (pol beta) cDNA of rat fused to an enhancer-promoter region plus a poly(A) signal sequence of actin 5C gene of Drosophila (abbreviated pol beta) was transferred to the Drosophila genome. Three of four constructed transgenic strains possessing transgene pol beta on different chromosomes were studied. Levels of the pol beta transcript and those of the polymerization activity of pol beta were markedly elevated in cultured cells transfected with pol beta-bearing vectors as well as in embryos of the transgenic strains. The popular idea that DNA polymerase beta participates in DNA repair was not supported by the observation that a pair of a normal and a pol beta strain, and the other pair of a mei-9 mei-41 (DNA-repair deficient double mutations) strain and a pol beta mei-9 mei-41 strain, showed no difference in survival within each pair after treatment with ultraviolet light, methylmethane sulfonate and mitomycin C. The other idea that DNA polymerase beta participates in recombination was supported by the findings that spontaneous frequency of recombination, either meiotic or mitotic, is significantly higher in a transgenic pol beta strain than in a non-transgenic strain. The enhanced recombination frequency in the pol beta strain may, however, reflect an indirect effect of over-produced pol beta proteins on chromosomal stability. Whatever the direct effect of rat pol beta is, the transgenic pol beta flies will be useful for study of the physiological role of pol beta and the mechanism of recombination.
Collapse
Affiliation(s)
- M A Yoo
- Department of Molecular Biology, College of Natural Science, Pusan National University, Pusan, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Salazar CE, Hamm DM, Wesson DM, Beard CB, Kumar V, Collins FH. A cytoskeletal actin gene in the mosquito Anopheles gambiae. INSECT MOLECULAR BIOLOGY 1994; 3:1-13. [PMID: 8069411 DOI: 10.1111/j.1365-2583.1994.tb00145.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Five actin genes have been identified in the mosquito Anopheles gambiae, and a constitutively expressed actin gene has been chosen for detailed analysis. We have physically mapped and sequenced this gene and six associated cDNAs, including translated coding regions, as well as the 5' and 3' flanking sequences. Analysis of stage-specific RNA shows this gene to be present in all stages of mosquito development and in an established A. gambiae cell line, thus indicating a cytoskeletal actin. In the sequence of the translated coding region and in pattern of expression, this gene is very similar to the cytoskeletal actin genes of Drosophila melanogaster, and in sequence, equally similar to the Artemia cytoskeletal actin gene 403 (99.2% identity among the three amino acid sequences). Sequencing of this A. gambiae actin gene (designated act1D for its location in chromosome division 1D) and selected cDNAs shows that it possesses three alternative leader sequences; thus the gene appears to have three alternative promoters. These promoters should ultimately prove useful in the production of transgenic constructs for constitutive expression.
Collapse
Affiliation(s)
- C E Salazar
- Department of Biology, Emory University, Atlanta, Georgia
| | | | | | | | | | | |
Collapse
|
25
|
YOO MA, LEE WH, HA HY, RYU JR, YAMAGUCHI M, FUJIKAWA K, MATSUKAGE A, KONDO S, NISHIDA Y. Effects of DNA polymerase β gene over-expressed in transgenic Drosophila on DNA repair and recombination. Genes Genet Syst 1994. [DOI: 10.1266/ggs.69.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
26
|
Hirose F, Yamaguchi M, Matsukage A. Repression of regulatory factor for Drosophila DNA replication-related gene promoters by zerknüllt homeodomain protein. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42031-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
27
|
Ito H, Hamabata T, Hori SH. Transcriptional activation of the Drosophila melanogaster glucose-6-phosphate dehydrogenase gene by insertion of defective P elements. MOLECULAR & GENERAL GENETICS : MGG 1993; 241:637-46. [PMID: 8264538 DOI: 10.1007/bf00279906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Tandem insertions of defective P elements (1.15 kb KP and 0.6 kb core P) accelerate the transcription rate of the glucose-6-phosphate dehydrogenase (G6PD) gene in Drosophila melanogaster. In this report, we have analyzed the activation mechanism of the G6PD promoter by in vitro transcription and gel retardation assays. Results showed that one cis-acting region in the core P and two such regions in the KP are associated with activation of the G6PD promoter, and that putative transcriptional regulatory protein(s) which specifically bind to each of the cis-acting regions are present in nuclear extracts of Canton S embryos. On the other hand, the P elements do not activate the normal actin 5C promoter, but activate the promoter when the 20 bp sequence around the G6PD transcription start site is placed in front of the promoter. It appears that the GC-rich region in this 20 bp sequence is required for the activation.
Collapse
Affiliation(s)
- H Ito
- Department of Zoology, Faculty of Science, Hokkaido University, Sapporo, Japan
| | | | | |
Collapse
|
28
|
Abstract
The lin-12 gene of C. elegans and the Notch gene of D. melanogaster encode structurally related transmembrane proteins that mediate intercellular signaling. We show that truncated forms of these proteins consisting of only the intracellular domains cause cell fate transformations associated with constitutive activity in their respective organisms. This activity does not depend on endogenous gene function. Our results indicate that the intracellular domains of Lin-12 and Notch have intrinsic activity and that the principal role of the extracellular domains in the intact proteins is to regulate this activity. Our results also suggest that equivalent truncated forms of lin-12/Notch family members in vertebrates, including known oncogenes, are similarly active.
Collapse
Affiliation(s)
- G Struhl
- Howard Hughes Medical Institute, Department of Genetics and Development, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | | | | |
Collapse
|
29
|
Mounier N, Sparrow JC. Muscle actin genes in insects. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1993; 105:231-8. [PMID: 8359014 DOI: 10.1016/0305-0491(93)90222-q] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- N Mounier
- Centre de Genetique Moleculaire et Cellulaire, Université Lyon, Villeurbanne, France
| | | |
Collapse
|
30
|
Abstract
The adult appendages of Drosophila are formed from imaginal discs, sheets of epithelial cells that proliferate during larval development and differentiate during metamorphosis. wingless (wg, DWnt-1) protein, a putative signaling molecule, is expressed only in prospective ventral cells in each of the leg discs. To test the role of wg, we have generated randomly positioned clones of cells that express wg protein constitutively. Clones that arise in the prospective ventral portions of the leg discs develop normally. In contrast, dorsally situated clones give rise to ventrolateral patterns and exert a ventralizing influence on neighboring wild-type tissue. We propose that wg protein organizes leg pattern along the dorsoventral axis by conferring ventral positional information within the disc.
Collapse
Affiliation(s)
- G Struhl
- Howard Hughes Medical Institute, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | | |
Collapse
|
31
|
Horard B, Bello B, Abraham EG, Coulon-Bublex M, Garel A, Mounier N. A cytoplasmic actin gene from the silkworm Bombyx mori is expressed in tissues of endodermal origin and previtellogenic germ cells of transgenic Drosophila. INSECT MOLECULAR BIOLOGY 1993; 2:175-183. [PMID: 9087555 DOI: 10.1111/j.1365-2583.1993.tb00137.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A cytoplasmic actin gene from Bombyx mori introduced into Drosophila melanogaster by P-element mediated transformation, is efficiently transcribed in larvae, pupae and adults of the host. The exogenous mRNA has the same size as the one observed in the Bombyx cells and the intron located within the coding region is properly excised, indicating a correct recognition of the exogenous sequences by the Drosophila transcriptional and splicing machineries. The expression of the Bombyx gene in Drosophila tissues was determined by transforming flies with a hybrid gene in which a large part of the Bombyx actin coding sequences was replaced by those of the bacterial lac Z gene. This chimaeric gene is specifically and highly expressed, from the embryo to the adult of the transgenic lines, in tissues of endodermal origin, the midgut and its derivatives, i.e. gastric caeca, the outer layer of the proventriculus, and in the Malpighian tubules. This gene is also expressed, at a lower level, in germ cells but restricted to the sixteen cell cysts during previtellogenesis. The expression of the Bombyx gene during development of transgenic flies was compared to that of the two Drosophila endogenous cytoplasmic actin genes and the results are discussed.
Collapse
Affiliation(s)
- B Horard
- Université Lyon 1, Centre de Génétique Moléculaire et Cellulaire, Villeurbanne, France
| | | | | | | | | | | |
Collapse
|
32
|
Bernstein SI, O'Donnell PT, Cripps RM. Molecular genetic analysis of muscle development, structure, and function in Drosophila. INTERNATIONAL REVIEW OF CYTOLOGY 1993; 143:63-152. [PMID: 8449665 DOI: 10.1016/s0074-7696(08)61874-4] [Citation(s) in RCA: 145] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- S I Bernstein
- Department of Biology, San Diego State University, California 92182
| | | | | |
Collapse
|
33
|
Mattox W, Ryner L, Baker B. Autoregulation and multifunctionality among trans-acting factors that regulate alternative pre-mRNA processing. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)41731-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
34
|
Fang XM, Brennan MD. Multiple cis-acting sequences contribute to evolved regulatory variation for Drosophila Adh genes. Genetics 1992; 131:333-43. [PMID: 1644276 PMCID: PMC1205008 DOI: 10.1093/genetics/131.2.333] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Drosophila affinidisjuncta and Drosophila hawaiiensis are closely related species that display distinct tissue-specific expression patterns for their homologous alcohol dehydrogenase genes (Adh genes). In Drosophila melanogaster transformants, both genes are expressed at high levels in the larval and adult fat bodies, but the D. affinidisjuncta gene is expressed 10-50-fold more strongly in the larval and adult midguts and Malpighian tubules. The present study reports the mapping of cis-acting sequences contributing to the regulatory differences between these two genes in transformants. Chimeric genes were constructed and introduced into the germ line of D. melanogaster. Stage- and tissue-specific expression patterns were determined by measuring steady-state RNA levels in larvae and adults. Three portions of the promoter region make distinct contributions to the tissue-specific regulatory differences between the native genes. Sequences immediately upstream of the distal promoter have a strong effect in the adult Malpighian tubules, while sequences between the two promoters are relatively important in the larval Malpighian tubules. A third gene segment, immediately upstream of the proximal promoter, influences levels of the proximal Adh transcript in all tissues and developmental stages examined, and largely accounts for the regulatory difference in the larval and adult midguts. However, these as well as other sequences make smaller contributions to various aspects of the tissue-specific regulatory differences. In addition, some chimeric genes display aberrant RNA levels for the whole organism, suggesting close physical association between sequences involved in tissue-specific regulatory differences and those important for Adh expression in the larval and adult fat bodies.
Collapse
Affiliation(s)
- X M Fang
- Biochemistry Department, University of Louisville Medical School, Kentucky 40292
| | | |
Collapse
|
35
|
Beach RL, Jeffery WR. Multiple actin genes encoding the same alpha-muscle isoform are expressed during ascidian development. Dev Biol 1992; 151:55-66. [PMID: 1577198 DOI: 10.1016/0012-1606(92)90213-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Ascidian embryos develop rapidly into tadpole larvae containing striated tail muscle cells. We have isolated and characterized five actin cDNA clones from a Styela clava tailbud-stage library. The nucleotide sequences of these clones and genomic Southern blot analysis indicate that they represent at least four different muscle actin genes, which are designated ScTb1, ScTb24, ScTb30, and ScTb12/34. The derived protein sequences of these genes indicate that they encode the same alpha-muscle actin which has features related to each of the three different classes of vertebrate alpha-muscle actins. Northern and in situ hybridization with probes prepared from the 3' untranslated region (UTR) of several of the ScTb clones showed that these muscle actin genes are expressed in different temporal and spatial patterns during development. ScTb1 was detected in eggs, embryos, and adults, ScTb24 and ScTb12/34 were detected in embryos and adults, and ScTb30 was detected only in embryos. The maternal transcripts disappeared shortly after fertilization and zygotic mRNAs were first detected during gastrulation and continued to accumulate during subsequent tail muscle differentiation. ScTb30 mRNA, which is expressed in the embryo, peaks during the tailbud stage and is present at low levels in the tadpole larva. In contrast, ScTb1, ScTb24, and ScTb12/34 mRNAs, which are expressed in embryos and adults, peak during the late tailbud stage and are present in substantial quantities in the larva. The ScTb24 gene was detected only in tail muscle cells, whereas the ScTb30 gene was detected in embryonic tail muscle, mesenchyme, epidermal, and neural cells. The ScTb24 mRNA also accumulates primarily in vascular tissue in the branchial sac and mantle of adults. The existence of a gene family encoding the same alpha-muscle actin isoform is unique among the chordates and may function to maximize muscle actin production during the rapid differentiation phase of ascidian larval muscle cells.
Collapse
Affiliation(s)
- R L Beach
- Department of Zoology, University of Texas, Austin 78712
| | | |
Collapse
|
36
|
Rao JP, Sodja A. Further analysis of a transcript nested within the actin 5C gene of Drosophila melanogaster. Biochem Biophys Res Commun 1992; 184:400-7. [PMID: 1373615 DOI: 10.1016/0006-291x(92)91207-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Previously we uncovered a 0.45-kb transcript within the 3' end transcribed untranslated region (3'UTR) of actin gene at 5C3-4 (act5C) of Drosophila melanogaster. We report here that its sequence bears no similarity to the known DNA or protein sequences. This and act5C transcripts are loaded on different polyribosomal classes. Gel retardation experiments performed with this fragment and several others from act5C reveal no DNA binding activity. The 0.45-kb transcript, initially isolated from different developmental stages of D. melanogaster embryogenesis, is also expressed in Drosophila Kc tissue culture cells, which will be used in transformation experiments designed to identify regulatory features of the nested gene and its possible interaction at some level with its "host" act5C gene.
Collapse
Affiliation(s)
- J P Rao
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48208
| | | |
Collapse
|
37
|
Saitta B, Timpl R, Chu M. Human alpha 2(VI) collagen gene. Heterogeneity at the 5'-untranslated region generated by an alternate exon. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42680-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
38
|
Choice of 3' cleavage/polyadenylation site in beta-tropomyosin RNA processing is differentiation-dependent in mouse BC3H1 muscle cells. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)45940-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
39
|
Rottmann WH, Peter GF, Oeller PW, Keller JA, Shen NF, Nagy BP, Taylor LP, Campbell AD, Theologis A. 1-aminocyclopropane-1-carboxylate synthase in tomato is encoded by a multigene family whose transcription is induced during fruit and floral senescence. J Mol Biol 1991; 222:937-61. [PMID: 1762159 DOI: 10.1016/0022-2836(91)90587-v] [Citation(s) in RCA: 122] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The key regulatory enzyme in the biosynthetic pathway of the plant hormone ethylene is 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (EC 4.1.1.14). It catalyzes the conversion of S-adenosylmethionine to ACC, the precursor of ethylene. We isolated complementary DNA sequences, ptACC2 and ptACC4, for two distinct and differentially regulated ACC synthase mRNAs expressed in ripe tomato fruit. The authenticity of the clones has been confirmed by expression experiments in E. coli. The predicted size of the encoded polypeptides (54,690 and 53,519 Da) is similar to that of the primary in vitro translation products and to the proteins found in vivo. The sequence of the gene encoding one mRNA, LE-ACC2, has been determined and its transcription initiation site defined. Four additional genes, LE-ACC1A, LE-ACC1B, LE-ACC3 and LE-ACC4, have also been identified and the sequence of their coding regions determined. The LE-ACC1A and LE-ACC1B genes are adjacent to each other and are convergently transcribed. Their encoded polypeptides are 96% identical; the identity of the other polypeptides to each other varies between 50 and 70%. The proteins predicted to be encoded by the ACC synthase genes so far cloned from tomato and zucchini contain 11 of the 12 conserved amino acid residues found in various aminotransferases involved in the binding of the substrate and the cofactor pyridoxal-5'-phosphate. The data indicate that ACC synthase is encoded by a divergent multigene family in tomato that encodes proteins related to aminotransferases.
Collapse
Affiliation(s)
- W H Rottmann
- Plant Gene Expression Center, ARS-USDA, Albany, CA 94710
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Chung YT, Keller EB. The TATA-dependent and TATA-independent promoters of the Drosophila melanogaster actin 5C-encoding gene. Gene X 1991; 106:237-41. [PMID: 1937052 DOI: 10.1016/0378-1119(91)90204-o] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The major cytoskeletal actin of Drosophila melanogaster, actin 5C, is encoded by a gene (act5C) that has two promoters which are differentially controlled and possess distinct sets of regulatory elements. The distal basal promoter has a TATA motif, but the proximal does not. The distal strong positive domain, centered at nucleotide -290, can be shifted and fused directly to the distal basal promoter without losing its activity. It can also activate heterologous basal promoters containing either TATAAAT or TATTTAA signal when directly fused to them, but cannot activate the basal proximal promoter, which is TATA-less. When the entire distal regulatory region, which includes a remote enhancer-like region, is fused to the proximal promoter, it does not increase the proximal promoter activity. Fusion of the distal strong negative domain to the proximal promoter does not inhibit activity. Thus, all the three major strong regulatory domains of the distal promoter are unable to act on the proximal promoter.
Collapse
Affiliation(s)
- Y T Chung
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853
| | | |
Collapse
|
41
|
Abstract
We have started to identify early viral RNAs that are transcribed at 1 h after inoculation to investigate the mechanism involved in the regulation of early gene expression of Autographa californica nuclear polyhedrosis virus (AcNPV). Cloned viral DNA fragments were hybridized to Northern (RNA) blots of polyadenylated RNA isolated from Spodoptera frugiperda cells at 1, 2, and 6 h postinfection to localize very early transcripts. Subsequently we prepared a cDNA library of polyadenylated RNA transcribed at 1 h after inoculation to analyze the cDNA clones corresponding to the major early RNAs. We identified a gene located upstream of the immediate-early gene IE-N extending in the opposite direction. Because of the very early expression during AcNPV infection and the transient expression in uninfected cells, we conclude that we found an immediate-early gene, designated PE-38. The determination of the nucleotide sequence of PE-38 revealed one open reading frame potentially encoding a gene product of 38 kDa. Results of in vitro translation experiments suggest that a PE-38-specific polypeptide of approximately 38 kDa can be expressed. We have evidence from computer analyses that the predicted amino acid sequence includes two putative DNA-binding motifs, a zinc finger, and a leucine zipper.
Collapse
|
42
|
Differential expression of muscle and cytoplasmic actin genes during development of Bombyx mori. ACTA ACUST UNITED AC 1991. [DOI: 10.1016/0020-1790(91)90106-o] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
43
|
Wu CY, Mote J, Brennan MD. Tissue-specific expression phenotypes of Hawaiian Drosophila Adh genes in Drosophila melanogaster transformants. Genetics 1990; 125:599-610. [PMID: 2165967 PMCID: PMC1204086 DOI: 10.1093/genetics/125.3.599] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Interspecific differences in the tissue-specific patterns of expression displayed by the alcohol dehydrogenase (Adh) genes within the Hawaiian picture-winged Drosophila represent a rich source of evolutionary variation in gene regulation. Study of the cis-acting elements responsible for regulatory differences between Adh genes from various species is greatly facilitated by analyzing the behavior of the different Adh genes in a homogeneous background. Accordingly, the Adh gene from Drosophila grimshawi was introduced into the germ line of Drosophila melanogaster by means of P element-mediated transformation, and transformants carrying this gene were compared to transformants carrying the Adh genes from Drosophila affinidisjuncta and Drosophila hawaiiensis. The results indicate that the D. affinidisjuncta and D. grimshawi genes have relatively higher levels of expression and broader tissue distribution of expression than the D. hawaiiensis gene in larvae. All three genes are expressed at similar overall levels in adults, with differences in tissue distribution of enzyme activity corresponding to the pattern in the donor species. However, certain systematic differences between Adh gene expression in transformants and in the Hawaiian Drosophila are noted along with tissue-specific position effects in some cases. The implications of these findings for the understanding of evolved regulatory variation are discussed.
Collapse
Affiliation(s)
- C Y Wu
- Department of Biochemistry, School of Medicine, University of Louisville, Kentucky 40292
| | | | | |
Collapse
|
44
|
Tobin SL, Cook PJ, Burn TC. Transcripts of individual Drosophila actin genes are differentially distributed during embryogenesis. DEVELOPMENTAL GENETICS 1990; 11:15-26. [PMID: 1694472 DOI: 10.1002/dvg.1020110104] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The temporal and spatial patterns of accumulation of transcripts from individual actin genes during Drosophila embryogenesis have been determined by in situ hybridization. We describe the subcloning into transcription vectors of unique DNA fragments derived from the 3' transcribed, but nontranslated region of each actin gene. These fragments then served as templates for the synthesis in vitro of single-stranded, radio-active gene-specific RNA probes. Probe characterization and hybridization to developmental RNA blots are presented, demonstrated the independent developmental accumulation of actin transcripts from each gene. Each gene-specific probe has been hybridized in situ to the transcripts present in embryonic frozen sections. The results of these experiments have demonstrated that transcripts from each actin gene accumulate differentially in developing Drosophila tissues. The 5C and 42A actin genes are cytoplasmic actin genes, with transcripts distributed in all cells and tissues of the developing embryo. Therefore these genes presumably encode the cytoplasmic actins used for functions common to all cells. Transcripts from both cytoplasmic actin genes are evenly distributed in preblastoderm embryos, becoming localized to the periphery at blastoderm formation [5C: Burn et al.: Dev Biol 131:345-355, 1989]. Later in development, levels of these cytoplasmic transcripts vary in specific tissues. While the patterns of localization of 5C actin transcripts have been published [Burn et al.: Dev Biol 131:345-355, 1989], differential neurological localization is presented here; 42A transcripts are localized at higher concentrations in the midgut, the brain, nerve cord, and gonad. Both 87E and 57B transcripts accumulated in the developing larval body wall musculature, but at differing levels and in differing patterns. Transcripts of the 79B and the 88F actin genes were undetectable in embryos. The results of these experiments suggest dedicated contributions of individual actin genes to complex developmental processes.
Collapse
Affiliation(s)
- S L Tobin
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City 73190
| | | | | |
Collapse
|
45
|
Winslow GM, Hayashi S, Krasnow M, Hogness DS, Scott MP. Transcriptional activation by the Antennapedia and fushi tarazu proteins in cultured Drosophila cells. Cell 1989; 57:1017-30. [PMID: 2567631 DOI: 10.1016/0092-8674(89)90340-1] [Citation(s) in RCA: 103] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Drosophila homeodomain proteins bind to specific DNA sequences in vitro and are hypothesized to regulate the transcription of other genes during development. Using a cotransfection assay, we have shown that homeodomain proteins encoded by the homeotic gene Antennapedia (Antp) and the segmentation gene fushi tarazu, as well as a hybrid homeodomain protein, are activators of transcription from specific promoters in cultured Drosophila cells. Sequences downstream of the Antp P1 and Ultrabithorax transcription start sites mediate the observed activation. A TAA-rich DNA sequence to which the Antp protein binds in vitro is sufficient to confer regulation on a heterologous promoter. The results demonstrate that homeodomain proteins are transcriptional regulators in vivo and that in cultured cells, different homeodomain-containing proteins can act upon a common sequence to modulate gene transcription.
Collapse
Affiliation(s)
- G M Winslow
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder 80309-0347
| | | | | | | | | |
Collapse
|
46
|
Kazzaz JA, Rozek CE. Tissue-specific expression of the alternately processed Drosophila myosin heavy-chain messenger RNAs. Dev Biol 1989; 133:550-61. [PMID: 2471656 DOI: 10.1016/0012-1606(89)90057-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The myosin heavy-chain (Mhc) gene of Drosophila is a single-copy gene from which four messenger RNAs are transcribed. Two of these mRNAs, CA-1 and CA-2, are expressed in all stages of development when Mhc mRNA is detected. The 3' ends of these mRNAs differ by alternate choice of poly(A) addition sites. Two additional Mhc mRNAs, CBA-1 and CBA-2, are detected only in midpupal to adult stages of development. The 3' ends of these mRNAs are alternately polyadenylated as the above mRNAs; however, these mRNAs contain an additional alternately spliced exon. We have used in situ hybridization to tissue sections to determine the tissue-specific expression of the alternately processed Mhc mRNAs. Four probes were used in the in situ hybridization experiments: one that detects all Mhc mRNAs, one that is specific for mRNA molecules polyadenylated at the downstream site 2, one that is specific for alternately spliced mRNAs containing the B exon, and one that is specific for Mhc mRNAs Ca-1 and CA-2. This last probe is an oligodeoxynucleotide, while the others are single-stranded RNA molecules synthesized in vitro. Our results demonstrate that the alternate splicing of Mhc mRNAs is muscle-cell-type-specific during pupal development, while the polydenylation site usage at the downstream site 2 is not muscle-cell-type-specific during either embryonic or pupal development.
Collapse
Affiliation(s)
- J A Kazzaz
- Department of Biology, Case Western Reserve University, Cleveland, Ohio 44106
| | | |
Collapse
|
47
|
Jacob M, Gallinaro H. The 5' splice site: phylogenetic evolution and variable geometry of association with U1RNA. Nucleic Acids Res 1989; 17:2159-80. [PMID: 2704616 PMCID: PMC317586 DOI: 10.1093/nar/17.6.2159] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The 5' splice site sequences of 3294 introns from various organisms (1-672) were analyzed in order to determine the rules governing evolution of this sequence, which may shed light on the mechanism of cleavage at the exon-intron junction. The data indicate that, currently, in all organisms, a common sequence 1GUAAG6U and its derivatives are used as well as an additional sequence and its derivatives, which differ in metazoa (G/1GUgAG6U), lower eucaryotes (1GUAxG6U) and higher plants (AG/1GU3A). They all partly resemble the prototype sequence AG/1GUAAG6U whose 8 contigous nucleotides are complementary to the nucleotides 4-11 of U1RNA, which are perfectly conserved in the course of phylogenetic evolution. Detailed examination of the data shows that U1RNA can recognize different parts of 5' splice sites. As a rule, either prototype nucleotides at position -2 and -1 or at positions 4, 5 or 6 or at positions 3-4 are dispensable provided that the stability of the U1RNA-5' splice site hybrid is conserved. On the basis of frequency of sequences, the optimal size of the hybridizable region is 5-7 nucleotides. Thus, the cleavage at the exon-intron junction seems to imply, first, that the 5' splice site is recognized by U1RNA according to a "variable geometry" program; second, that the precise cleavage site is determined by the conserved sequence of U1RNA since it occurs exactly opposite to the junction between nucleotides C9 and C10 of U1RNA. The variable geometry of the U1RNA-5' splice site association provides flexibility to the system and allows diversification in the course of phylogenetic evolution.
Collapse
Affiliation(s)
- M Jacob
- Laboratoire de Génétique Moléculaire des Eucaryotes du CNRS, Strasbourg, France
| | | |
Collapse
|
48
|
Burtis KC, Baker BS. Drosophila doublesex gene controls somatic sexual differentiation by producing alternatively spliced mRNAs encoding related sex-specific polypeptides. Cell 1989; 56:997-1010. [PMID: 2493994 DOI: 10.1016/0092-8674(89)90633-8] [Citation(s) in RCA: 509] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The doublesex (dsx) gene regulates somatic sexual differentiation in both sexes in D. melanogaster. Two functional products are encoded by dsx: one product is expressed in females and represses male differentiation, and the other is expressed in males and represses female differentiation. We have determined that the dsx gene is transcribed to produce a common primary transcript that is alternatively spliced and polyadenylated to yield male- and female-specific mRNAs. These sex-specific mRNAs share a common 5' end and three common exons, but possess alternative sex-specific 3' exons, thus encoding polypeptides with a common amino-terminal sequence but sex-specific carboxyl termini. Genetic and molecular data suggest that sequences including and adjacent to the female-specific splice acceptor site play an important role in the regulation of dsx expression by the transformer and transformer-2 loci.
Collapse
Affiliation(s)
- K C Burtis
- Department of Biological Sciences, Stanford University, California 94305
| | | |
Collapse
|
49
|
Burn TC, Vigoreaux JO, Tobin SL. Alternative 5C actin transcripts are localized in different patterns during Drosophila embryogenesis. Dev Biol 1989; 131:345-55. [PMID: 2492241 DOI: 10.1016/s0012-1606(89)80008-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Drosophila actin gene located at cytogenetic position 5C forms at least 9 and perhaps as many as 15 different transcripts with the use of alternative transcriptional start points, differential splicing, and different regions of cleavage/polyadenylation. Each transcript contains one of two alternative 5' exons. We have subcloned unique recombinant DNA probes specific for each separate 5' exon and for three polyadenylation regions into vectors containing T3 and T7 promoters. Single stranded, tritium-labeled RNA probes were generated in vitro from these constructs. These probes have been hybridized in situ to RNA transcripts present in tissue sections from Drosophila embryos. The results of these experiments indicate that transcripts homologous to the two separate 5' exon-specific probes accumulate in strikingly different patterns during Drosophila development. Thus the incorporation of a particular 5' exon into a transcript is correlated with tissue-specific localization of that transcript. In contrast, probes for each of the three polyadenylation regions do not detect any tissue-specific localization of transcripts.
Collapse
Affiliation(s)
- T C Burn
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City 73190
| | | | | |
Collapse
|
50
|
Driever W, Nüsslein-Volhard C. The bicoid protein is a positive regulator of hunchback transcription in the early Drosophila embryo. Nature 1989; 337:138-43. [PMID: 2911348 DOI: 10.1038/337138a0] [Citation(s) in RCA: 484] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A gradient in concentration of the protein product of the bicoid gene is a determinant of the anterior-posterior axis of Drosophila embryos. By binding upstream of the segmentation gene hunchback the bicoid protein controls its transcription, thereby translating maternal pattern-generating information into differential activation of zygotic gene expression.
Collapse
Affiliation(s)
- W Driever
- Max Planck Institut für Entwicklungsbiologie, Abteilung III Genetik, Tübingen, FRG
| | | |
Collapse
|