1
|
Kuniholm J, Coote C, Henderson AJ. Defective HIV-1 genomes and their potential impact on HIV pathogenesis. Retrovirology 2022; 19:13. [PMID: 35764966 PMCID: PMC9238239 DOI: 10.1186/s12977-022-00601-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/17/2022] [Indexed: 11/28/2022] Open
Abstract
Defective HIV-1 proviruses represent a population of viral genomes that are selected for by immune pressures, and clonally expanded to dominate the persistent HIV-1 proviral genome landscape. There are examples of RNA and protein expression from these compromised genomes which are generated by a variety of mechanisms. Despite the evidence that these proviruses are transcribed and translated, their role in HIV pathogenesis has not been fully explored. The potential for these genomes to participate in immune stimulation is particularly relevant considering the accumulation of cells harboring these defective proviruses over the course of antiretroviral therapy in people living with HIV. The expression of defective proviruses in different cells and tissues could drive innate sensing mechanisms and inflammation. They may also alter antiviral T cell responses and myeloid cell functions that directly contribute to HIV-1 associated chronic comorbidities. Understanding the impact of these defective proviruses needs to be considered as we advance cure strategies that focus on targeting the diverse population of HIV-1 proviral genomes.
Collapse
Affiliation(s)
- Jeffrey Kuniholm
- Department of Microbiology, Section of Infectious Diseases, Boston University School of Medicine, Boston, MA, 02116, USA
| | - Carolyn Coote
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, Boston, MA, 02116, USA
| | - Andrew J Henderson
- Department of Microbiology, Section of Infectious Diseases, Boston University School of Medicine, Boston, MA, 02116, USA. .,Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, Boston, MA, 02116, USA.
| |
Collapse
|
2
|
Presence of a Shared 5'-Leader Sequence in Ancestral Human and Mammalian Retroviruses and Its Transduction into Feline Leukemia Virus. J Virol 2017; 91:JVI.00829-17. [PMID: 28768854 DOI: 10.1128/jvi.00829-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/24/2017] [Indexed: 12/13/2022] Open
Abstract
Recombination events induce significant genetic changes, and this process can result in virus genetic diversity or in the generation of novel pathogenicity. We discovered a new recombinant feline leukemia virus (FeLV) gag gene harboring an unrelated insertion, termed the X region, which was derived from Felis catus endogenous gammaretrovirus 4 (FcERV-gamma4). The identified FcERV-gamma4 proviruses have lost their coding capabilities, but some can express their viral RNA in feline tissues. Although the X-region-carrying recombinant FeLVs appeared to be replication-defective viruses, they were detected in 6.4% of tested FeLV-infected cats. All isolated recombinant FeLV clones commonly incorporated a middle part of the FcERV-gamma4 5'-leader region as an X region. Surprisingly, a sequence corresponding to the portion contained in all X regions is also present in at least 13 endogenous retroviruses (ERVs) observed in the cat, human, primate, and pig genomes. We termed this shared genetic feature the commonly shared (CS) sequence. Despite our phylogenetic analysis indicating that all CS-sequence-carrying ERVs are classified as gammaretroviruses, no obvious closeness was revealed among these ERVs. However, the Shannon entropy in the CS sequence was lower than that in other parts of the provirus genome. Notably, the CS sequence of human endogenous retrovirus T had 73.8% similarity with that of FcERV-gamma4, and specific signals were detected in the human genome by Southern blot analysis using a probe for the FcERV-gamma4 CS sequence. Our results provide an interesting evolutionary history for CS-sequence circulation among several distinct ancestral viruses and a novel recombined virus over a prolonged period.IMPORTANCE Recombination among ERVs or modern viral genomes causes a rapid evolution of retroviruses, and this phenomenon can result in the serious situation of viral disease reemergence. We identified a novel recombinant FeLV gag gene that contains an unrelated sequence, termed the X region. This region originated from the 5' leader of FcERV-gamma4, a replication-incompetent feline ERV. Surprisingly, a sequence corresponding to the X region is also present in the 5' portion of other ERVs, including human endogenous retroviruses. Scattered copies of the ERVs carrying the unique genetic feature, here named the commonly shared (CS) sequence, were found in each host genome, suggesting that ancestral viruses may have captured and maintained the CS sequence. More recently, a novel recombinant FeLV hijacked the CS sequence from inactivated FcERV-gamma4 as the X region. Therefore, tracing the CS sequences can provide unique models for not only the modern reservoir of new recombinant viruses but also the genetic features shared among ancient retroviruses.
Collapse
|
3
|
Dai M, Feng M, Ye Y, Wu X, Liu D, Liao M, Cao W. Exogenous avian leukosis virus-induced activation of the ERK/AP1 pathway is required for virus replication and correlates with virus-induced tumorigenesis. Sci Rep 2016; 6:19226. [PMID: 26754177 PMCID: PMC4709637 DOI: 10.1038/srep19226] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 12/03/2015] [Indexed: 12/13/2022] Open
Abstract
A proteomics approach was used to reveal the up-regulated proteins involved in the targeted mitogen-activated protein kinase (MAPK) signal transduction pathway in DF-1 cells after ALV subgroup J (ALV-J) infection. Next, we found that ALV-J CHN06 strain infection of DF-1 cells correlated with extracellular signal-regulated kinase 2 (ERK2) activation, which was mainly induced within 15 min, a very early stage of infection, and at a late infection stage, from 108 h to 132 h post-infection. Infection with other ALV subgroup (A/B) strains also triggered ERK/MAPK activation. Moreover, when activating ERK2, ALV subgroups A, B and J simultaneously induced the phosphorylation of c-Jun, an AP1 family member and p38 activation but had no obvious effect on JNK activation at either 15 min or 120 h. Interestingly, only PD98059 inhibited the ALV-induced c-Jun phosphorylation while SP600125 or SB203580 had no influence on c-Jun activation. Furthermore, the viral gp85 and gag proteins were found to contribute to ERK2/AP1 activation. Additionally, the specific ERK inhibitor, PD980509, significantly suppressed ALV replication, as evidenced by extremely low levels of ALV promoter activity and ALV-J protein expression. In vivo analysis of ERK2 activation in tumor cells derived from ALV-J-infected chicken demonstrated a strong correlation between ERK/MAPK activation and virus-associated tumorigenesis.
Collapse
Affiliation(s)
- Manman Dai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People’s Republic of China
| | - Min Feng
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, People’s Republic of China
| | - Yu Ye
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People’s Republic of China
| | - Xiaochan Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People’s Republic of China
| | - Di Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People’s Republic of China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People’s Republic of China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture
- South China Collaborative innovation Center for Prevention and Control of poultry Infectious diseases and Safety of Poultry Products.
| | - Weisheng Cao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People’s Republic of China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture
- South China Collaborative innovation Center for Prevention and Control of poultry Infectious diseases and Safety of Poultry Products.
| |
Collapse
|
4
|
Oshima M, Odawara T, Matano T, Sakahira H, Kuchino Y, Iwamoto A, Yoshikura H. Possible role of splice acceptor site in expression of unspliced gag-containing message of Moloney murine leukemia virus. J Virol 1996; 70:2286-95. [PMID: 8642655 PMCID: PMC190070 DOI: 10.1128/jvi.70.4.2286-2295.1996] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Moloney murine leukemia virus (MLV) having the gag coding region alone, G3.6, produced a low level of mRNA (1/10 of the wild-type level). Ligation of 441 nucleotides (nt) containing a splice acceptor (SA) site to the downstream portion of the remaining gag region restored the level of the unspliced message, simultaneously activating a cryptic splice donor (SD) site in the middle of the p30 coding region (between nt 1596 and 1597). Ligation of the 441 nt in the same site in the inverted orientation also increased the level of the unspliced message, activating the same SD site (between nt 1596 and 1597) and a new SA site just in front of the inserted 441 nt (between nt 4770 and 4771). Deletion or inversion of the 441-nt SA sequence from the wild-type MLV or from int in-frame deletion or int frameshift mutant MLVs of nearly full size resulted in the loss of spliced mRNA and concomitantly in a severe reduction of the unspliced mRNA, particularly at 37 degrees C. Deletion of the 5' SD site did not result in the reduction of the unspliced-mRNA level. When the gag region in G3.6 was replaced with a Neo(r) coding region, the level of expression was high. The data taken together suggest that the presence of an SA signal is necessary for high-level expression of unspliced mRNA encoding Gag or Gag-Pol.
Collapse
Affiliation(s)
- M Oshima
- Department of Bacteriology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
5
|
Nasioulas G, Hughes SH, Felber BK, Whitcomb JM. Production of avian leukosis virus particles in mammalian cells can be mediated by the interaction of the human immunodeficiency virus protein Rev and the Rev-responsive element. Proc Natl Acad Sci U S A 1995; 92:11940-4. [PMID: 8524879 PMCID: PMC40519 DOI: 10.1073/pnas.92.25.11940] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In human immunodeficiency virus type 1-infected cells, the efficient expression of viral proteins from unspliced and singly spliced RNAs is dependent on two factors: the presence in the cell of the viral protein Rev and the presence in the viral RNA of the Rev-responsive element (RRE). We show here that the HIV-1 Rev/RRE system can increase the expression of avian leukosis virus (ALV) structural proteins in mammalian cells (D-17 canine osteosarcoma) and promote the release of mature ALV virions from these cells. In this system, the Rev/RRE interaction appears to facilitate the export of full-length unspliced ALV RNA from the nucleus to the cytoplasm, allowing increased production of the ALV structural proteins. Gag protein is produced in the cytoplasm of the ALV-transfected cells even in the absence of a Rev/RRE interaction. However, a functional Rev/RRE interaction increases the amount of Gag present intracellularly and, more strikingly, results in the release of mature ALV particles into the supernatant. RCAS virus containing an RRE is replication-competent in chicken embryo fibroblasts; however, we have been unable to determine whether the particles produced in D-17 cells are as infectious as the particles produced in chicken embryo fibroblasts.
Collapse
Affiliation(s)
- G Nasioulas
- Gene Expression in Eukaryotes Section, National Cancer Institute Frederick Cancer Research and Development Center, Frederick, MD 21702-1201, USA
| | | | | | | |
Collapse
|
6
|
Amendt BA, Simpson SB, Stoltzfus CM. Inhibition of RNA splicing at the Rous sarcoma virus src 3' splice site is mediated by an interaction between a negative cis element and a chicken embryo fibroblast nuclear factor. J Virol 1995; 69:5068-76. [PMID: 7609076 PMCID: PMC189324 DOI: 10.1128/jvi.69.8.5068-5076.1995] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In permissive Rous sarcoma virus-infected chicken embryo fibroblasts (CEF), approximately equimolar amounts of env and src mRNAs are present. In nonpermissive mammalian cells, the src mRNA level is elevated and env mRNA level is reduced. A cis element in the region between the env gene and the src 3' splice site, which we have termed the suppressor of src splicing (SSS), acts specifically in CEF but not in human cells to reduce src mRNA levels. The splicing inhibition in CEF is not caused by a base-paired structure which is predicted to form between the SSS and the src 3' splice site. To further investigate the mechanism of the inhibition, we have used human HeLa cell nuclear extracts to compare in vitro the rates of splicing of RNA substrates containing the Rous sarcoma virus major 5' splice site and either the env or src 3' splice sites. We show that the src 3' splice site is used approximately fivefold more efficiently than the env 3' splice site. The efficiency of in vitro splicing at the src 3' splice site is specifically reduced by addition of CEF nuclear extract. The inhibition is dependent on the presence of the SSS element and can be abrogated by addition of competitor RNA. We propose that the SSS region represents a binding site for a negative-acting CEF splicing factor(s).
Collapse
Affiliation(s)
- B A Amendt
- Department of Microbiology, University of Iowa, Iowa City 52242, USA
| | | | | |
Collapse
|
7
|
Mukhopadhyaya R, Richardson J, Nazarov V, Corbin A, Koller R, Sitbon M, Wolff L. Different abilities of Friend murine leukemia virus (MuLV) and Moloney MuLV to induce promonocytic leukemia are due to determinants in both psi-gag-PR and env regions. J Virol 1994; 68:5100-7. [PMID: 7518530 PMCID: PMC236453 DOI: 10.1128/jvi.68.8.5100-5107.1994] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Moloney murine leukemia virus (M-MuLV) is capable of inducing promonocytic leukemia in 50% of adult BALB/c mice that have received peritoneal injections of pristane, but Friend MuLV strain 57 (F-MuLV) is nonleukemogenic under similar conditions. It was shown earlier that these differences could not be mapped to the U3 region of the virus long terminal repeat, indicating the probable influence of structural genes and/or R-U5 sequences. In this study, reciprocal chimeras containing exchanged structural genes and R-U5 sequences from these two closely related viruses were analyzed for differences in ability to induce disease. Results showed that two regions of F-MuLV, psi-gag-PR and env, when substituted for those of M-MuLV were dramatically disease attenuating. The 5'-most region, which is widely distributed, overlaps with the 5' end of the env intron and includes the RNA packaging region, psi, the entire gag coding region, and the viral protease coding region (PR) of pol. It was also found that reciprocal constructs having substitutions of both of these regions of M-MuLV in an F-MuLV background allowed full reestablishment of promonocytic leukemia. These leukemias were positive for c-myb rearrangements which are characteristic of M-MuLV-induced promonocytic leukemias. Neither region alone, however, was sufficient to produce disease with a greater incidence than 13%. Further studies demonstrated that the inability of viruses with psi, gag, PR, or env sequences from F-MuLV to induce leukemia in this model system was not due to their inability to replicate in hematopoietic tissue, to integrate into the c-myb locus early on after infection in vivo, or to express gag-myb mRNA characteristic of M-MuLV-induced preleukemic cells and acute leukemia.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Base Sequence
- DNA, Viral
- Epitopes
- Female
- Friend murine leukemia virus/genetics
- Friend murine leukemia virus/immunology
- Friend murine leukemia virus/pathogenicity
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Gene Products, gag/physiology
- Leukemia Virus, Murine/genetics
- Leukemia Virus, Murine/immunology
- Leukemia Virus, Murine/pathogenicity
- Leukemia, Myeloid/microbiology
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Mutagenesis, Insertional
- Precancerous Conditions/microbiology
- Tumor Virus Infections/microbiology
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Viral Envelope Proteins/physiology
Collapse
Affiliation(s)
- R Mukhopadhyaya
- Laboratory of Genetics, National Cancer Institute, Bethesda, Maryland 20892
| | | | | | | | | | | | | |
Collapse
|
8
|
Klaver B, Berkhout B. Comparison of 5' and 3' long terminal repeat promoter function in human immunodeficiency virus. J Virol 1994; 68:3830-40. [PMID: 8189520 PMCID: PMC236888 DOI: 10.1128/jvi.68.6.3830-3840.1994] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The architecture of a retroviral genome presents some unusual features for transcriptional regulation because of duplication of the transcriptional control sequences in the 5' and 3' long terminal repeats (LTRs). We have studied the transcriptional activity of the 5' and 3' LTRs of human immunodeficiency virus type 1 (HIV-1) vectors. Using full-length HIV molecular clones, we demonstrate that both LTRs function as Tat-inducible promoters. However, the absolute levels of transcription were found to be much higher for the 5' LTR than for the 3' LTR promoter. When transcription was assayed for an integrated HIV-1 provirus, we also found that the upstream 5' LTR element was the major transcriptional promoter. 3' LTR transcription, however, can be triggered by inactivation of the 5' LTR promoter. Likewise, 5' LTR transcription is induced in constructs lacking a functional 3' LTR promoter. This phenomenon of promoter suppression may have important implications for the design of HIV-based retrovirus vectors.
Collapse
Affiliation(s)
- B Klaver
- Department of Virology, Academic Medical Center, University of Amsterdam, The Netherlands
| | | |
Collapse
|
9
|
Dupraz P, Spahr PF. Analysis of deletions and thermosensitive mutations in Rous sarcoma virus gag protein p10. J Virol 1993; 67:3826-34. [PMID: 7685400 PMCID: PMC237747 DOI: 10.1128/jvi.67.7.3826-3834.1993] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Rous sarcoma virus protein p10 is a gag component of the virion present in stoichiometric amount but of unknown function. To characterize this protein, a series of mutants of p10 with linker insertions or deletions was generated by site-directed mutagenesis of a cloned proviral DNA. The deletions and two of the linkers insertions, which disrupted proline pairs, reduced the yield of virus particles upon transfection. These two linker insertion mutants were moreover thermosensitive for this phenotype, producing fewer virus particles at 41 degrees C than at 36 degrees C. Examination of the intracellular viral proteins demonstrated that for all mutants, the amount of gag precursor was similar to the wild-type level. Moreover, the amount of mature gag CA that could be detected by this analysis was similar between each of the mutants and the wild type. This finding suggests that the transport of gag to the membrane and the initial stages of maturation were not affected by the mutations. The virus particles contained normal amounts of active reverse transcriptase, showing that the gag-pol polyprotein was incorporated and cleaved properly. Viral RNA was quantitatively and qualitatively similar in mutant and wild-type virions. However, the infectivity of the mutants virions differed; one of the thermosensitive linker insertions that had no effect on particle production at 36 degrees C was nevertheless noninfectious at that temperature. Together, these data suggest that the p10 protein is involved in a late steps of virus maturation, possibly budding, and perhaps also in an early event of viral infection.
Collapse
Affiliation(s)
- P Dupraz
- Department of Molecular Biology, University of Geneva, Switzerland
| | | |
Collapse
|
10
|
Boerkoel CF, Kung HJ. Transcriptional interaction between retroviral long terminal repeats (LTRs): mechanism of 5' LTR suppression and 3' LTR promoter activation of c-myc in avian B-cell lymphomas. J Virol 1992; 66:4814-23. [PMID: 1321271 PMCID: PMC241309 DOI: 10.1128/jvi.66.8.4814-4823.1992] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Chicken syncytial viruses induce bursal lymphomas by integrating into the c-myc locus and activating myc expression by 3' long terminal repeat (LTR) promoter insertion. In contrast to wild-type proviruses, in which transcription initiates predominantly in the 5'LTR, these myc-associated proviruses exhibit a predominance of transcription from the 3' LTR and little transcription from the 5' LTR. Most of these proviruses contain deletions within the 5' end of their genome that spare the 5' LTR. We report the identification of a 0.3-kb viral leader sequence that modulates 5' and 3' LTR transcriptional activities. In the presence of this sequence, transcription from the 5' LTR predominates, but in its absence, the 3' LTR promoter becomes activated, resulting in a high level of myc expression. This viral sequence does not behave like a classical enhancer; it activates transcription only when located downstream from the promoter and in the sense orientation. In this regard, it resembles the recently described human immunodeficiency virus RNA enhancer. This study suggests that retroviruses contain internal sequences which directionally activate the 5' LTR promoter to facilitate transcription of the viral genome and that deletion of these sequences is one step in the activation of the 3' LTR of myc-associated proviruses in avian bursal lymphomas.
Collapse
MESH Headings
- Animals
- Base Sequence
- Blotting, Northern
- Cell Line
- Cell Nucleus/physiology
- Cells, Cultured
- Chick Embryo
- Chickens
- Chloramphenicol O-Acetyltransferase/genetics
- Chloramphenicol O-Acetyltransferase/metabolism
- Dogs
- Genes, myc
- Lymphoma, B-Cell/microbiology
- Molecular Sequence Data
- Nucleic Acid Conformation
- Plasmids
- Promoter Regions, Genetic
- Proviruses/genetics
- RNA, Messenger/genetics
- RNA, Messenger/isolation & purification
- RNA, Viral/genetics
- RNA, Viral/isolation & purification
- Repetitive Sequences, Nucleic Acid
- Restriction Mapping
- Reticuloendotheliosis virus/genetics
- Transcription, Genetic
- Transfection
Collapse
Affiliation(s)
- C F Boerkoel
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | | |
Collapse
|
11
|
Miller JT, Stoltzfus CM. Two distant upstream regions containing cis-acting signals regulating splicing facilitate 3'-end processing of avian sarcoma virus RNA. J Virol 1992; 66:4242-51. [PMID: 1318403 PMCID: PMC241228 DOI: 10.1128/jvi.66.7.4242-4251.1992] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Retroviruses, pararetroviruses, and related retrotransposons generate terminally redundant RNAs by transcription of a template flanked by long terminal repeats in which initiation occurs within the 5' long terminal repeat sequences and 3'-end processing occurs within the 3' long terminal repeat sequences. Processing of avian sarcoma virus RNA is relatively inefficient; approximately 15% of the viral RNA transcripts are read-through products; i.e., they are not processed at the viral poly(A) addition site but at sites in the cellular sequence further downstream. In this report, we show that the efficiency of processing at the viral site is further reduced by deletion of two distant upstream sequences: (i) a 606-nucleotide sequence in the gag gene containing a cis-acting negative regulator of splicing and (ii) a 136-nucleotide sequence spanning the env 3' splice site. The deletion of either or both upstream regions increases the levels of read-through products of both unspliced and spliced viral RNA. In contrast, deletion of the src 3' splice site does not affect the efficiency of processing at the viral poly(A) addition site. The effects on 3'-end processing are not correlated either with distance from the promoter to the poly(A) addition site or with the overall level of viral RNA splicing. Substitution of the avian sarcoma virus poly(A) signal with the simian virus 40 early or late poly(A) signal relieves the requirement for the distant upstream sequences. We propose that cellular factors, which may correspond to splicing factors, bound to the upstream viral sequences may interact with factors bound at the avian sarcoma virus poly(A) signal to stabilize the polyadenylation-cleavage complex and allow for more efficient 3'-end processing.
Collapse
Affiliation(s)
- J T Miller
- Department of Microbiology, University of Iowa, Iowa City 52242
| | | |
Collapse
|
12
|
Cosset FL, Legras C, Thomas JL, Molina RM, Chebloune Y, Faure C, Nigon VM, Verdier G. Improvement of avian leukosis virus (ALV)-based retrovirus vectors by using different cis-acting sequences from ALVs. J Virol 1991; 65:3388-94. [PMID: 1851887 PMCID: PMC241003 DOI: 10.1128/jvi.65.6.3388-3394.1991] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Production and expression of double-expression vectors which transduce both Neo(r) and lacZ genes and are based on the structure of avian leukosis virus were enhanced by using cis-acting sequences (long terminal repeats and noncoding sequences) from Rous-associated virus-1 and Rous-associated virus-2 rather than those of avian erythroblastosis virus previously used in our constructs. Polyclonal producer cells obtained after transfection of these vectors into the Isolde packaging cell line gave rise to titers as high as 3 x 10(5) lacZ CFU/ml, whereas it was possible to isolate clones of producer cells giving rise to titers of more than 10(6) resistance focus-forming units per ml.
Collapse
Affiliation(s)
- F L Cosset
- Institut National de la Recherche Agronomique, Université Claude Bernard Lyon-I, Villeurbanne, France
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Fincham VJ, Wyke JA. Differences between cellular integration sites of transcribed and nontranscribed Rous sarcoma proviruses. J Virol 1991; 65:461-3. [PMID: 1845901 PMCID: PMC240538 DOI: 10.1128/jvi.65.1.461-463.1991] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Transcribed Rous sarcoma proviruses in Rat-1 DNA tend to integrate closely 3' to C-G-rich restriction enzyme sites, and 2 of 13 such proviruses were found to have inserted at the same locus. However, most integrated proviruses were transcriptionally silent insertions at sites indistinguishable from random. We conclude that Rous sarcoma proviruses in rat cells usually fail to integrate in a favorable site for transcription, in contrast to studies on proviral integration in permissive hosts.
Collapse
Affiliation(s)
- V J Fincham
- Beatson Institute for Cancer Research, Cancer Research Campaign Beatson Laboratories, United Kingdom
| | | |
Collapse
|
14
|
Fuerstenberg S, Beug H, Introna M, Khazaie K, Muñoz A, Ness S, Nordström K, Sap J, Stanley I, Zenke M. Ectopic expression of the erythrocyte band 3 anion exchange protein, using a new avian retrovirus vector. J Virol 1990; 64:5891-902. [PMID: 2173771 PMCID: PMC248754 DOI: 10.1128/jvi.64.12.5891-5902.1990] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A retrovirus vector was constructed from the genome of avian erythroblastosis virus ES4. The v-erbA sequences of avian erythroblastosis virus were replaced by those coding for neomycin phosphotransferase, creating a gag-neo fusion protein which provides G418 resistance as a selectable marker. The v-erbB sequences following the splice acceptor were replaced by a cloning linker allowing insertion of foreign genes. The vector has been tested in conjunction with several helper viruses for the transmission of G418 resistance, titer, stability, transcription, and the transduction and expression of foreign genes in both chicken embryo fibroblasts and the QT6 quail cell line. The results show that the vector is capable of producing high titers of Neor virus from stably integrated proviruses. These proviruses express a balanced ratio of genome length to spliced transcripts which are efficiently translated into protein. Using the Escherichia coli beta-galactosidase gene cloned into the vector as a test construct, expression of enzyme activity could be detected in 90 to 95% of transfected target cells and in 80 to 85% of subsequently infected cells. In addition, a cDNA encoding the avian erythrocyte band 3 anion exchange protein has been expressed from the vector in both chicken embryo fibroblasts and QT6 cells and appears to function as an active, plasma membrane-based anion transporter. The ectopic expression of band 3 protein provides a visual marker for vector function in these cells.
Collapse
Affiliation(s)
- S Fuerstenberg
- Department of Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Stoker AW, Hatier C, Bissell MJ. The embryonic environment strongly attenuates v-src oncogenesis in mesenchymal and epithelial tissues, but not in endothelia. J Biophys Biochem Cytol 1990; 111:217-28. [PMID: 2164029 PMCID: PMC2116154 DOI: 10.1083/jcb.111.1.217] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We demonstrate that the behavior of cells expressing v-src, a tyrosine kinase oncogene, differs profoundly between the embryonic and culture environments. V-src was introduced into avian embryo cells both in culture and in stage-24 embryo limbs, using replication-defective retroviral vectors. These vectors were used as single-hit, cellular markers to determine the environmental influences imposed by normal cells and tissues on clonal cell growth. The marker gene lacZ was coexpressed with v-src in order to locate the descendent cells. In culture, v-src induced rapid morphological transformation and anchorage-independent growth of embryo fibroblasts; the vectors were also tumorigenic in hatchling chickens. In contrast, most of the cell clones expressing v-src in the embryo grew normally without neoplasia. Expression of v-src vectors could be found in a wide range of cell types, demonstrating not only that neoplastic transformation is attenuated in ovo, but also that differentiation commitment in many lineages can be maintained concurrently with oncogene expression. Significantly, the embryonic control of cell growth could be perturbed by v-src under certain conditions. Rare, marked clones showed hyperplasia or dysplasia, and the primitive endothelium could succumb to rapid neoplasia; thus, these embryonic tissues are not inherently deficient in transformation factors. We propose that the environmental conditions imposed on cells in ovo are critical for the attenuation of neoplasia, while cultured cells lose this requisite environment.
Collapse
Affiliation(s)
- A W Stoker
- Division of Cell and Molecular Biology, Lawrence Berkeley Laboratory, University of California, Berkeley 94720
| | | | | |
Collapse
|
16
|
Verdin E, Becker N, Bex F, Droogmans L, Burny A. Identification and characterization of an enhancer in the coding region of the genome of human immunodeficiency virus type 1. Proc Natl Acad Sci U S A 1990; 87:4874-8. [PMID: 2352955 PMCID: PMC54221 DOI: 10.1073/pnas.87.12.4874] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Transcription of human immunodeficiency virus type 1 (HIV-1) is regulated by cis-acting DNA elements located in the viral long terminal repeats, by viral transregulatory proteins, and by cellular transcription factors acting in concert to modulate the degree of viral expression. We demonstrate that a DNA fragment corresponding to the central portion of the HIV-1 genome exhibits enhancer activity when cloned upstream of the thymidine kinase promoter of herpes simplex virus. This enhancer is inducible by phorbol 12-myristate 13-acetate in HeLa cells and is independent of its position and orientation with respect to the promoter. We have mapped the activity of the enhancer to two independent domains encompassing nucleotides 4079-4342 (end of the pol gene) and nucleotides 4781-6026 (vif gene and first coding exon of tat). This intragenic enhancer and its subdomains demonstrate cellular specificity because they are only active in specific cell lines. The presence of similar intragenic enhancer elements in other retroviruses suggests that they might be a conserved feature of this family of viruses.
Collapse
Affiliation(s)
- E Verdin
- Université Libre de Bruxelles, Département de Biologie Moléculaire, Rhode-St-Genèse, Belgium
| | | | | | | | | |
Collapse
|
17
|
Sitbon M, Ellerbrok H, Pozo F, Nishio J, Hayes SF, Evans LH, Chesebro B. Sequences in the U5-gag-pol region influence early and late pathogenic effects of Friend and Moloney murine leukemia viruses. J Virol 1990; 64:2135-40. [PMID: 2182908 PMCID: PMC249371 DOI: 10.1128/jvi.64.5.2135-2140.1990] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Friend replication-competent murine leukemia virus (F-MuLV), clone 57, induces a severe early hemolytic anemia and a later erythroleukemia after inoculation of newborn IRW or ICFW mice, whereas Moloney MuLV (M-MuLV) induces only lymphoid leukemia. We have shown previously that the attenuated hemolytic and erythroleukemogenic abilities of an F-MuLV variant, clone B3, were due mostly to changes in the env gene and long terminal repeat, respectively. For the present study, we derived two constructs exchanging env fragments of F-MuLV 57 and M-MuLV and compared them with two constructs described by Chatis et al. (J. Virol. 52:248-254, 1984) exchanging the U3 region of the long terminal repeat of the same parental viruses. When comparing the hemolytic effect of these constructs with those of the parent, we found that the U5-gag-pol region of F-MuLV was required for development of severe early hemolytic anemia and that, unlike the env of F-MuLV B3, the env of M-MuLV was fully competent in inducing severe early hemolytic anemia when associated with the F-MuLV U5-gag-pol and U3 regions. As expected, induction of erythroleukemia depended on the presence of the F-MuLV U3 region; however, the presence of both the U3 and U5-gag-pol regions of F-MuLV appeared to be synergistic and was associated with a more rapid appearance of erythroleukemia.
Collapse
Affiliation(s)
- M Sitbon
- Laboratoire d'Immunologie et Oncologie des Maladies Rétrovirales, Hôpital Cochin, Institut National de la Santé et de la Recherche Médicale U152, Paris, France
| | | | | | | | | | | | | |
Collapse
|
18
|
Eychène A, Béchade C, Marx M, Laugier D, Dezélée P, Calothy G. Molecular and biological properties of c-mil transducing retroviruses generated during passage of Rous-associated virus type 1 in chicken neuroretina cells. J Virol 1990; 64:231-8. [PMID: 2152814 PMCID: PMC249095 DOI: 10.1128/jvi.64.1.231-238.1990] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
IC1, IC2, and IC3 are novel c-mil transducing retroviruses generated during serial passaging of Rous-associated virus type 1 (RAV-1) in chicken embryo neuroretina cells. They were isolated by their ability to induce proliferation of these nondividing cells. IC2 and IC3 were generated during early passages of RAV-1 in neuroretina cells, whereas IC1 was isolated after six consecutive passages of virus supernatants. We sequenced the transduced genes and the mil-RAV-1 junctions of the three viruses. The 5' RAV-1-mil junction of IC2 and IC3 was formed by a splicing process between the RAV-1 leader sequence and exon 8 of the c-mil gene. The 5' end of IC1 resulted from homologous recombination between gag and mil sequences. Reconstitution experiments showed that serial passaging of IC2 in neuroretina cells also led to the formation of a gag-mil-containing retrovirus. Therefore, constitution of a U5-leader-delta c-mil-delta RAV-1-U3 virus represents early steps in c-mil transduction by RAV-1. This virus further recombined with RAV-1 to generate a gag-mil-containing virus. The three IC viruses transduced the serine/threonine kinase domain of the cellular gene. Hence, amino-terminal truncation is sufficient to activate the mitogenic property of c-mil. Comparison of the transforming properties of IC2 and IC1 showed that the transduced mil gene, expressed as a unique protein independent of gag sequences, was weakly transforming in avian cells. Acquisition of gag sequences by IC1 not only increased the rate of virus replication but also enhanced the transforming capacity of the virus.
Collapse
Affiliation(s)
- A Eychène
- Institut Curie Biologie, Centre Universitaire, Orsay, France
| | | | | | | | | | | |
Collapse
|
19
|
A region internal to the coding sequences is essential for transcription of the yeast Ty-D15 element. Mol Cell Biol 1989. [PMID: 2550798 DOI: 10.1128/mcb.9.9.3667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The major transcript of the yeast transposable element Ty1 has its 5' end in one delta and the 3' end in the opposite delta, the direct repeats of about 335 base pairs (bp) at each end of the element. The transcriptional initiation signals of the Ty-D15 element that give rise to this transcript were found to have a number of unusual characteristics. The 5' delta by itself, which contained the initiation site for Ty transcription, gave no detectable transcription. A region internal to the transcript in a translated part of the element and about 140 bp downstream of the 5' delta was essential for initiation of the major Ty transcript. This internal activating region (IAR) had several interesting properties. When the portion of the delta upstream of the initiation site was replaced with DNA fragments that did not by themselves act as promoters, initiation directed by the IAR still occurred at about the same position, 200 to 400 bp upstream of the IAR. If fragments containing the IAR were inverted, transcription could still occur. When 468 or 636 bp was inserted between the delta and the IAR, initiations occurred near the normal delta initiation site and in the inserted DNA. Therefore, the location and properties of transcription signals for Ty-D15 differ considerably from those expected for a yeast gene transcribed by RNA polymerase II.
Collapse
|
20
|
Zhou RP, Duesberg PH. Avian proto-myc genes promoted by defective or nondefective retroviruses are single-hit transforming genes in primary cells. Proc Natl Acad Sci U S A 1989; 86:7721-5. [PMID: 2554285 PMCID: PMC298142 DOI: 10.1073/pnas.86.20.7721] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Lymphomas of certain strains of chickens infected by retroviruses frequently contain recombinant transforming genes in which the promoter of the cellular proto-myc gene is replaced by that of a defective rather than an intact retrovirus. Here we ask whether the resulting hybrid genes are sufficient for tumorigenic transformation like viral myc genes. Further, we ask whether retroviruses must be defective in order to mutate proto-myc to a transforming gene or whether the defectiveness plays a transformation-independent function in tumorigenesis. For this purpose the defective provirus of proviral-proto-myc recombinants from lymphomas were repaired, or intact proviruses were recombined with proto-myc genes in vitro, and then compared to recombinant proto-myc genes with defective proviruses for transforming function in quail embryo fibroblasts. It was found that a single copy of a provirus-proto-myc recombinant gene with an intact provirus is sufficient to transform a quail embryo cell in vitro. Moreover, our analyses showed that multiple internal retroviral deletions [corrected] eliminate or inhibit provirus expression. The effect of these deletions [corrected] was detectable only because the inactive proviruses were linked to the selectable, transforming proto-myc gene marker. It is consistent with our results that proviral defectiveness of recombinant proto-myc genes is necessary in vivo for the clonal growth of a transformed cell into a tumor to escape antiviral immunity. The large discrepancy between the probabilities of provirus insertion and tumorigenesis is suggested to reflect the low probabilities of spontaneous deletion of the provirus and of rare, strain-specific defects of tumor-resistance genes of the host.
Collapse
Affiliation(s)
- R P Zhou
- Department of Molecular Biology, University of California, Berkeley 94720
| | | |
Collapse
|
21
|
Yu K, Elder RT. A region internal to the coding sequences is essential for transcription of the yeast Ty-D15 element. Mol Cell Biol 1989; 9:3667-78. [PMID: 2550798 PMCID: PMC362427 DOI: 10.1128/mcb.9.9.3667-3678.1989] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The major transcript of the yeast transposable element Ty1 has its 5' end in one delta and the 3' end in the opposite delta, the direct repeats of about 335 base pairs (bp) at each end of the element. The transcriptional initiation signals of the Ty-D15 element that give rise to this transcript were found to have a number of unusual characteristics. The 5' delta by itself, which contained the initiation site for Ty transcription, gave no detectable transcription. A region internal to the transcript in a translated part of the element and about 140 bp downstream of the 5' delta was essential for initiation of the major Ty transcript. This internal activating region (IAR) had several interesting properties. When the portion of the delta upstream of the initiation site was replaced with DNA fragments that did not by themselves act as promoters, initiation directed by the IAR still occurred at about the same position, 200 to 400 bp upstream of the IAR. If fragments containing the IAR were inverted, transcription could still occur. When 468 or 636 bp was inserted between the delta and the IAR, initiations occurred near the normal delta initiation site and in the inserted DNA. Therefore, the location and properties of transcription signals for Ty-D15 differ considerably from those expected for a yeast gene transcribed by RNA polymerase II.
Collapse
Affiliation(s)
- K Yu
- Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637
| | | |
Collapse
|
22
|
Purification and properties of the Rous sarcoma virus internal enhancer binding factor. Mol Cell Biol 1989. [PMID: 2546054 DOI: 10.1128/mcb.9.5.1929] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The internal enhancer binding factor (IBF) that specifically binds sequences within the gag gene internal enhancer of Rous sarcoma virus Schmidt-Ruppin A was purified to near homogeneity from BHK cells. The polypeptides that constituted IBF DNA-binding activity were identified by sodium dodecyl sulfate-polyacrylamide gel analysis. As isolated from BHK cells, IBF consisted of two different but related polypeptides. One (IBF alpha) had a molecular weight of 40,000; the other (IBF beta) had a molecular weight of 20,000 and appeared to be a proteolytic product of IBF alpha. The site within the gag gene to which IBF bounds in vitro (internal enhancer site 2; nucleotides 856 to 878 of the Rous sarcoma virus genome) were demonstrated to function as a cis-acting transcriptional stimulatory element both in vivo and in vitro. By using HeLa cell nuclear transcription extracts, purified IBF was found to function as a trans-acting transcription factor that stimulated transcription in vitro. Purified IBF was also demonstrated to be very similar to EBP20 (K. Carlberg, T. A. Ryden, and K. Beemon, J. Virol. 62:1617-1624, 1988), and it may well belong to the same family of DNA-binding proteins.
Collapse
|
23
|
Abstract
DNA-protein interactions involving enhancer and promoter sequences within the U3 regions of several avian retroviral long terminal repeats (LTRs) were studied by DNase I footprinting. The rat CCAAT/enhancer-binding protein, C/EBP, bound to all four viral LTRs examined. The Rous sarcoma virus binding site corresponded closely to the 5' limit of the LTR enhancer; nucleotides -225 to -188 were protected as a pair of adjacent binding domains. The Fujinami sarcoma virus LTR bound C/EBP at a single site at nucleotides -213 to -195. C/EBP also bound to the promoter region of the enhancerless Rous-associated virus-0 LTR at nucleotides -77 to -57. The avian myeloblastosis virus LTR bound C/EBP at three sites: nucleotides -262 to -246, -154 to -134, and -55 to -39. We have previously observed binding of C/EBP to an enhancer in the gag gene of avian retroviruses. A heat-treated nuclear extract from chicken liver bound to all of the same retroviral sequences as did C/EBP. Alignment of the avian retroviral binding sequences with the published binding sites for C/EBP in two CCAAT boxes and in the simian virus 40, polyoma, and murine sarcoma virus enhancers suggested TTGNNGCTAATG as a consensus sequence for binding of C/EBP. When two bases of this consensus sequence were altered by site-specific mutagenesis of the Rous sarcoma virus LTR, binding of the heat-stable chicken protein was eliminated.
Collapse
|
24
|
Functional interaction between transcriptional elements in the long terminal repeat of reticuloendotheliosis virus: cooperative DNA binding of promoter- and enhancer-specific factors. Mol Cell Biol 1989. [PMID: 2854193 DOI: 10.1128/mcb.8.12.5232] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription from reticuloenodotheliosis virus strain T (REV-T), an avian retrovirus unrelated to avian leukosis and sarcoma viruses, is modulated by sequences in at least five functional domains. A promoter containing a TATA and multiple CCAAT motifs in U3 of the long terminal repeat was absolutely required for transcription. Transcriptional efficiency was greatly augmented by an enhancer immediately upstream, which contained a 22-base-pair repeated sequence. Transcription was further influenced by a negative-acting domain in the 5' region of U3 and two downstream domains in the transcribed non-protein-coding region. One of these latter domains contained a consensus enhancer core sequence and positively affected transcription in both mammalian and avian cells; the other acted negatively in a dog cell line. Transcription from REV-T in vivo required cellular factors which could be competed for specifically by the promoter or enhancer domain. The downstream domains competed with reporter genes containing these domains, but not directly with the U3 sequences. The promoter, enhancer, and the positive-acting downstream domains formed multiple complexes with distinct classes of cellular factors in both avian and mammalian cell extracts. Binding of factors to the promoter and enhancer domains was cooperative when these domains were joined in cis.
Collapse
|
25
|
Karnitz L, Poon D, Weil PA, Chalkley R. Purification and properties of the Rous sarcoma virus internal enhancer binding factor. Mol Cell Biol 1989; 9:1929-39. [PMID: 2546054 PMCID: PMC362984 DOI: 10.1128/mcb.9.5.1929-1939.1989] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The internal enhancer binding factor (IBF) that specifically binds sequences within the gag gene internal enhancer of Rous sarcoma virus Schmidt-Ruppin A was purified to near homogeneity from BHK cells. The polypeptides that constituted IBF DNA-binding activity were identified by sodium dodecyl sulfate-polyacrylamide gel analysis. As isolated from BHK cells, IBF consisted of two different but related polypeptides. One (IBF alpha) had a molecular weight of 40,000; the other (IBF beta) had a molecular weight of 20,000 and appeared to be a proteolytic product of IBF alpha. The site within the gag gene to which IBF bounds in vitro (internal enhancer site 2; nucleotides 856 to 878 of the Rous sarcoma virus genome) were demonstrated to function as a cis-acting transcriptional stimulatory element both in vivo and in vitro. By using HeLa cell nuclear transcription extracts, purified IBF was found to function as a trans-acting transcription factor that stimulated transcription in vitro. Purified IBF was also demonstrated to be very similar to EBP20 (K. Carlberg, T. A. Ryden, and K. Beemon, J. Virol. 62:1617-1624, 1988), and it may well belong to the same family of DNA-binding proteins.
Collapse
Affiliation(s)
- L Karnitz
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | | | | | | |
Collapse
|
26
|
Stoltzfus CM, Fogarty SJ. Multiple regions in the Rous sarcoma virus src gene intron act in cis to affect the accumulation of unspliced RNA. J Virol 1989; 63:1669-76. [PMID: 2538650 PMCID: PMC248417 DOI: 10.1128/jvi.63.4.1669-1676.1989] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Retrovirus replication requires the production of both spliced and unspliced viral RNA from a single RNA transcript. In contrast, cellular RNA precursors with introns almost completely spliced. The cis elements and virus-coded trans factors which determine the extent to which Rous sarcoma virus RNA is spliced to src mRNA were investigated by transfecting chicken embryo fibroblasts with cloned wild-type and mutant DNA followed by the analysis of viral RNA. Two cis-acting regions important in the negative control of splicing were detected. Cell cultures transfected with a clone deleted in 80% of the src intron (nucleotide 1149 to nucleotide 6574) demonstrated only a 2-fold reduction in the ratio of unspliced to spliced RNA relative to the wild-type clone, whereas cultures transfected with clones which were further deleted in the gag gene region (between nucleotide 630 and nucleotide 5258) demonstrated an approximate 20-fold reduction. Cell cultures which were transfected with clones deleted only between nucleotides 543 and 1806 demonstrated only a three- to fourfold reduction in the unspliced-to-spliced RNA ratio, suggesting that at least one other region of the src intron can partially compensate for the deletion of the gag region. Both regions appeared to act in cis on the distribution of unspliced and spliced RNA since the ratios were not altered by cotransfection with helper virus DNA.
Collapse
Affiliation(s)
- C M Stoltzfus
- Department of Microbiology, University of Iowa, Iowa City 52242
| | | |
Collapse
|
27
|
Abstract
DNA-protein interactions involving enhancer and promoter sequences within the U3 regions of several avian retroviral long terminal repeats (LTRs) were studied by DNase I footprinting. The rat CCAAT/enhancer-binding protein, C/EBP, bound to all four viral LTRs examined. The Rous sarcoma virus binding site corresponded closely to the 5' limit of the LTR enhancer; nucleotides -225 to -188 were protected as a pair of adjacent binding domains. The Fujinami sarcoma virus LTR bound C/EBP at a single site at nucleotides -213 to -195. C/EBP also bound to the promoter region of the enhancerless Rous-associated virus-0 LTR at nucleotides -77 to -57. The avian myeloblastosis virus LTR bound C/EBP at three sites: nucleotides -262 to -246, -154 to -134, and -55 to -39. We have previously observed binding of C/EBP to an enhancer in the gag gene of avian retroviruses. A heat-treated nuclear extract from chicken liver bound to all of the same retroviral sequences as did C/EBP. Alignment of the avian retroviral binding sequences with the published binding sites for C/EBP in two CCAAT boxes and in the simian virus 40, polyoma, and murine sarcoma virus enhancers suggested TTGNNGCTAATG as a consensus sequence for binding of C/EBP. When two bases of this consensus sequence were altered by site-specific mutagenesis of the Rous sarcoma virus LTR, binding of the heat-stable chicken protein was eliminated.
Collapse
Affiliation(s)
- T A Ryden
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218
| | | |
Collapse
|
28
|
Abstract
Only a fraction of retroviral primary transcripts are spliced to subgenomic mRNAs; the unspliced transcripts are transported to the cytoplasm for packaging into virions and for translation of the gag and pol genes. We identified cis-acting sequences within the gag gene of Rous sarcoma virus (RSV) which negatively regulate splicing in vivo. Mutations were generated downstream of the splice donor (base 397) in the intron of a proviral clone of RSV. Deletion of bases 708 to 800 or 874 to 987 resulted in a large increase in the level of spliced RSV RNA relative to unspliced RSV RNA. This negative regulator of splicing (nrs) also inhibited splicing of a heterologous splice donor and acceptor pair when inserted into the intron. The nrs element did not affect the level of spliced RNA by increasing the rate of transport of the unspliced RNA to the cytoplasm but interfered more directly with splicing. To investigate the possible role of gag proteins in splicing, we studied constructs carrying frameshift mutations in the gag gene. While these mutations, which caused premature termination of gag translation, did not affect the level of spliced RSV RNA, they resulted in a large decrease in the accumulation of unspliced RNA in the cytoplasm.
Collapse
|
29
|
Bodor J, Svoboda J. The LTR, v-src, LTR provirus generated in the mammalian genome by src mRNA reverse transcription and integration. J Virol 1989; 63:1015-8. [PMID: 2463374 PMCID: PMC247787 DOI: 10.1128/jvi.63.2.1015-1018.1989] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Different types of altered proviruses of Rous sarcoma virus (RSV) have been detected in mammalian tumor cell lines. We cloned and sequenced one of these altered proviruses with the structure LTR, v-src, LTR. The presence of an intact viral splice junction, as well as duplications of the chromosomal sequence GCGGGG flanking the two 2-base-pair-deleted LTRs, demonstrated reverse transcription and normal retroviral integration of src mRNA in mammalian cells. In addition, a 1-nucleotide deletion 2 bases upstream from the AAUAAA polyadenylation signal is suspected to be responsible for the absence of a poly(A) track in the src mRNA present in virions of rescued viruses.
Collapse
Affiliation(s)
- J Bodor
- Department of Cellular and Viral Genetics, Institute of Molecular Genetics, Czechoslovak Academy of Sciences, Prague
| | | |
Collapse
|
30
|
Hirano A, Wong T. Functional interaction between transcriptional elements in the long terminal repeat of reticuloendotheliosis virus: cooperative DNA binding of promoter- and enhancer-specific factors. Mol Cell Biol 1988; 8:5232-44. [PMID: 2854193 PMCID: PMC365626 DOI: 10.1128/mcb.8.12.5232-5244.1988] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Transcription from reticuloenodotheliosis virus strain T (REV-T), an avian retrovirus unrelated to avian leukosis and sarcoma viruses, is modulated by sequences in at least five functional domains. A promoter containing a TATA and multiple CCAAT motifs in U3 of the long terminal repeat was absolutely required for transcription. Transcriptional efficiency was greatly augmented by an enhancer immediately upstream, which contained a 22-base-pair repeated sequence. Transcription was further influenced by a negative-acting domain in the 5' region of U3 and two downstream domains in the transcribed non-protein-coding region. One of these latter domains contained a consensus enhancer core sequence and positively affected transcription in both mammalian and avian cells; the other acted negatively in a dog cell line. Transcription from REV-T in vivo required cellular factors which could be competed for specifically by the promoter or enhancer domain. The downstream domains competed with reporter genes containing these domains, but not directly with the U3 sequences. The promoter, enhancer, and the positive-acting downstream domains formed multiple complexes with distinct classes of cellular factors in both avian and mammalian cell extracts. Binding of factors to the promoter and enhancer domains was cooperative when these domains were joined in cis.
Collapse
Affiliation(s)
- A Hirano
- Department of Microbiology, University of Washington School of Medicine, Seattle 98195
| | | |
Collapse
|
31
|
Carlberg K, Beemon K. Proposed gag-encoded transcriptional activator is not necessary for Rous sarcoma virus replication or transformation. J Virol 1988; 62:4003-8. [PMID: 2459410 PMCID: PMC253828 DOI: 10.1128/jvi.62.11.4003-4008.1988] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
It has been reported that gene expression directed by the long terminal repeat of Rous sarcoma virus (RSV) is trans activated by a protein encoded in an alternate reading frame within the RSV gag gene (S. Broome and W. Gilbert, Cell 40:537-546, 1985). We have made specific mutations to test the role of the putative transcriptional activator in RSV replication. Termination codons were created within the alternate reading frame coding for the trans activator, and the mutations were introduced into an infectious RSV plasmid. We were unable to demonstrate specific trans activation of the RSV long terminal repeat by either wild-type or mutant RSV plasmids in transient cotransfection assays. Experiments using mutant or wild-type RSV-infected chick embryo fibroblasts indicated that the proposed RSV transcriptional activator was not required for viral replication or transformation and did not increase steady-state levels of viral RNA.
Collapse
Affiliation(s)
- K Carlberg
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218
| | | |
Collapse
|
32
|
Abstract
Only a fraction of retroviral primary transcripts are spliced to subgenomic mRNAs; the unspliced transcripts are transported to the cytoplasm for packaging into virions and for translation of the gag and pol genes. We identified cis-acting sequences within the gag gene of Rous sarcoma virus (RSV) which negatively regulate splicing in vivo. Mutations were generated downstream of the splice donor (base 397) in the intron of a proviral clone of RSV. Deletion of bases 708 to 800 or 874 to 987 resulted in a large increase in the level of spliced RSV RNA relative to unspliced RSV RNA. This negative regulator of splicing (nrs) also inhibited splicing of a heterologous splice donor and acceptor pair when inserted into the intron. The nrs element did not affect the level of spliced RNA by increasing the rate of transport of the unspliced RNA to the cytoplasm but interfered more directly with splicing. To investigate the possible role of gag proteins in splicing, we studied constructs carrying frameshift mutations in the gag gene. While these mutations, which caused premature termination of gag translation, did not affect the level of spliced RSV RNA, they resulted in a large decrease in the accumulation of unspliced RNA in the cytoplasm.
Collapse
Affiliation(s)
- S Arrigo
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218
| | | |
Collapse
|
33
|
Bowtell DD, Cory S, Johnson GR, Gonda TJ. Comparison of expression in hemopoietic cells by retroviral vectors carrying two genes. J Virol 1988; 62:2464-73. [PMID: 3373574 PMCID: PMC253405 DOI: 10.1128/jvi.62.7.2464-2473.1988] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In order to identify factors that influence expression by retroviral vectors in hemopoietic cells, we have compared viral RNA levels in cells infected with several different recombinant viruses. All of the vectors tested carry the neomycin resistance gene and provide for the insertion of a second gene which, in these studies, comprised sequences from the myc or myb oncogenes or the gene encoding granulocyte-macrophage colony-stimulating factor. The vectors utilize two different strategies for the coexpression of the two genes: alternate splicing and the use of a separate internal promoter. We found that expression in hemopoietic cells could be increased by substituting sequences from the myeloproliferative sarcoma virus long terminal repeat for those of the Moloney murine leukemia virus long terminal repeat. However, none of the vectors examined was able to express a second gene at levels equivalent to those achieved by the parental vectors carrying only the neomycin resistance gene. The reasons for this varied with the different vectors and included inefficient splicing and/or a reduction in the level of unspliced transcripts upon insertion of a second gene. Although the basis of the latter phenomenon is not clear, it is probably related to the position--near the 5' long terminal repeat--at which the second gene was inserted, since insertion of the same genes near the 3' end of another vector had no effect on viral RNA levels. In an attempt to circumvent some of these problems, we constructed a vector that employs an internal beta-actin promoter. Although this vector could express granulocyte-macrophage colony-stimulating factor sequences in a responsive hemopoietic cell line, the level of granulocyte-macrophage colony-stimulating factor produced was disappointingly low. The results from these studies suggest approaches to the design of improved vectors for effective expression of genes in hemopoietic cells.
Collapse
Affiliation(s)
- D D Bowtell
- Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, Victoria, Australia
| | | | | | | |
Collapse
|
34
|
Fulton AM, Rathjen PD, Kingsman SM, Kingsman AJ. Upstream and downstream transcriptional control signals in the yeast retrotransposon, TY. Nucleic Acids Res 1988; 16:5439-58. [PMID: 2838817 PMCID: PMC336777 DOI: 10.1093/nar/16.12.5439] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The yeast retrotransposon, Ty, shares many structural and functional features with retroviral proviruses. These include production of a terminally redundant major transcript. There are also two less abundant transcripts of 5.0 kb and 2.2 kb. Ty transcription is regulated by cell-type, that is it is reduced 5-20 fold in a/alpha diploids as compared to haploids. However control of expression of Ty is not well understood. By deletion analysis we have identified regions of the element which are involved in the activation and regulation of transcription. These signals are found both upstream and downstream of the mRNA start site. The downstream signals are within the region encoding the major Ty proteins. This organisation of transcriptional control signals is discussed with reference to the organisation of control signals in other yeast genes and in retroviral proviruses and other retro-elements.
Collapse
Affiliation(s)
- A M Fulton
- Department of Biochemistry, University of Oxford, UK
| | | | | | | |
Collapse
|
35
|
Carlberg K, Ryden TA, Beemon K. Localization and footprinting of an enhancer within the avian sarcoma virus gag gene. J Virol 1988; 62:1617-24. [PMID: 2833611 PMCID: PMC253189 DOI: 10.1128/jvi.62.5.1617-1624.1988] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A cis-acting regulatory element within the gag gene of avian retroviruses has been localized by deletion analysis, and sites of protein interaction have been studied by DNase I footprinting. Unidirectional deletions were made from both the 5' and 3' ends of a 656-base-pair fragment of the gag gene of Fujinami sarcoma virus. These deletion mutants were tested for enhancer activity in a chloramphenicol acetyltransferase transient expression assay. A sharp 5' boundary for enhancer activity was observed between 776 and 786 nucleotides downstream from the transcription initiation site. In contrast, deletion from the 3' side resulted in a gradual loss of enhancer activity, reaching a near basal level of activity by nucleotide 868. Internal deletion of 76 nucleotides just downstream of the 5' boundary abolished enhancement. Mutagenesis of a consensus enhancer core sequence (GTGGTTTG) showed that this sequence was not necessary for enhancer activity in our transient assays. DNase I footprinting with both a highly purified enhancer-binding protein from rat liver (EBP20) and a partially purified chicken liver nuclear extract showed specific protection of nucleotides 813 to 872 within the localized enhancer region. Footprinting of unidirectional deletion mutants that had lost activity indicated that this binding was not sufficient to confer enhancement.
Collapse
Affiliation(s)
- K Carlberg
- Biology Department, Johns Hopkins University, Baltimore, Maryland 21218
| | | | | |
Collapse
|
36
|
Stoker AW, Bissell MJ. Development of avian sarcoma and leukosis virus-based vector-packaging cell lines. J Virol 1988; 62:1008-15. [PMID: 2828649 PMCID: PMC253660 DOI: 10.1128/jvi.62.3.1008-1015.1988] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We have constructed an avian leukosis virus derivative with a 5' deletion extending from within the tRNA primer binding site to a SacI site in the leader region. Our aim was to remove cis-acting replicative and/or encapsidation sequences and to use this derivative, RAV-1 psi-, to develop vector-packaging cell lines. We show that RAV-1 psi- can be stably expressed in the quail cell line QT6 and chicken embryo fibroblasts and that it is completely replication deficient in both cell types. Moreover, we have demonstrated that QT6-derived lines expressing RAV-1 psi- can efficiently package four structurally different replication-defective v-src expression vectors into infectious virus, with very low or undetectable helper virus release. These RAV-1 psi--expressing cell lines comprise the first prototype avian sarcoma and leukosis virus-based vector-packaging system. The construction of our vectors has also shown us that a sequence present within gag, thought to facilitate virus packaging, is not necessary for efficient vector expression and high virus production. We show that quantitation and characterization of replication-defective viruses can be achieved with a sensitive immunocytochemical procedure, presenting an alternative to internal selectable vector markers.
Collapse
Affiliation(s)
- A W Stoker
- Laboratory of Cell Biology, University of California, Berkeley 94720
| | | |
Collapse
|
37
|
Karnitz L, Faber S, Chalkley R. Specific nuclear proteins interact with the Rous sarcoma virus internal enhancer and share a common element with the enhancer located in the long terminal repeat of the virus. Nucleic Acids Res 1987; 15:9841-59. [PMID: 2827114 PMCID: PMC306535 DOI: 10.1093/nar/15.23.9841] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We have documented that the Rous sarcoma virus (RSV) internal enhancer functions in the nontransformed Baby Hamster Kidney (BHK) cell line. The sequences within this region were assayed for their ability to bind to specific factors present in BHK nuclear extracts using the gel retardation assay and DNAse I footprinting. At least two sequences within the internal enhancer which can specifically bind nuclear factors in vitro have been identified. These regions are located between nucleotides 813-850 and 856-877. These sites map within the overall region of the internal enhancer which has been shown to be essential for enhancer activity and within the specific region which can function as an orientation independent enhancer. Using the DNase I footprinting and binding data to design an oligonucleotide, we have demonstrated that an oligonucleotide extending from nucleotides 804-877 will substitute efficiently as an enhancer. We also demonstrate that the SV40 enhancer does not compete for the factors which bind to the RSV internal enhancer, whereas an oligonucleotide to the binding site for EFII in the LTR can compete for factor binding to the internal enhancer.
Collapse
Affiliation(s)
- L Karnitz
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232
| | | | | |
Collapse
|
38
|
Embretson JE, Temin HM. Lack of competition results in efficient packaging of heterologous murine retroviral RNAs and reticuloendotheliosis virus encapsidation-minus RNAs by the reticuloendotheliosis virus helper cell line. J Virol 1987; 61:2675-83. [PMID: 3039161 PMCID: PMC255771 DOI: 10.1128/jvi.61.9.2675-2683.1987] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We constructed recombinant reticuloendotheliosis virus (Rev)-derived and murine leukemia virus-derived vectors to characterize the specificity of packaging retroviral RNAs in Rev proteins. Using this approach, we further localized the Rev encapsidation sequence (E) to a 144-nucleotide region and determined that there are sequences in both the 5' and 3' halves of this region which are necessary in cis for viral replication. We found that the Rev E, like the murine leukemia virus E (psi), is position independent (R. Mann and D. Baltimore, J. Virol. 54:401-407, 1986). Also, a 156-nucleotide region of the Rev intron enhanced replication in a cis-acting fashion in the presence, but not in the absence, of helper virus. Finally, we showed that packaging of E- and heterologous retroviral genomes occurred efficiently in the Rev helper cell in the absence of competing E-containing (E+) viral RNAs.
Collapse
|
39
|
Goodenow MM, Hayward WS. 5' long terminal repeats of myc-associated proviruses appear structurally intact but are functionally impaired in tumors induced by avian leukosis viruses. J Virol 1987; 61:2489-98. [PMID: 3037111 PMCID: PMC255678 DOI: 10.1128/jvi.61.8.2489-2498.1987] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
B-cell lymphomas induced in chickens infected with avian leukosis viruses are characterized by integration of the virus within the cellular myc locus and alteration of c-myc expression. Although avian leukosis viruses are intact, replication-competent retroviruses, the structures of many myc-associated proviruses are altered by deletions, raising the possibility that proviral defectiveness plays an essential role in oncogenesis. We found that all myc-associated proviruses in 21 independent tumors had deletions, which were confined to the viral genome and did not extend into adjacent cellular sequences. Deletions were not random but, in at least 85% of the myc-associated proviruses, involved a region near the 5' end of the proviral genome where elements implicated in control of viral gene expression have been localized. A second class of deletions involved sequences in the 3' half of the viral genome and included the splice acceptor site used in generating viral env mRNA. Both the 5' and 3' long terminal repeats of myc-associated proviruses appeared to be structurally intact in most tumors, although the 5' long terminal repeats were not involved in expression of either U5-myc transcripts or detectable steady-state viral RNAs. A complex array of repeated sequence elements surrounded the junctions of the internal deletions in two myc-associated proviruses. The organization of the deleted proviruses was similar to that of deleted unintegrated viral molecules, consistent with a model in which deletions occurred prior to integration.
Collapse
|
40
|
Swift RA, Boerkoel C, Ridgway A, Fujita DJ, Dodgson JB, Kung HJ. B-lymphoma induction by reticuloendotheliosis virus: characterization of a mutated chicken syncytial virus provirus involved in c-myc activation. J Virol 1987; 61:2084-90. [PMID: 3035210 PMCID: PMC254228 DOI: 10.1128/jvi.61.7.2084-2090.1987] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Nondefective reticuloendotheliosis virus induces chicken bursal lymphoma in a manner similar to that of avian leukosis virus. The provirus integrates in the c-myc locus and uses a promoter insertion mechanism to activate c-myc expression. We cloned a provirus involved in c-myc activation from a B lymphoma. Detailed structural characterization of this clone, including sequence determination, revealed proviral insertion at 512 base pairs preceding the second c-myc exon. The provirus has a deletion of 80% of the viral genes but retains two intact long terminal repeats (LTRs). A segment of the viral env sequence is present in an inverted orientation. Elevated expression of c-myc, apparently directed by the 3' LTR, was detected. However, despite the presence of an intact 5' LTR, no viral transcripts were detected. Thus, the internal proviral rearrangement can affect 5' LTR transcription or stability of the message or both. This finding is in consonance with the view that proviral deletion plays an important role in the induction of bursal lymphomas by nonacute retroviruses.
Collapse
|
41
|
Simon MC, Neckameyer WS, Hayward WS, Smith RE. Genetic determinants of neoplastic diseases induced by a subgroup F avian leukosis virus. J Virol 1987; 61:1203-12. [PMID: 3029416 PMCID: PMC254082 DOI: 10.1128/jvi.61.4.1203-1212.1987] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Two subgroup F avian leukosis viruses, ring-necked pheasant virus (RPV) and RAV-61, were previously shown to induce a high incidence of a fatal proliferative disorder in the lungs of infected chickens. These lung lesions, termed angiosarcomas, appear rapidly (4 to 5 weeks after infection), show no evidence of proto-oncogene activation by proviral integration, and are not induced by avian leukosis viruses belonging to other subgroups. To identify the viral sequences responsible for induction of these tumors, we constructed recombinant viruses by exchanging genomic segments of molecularly cloned RPV with those of a subgroup A leukosis virus, UR2AV. The ability to induce rapid lung tumors segregated only with the env sequences of RPV; the long terminal repeat of RPV was not required. However, recombinants carrying both env and long terminal repeat sequences of RPV induced lung tumors with a shorter latency. In several cases, recombinant viruses exhibited pathogenic properties differing from those of either parental virus. Recombinants carrying the gag-pol region of RPV and the env gene of UR2AV induced a high incidence of a muscle lesion termed infiltrative intramuscular fibromatosis. One recombinant, EU-8, which carries the gag-pol and LTR sequences of RPV, and the env gene of UR2AV, induced lymphoid leukosis after an unusually short latent period. The median time of death from lymphoid leukosis was 6 to 7 weeks after infection with EU-8 compared with approximately 5 months for UR2AV.
Collapse
|