1
|
Reimão-Pinto MM, Castillo-Hair SM, Seelig G, Schier AF. The regulatory landscape of 5' UTRs in translational control during zebrafish embryogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.23.568470. [PMID: 38045294 PMCID: PMC10690280 DOI: 10.1101/2023.11.23.568470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The 5' UTRs of mRNAs are critical for translation regulation, but their in vivo regulatory features are poorly characterized. Here, we report the regulatory landscape of 5' UTRs during early zebrafish embryogenesis using a massively parallel reporter assay of 18,154 sequences coupled to polysome profiling. We found that the 5' UTR is sufficient to confer temporal dynamics to translation initiation, and identified 86 motifs enriched in 5' UTRs with distinct ribosome recruitment capabilities. A quantitative deep learning model, DaniO5P, revealed a combined role for 5' UTR length, translation initiation site context, upstream AUGs and sequence motifs on in vivo ribosome recruitment. DaniO5P predicts the activities of 5' UTR isoforms and indicates that modulating 5' UTR length and motif grammar contributes to translation initiation dynamics. This study provides a first quantitative model of 5' UTR-based translation regulation in early vertebrate development and lays the foundation for identifying the underlying molecular effectors.
Collapse
Affiliation(s)
| | - Sebastian M Castillo-Hair
- Department of Electrical & Computer Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Georg Seelig
- Department of Electrical & Computer Engineering, University of Washington, Seattle, Washington 98195, United States
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Alex F Schier
- Biozentrum, University of Basel, 4056 Basel, Switzerland
- Allen Discovery Center for Cell Lineage Tracing, Seattle, Washington 98195, United States
| |
Collapse
|
2
|
De Nijs Y, De Maeseneire SL, Soetaert WK. 5' untranslated regions: the next regulatory sequence in yeast synthetic biology. Biol Rev Camb Philos Soc 2019; 95:517-529. [PMID: 31863552 DOI: 10.1111/brv.12575] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/08/2019] [Accepted: 11/28/2019] [Indexed: 01/10/2023]
Abstract
When developing industrial biotechnology processes, Saccharomyces cerevisiae (baker's yeast or brewer's yeast) is a popular choice as a microbial host. Many tools have been developed in the fields of synthetic biology and metabolic engineering to introduce heterologous pathways and tune their expression in yeast. Such tools mainly focus on controlling transcription, whereas post-transcriptional regulation is often overlooked. Herein we discuss regulatory elements found in the 5' untranslated region (UTR) and their influence on protein synthesis. We provide not only an overall picture, but also a set of design rules on how to engineer a 5' UTR. The reader is also referred to currently available models that allow gene expression to be tuned predictably using different 5' UTRs.
Collapse
Affiliation(s)
- Yatti De Nijs
- Faculty of Bioscience Engineering, Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department Biotechnology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Sofie L De Maeseneire
- Faculty of Bioscience Engineering, Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department Biotechnology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Wim K Soetaert
- Faculty of Bioscience Engineering, Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department Biotechnology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| |
Collapse
|
3
|
Expanding the promoter toolbox of Bacillus megaterium. J Biotechnol 2019; 294:38-48. [DOI: 10.1016/j.jbiotec.2019.01.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 02/02/2023]
|
4
|
Weenink T, van der Hilst J, McKiernan RM, Ellis T. Design of RNA hairpin modules that predictably tune translation in yeast. Synth Biol (Oxf) 2018; 3:ysy019. [PMID: 32995525 PMCID: PMC7445769 DOI: 10.1093/synbio/ysy019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Modular parts for tuning translation are prevalent in prokaryotic synthetic biology but lacking for eukaryotic synthetic biology. Working in Saccharomyces cerevisiae yeast, we here describe how hairpin RNA structures inserted into the 5′ untranslated region (5′UTR) of mRNAs can be used to tune expression levels by 100-fold by inhibiting translation. We determine the relationship between the calculated free energy of folding in the 5′UTR and in vivo protein abundance, and show that this enables rational design of hairpin libraries that give predicted expression outputs. Our approach is modular, working with different promoters and protein coding sequences, and outperforms promoter mutation as a way to predictably generate a library where a protein is induced to express at a range of different levels. With this new tool, computational RNA sequence design can be used to predictably fine-tune protein production for genes expressed in yeast.
Collapse
Affiliation(s)
- Tim Weenink
- Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK.,Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Jelle van der Hilst
- Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK.,Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Robert M McKiernan
- Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK.,Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Tom Ellis
- Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK.,Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
5
|
Cuperus JT, Groves B, Kuchina A, Rosenberg AB, Jojic N, Fields S, Seelig G. Deep learning of the regulatory grammar of yeast 5' untranslated regions from 500,000 random sequences. Genome Res 2017; 27:2015-2024. [PMID: 29097404 PMCID: PMC5741052 DOI: 10.1101/gr.224964.117] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 10/18/2017] [Indexed: 11/25/2022]
Abstract
Our ability to predict protein expression from DNA sequence alone remains poor, reflecting our limited understanding of cis-regulatory grammar and hampering the design of engineered genes for synthetic biology applications. Here, we generate a model that predicts the protein expression of the 5′ untranslated region (UTR) of mRNAs in the yeast Saccharomyces cerevisiae. We constructed a library of half a million 50-nucleotide-long random 5′ UTRs and assayed their activity in a massively parallel growth selection experiment. The resulting data allow us to quantify the impact on protein expression of Kozak sequence composition, upstream open reading frames (uORFs), and secondary structure. We trained a convolutional neural network (CNN) on the random library and showed that it performs well at predicting the protein expression of both a held-out set of the random 5′ UTRs as well as native S. cerevisiae 5′ UTRs. The model additionally was used to computationally evolve highly active 5′ UTRs. We confirmed experimentally that the great majority of the evolved sequences led to higher protein expression rates than the starting sequences, demonstrating the predictive power of this model.
Collapse
Affiliation(s)
- Josh T Cuperus
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
| | - Benjamin Groves
- Department of Electrical Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Anna Kuchina
- Department of Electrical Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Alexander B Rosenberg
- Department of Electrical Engineering, University of Washington, Seattle, Washington 98195, USA
| | | | - Stanley Fields
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA.,Department of Medicine, University of Washington, Seattle, Washington 98195, USA
| | - Georg Seelig
- Department of Electrical Engineering, University of Washington, Seattle, Washington 98195, USA.,Department of Computer Science & Engineering, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
6
|
Liang XH, Sun H, Shen W, Wang S, Yao J, Migawa MT, Bui HH, Damle SS, Riney S, Graham MJ, Crooke RM, Crooke ST. Antisense oligonucleotides targeting translation inhibitory elements in 5' UTRs can selectively increase protein levels. Nucleic Acids Res 2017; 45:9528-9546. [PMID: 28934489 PMCID: PMC5766168 DOI: 10.1093/nar/gkx632] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 07/05/2017] [Accepted: 07/10/2017] [Indexed: 12/31/2022] Open
Abstract
A variety of diseases are caused by deficiencies in amounts or activity of key proteins. An approach that increases the amount of a specific protein might be of therapeutic benefit. We reasoned that translation could be specifically enhanced using trans-acting agents that counter the function of negative regulatory elements present in the 5' UTRs of some mRNAs. We recently showed that translation can be enhanced by antisense oligonucleotides (ASOs) that target upstream open reading frames. Here we report the amount of a protein can also be selectively increased using ASOs designed to hybridize to other translation inhibitory elements in 5' UTRs. Levels of human RNASEH1, LDLR, and ACP1 and of mouse ACP1 and ARF1 were increased up to 2.7-fold in different cell types and species upon treatment with chemically modified ASOs targeting 5' UTR inhibitory regions in the mRNAs encoding these proteins. The activities of ASOs in enhancing translation were sequence and position dependent and required helicase activity. The ASOs appear to improve the recruitment of translation initiation factors to the target mRNA. Importantly, ASOs targeting ACP1 mRNA significantly increased the level of ACP1 protein in mice, suggesting that this approach has therapeutic and research potentials.
Collapse
Affiliation(s)
- Xue-hai Liang
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| | - Hong Sun
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| | - Wen Shen
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| | - Shiyu Wang
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| | - Joyee Yao
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| | - Michael T. Migawa
- Department of Medicinal Chemistry, Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| | - Huynh-Hoa Bui
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| | - Sagar S. Damle
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| | - Stan Riney
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| | - Mark J. Graham
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| | - Rosanne M. Crooke
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| | - Stanley T. Crooke
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| |
Collapse
|
7
|
Sun J, Alper H. Synthetic Biology: An Emerging Approach for Strain Engineering. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Jie Sun
- Department of Chemical Engineering; The University of Texas at Austin; 200 E Dean Keeton Street Stop C0400, Austin TX 78712 USA
| | - Hal Alper
- Department of Chemical Engineering; The University of Texas at Austin; 200 E Dean Keeton Street Stop C0400, Austin TX 78712 USA
| |
Collapse
|
8
|
Ding J, Chai C, Pui A, Ho B. Expression of full length and deletion homologues of Carcinoscorpius rotundicauda Factor C in Saccharomyces cerevisiae: immunoreactivity and endotoxin binding. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/096805199700400105] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Deletion homologues of the cloned Factor C cDNAs from the horseshoe crab Carcinoscorpius rotundicauda were engineered to express in Saccharomyces cerevisiae under the regulation of a galactose-inducible promoter. Expression cassettes were constructed in the vectors: pEMBLyex4 and YEpsec1 to direct, respectively, the intracellular expression, and the secretion of the protein into the culture medium using a heterologous signal sequence. The effect of insert size on the efficiency of expression and the functionality of the resulting recombinant Factor C (rFC) were studied by creating expression constructs bearing various deletion and/or hybrid fragments of Factor C. Removal of the long 5' UTR from the Factor C cDNA improved expression of the rFC. 3' Deletions of up to 84%, or internal deletions of 65% of the Factor C cDNA resulted in either the lack of detectable amounts of Factor C or loss of immunoreactivity. Depending on the construct, full length or partial rFC-related proteins were correspondingly expressed intracellularly, regardless of the vector. The rFC partitioned with the insoluble cell fraction, was solubilised with either SDS or Triton X-100, and found to be immunoreactive. The rFCs were functionally active, being able to bind Gram-negative bacterial endotoxin, provided critical regions of the endotoxin-binding domain were preserved.
Collapse
Affiliation(s)
- J.L. Ding
- Marine Biotechnology Laboratory and BioScience Centre,
| | - C. Chai
- Department of Microbiology, School of Biological Sciences National University of Singapore, Singapore
| | - A.W.M. Pui
- Marine Biotechnology Laboratory and BioScience Centre
| | - B. Ho
- Department of Microbiology, School of Biological Sciences National University of Singapore, Singapore
| |
Collapse
|
9
|
Noderer WL, Flockhart RJ, Bhaduri A, Diaz de Arce AJ, Zhang J, Khavari PA, Wang CL. Quantitative analysis of mammalian translation initiation sites by FACS-seq. Mol Syst Biol 2014; 10:748. [PMID: 25170020 PMCID: PMC4299517 DOI: 10.15252/msb.20145136] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
An approach combining fluorescence-activated cell sorting and high-throughput DNA sequencing
(FACS-seq) was employed to determine the efficiency of start codon recognition for all possible
translation initiation sites (TIS) utilizing AUG start codons. Using FACS-seq, we measured
translation from a genetic reporter library representing all 65,536 possible TIS sequences spanning
the −6 to +5 positions. We found that the motif RYMRMVAUGGC enhanced start codon
recognition and translation efficiency. However, dinucleotide interactions, which cannot be conveyed
by a single motif, were also important for modeling TIS efficiency. Our dataset combined with
modeling allowed us to predict genome-wide translation initiation efficiency for all mRNA
transcripts. Additionally, we screened somatic TIS mutations associated with tumorigenesis to
identify candidate driver mutations consistent with known tumor expression patterns. Finally, we
implemented a quantitative leaky scanning model to predict alternative initiation sites that produce
truncated protein isoforms and compared predictions with ribosome footprint profiling data. The
comprehensive analysis of the TIS sequence space enables quantitative predictions of translation
initiation based on genome sequence.
Collapse
Affiliation(s)
- William L Noderer
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Ross J Flockhart
- The Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Aparna Bhaduri
- The Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA The Program in Cancer Biology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Jiajing Zhang
- The Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Paul A Khavari
- The Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA
| | - Clifford L Wang
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
10
|
Rodriguez S, Kirby J, Denby CM, Keasling JD. Production and quantification of sesquiterpenes in Saccharomyces cerevisiae, including extraction, detection and quantification of terpene products and key related metabolites. Nat Protoc 2014; 9:1980-96. [DOI: 10.1038/nprot.2014.132] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Alekhina OM, Vassilenko KS. Translation initiation in eukaryotes: versatility of the scanning model. BIOCHEMISTRY (MOSCOW) 2013; 77:1465-77. [PMID: 23379522 DOI: 10.1134/s0006297912130056] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
It is generally accepted that the initiation of translation in eukaryotes involves the binding of the 40S ribosomal subunit to the capped 5' end of an mRNA and subsequent scanning of 5' UTR in search of an initiation codon. However, until recently this has remained a mere hypothesis. This review describes the novel experimental evidence in support of this classical model. Data on the participation of various factors in the eukaryotic initiation process are summarized. The sequence of initiation events is described in light of the latest experimental data. The existing physical models of scanning are presented. Special attention is paid to discussion of alternative models of eukaryotic initiation of translation. It is demonstrated that the canonical mechanism of initiation is more versatile than previously thought.
Collapse
Affiliation(s)
- O M Alekhina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | | |
Collapse
|
12
|
Cimdins A, Roßmanith J, Langklotz S, Bandow JE, Narberhaus F. Differential control of Salmonella heat shock operons by structured mRNAs. Mol Microbiol 2013; 89:715-31. [PMID: 23802546 DOI: 10.1111/mmi.12308] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2013] [Indexed: 12/29/2022]
Abstract
DnaK-DnaJ-GrpE and GroES-GroEL are the major chaperone machineries in bacteria. In many species, dnaKJ and groESL are encoded in bicistronic operons. Quantitative proteomics revealed that DnaK and GroEL amounts in Salmonella dominate over DnaJ and GroES respectively. An imperfect transcriptional terminator in the intergenic region of dnaKJ is known to result in higher transcript levels of the first gene. Here, we examined the groESL operon and asked how the second gene in a heat shock operon can be preferentially expressed and found that an RNA structure in the 5'untranslated region of groES is responsible. The secondary structure masks the Shine-Dalgarno (SD) sequence and AUG start codon and thereby modulates translation of groES mRNA. Reporter gene assays combined with structure probing and toeprinting analysis revealed a dynamic temperature-sensitive RNA structure. Following an increase in temperature, only the second of two RNA hairpins melts and partially liberates the SD sequence, thus facilitating translation. Translation of groEL is not temperature-regulated leading to an excess of the chaperonin in the cell at low temperature. Discussion in a broader context shows how structured RNA segments can differentially control expression of temperature-affected operons in various ways.
Collapse
Affiliation(s)
- Annika Cimdins
- Lehrstuhl für Biologie der Mikroorganismen, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | | | | | | | | |
Collapse
|
13
|
Juszczak I, Rudnik R, Pietzenuk B, Baier M. Natural genetic variation in the expression regulation of the chloroplast antioxidant system among Arabidopsis thaliana accessions. PHYSIOLOGIA PLANTARUM 2012; 146:53-70. [PMID: 22339086 DOI: 10.1111/j.1399-3054.2012.01602.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Photosynthesis is the predominant source of reactive oxygen species in light. In order to prevent the negative influence of reactive oxygen species (ROS) on cell functionality, chloroplasts have evolved a highly efficient antioxidant protection system. Here, we present the first study on natural variation in this system. Comparison of temperature and developmental responses in seven accessions of Arabidopsis thaliana from northern habitats showed that the regulation is widely genetically manifested, but hardly correlates with geographic parameters. Transcript, polysomal RNA (pRNA) and protein data showed that the ecotypes use different strategies to adjust the chloroplast antioxidative defense system, either by regulating transcript abundance or initiation of translation. Comparison of mRNA and pRNA levels showed that Col-0 invests more into transcript accumulation, while Van-0, WS and C24 regulates the chloroplast antioxidant protection system more on the level of pRNA. Nevertheless, both strategies of regulation led to the expression of chloroplast antioxidant enzymes at sufficient level to efficiently protect plants from ROS accumulation in Col-0, WS, C24 and Van-0. On the contrary, Cvi-0, Ms-0 and Kas-1 accumulated high amounts of ROS. The expression of copper/zinc superoxide dismutase (Csd2), ascorbate peroxidases and 2-Cys peroxiredoxins was higher in Cvi-0 on the transcriptional level, while Csd2, peroxiredoxin Q, type II peroxiredoxin E and glutathione peroxidase 1 were induced in Ms-0 on the mRNA level. Similar to Kas-1, in which mRNA levels were less than or similar to Col-0 gene, specific support for translation was observed in Ms-0, showing that the ecotypes use different strategies to adjust the antioxidant system.
Collapse
Affiliation(s)
- Ilona Juszczak
- Plant Physiology, Freie Universität Berlin, Königin-Luise-Straße 12-16, 14195 Berlin, Germany
| | | | | | | |
Collapse
|
14
|
Öberg F, Hedfalk K. Recombinant production of the human aquaporins in the yeastPichia pastoris(Invited Review). Mol Membr Biol 2012; 30:15-31. [DOI: 10.3109/09687688.2012.665503] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Chang CP, Tseng YK, Ko CY, Wang CC. Alanyl-tRNA synthetase genes of Vanderwaltozyma polyspora arose from duplication of a dual-functional predecessor of mitochondrial origin. Nucleic Acids Res 2011; 40:314-22. [PMID: 21908394 PMCID: PMC3245939 DOI: 10.1093/nar/gkr724] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In eukaryotes, the cytoplasmic and mitochondrial forms of a given aminoacyl-tRNA synthetase (aaRS) are typically encoded by two orthologous nuclear genes, one of eukaryotic origin and the other of mitochondrial origin. We herein report a novel scenario of aaRS evolution in yeast. While all other yeast species studied possess a single nuclear gene encoding both forms of alanyl-tRNA synthetase (AlaRS), Vanderwaltozyma polyspora, a yeast species descended from the same whole-genome duplication event as Saccharomyces cerevisiae, contains two distinct nuclear AlaRS genes, one specifying the cytoplasmic form and the other its mitochondrial counterpart. The protein sequences of these two isoforms are very similar to each other. The isoforms are actively expressed in vivo and are exclusively localized in their respective cellular compartments. Despite the presence of a promising AUG initiator candidate, the gene encoding the mitochondrial form is actually initiated from upstream non-AUG codons. A phylogenetic analysis further revealed that all yeast AlaRS genes, including those in V. polyspora, are of mitochondrial origin. These findings underscore the possibility that contemporary AlaRS genes in V. polyspora arose relatively recently from duplication of a dual-functional predecessor of mitochondrial origin.
Collapse
Affiliation(s)
- Chia-Pei Chang
- Department of Life Sciences, National Central University, Jungli 32001, Taiwan
| | | | | | | |
Collapse
|
16
|
Polyamine sensing by nascent ornithine decarboxylase antizyme stimulates decoding of its mRNA. Nature 2011; 477:490-4. [PMID: 21900894 DOI: 10.1038/nature10393] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 07/27/2011] [Indexed: 11/08/2022]
Abstract
Polyamines are essential organic polycations with multiple cellular functions relevant for cell division, cancer and ageing. Regulation of polyamine synthesis is mainly achieved by controlling the activity of ornithine decarboxylase (ODC) through an unusual mechanism involving ODC antizyme, the binding of which disrupts homodimeric ODC and targets it for ubiquitin-independent degradation by the 26S proteasome. Whereas mammals express several antizyme genes, we have identified a single orthologue, termed OAZ1, in Saccharomyces cerevisiae. Similar to its mammalian counterparts, OAZ1 synthesis is induced with rising intracellular polyamine concentrations, which also inhibit ubiquitin-dependent degradation of the OAZ1 protein. Together, these mechanisms contribute to a homeostatic feedback regulation of polyamines. Antizyme synthesis involves a conserved +1 ribosomal frameshifting (RFS) event at an internal STOP codon during decoding of its messenger RNA. Here we used S. cerevisiae OAZ1 to dissect the enigmatic mechanism underlying polyamine regulation of RFS. In contrast with previous assumptions, we report here that the nascent antizyme polypeptide is the relevant polyamine sensor that operates in cis to negatively regulate upstream RFS on the polysomes, where its own mRNA is being translated. At low polyamine levels, the emerging antizyme polypeptide inhibits completion of its synthesis causing a ribosome pile-up on antizyme mRNA, whereas polyamine binding to nascent antizyme promotes completion of its synthesis. Thus, our study reveals a novel autoregulatory mechanism, in which binding of a small metabolite to a nascent sensor protein stimulates the latter's synthesis co-translationally.
Collapse
|
17
|
Crook NC, Freeman ES, Alper HS. Re-engineering multicloning sites for function and convenience. Nucleic Acids Res 2011; 39:e92. [PMID: 21586584 PMCID: PMC3152365 DOI: 10.1093/nar/gkr346] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Multicloning sites (MCSs) in standard expression vectors are widely used and thought to be benign, non-interacting elements that exist for mere convenience. However, MCSs impose a necessary distance between promoter elements and genes of interest. As a result, the choice of cloning site defines the genetic context and may introduce significant mRNA secondary structure in the 5′-untranslated region leading to strong translation inhibition. Here, we demonstrate the first performance-based assessment of MCSs in yeast, showing that commonly used MCSs can induce dramatic reductions in protein expression, and that this inhibition is highly promoter and gene dependent. In response, we develop and apply a novel predictive model of structure-based translation inhibition to design improved MCSs for significantly higher and more consistent protein expression. In doing so, we were able to minimize the inhibitory effects of MCSs with the yeast TEF, CYC and GPD promoters. These results highlight the non-interchangeable nature of biological parts and represent the first complete, global redesign of a genetic circuit of such widespread importance as a multicloning site. The improved translational control offered by these designed MCSs is paramount to obtaining high titers of heterologous proteins in eukaryotes and to enabling precise control of genetic circuits.
Collapse
Affiliation(s)
- Nathan C Crook
- Department of Chemical Engineering, The University of Texas at Austin, 1 University Station, C0400 Austin, TX 78712, USA
| | | | | |
Collapse
|
18
|
GRISDALE CAMERONJ, FAST NAOMIM. Patterns of 5′ Untranslated Region Length Distribution in Encephalitozoon cuniculi: Implications for Gene Regulation and Potential Links Between Transcription and Splicing. J Eukaryot Microbiol 2010; 58:68-74. [DOI: 10.1111/j.1550-7408.2010.00523.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Chang CP, Chen SJ, Lin CH, Wang TL, Wang CC. A single sequence context cannot satisfy all non-AUG initiator codons in yeast. BMC Microbiol 2010; 10:188. [PMID: 20618922 PMCID: PMC2909995 DOI: 10.1186/1471-2180-10-188] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Accepted: 07/09/2010] [Indexed: 11/17/2022] Open
Abstract
Background Previous studies in Saccharomyces cerevisiae showed that ALA1 (encoding alanyl-tRNA synthetase) and GRS1 (encoding glycyl-tRNA synthetase) respectively use ACG and TTG as their alternative translation initiator codons. To explore if any other non-ATG triplets can act as initiator codons in yeast, ALA1 was used as a reporter for screening. Results We show herein that except for AAG and AGG, all triplets that differ from ATG by a single nucleotide were able to serve as initiator codons in ALA1. Among these initiator codons, TTG, CTG, ACG, and ATT had ~50% initiating activities relative to that of ATG, while GTG, ATA, and ATC had ~20% initiating activities relative to that of ATG. Unexpectedly, these non-AUG initiator codons exhibited different preferences toward various sequence contexts. In particular, GTG was one of the most efficient non-ATG initiator codons, while ATA was essentially inactive in the context of GRS1. Conclusion This finding indicates that a sequence context that is favorable for a given non-ATG initiator codon might not be as favorable for another.
Collapse
Affiliation(s)
- Chia-Pei Chang
- Department of Life Science, National Central University, Jung-li, Taiwan
| | | | | | | | | |
Collapse
|
20
|
Frederiks F, Heynen GJJE, van Deventer SJ, Janssen H, van Leeuwen F. Two Dot1 isoforms in Saccharomyces cerevisiae as a result of leaky scanning by the ribosome. Nucleic Acids Res 2010; 37:7047-58. [PMID: 19778927 PMCID: PMC2790890 DOI: 10.1093/nar/gkp765] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dot1 is a conserved histone methyltransferase that methylates histone H3 on lysine 79. We previously observed that in Saccharomyces cerevisiae, a single DOT1 gene encodes two Dot1 protein species. Here, we show that the relative abundance of the two isoforms changed under nutrient-limiting conditions. A mutagenesis approach showed that the two Dot1 isoforms are produced from two alternative translation start sites as a result of leaky scanning by the ribosome. The leaky scanning was not affected by the 5′- or 3′-untranslated regions of DOT1, indicating that translation initiation is determined by the DOT1 coding sequence. Construction of yeast strains expressing either one of the isoforms showed that both were sufficient for Dot1’s role in global H3K79 methylation and telomeric gene silencing. However, the absence of the long isoform of Dot1 altered the resistance of yeast cells to the chitin-binding drug Calcofluor White, suggesting that the two Dot1 isoforms have a differential function in cell wall biogenesis.
Collapse
Affiliation(s)
- Floor Frederiks
- Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
21
|
Selpi, Bryant CH, Kemp GJL, Sarv J, Kristiansson E, Sunnerhagen P. Predicting functional upstream open reading frames in Saccharomyces cerevisiae. BMC Bioinformatics 2009; 10:451. [PMID: 20042076 PMCID: PMC2813248 DOI: 10.1186/1471-2105-10-451] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 12/30/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Some upstream open reading frames (uORFs) regulate gene expression (i.e., they are functional) and can play key roles in keeping organisms healthy. However, how uORFs are involved in gene regulation is not yet fully understood. In order to get a complete view of how uORFs are involved in gene regulation, it is expected that a large number of experimentally verified functional uORFs are needed. Unfortunately, wet-experiments to verify that uORFs are functional are expensive. RESULTS In this paper, a new computational approach to predicting functional uORFs in the yeast Saccharomyces cerevisiae is presented. Our approach is based on inductive logic programming and makes use of a novel combination of knowledge about biological conservation, Gene Ontology annotations and genes' responses to different conditions. Our method results in a set of simple and informative hypotheses with an estimated sensitivity of 76%. The hypotheses predict 301 further genes to have 398 novel functional uORFs. Three (RPC11, TPK1, and FOL1) of these 301 genes have been hypothesised, following wet-experiments, by a related study to have functional uORFs. A comparison with another related study suggests that eleven of the predicted functional uORFs from genes LDB17, HEM3, CIN8, BCK2, PMC1, FAS1, APP1, ACC1, CKA2, SUR1, and ATH1 are strong candidates for wet-lab experimental studies. CONCLUSIONS Learning based prediction of functional uORFs can be done with a high sensitivity. The predictions made in this study can serve as a list of candidates for subsequent wet-lab verification and might help to elucidate the regulatory roles of uORFs.
Collapse
Affiliation(s)
- Selpi
- Department of Applied Mechanics, Chalmers University of Technology, Göteborg, Sweden.
| | | | | | | | | | | |
Collapse
|
22
|
Chen SJ, Lin G, Chang KJ, Yeh LS, Wang CC. Translational efficiency of a non-AUG initiation codon is significantly affected by its sequence context in yeast. J Biol Chem 2007; 283:3173-3180. [PMID: 18065417 DOI: 10.1074/jbc.m706968200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have shown that translation of mrna for yeast glycyl-tRNA synthetase is alternatively initiated from UUG and a downstream AUG initiation codon. Evidence presented here shows that unlike an AUG initiation codon, efficiency of this non-AUG initiation codon is significantly affected by its sequence context, in particular the nucleotides at positions -3 to -1 relative to the initiation codon. A/A/R (R represents A Or G) and C/G/C appear to be the most and least favorable sequences at these positions, respectively. Mutation of the native context sequence -3 to -1 from AAA to CGC reduced translation initiation from the UUG codon up to 32-fold and resulted in loss of mitochondrial respiration. although an AUG initiation codon is, in general, unresponsive to context changes in yeast, an AAA (-3 to -1) to CGC mutation still reduced its initiating activity up to 8-fold under similar conditions. these results suggest that sequence context is more important for translation initiation in yeast than previously appreciated.
Collapse
Affiliation(s)
- Shun-Jia Chen
- Department of Life Science, National Central University, Jung-li, Taiwan 32001
| | - Grace Lin
- Department of Life Science, National Central University, Jung-li, Taiwan 32001
| | - Kuang-Jung Chang
- Department of Life Science, National Central University, Jung-li, Taiwan 32001
| | - Lu-Shu Yeh
- Department of Life Science, Tzu-Chi University, Hua-lien, Taiwan 97041
| | - Chien-Chia Wang
- Department of Life Science, National Central University, Jung-li, Taiwan 32001.
| |
Collapse
|
23
|
Rosado IV, Rey M, Codón AC, Govantes J, Moreno-Mateos MA, Benítez T. QID74 Cell wall protein of Trichoderma harzianum is involved in cell protection and adherence to hydrophobic surfaces. Fungal Genet Biol 2007; 44:950-64. [PMID: 17300969 DOI: 10.1016/j.fgb.2007.01.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2006] [Revised: 12/27/2006] [Accepted: 01/01/2007] [Indexed: 11/25/2022]
Abstract
Trichoderma is widely used as biocontrol agent against phytopathogenic fungi, and as biofertilizer because of its ability to establish mycorriza-like association with plants. The key factor to the ecological success of this genus is the combination of very active mycoparasitic mechanisms plus effective defense strategies induced in plants. This work, different from most of the studies carried out that address the attacking mechanisms, focuses on elucidating how Trichoderma is able to tolerate hostile conditions. A gene from Trichoderma harzianum CECT 2413, qid74, was strongly expressed during starvation of carbon or nitrogen sources; it encoded a cell wall protein of 74kDa that plays a significant role in mycelium protection. qid74 was originally isolated and characterized, in a previous work, by a differential hybridization approach under simulated mycoparasitism conditions. Heterologous expression of Qid74 in Saccharomyces cerevisiae indicated that the protein, located in the cell wall, interfered with mating and sporulation but not with cell integrity. The qid74 gene was disrupted by homologous recombination and it was overexpressed by isolating transformants selected for the amdS gene that carried several copies of qid74 gene under the control of the pki promoter. Disruptants and transformants showed similar growth rate and viability when they were cultivated in different media, temperatures and osmolarities, or were subjected to different abiotic stress conditions. However, disruptants produced about 70% mass yield under any condition and were substantially more sensitive than the wild type to cell wall degradation by different lytic preparations. Transformants had similar mass yield and were more resistant to lytic enzymes but more sensitive to copper sulfate than the wild type. When experiments of adherence to hydrophobic surfaces were carried out, the disruptants had a reduced capacity to adhere, whereas that capacity in the overproducer transformants was slightly higher than that of the wild type. Results point to a significant role for Qid74 both in cell wall protection and adhesion to hydrophobic surfaces.
Collapse
Affiliation(s)
- Iván V Rosado
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Apartado 1095, E-41080, Sevilla, Spain
| | | | | | | | | | | |
Collapse
|
24
|
Morikawa Y. [Study of animal viruses in yeast]. Uirusu 2006; 56:9-16. [PMID: 17038807 DOI: 10.2222/jsv.56.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Yeast is often considered to be a model eukaryotic organism, in a manner analogous to E. coli as a model prokaryotic organism. Yeast has been extensively characterized and the genomes completely sequenced. Despite the small genome size, yeast displays most of features of higher eukaryotes. The facts that most of cellular machinery is conserved among different eukaryotes and that the powerful technologies of genetics and molecular biology are available have made yeast model eukaryotic cells in biological and biomedical sciences including virology. Cumulative data indicate that yeast can be a host for animal viruses. I briefly describe yeast gene expression and review viral replication in yeast. Great discovery include complete replication of animal viruses and production of virus-like particle vaccines in yeast. Current studies on yeast focus on identification of host factors and machinery used for viral replication. The studies are based on traditional yeast genetics and genome-wide identification using a complete set of yeast deletion strains.
Collapse
Affiliation(s)
- Yuko Morikawa
- Kitasato Unversity, Shirokane 5-9-1, Minato-ku, Tokyo 108-8641, Japan.
| |
Collapse
|
25
|
de Mayolo AA, Lisby M, Erdeniz N, Thybo T, Mortensen UH, Rothstein R. Multiple start codons and phosphorylation result in discrete Rad52 protein species. Nucleic Acids Res 2006; 34:2587-97. [PMID: 16707661 PMCID: PMC1463902 DOI: 10.1093/nar/gkl280] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The sequence of the Saccharomyces cerevisiae RAD52 gene contains five potential translation start sites and protein-blot analysis typically detects multiple Rad52 species with different electrophoretic mobilities. Here we define the gene products encoded by RAD52. We show that the multiple Rad52 protein species are due to promiscuous choice of start codons as well as post-translational modification. Specifically, Rad52 is phosphorylated both in a cell cycle-independent and in a cell cycle-dependent manner. Furthermore, phosphorylation is dependent on the presence of the Rad52 C terminus, but not dependent on its interaction with Rad51. We also show that the Rad52 protein can be translated from the last three start sites and expression from any one of them is sufficient for spontaneous recombination and the repair of gamma-ray-induced double-strand breaks.
Collapse
Affiliation(s)
| | - Michael Lisby
- Department of Genetics, Institute of Molecular Biology and Physiology, University of CopenhagenØster Farimagsgade 2A, DK-1353 Copenhagen K, Denmark
| | - Naz Erdeniz
- Department of Molecular and Medical Genetics, Oregon Health Sciences University3181 SW Sam Jackson Park Road, Mail Code L103, Portland, OR 97201, USA
| | - Tanja Thybo
- Center for Microbial Biotechnology, BioCentrum-DTU, Technical University of DenmarkBuilding 223, DK-2800 Lyngby, Denmark
| | - Uffe H. Mortensen
- Center for Microbial Biotechnology, BioCentrum-DTU, Technical University of DenmarkBuilding 223, DK-2800 Lyngby, Denmark
| | - Rodney Rothstein
- To whom correspondence should be addressed. Tel: +1 212 305 1733; Fax: +1 212 923 2090;
| |
Collapse
|
26
|
Xia M, Farkas T, Jiang X. Norovirus capsid protein expressed in yeast forms virus-like particles and stimulates systemic and mucosal immunity in mice following an oral administration of raw yeast extracts. J Med Virol 2006; 79:74-83. [PMID: 17133551 DOI: 10.1002/jmv.20762] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Norovirus (NV) gastroenteritis is a widespread disease affecting people of all ages worldwide. A simple, safe, and easily deliverable vaccine may be the key for the control and prevention of NV gastroenteritis. In this study, we demonstrated that a NV recombinant capsid protein (strain VA387, genogroup II.4) expressed in yeast (Pichia pastoris) spontaneously formed virus-like particles (VLPs) like those expressed in other in vitro systems. Oral administration of raw material from the yeast cell lysates containing 0.1 mg of VLPs without an adjuvant resulted in systemic and mucosal immune responses in mice. Significantly higher and earlier responses were observed in mice receiving a higher dose (1 mg per dose) of the antigen. Both the serum and fecal antibodies blocked VA387 VLP binding to its histo-blood group antigen receptors. The animals did not reveal any side effect following the administration of the yeast lysates. Our results indicated that yeast is a simple, effective alternative for NV VLP production. The mice immunization study also indicated that the oral administration of raw yeast extracts without an adjuvant is a safe and simple way which is worth to be studied for vaccine delivery in humans.
Collapse
Affiliation(s)
- Ming Xia
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | | | | |
Collapse
|
27
|
Ringnér M, Krogh M. Folding free energies of 5'-UTRs impact post-transcriptional regulation on a genomic scale in yeast. PLoS Comput Biol 2005; 1:e72. [PMID: 16355254 PMCID: PMC1309706 DOI: 10.1371/journal.pcbi.0010072] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Accepted: 11/09/2005] [Indexed: 11/18/2022] Open
Abstract
Using high-throughput technologies, abundances and other features of genes and proteins have been measured on a genome-wide scale in Saccharomyces cerevisiae. In contrast, secondary structure in 5′–untranslated regions (UTRs) of mRNA has only been investigated for a limited number of genes. Here, the aim is to study genome-wide regulatory effects of mRNA 5′-UTR folding free energies. We performed computations of secondary structures in 5′-UTRs and their folding free energies for all verified genes in S. cerevisiae. We found significant correlations between folding free energies of 5′-UTRs and various transcript features measured in genome-wide studies of yeast. In particular, mRNAs with weakly folded 5′-UTRs have higher translation rates, higher abundances of the corresponding proteins, longer half-lives, and higher numbers of transcripts, and are upregulated after heat shock. Furthermore, 5′-UTRs have significantly higher folding free energies than other genomic regions and randomized sequences. We also found a positive correlation between transcript half-life and ribosome occupancy that is more pronounced for short-lived transcripts, which supports a picture of competition between translation and degradation. Among the genes with strongly folded 5′-UTRs, there is a huge overrepresentation of uncharacterized open reading frames. Based on our analysis, we conclude that (i) there is a widespread bias for 5′-UTRs to be weakly folded, (ii) folding free energies of 5′-UTRs are correlated with mRNA translation and turnover on a genomic scale, and (iii) transcripts with strongly folded 5′-UTRs are often rare and hard to find experimentally. In cells, proteins are made from messenger RNA copied from genes in the DNA. The amount of each protein needs to be controlled by cells. For this purpose, cells use a strategy that includes decomposing RNA and varying the number of proteins made from each RNA. One part of the RNA molecule is called the 5′–untranslated region (UTR), and it is known that this region can fold into a three-dimensional structure. For some genes, such structures are important for protein production. In this article, structures in 5′-UTRs are calculated for all genes in the yeast Saccharomyces cerevisiae. The authors show that structures in 5′-UTRs likely play a role in RNA decomposition and protein production for many genes in the genome: RNA molecules with weakly folded 5′-UTRs live relatively longer and produce more proteins. This study provides an example of how genome-wide computational analysis complements experimental results.
Collapse
Affiliation(s)
- Markus Ringnér
- Complex Systems Division, Department of Theoretical Physics, Lund University, Lund, Sweden.
| | | |
Collapse
|
28
|
Gurkan C, Ellar DJ. Recombinant production of bacterial toxins and their derivatives in the methylotrophic yeast Pichia pastoris. Microb Cell Fact 2005; 4:33. [PMID: 16336647 PMCID: PMC1325036 DOI: 10.1186/1475-2859-4-33] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Accepted: 12/07/2005] [Indexed: 11/20/2022] Open
Abstract
The methylotrophic yeast Pichia pastoris is a popular heterologous expression host for the recombinant production of a variety of prokaryotic and eukaryotic proteins. The rapid emergence of P. pastoris as a robust heterologous expression host was facilitated by the ease with which it can be manipulated and propagated, which is comparable to that of Escherichia coli and Saccharomyces cerevisiae. P. pastoris offers further advantages such as the tightly-regulated alcohol oxidase promoter that is particularly suitable for heterologous expression of foreign genes. While recombinant production of bacterial toxins and their derivatives is highly desirable, attempts at their heterologous expression using the traditional E. coli expression system can be problematic due to the formation of inclusion bodies that often severely limit the final yields of biologically active products. However, recent literature now suggests that P. pastoris may be an attractive alternative host for the heterologous production of bacterial toxins, such as those from the genera Bacillus, Clostridium, and Corynebacterium, as well as their more complex derivatives. Here, we review the recombinant production of bacterial toxins and their derivatives in P. pastoris with special emphasis on their potential clinical applications. Considering that de novo design and construction of synthetic toxin genes have often been necessary to achieve optimal heterologous expression in P. pastoris, we also present general guidelines to this end based on our experience with the P. pastoris expression of the Bacillus thuringiensis Cyt2Aa1 toxin.
Collapse
Affiliation(s)
- Cemal Gurkan
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, Mail Drop: MB6, La Jolla, CA 92037, USA
| | - David J Ellar
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
29
|
Chen X, Moerschell RP, Pearce DA, Ramanan DD, Sherman F. Enhanced mitochondrial degradation of yeast cytochrome c with amphipathic structures. Curr Genet 2004; 47:67-83. [PMID: 15605252 DOI: 10.1007/s00294-004-0552-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 10/31/2004] [Accepted: 11/02/2004] [Indexed: 11/30/2022]
Abstract
The dispensable N-terminus of iso-1-cytochrome c (iso-1) in the yeast Saccharomyces cerevisiae was replaced by 11 different amphipathic structures. Rapid degradation of the corresponding iso-1 occurred, with the degree of degradation increasing with the amphipathic moments; and this amphipathic-dependent degradation was designated ADD. ADD occurred with the holo-forms in the mitochondria but not as the apo-forms in the cytosol. The extreme mutant type degraded with a half-life of approximately 12 min, whereas the normal iso-1 was stable over hours. ADD was influenced by the rho+/rho- state and by numerous chromosomal genes. Most importantly, ADD appeared to be specifically suppressed to various extents by deletions of any of the YME1, AFG3, or RCA1 genes encoding membrane-associated mitochondrial proteases, probably because the amphipathic structures caused a stronger association with the mitochondrial inner membrane and its associated proteases. The use of ADD assisted in the differentiation of substrates of different mitochondrial degradation pathways.
Collapse
Affiliation(s)
- Xi Chen
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
30
|
Abstract
Great advances have been made in the past three decades in understanding the molecular mechanics underlying protein synthesis in bacteria, but our understanding of the corresponding events in eukaryotic organisms is only beginning to catch up. In this review we describe the current state of our knowledge and ignorance of the molecular mechanics underlying eukaryotic translation. We discuss the mechanisms conserved across the three kingdoms of life as well as the important divergences that have taken place in the pathway.
Collapse
Affiliation(s)
- Lee D Kapp
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205-2185, USA.
| | | |
Collapse
|
31
|
Zhao KN, Tomlinson L, Liu WJ, Gu W, Frazer IH. Effects of additional sequences directly downstream from the AUG on the expression of GFP gene. ACTA ACUST UNITED AC 2004; 1630:84-95. [PMID: 14654238 DOI: 10.1016/j.bbaexp.2003.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We have studied the expression of the green fluorescent protein (GFP) gene to gain more understanding of the effects of additional nucleotide triplets (codons) downstream from the initiation codon on the translation of the GFP mRNA in CHO and Cos1 cells. A leader sequence of six consecutive identical codons (GUG, CUC, AGU or UCA) was introduced into a humanized GFP (hm gfp) gene downstream from the AUG to produce four GFP gene variants. Northern blot and RT-PCR analysis indicated that mRNA transcription from the GFP gene was not significantly affected by any of the additional sequences. However, immunoblotting and FACS analysis revealed that AGU and UCA GFP variants produced GFP at a mean level per cell 3.5-fold higher than the other two GFP variants and the hm gfp gene. [35S]-Methionine labeling and immunoprecipitation demonstrate that GFP synthesis was very active in UCA variant transfected-cells, but not in GUG variant and hm gfp transfected-cells. Moreover, proteasome inhibitor MG-132 treatment indicated that the GFPs encoded by each of the GFP variants and the hm gfp were equally stable, and this together with the comparable mRNA levels observed for each construct suggested that the different steady-state GFP concentrations observed reflected different translation efficiencies of the various GFP genes. In addition, the CUC GFP variant, when transiently transfected into CHO or COS-1 cells, did not produce any GFP expressing cells (fully green cells), and the GUG variant produced GFP expressing cells less than 10%, while AGU and UCA GFP variants up to 30-35% in a time course study from 8 to 36 h posttransfection. Analysis of the potential secondary structure of the GFP variant mRNAs especially in the translation initiation region suggested that the secondary structure of the GFP mRNAs was unlikely to explain the different translation efficiencies of the GFP variants. The present findings indicate that a change of the initiation context of the GFP gene by addition of extra coding sequence can alter the translation efficiency of GFP mRNA, providing a means of more efficient expression of GFP in eukaryotic cells.
Collapse
Affiliation(s)
- Kong-Nan Zhao
- Centre for Immunology and Cancer Research, University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, 4102, Australia.
| | | | | | | | | |
Collapse
|
32
|
Hanson S, Berthelot K, Fink B, McCarthy JEG, Suess B. Tetracycline-aptamer-mediated translational regulation in yeast. Mol Microbiol 2003; 49:1627-37. [PMID: 12950926 DOI: 10.1046/j.1365-2958.2003.03656.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We describe post-transcriptional gene regulation in yeast based on direct RNA-ligand interaction. Tetracycline-dependent translational regulation could be imposed via specific aptamers inserted at two different positions in the 5' untranslated region (5'UTR). Translation in vivo was suppressed up to ninefold upon addition of tetracycline. Repression via an aptamer located near the start codon (cap-distal) in the 5'UTR was more effective than repression via a cap-proximal position. On the other hand, suppression in a cell-free system reached maximally 50-fold and was most effective via a cap-proximal aptamer. Examination of the kinetics of tetracycline-dependent translational inhibition in vitro revealed that preincubation of tetracycline and mRNA before starting translation led not only to the fastest onset of inhibition but also the most effective repression. The differences between the behaviour of the regulatory system in vivo and in vitro are likely to be related to distinct properties of mRNP structure and mRNA accessibility in intact cells as opposed to cell-extracts. Tetracycline-dependent regulation was also observed after insertion of an uORF sequence upstream of the aptamer, indicating that our system also targets reinitiating ribosomes. Polysomal gradient analyses provided insight into the mechanism of regulation. Cap-proximal insertion inhibits binding of the 43S complex to the cap structure whereas start-codon-proximal aptamers interfere with formation of the 80S ribosome, probably by blocking the scanning preinitiation complex.
Collapse
Affiliation(s)
- Shane Hanson
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | | | | | | | | |
Collapse
|
33
|
Vilela C, McCarthy JEG. Regulation of fungal gene expression via short open reading frames in the mRNA 5'untranslated region. Mol Microbiol 2003; 49:859-67. [PMID: 12890013 DOI: 10.1046/j.1365-2958.2003.03622.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We review how the expression of fungal mRNAs can be controlled by ribosome interactions with short upstream open reading frames (uORFs) within the 5'untranslated region. The efficiency of uAUG recognition modulates the impact of a uORF but steps during and after translation of the uORF also influence uORF function. The post-termination behaviour of ribosomes, therefore, plays a major role in determining the expression level of these main ORFs. Translation of a uORF can produce a cis-acting peptide that causes effector molecule-dependent stalling of the ribosomes at the end of the uORF. In other cases it is the length or position, or other features of the uORF, rather than the peptide it encodes, that determine the efficiency with which ribosomes reinitiate translation downstream of it. Whether the form of the ribosome that resumes scanning after termination is the 40S subunit alone or the entire 80S ribosome is not known. Translation of the uORF can also control gene expression by affecting the stability of the mRNA. Finally, trans-acting factors may participate in the regulatory mechanisms. Future work will need not only to provide more information on the mechanisms underlying the known cases of uORF-mediated control but also to define the full complement of uORF-containing mRNAs in at least one fungal organism.
Collapse
Affiliation(s)
- Cristina Vilela
- Posttranscriptional Control Group, Department of Biomolecular Sciences, UMIST, PO Box 88, Manchester M60 1QD, UK
| | | |
Collapse
|
34
|
Gurkan C, Ellar DJ. Expression in Pichia pastoris and purification of a membrane-acting immunotoxin based on a synthetic gene coding for the Bacillus thuringiensis Cyt2Aa1 toxin. Protein Expr Purif 2003; 29:103-16. [PMID: 12729731 DOI: 10.1016/s1046-5928(03)00012-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We explored the production in Pichia pastoris of a membrane-acting immunotoxin (IT) based on the Cyt2Aa1 toxin from the bacterium Bacillus thuringiensis subspecies kyushuensis. Initial attempts at the P. pastoris expression of Cyt2Aa1 were not successful due to the high A+T-content of the native bacterial gene, resulting in premature transcription termination. Accordingly, we designed and constructed a synthetic cyt2Aa1 gene (syncyt2Aa1)(2) that was optimised for expression in this eukaryotic host. This was achieved through a recursive PCR strategy where the overall G+C-content of the cyt2Aa1 DNA sequence was systematically increased to approximately 50% compared to approximately 30% in the native bacterial gene and only the P. pastoris preferred codons were used. A synthetic DNA sequence coding for a soluble and flexible serine/glycine linker was then used to genetically fuse syncyt2Aa1 with the human single-chain antibody fragment (scFv) C6.5 targeting p185(HER-2), a cell-surface glycoprotein overexpressed in 30% of human breast and ovarian cancers. Subsequent expression of the resulting IT construct [scFvC6.5-syncyt2Aa1(mychis(6))](2) led to high-level accumulation of the recombinant protein in yeast membranes. Although the solubilisation of scFvC6.5-syncyt2Aa1(mychis(6)) from P. pastoris membranes necessitated the use of guanidine hydrochloride, the use of subsequent in vitro refolding and immobilised metal affinity chromatography (IMAC) steps allowed purification of the recombinant product at yields as high as approximately 10 mgl(-1) culture. Despite being core N-linked glycosylated and retaining part of the yeast secretion signal, the P. pastoris produced scFvC6.5-syncyt2Aa1(mychis(6)) exhibited significant specific activity for p185(HER-2)-overexpressing SK-BR-3 cells but not p185(HER-2)-negative Swiss 3T3 cells or human erythrocytes.
Collapse
Affiliation(s)
- Cemal Gurkan
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK.
| | | |
Collapse
|
35
|
Urban P, Truan G, Bellamine A, Laine R, Gautier JC, Pompon D. Engineered yeasts simulating P450-dependent metabolisms: tricks, myths and reality. DRUG METABOLISM AND DRUG INTERACTIONS 2002; 11:169-200. [PMID: 12371439 DOI: 10.1515/dmdi.1994.11.3.169] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- P Urban
- Centre de Génétique Moléculaire du CNRS, UPR 2420, Laboratoire Propre associé à l'Université Paris-VI, Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
36
|
Svitkin YV, Pause A, Haghighat A, Pyronnet S, Witherell G, Belsham GJ, Sonenberg N. The requirement for eukaryotic initiation factor 4A (elF4A) in translation is in direct proportion to the degree of mRNA 5' secondary structure. RNA (NEW YORK, N.Y.) 2001; 7:382-94. [PMID: 11333019 PMCID: PMC1370095 DOI: 10.1017/s135583820100108x] [Citation(s) in RCA: 354] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Eukaryotic initiation factor (elF) 4A functions as a subunit of the initiation factor complex elF4F, which mediates the binding of mRNA to the ribosome. elF4A possesses ATPase and RNA helicase activities and is the prototype for a large family of putative RNA helicases (the DEAD box family). It is thought that the function of elF4A during translation initiation is to unwind the mRNA secondary structure in the 5' UTR to facilitate ribosome binding. However, the evidence to support this hypothesis is rather indirect, and it was reported that elF4A is also required for the translation of mRNAs possessing minimal 5' UTR secondary structure. Were this hypothesis correct, the requirement for elF4A should correlate with the degree of mRNA secondary structure. To test this hypothesis, the effect of a dominant-negative mutant of mammalian elF4A on translation of mRNAs with various degrees of secondary structure was studied in vitro. Here, we show that mRNAs containing stable secondary structure in the 5' untranslated region are more susceptible to inhibition by the elF4A mutant. The mutant protein also strongly inhibits translation from several picornavirus internal ribosome entry sites (IRES), although to different extents. UV crosslinking of elF4F subunits and elF4B to the mRNA cap structure is dramatically reduced by the elF4A mutant and RNA secondary structure. Finally, the elF4A mutant forms a more stable complex with elF4G, as compared to the wild-type elF4A, thus explaining the mechanism by which substoichiometric amounts of mutant elF4A inhibit translation.
Collapse
Affiliation(s)
- Y V Svitkin
- Department of Biochemistry and McGill Cancer Center, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
37
|
Wang L, Wessler SR. Role of mRNA secondary structure in translational repression of the maize transcriptional activator Lc(1,2). PLANT PHYSIOLOGY 2001; 125:1380-7. [PMID: 11244117 PMCID: PMC65616 DOI: 10.1104/pp.125.3.1380] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2000] [Revised: 11/01/2000] [Accepted: 11/18/2000] [Indexed: 05/19/2023]
Abstract
Lc, a member of the maize (Zea mays) R/B gene family, encodes a basic helix-loop-helix transcriptional activator of the anthocyanin biosynthetic pathway. It was previously shown that translation of the Lc mRNA is repressed by a 38-codon upstream open reading frame (uORF) in the 5' leader. In this study, we report that a potential hairpin structure near the 5'end of the Lc mRNA also represses downstream translation in the rabbit reticulocyte in vitro translation system and in transient transformation assays. Base pairing of the hairpin is important for repression because its destabilization increases translation of the uORF and the downstream ORF. However, translation of the uORF is not required for the hairpin-mediated repression. Instead, the uORF and the 5'-proximal hairpin mediate two independent levels of repression. Although the uORF represses downstream translation due to inefficient reinitiation of ribosomes that translate uORF, the hairpin inhibits ribosome loading at the 5' end of the mRNA.
Collapse
Affiliation(s)
- L Wang
- Departments of Botany and Genetics, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
38
|
Sakurai H, Ishihama A. Transcription organization and mRNA levels of the genes for all 12 subunits of the fission yeast RNA polymerase II. Genes Cells 2001; 6:25-36. [PMID: 11168594 DOI: 10.1046/j.1365-2443.2001.00394.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The RNA polymerase II (Pol II) of eukaryotes is composed of 12 subunits, of which five are shared among Pol I, Pol II and Pol III. At present, however, little is known about the regulation of synthesis and assembly of the 12 Pol II subunits. To obtain an insight into the regulation of synthesis of these 12 Pol II subunits, Rpb1 to Rpb12, in the fission yeast Schizosaccharomyces pombe, we analysed the transcriptional organization of the rpb genes by use of the oligo capping method, and determined mRNA levels by quantitative competitive PCR assay. The intracellular concentrations of the 12 Rpb subunits in growing S. pombe cells are different, within a range of 15-fold difference between the least abundant Rpb3 and the most abundant Rpb12. The transcription of one group of genes including rpb3, rpb4, rpb5, rpb6, rpb7 and rpb10 is mainly initiated at a single site, while that of the other group of genes for rpb1, rpb2, rpb8, rpb9, rpb11 and rpb12 is initiated at multiple sites. The promoters of the first group of genes contain the TATA box sequence between -26 and -62, while the second group of genes carry TATA-less promoters. Several common sequence segments, tentatively designated 'Rpb motifs', were identified in the promoter regions of the rpb genes. Competitive PCR analysis indicated that mRNAs for Rpb1, Rpb3, Rpb7 and Rpb9 were among the group which had a low abundance, while the levels of Rpb6 and Rpb10 mRNAs were about fivefold, and that of Rpb2 mRNA was about 40-fold higher than the Rpb3 mRNA level. The levels of rpb mRNAs do not correlate with those of Rpb proteins. The protein-to-mRNA ratio or the translation efficiency is low for the rpb1, rpb2, rpb3 and rpb11 genes, encoding the homologues of subunits beta', beta, alpha and alpha, respectively, of the prokaryotic RNA polymerase core enzyme.
Collapse
Affiliation(s)
- H Sakurai
- National Institute of Genetics, Department of Molecular Genetics, Mishima, Shizuoka 411-8540, Japan
| | | |
Collapse
|
39
|
Milek RL, Stunnenberg HG, Konings RN. Assembly and expression of a synthetic gene encoding the antigen Pfs48/45 of the human malaria parasite Plasmodium falciparum in yeast. Vaccine 2000; 18:1402-11. [PMID: 10618538 DOI: 10.1016/s0264-410x(99)00392-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pfs48/45 is an important transmission-blocking vaccine candidate antigen of the human malaria parasite Plasmodium falciparum. This study was aimed at synthesis of recombinant Pfs48/45 containing conformation-constrained epitopes of the native antigen in yeast. Since in the yeast Saccharomyces cerevisiae induction of gene-expression led to prematurely terminated transcripts, an entirely synthetic gene of higher GC content was assembled. Replacement of the AT rich natural gene by the synthetic gene relieved the observed premature transcription termination. Nevertheless, recombinant protein expression could not be detected. In contrast, in the yeast Pichia pastoris low levels of recombinant Pfs48/45 were produced upon induction of synthetic gene expression. The recombinant protein was shown to be disulphide-bridge constrained, but was not recognised by transmission-blocking antibodies and did not induce transmission-blocking sera in mice.
Collapse
Affiliation(s)
- R L Milek
- Department of Molecular Biology and Cell Biology, University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | | | | |
Collapse
|
40
|
Coury LA, Zeidel ML, Brodsky JL. Use of yeast sec6 mutant for purification of vesicles containing recombinant membrane proteins. Methods Enzymol 1999; 306:169-86. [PMID: 10432454 DOI: 10.1016/s0076-6879(99)06012-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Affiliation(s)
- L A Coury
- Department of Medicine, University of Pittsburgh Medical Center, Pennsylvania 15213-2500, USA
| | | | | |
Collapse
|
41
|
Iost I, Dreyfus M, Linder P. Ded1p, a DEAD-box protein required for translation initiation in Saccharomyces cerevisiae, is an RNA helicase. J Biol Chem 1999; 274:17677-83. [PMID: 10364207 DOI: 10.1074/jbc.274.25.17677] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Ded1 protein (Ded1p), a member of the DEAD-box family, has recently been shown to be essential for translation initiation in Saccharomyces cerevisiae. Here, we show that Ded1p purified from Escherichia coli has an ATPase activity, which is stimulated by various RNA substrates. Using an RNA strand-displacement assay, we show that Ded1p has also an ATP-dependent RNA unwinding activity. Hydrolysis of ATP is required for this activity: the replacement of ATP by a nonhydrolyzable analog or a mutation in the DEAD motif abolishing ATPase activity results in loss of RNA unwinding. We find that cells harboring a Ded1 protein with this mutated DEAD motif are nonviable, suggesting that the ATPase and RNA helicase activities of this protein are essential to the cell. Finally, RNA binding measurements indicate that the presence of ATP, but not ADP, increases the affinity of Ded1p for duplex versus single-stranded RNA; we discuss how this differential effect might drive the unwinding reaction.
Collapse
Affiliation(s)
- I Iost
- Département de Biochimie Médicale, Centre Médical Universitaire, Université de Genève, 1211 Geneva 4, Switzerland
| | | | | |
Collapse
|
42
|
Wuitschick JD, Karrer KM. Analysis of genomic G + C content, codon usage, initiator codon context and translation termination sites in Tetrahymena thermophila. J Eukaryot Microbiol 1999; 46:239-47. [PMID: 10377985 DOI: 10.1111/j.1550-7408.1999.tb05120.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In recent years, the amount of molecular sequencing data from Tetrahymena thermophila has dramatically increased. We analyzed G + C content, codon usage, initiator codon context and stop codon sites in the extremely A + T rich genome of this ciliate. Average G + C content was 38% for protein coding regions, 21% for 5' non-coding sequences, 19% for 3' non-coding sequences, 15% for introns, 19% for micronuclear limited sequences and 17% for macronuclear retained sequences flanking micronuclear specific regions. The 75 available T. thermophila protein coding sequences favored codons ending in T and, where possible, avoided those with G in the third position. Highly expressed genes were relatively G + C-rich and exhibited an extremely biased pattern of codon usage while developmentally regulated genes were more A + T-rich and showed less codon usage bias. Regions immediately preceding Tetrahymena translation initiator codons were generally A-rich. For the 60 stop codons examined, the frequency of G in the end + 1 site was much higher than expected whereas C never occupied this position.
Collapse
Affiliation(s)
- J D Wuitschick
- Department of Biology, Marquette University, Milwaukee, Wisconsin 53201-1881, USA
| | | |
Collapse
|
43
|
Cohen-Kupiec R, Kupiec M, Sandbeck K, Leigh JA. Functional conservation between the argininosuccinate lyase of the archaeon Methanococcus maripaludis and the corresponding bacterial and eukaryal genes. FEMS Microbiol Lett 1999; 173:231-8. [PMID: 10220900 DOI: 10.1111/j.1574-6968.1999.tb13507.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The argH gene encoding argininosuccinate lyase (ASL) of Methanococcus maripaludis was cloned on a 4.7-kb HindIII genomic fragment. The gene is preceded by a short open reading frame (ORF149), which encodes a polypeptide with an unknown function. The two genes are co-transcribed. The ASL of M. maripaludis shares a high amino acid identity with ASLs from both bacterial and eukaryal origins and was able to complement both an argH Escherichia coli mutant and an arg4 yeast mutant, showing its extraordinary evolutionary conservation. Attempts to create an argH auxotroph of M. maripaludis by disrupting the genomic allele were unsuccessful: although a knockout allele of argH was integrated into the M. maripaludis chromosome by homologous recombination, the intact copy was not excluded, suggesting that the argH gene is essential.
Collapse
Affiliation(s)
- R Cohen-Kupiec
- Department of Microbiology, University of Washington, Seattle 98195-7242, USA
| | | | | | | |
Collapse
|
44
|
Huang ME, Souciet JL, Chuat JC, Galibert F. Identification of ACT4, a novel essential actin-related gene in the yeast Saccharomyces cerevisiae. Yeast 1998. [DOI: 10.1002/(sici)1097-0061(199607)12:9<839::aid-yea982>3.0.co;2-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
45
|
Barnes CA. Upf1 and Upf2 proteins mediate normal yeast mRNA degradation when translation initiation is limited. Nucleic Acids Res 1998; 26:2433-41. [PMID: 9580697 PMCID: PMC147546 DOI: 10.1093/nar/26.10.2433] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
mRNA degradation is coupled with the process of mRNA translation. For example, an mRNA molecule, on which translation is prematurely terminated because of a nonsense codon, may be rapidly degraded. This nonsense-mediated mRNA decay in the yeast Saccharomyces cerevisiae is mediated by the Upf1 and Upf2 proteins. Yeast mRNAs can also be selectively destabilized by limiting the rate of translation initiation. Two such destabilized mRNAs, from the SSA1 and SSA2 genes, have been identified using temperature-sensitive mutations affecting the Prt1 component of eukaryotic initiation factor 3. For SSA1 and SSA2 mRNAs, and for structurally modified SSA mRNA derivatives, I show here that degradation is triggered when translation initiation is limited but ongoing. This initiation-dependent mRNA degradation is limited to a subset of mRNAs that includes at least those from the SSA1 and SSA2 genes, and occurs through Upf1- and Upf2-mediated processes, although sequence elements characteristic of nonsense-mediated decay are not evident in these mRNAs.
Collapse
Affiliation(s)
- C A Barnes
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada.
| |
Collapse
|
46
|
Schärer-Hernández N, Hohn T. Nonlinear ribosome migration on cauliflower mosaic virus 35S RNA in transgenic tobacco plants. Virology 1998; 242:403-13. [PMID: 9514980 DOI: 10.1006/viro.1998.9038] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cauliflower mosaic virus (CaMV) uses a specialised translation mechanism to bypass the long leader sequence of the 35S RNA. The effect of the CaMV 35S RNA leader sequence on the expression of a downstream beta-glucuronidase (GUS) reporter gene was studied in transgenic tobacco plants. Enzymatic GUS assays of these transgenic plants show that a shunt mechanism of translation indeed occurs in planta with an average efficiency of 5% compared with the leaderless construct. Histological GUS analyses indicate that the shunt mechanism occurs throughout the whole plant and at all developmental stages.
Collapse
|
47
|
Auchus RJ, Lee TC, Miller WL. Cytochrome b5 augments the 17,20-lyase activity of human P450c17 without direct electron transfer. J Biol Chem 1998; 273:3158-65. [PMID: 9452426 DOI: 10.1074/jbc.273.6.3158] [Citation(s) in RCA: 384] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the biosynthesis of steroid hormones, P450c17 is the single enzyme that catalyzes both the 17alpha-hydroxylation of 21-carbon steroids and the 17,20-lyase activity that cleaves the C17-C20 bond to produce C19 sex steroids. Cytochrome b5 augments the 17,20-lyase activity of cytochrome P450c17 in vitro, but this has not been demonstrated in membranes, and the mechanism of this action is unknown. We expressed human P450c17, human P450-oxidoreductase (OR), and/or human cytochrome b5 in Saccharomyces cerevisiae and analyzed the 17alpha-hydroxylase and 17,20-lyase activities of the resulting yeast microsomes. Yeast expressing only P450c17 have 17alpha-hydroxylase and trace 17,20-lyase activities toward both Delta4 and Delta5 steroids. Coexpression of human OR with P450c17 increases the Vmax of both the 17alpha-hydroxylase and 17,20-lyase reactions 5-fold; coexpression of human b5 with P450c17 also increases the Vmax of the 17,20-lyase reactions but not of the 17alpha-hydroxylase reactions. Simultaneous expression of human b5 with P450c17 and OR, or addition of purified human b5 to microsomes from yeast coexpressing human P450c17 and OR, further increases the Vmax of the 17,20-lyase reaction without altering 17alpha-hydroxylase activity. Genetically engineered yeast and mixing experiments demonstrate that OR is both necessary and sufficient for microsomal 17,20-lyase activity. Addition of purified human holo-b5, apo-b5, or cytochrome c to microsomes containing both human P450c17 and OR demonstrate that the stimulatory action of b5 does not require electron transfer from b5 to P450c17. These data suggest that human b5 acts principally as an allosteric effector that interacts primarily with the P450c17.OR complex to stimulate 17, 20-lyase activity.
Collapse
Affiliation(s)
- R J Auchus
- Department of Pediatrics, University of California, San Francisco, California 94143-0978, USA
| | | | | |
Collapse
|
48
|
Fitzmaurice TF, Desnick RJ, Bishop DF. Human alpha-galactosidase A: high plasma activity expressed by the -30G-->A allele. J Inherit Metab Dis 1997; 20:643-57. [PMID: 9323559 DOI: 10.1023/a:1005366224351] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Human alpha-galactosidase A (EC 3.2.1.22; alpha-Gal A) is the lysosomal exoglycosidase responsible for the hydrolysis of terminal alpha-galactosyl residues from glycoconjugates and is the defective enzyme causing Fabry disease (McKusick 301500). An unusally elevated level of plasma alpha-Gal A activity (> 2.5 times the normal mean) was detected in two unrelated normal males and the elevated activities were inherited as X-linked traits in their families. Sequencing of the alpha-Gal A coding region, intron/exon boundaries and 5'-flanking region from the proband identified a single mutation, a G-->A transition 30 nt upstream from the initiation of translation codon in exon 1. The -30G-->A mutation occurred in a putative NF kappa B/Ets consensus binding site that was recently shown to inhibit protein binding to the 5'-untranslated region of the gene, providing a possible explanation for its high activity. To further characterize the mutation, the mRNA and protein expressed by this variant allele were studied. Purified plasma and lymphoblast alpha-Gal A activity from individuals with the -30G-->A mutation had normal physical and kinetic properties. In vitro translation of mRNAs from the cloned normal and high plasma activity alleles resulted in similar levels of alpha-Gal A protein, indicating that this mutation did not enhance translation. These findings suggest that the -30G-->A mutation in the 5'-untranslated region of the alpha-Gal A gene enhances transcription, presumably by interfering with the binding of negatively-acting transcription factors which normally decrease alpha-Gal A expression in various cells. Preliminary studies of the frequency of the -30G-->A mutation in 395 unrelated normal males of mixed ancestry revealed two additional unrelated individuals who had high plasma enzymatic activity and the mutation, confirming the effect of this mutation on enzyme expression and suggesting that about 0.5% of normal individuals have high plasma alpha-Gal A activity due to this variant allele.
Collapse
Affiliation(s)
- T F Fitzmaurice
- Department of Human Genetics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
49
|
Koloteva N, Müller PP, McCarthy JE. The position dependence of translational regulation via RNA-RNA and RNA-protein interactions in the 5'-untranslated region of eukaryotic mRNA is a function of the thermodynamic competence of 40 S ribosomes in translational initiation. J Biol Chem 1997; 272:16531-9. [PMID: 9195963 DOI: 10.1074/jbc.272.26.16531] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cap proximity is a requirement to enable secondary structures and RNA-binding proteins to repress translational initiation via the 5'-untranslated region (5'-UTR) of mammalian mRNAs. We show that in Saccharomyces cerevisiae, unlike mammalian cells, the in vitro translational repressive effect of the mammalian iron regulatory protein 1 (IRP1) is independent of the site of its target in the 5'-UTR, the iron-responsive element (IRE). In vitro studies demonstrate that the binding affinity of IRP1 is also unaffected by the position of the IRE. Using IRE loop mutants, we observe an almost complete loss of IRP1-dependent repression in yeast concomitant with a 150-fold reduction in binding affinity for the IRE target. This mirrors the natural quantitative range of iron-induced adjustment of IRE/IRP1 affinity in mammalian cells. By enhancing the stability of the IRE stem-loop, we also show that its intrinsic folding energy acts together with the binding energy of IRP1 to give an additive capacity to restrict translational initiation. An IRE.IRP1 complex in a cap-distal position in yeast blocks scanning 40 S ribosomes on the 5'-UTR. It follows that the position effect of mammalian site-specific translational repression is dictated by the competence of the mammalian preinitiation complex to destabilize inhibitory structures at different steps of the initiation process.
Collapse
Affiliation(s)
- N Koloteva
- Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology (UMIST), P. O. Box 88, Manchester M60 1QD, United Kingdom
| | | | | |
Collapse
|
50
|
Nacken V, Achstetter T, Degryse E. Probing the limits of expression levels by varying promoter strength and plasmid copy number in Saccharomyces cerevisiae. Gene 1996; 175:253-60. [PMID: 8917107 DOI: 10.1016/0378-1119(96)00171-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Heterologous gene expression levels were measured in yeast using the Escherichia coli gusA gene (encoding beta-D-glucuronidase) as a reporter. The influence of two major parameters, promoter activity and plasmid copy number, was studied. (1) Promoters used in this study ranged from the very weak constitutive KEX2, the regulated CYC1 and PGK and the mating type-specific MF alpha 1 to the strong constitutive TEF1 and TDH promoters. Using centromeric vectors, gusA expression levels varied within three orders of magnitude. (2) Plasmid copy number was changed by shifting from a monocopy (centromeric plasmid) over a moderate copy number (2 mu-based plasmid) to a high copy number (2 mu associated with the URA3-d selection marker). gusA expression levels increased relatively with plasmid copy number in all cases studied, but did not exceed the equivalent of 2% of total soluble yeast proteins. Coupling these variables, a 5-log range in gene expression levels was covered. Taken together, these results provide a framework which allows a comparison of existing and new promoters. This framework will be useful for expressing genes to required levels.
Collapse
Affiliation(s)
- V Nacken
- Transgène S.A., Yeast Department, Strasbourg, France
| | | | | |
Collapse
|