1
|
Kapelanski-Lamoureux A, Chen Z, Gao ZH, Deng R, Lazaris A, Lebeaupin C, Giles L, Malhotra J, Yong J, Zou C, de Jong YP, Metrakos P, Herzog RW, Kaufman RJ. Ectopic clotting factor VIII expression and misfolding in hepatocytes as a cause for hepatocellular carcinoma. Mol Ther 2022; 30:3542-3551. [PMID: 36242517 PMCID: PMC9734080 DOI: 10.1016/j.ymthe.2022.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
Abstract
Hemophilia A gene therapy targets hepatocytes to express B domain deleted (BDD) clotting factor VIII (FVIII) to permit viral encapsidation. Since BDD is prone to misfolding in the endoplasmic reticulum (ER) and ER protein misfolding in hepatocytes followed by high-fat diet (HFD) can cause hepatocellular carcinoma (HCC), we studied how FVIII misfolding impacts HCC development using hepatocyte DNA delivery to express three proteins from the same parental vector: (1) well-folded cytosolic dihydrofolate reductase (DHFR); (2) BDD-FVIII, which is prone to misfolding in the ER; and (3) N6-FVIII, which folds more efficiently than BDD-FVIII. One week after DNA delivery, when FVIII expression was undetectable, mice were fed HFD for 65 weeks. Remarkably, all mice that received BDD-FVIII vector developed liver tumors, whereas only 58% of mice that received N6 and no mice that received DHFR vector developed liver tumors, suggesting that the degree of protein misfolding in the ER increases predisposition to HCC in the context of an HFD and in the absence of viral transduction. Our findings raise concerns of ectopic BDD-FVIII expression in hepatocytes in the clinic, which poses risks independent of viral vector integration. Limited expression per hepatocyte and/or use of proteins that avoid misfolding may enhance safety.
Collapse
Affiliation(s)
- Audrey Kapelanski-Lamoureux
- Department of Anatomy and Cell Biology, McGill University, Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Zhouji Chen
- Degenerative Diseases Program, Center for Genetic Disorders and Aging Research, SBP Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Zu-Hua Gao
- Department of Pathology and Oncology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada,Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Ruishu Deng
- Degenerative Diseases Program, Center for Genetic Disorders and Aging Research, SBP Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Anthoula Lazaris
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Cynthia Lebeaupin
- Degenerative Diseases Program, Center for Genetic Disorders and Aging Research, SBP Medical Discovery Institute, La Jolla, CA 92037, USA,Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lisa Giles
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Jyoti Malhotra
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Jing Yong
- Degenerative Diseases Program, Center for Genetic Disorders and Aging Research, SBP Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Chenhui Zou
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ype P. de Jong
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Peter Metrakos
- Department of Surgery, McGill University; Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Roland W. Herzog
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Randal J. Kaufman
- Degenerative Diseases Program, Center for Genetic Disorders and Aging Research, SBP Medical Discovery Institute, La Jolla, CA 92037, USA,Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, MI 48109, USA,Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA,Howard Hughes Medical Institute, University of Michigan Medical Center, Ann Arbor, MI 48109, USA,Corresponding author: Randal J. Kaufman, Degenerative Diseases Program, SBP Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
2
|
Gutierrez JM, Feizi A, Li S, Kallehauge TB, Hefzi H, Grav LM, Ley D, Baycin Hizal D, Betenbaugh MJ, Voldborg B, Faustrup Kildegaard H, Min Lee G, Palsson BO, Nielsen J, Lewis NE. Genome-scale reconstructions of the mammalian secretory pathway predict metabolic costs and limitations of protein secretion. Nat Commun 2020; 11:68. [PMID: 31896772 PMCID: PMC6940358 DOI: 10.1038/s41467-019-13867-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/22/2019] [Indexed: 01/08/2023] Open
Abstract
In mammalian cells, >25% of synthesized proteins are exported through the secretory pathway. The pathway complexity, however, obfuscates its impact on the secretion of different proteins. Unraveling its impact on diverse proteins is particularly important for biopharmaceutical production. Here we delineate the core secretory pathway functions and integrate them with genome-scale metabolic reconstructions of human, mouse, and Chinese hamster ovary cells. The resulting reconstructions enable the computation of energetic costs and machinery demands of each secreted protein. By integrating additional omics data, we find that highly secretory cells have adapted to reduce expression and secretion of other expensive host cell proteins. Furthermore, we predict metabolic costs and maximum productivities of biotherapeutic proteins and identify protein features that most significantly impact protein secretion. Finally, the model successfully predicts the increase in secretion of a monoclonal antibody after silencing a highly expressed selection marker. This work represents a knowledgebase of the mammalian secretory pathway that serves as a novel tool for systems biotechnology.
Collapse
Affiliation(s)
- Jahir M Gutierrez
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA
| | - Amir Feizi
- Department of Biology and Biological Engineering, Kemivägen 10, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Shangzhong Li
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA
| | - Thomas B Kallehauge
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Hooman Hefzi
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA
| | - Lise M Grav
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Daniel Ley
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
- Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Michael J Betenbaugh
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218-2686, USA
| | - Bjorn Voldborg
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Helene Faustrup Kildegaard
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Gyun Min Lee
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Kemivägen 10, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Nathan E Lewis
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA.
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA.
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA.
| |
Collapse
|
3
|
Schiavoni M, Napolitano M, Giuffrida G, Coluccia A, Siragusa S, Calafiore V, Lassandro G, Giordano P. Status of Recombinant Factor VIII Concentrate Treatment for Hemophilia a in Italy: Characteristics and Clinical Benefits. Front Med (Lausanne) 2019; 6:261. [PMID: 31850352 PMCID: PMC6901793 DOI: 10.3389/fmed.2019.00261] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/28/2019] [Indexed: 01/19/2023] Open
Abstract
The current interest in recombinant factor VIII (rFVIII) products stems from the fact that they offer a technological solution to prolonging the half-life of and reducing the risk of formation of alloantibodies (inhibitors) against FVIII in treated patients with hemophilia A (HA). The Italian health care system has authorized the use of a wide range of rFVIII concentrates of the first, second, and third generation, as well as new innovative rFVIII preparates with an extended half-life (EHL) (Kogenate FS®-Bayer, belonging to the second generation and replaced since 2017 by a product consisting of the same modified molecule; because it is only available until the end of the current year, it will not be considered in this review). Some of these products have unique pharmacodynamic and pharmacokinetic (PK) profiles, including an EHL. The first-generation full-length rFVIII (FL-rFVIII), octocog alfa (Recombinate® Baxter/BIOVIIIx), although the oldest rFVIII product, has several desirable features. Third-generation products include two modified octocog alfa molecules (Advate®, Shire; Kovaltry®, Bayer) as well as the B domain-deleted rFVIII (BDD-rFVIII) moroctocog alfa (ReFacto®-Pfizer). The B domain-truncated (BDT-rFVIII) turoctocog alfa (NovoEight®, Novo Nordisk), the BDD-rFVIII simoctocog alfa (Nuwiq®, Kedrion), the single-chain BDT-rVIII lonoctocog alfa (Afstyla®, CSL Behring), and the BDD-rFVIIIFc efmoroctocog alfa (Elocta®, Sobi-Biogen) are new, innovative products. Simoctocog alfa, because its peculiarities, is considered a fourth-generation rFVIII concentrate. Turoctocog alfa, simoctocog alfa, and lonoctocog alfa have a high affinity for von Willebrand factor (vWF) that reduces renal clearance and prolongs the half-life of rFVIII. Efmoroctocog alfa, a first-in-class rFVIII-Fc fusion protein (rFVIIIFc), has a half-life 1.5–1.8 times longer than that of conventional plasma-derived FVIII (pd-rFVIII) and other rFVIII products. Clinical studies have evaluated the efficacy, safety, and inhibitor development of all these innovative concentrates in both previously treated (PTPs) and untreated patients (PUPs). This review considers the rFVIII products that are indicated for the treatment of patients with severe HA, focusing on those that are commercially available in Italy. Their PK characteristics, immunogenicity, and clinical benefits are discussed and compared.
Collapse
Affiliation(s)
- Mario Schiavoni
- Associazione per la Lotta alle Malattie Emorragiche e Trombotiche, Maglie, Italy
| | - Mariasanta Napolitano
- Internal Medicine and Medical Specialities, Haematology Unit, Department of Health Promotion, Mother and Child Care, Reference Regional Center for Thrombosis and Haemostasis, University of Palermo, Palermo, Italy
| | - Gaetano Giuffrida
- U.O.C. di Ematologia, A.O.U. Policlinico "Vittorio Emanuele", Catania, Italy
| | - Antonella Coluccia
- U.O.C di Medicina Interna, Centro Emofilia e Coagulopatie Rare-Ospedale "I.Veris delli Ponti", Scorrano-ASL, Lecce, Italy
| | - Sergio Siragusa
- U.O.C. di Ematologia, Università degli Studi, Palermo, Italy
| | - Valeria Calafiore
- U.O.C. di Ematologia, A.O.U. Policlinico "Vittorio Emanuele", Catania, Italy
| | - Giuseppe Lassandro
- Dipartimento di Scienza Biomedica e Oncologia Umana, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Paola Giordano
- Dipartimento di Scienza Biomedica e Oncologia Umana, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
4
|
Alves CS, Dobrowsky TM. Strategies and Considerations for Improving Expression of "Difficult to Express" Proteins in CHO Cells. Methods Mol Biol 2017; 1603:1-23. [PMID: 28493120 DOI: 10.1007/978-1-4939-6972-2_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Despite substantial advances in the field of mammalian expression, there are still proteins that are characterized as difficult to express. Determining the expression bottleneck requires troubleshooting techniques specific for the given molecule and host. The complex array of intracellular processes involved in protein expression includes transcription, protein folding, post-translation processing, and secretion. Challenges in any of these steps could result in low protein expression, while the inherent properties of the molecule itself may limit its production via mechanisms such as cytotoxicity or inherent instability. Strategies to identify the rate-limiting step and subsequently improve expression and production are discussed here.
Collapse
|
5
|
Kim SC, An S, Kim HK, Park BS, Na KH, Kim BG. Effect of transmembrane pressure on Factor VIII yield in ATF perfusion culture for the production of recombinant human Factor VIII co-expressed with von Willebrand factor. Cytotechnology 2015; 68:1687-96. [PMID: 26464271 DOI: 10.1007/s10616-015-9918-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/21/2015] [Indexed: 10/23/2022] Open
Abstract
In this study, we evaluated three cell retention devices, an alternating tangential flow (ATF) system, a spin-filter, and a Centritech Lab III centrifuge, for the production of recombinant human Factor VIII co-expressed with von Willebrand factor. From the results, it was found that the FVIII activity in bioreactor was significantly higher in the ATF perfusion culture than two other perfusion cultures. Moreover, the FVIII activity yield was unexpectedly low in the ATF perfusion culture. We have, therefore, studied the reasons for this low FVIII activity yield. It was revealed that the inactivation and the surface adsorption of FVIII onto the harvest bag were not the main reasons for the low yield in the ATF perfusion culture. The FVIII activity yield was not increased by the use of a hollow fiber filter with 0.5 μm pore size instead of 0.2 μm pore size. Additionally, the retention of FVIII molecules by the hollow fiber filter was a dominant factor in the low FVIII activity yield in the ATF perfusion culture. We demonstrated that FVIII yield was significantly improved by controlling transmembrane pressure (TMP) across the hollow fiber filter membrane. Taken together, these results suggest that TMP control could be an efficient method for the enhancement of FVIII yield in an ATF perfusion culture.
Collapse
Affiliation(s)
- Seung-Chul Kim
- Research Institute, Dong-A Socio-Holdings Co., Ltd., Yong-in, 449-900, Republic of Korea.,Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 151-742, Republic of Korea
| | - Sora An
- Research Institute, Dong-A Socio-Holdings Co., Ltd., Yong-in, 449-900, Republic of Korea
| | - Hyun-Ki Kim
- Research Institute, Dong-A Socio-Holdings Co., Ltd., Yong-in, 449-900, Republic of Korea
| | - Beom-Soo Park
- Research Institute, Dong-A Socio-Holdings Co., Ltd., Yong-in, 449-900, Republic of Korea
| | - Kyu-Heum Na
- Research Institute, Dong-A Socio-Holdings Co., Ltd., Yong-in, 449-900, Republic of Korea
| | - Byung-Gee Kim
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 151-742, Republic of Korea. .,School of Chemical and Biological Engineering, College of Engineering, Institute of Bioengineering, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, 151-744, Republic of Korea.
| |
Collapse
|
6
|
Shi Q, Schroeder JA, Kuether EL, Montgomery RR. The important role of von Willebrand factor in platelet-derived FVIII gene therapy for murine hemophilia A in the presence of inhibitory antibodies. J Thromb Haemost 2015; 13:1301-9. [PMID: 25955153 PMCID: PMC4496307 DOI: 10.1111/jth.13001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/16/2015] [Indexed: 12/01/2022]
Abstract
BACKGROUND Our previous studies have demonstrated that targeting FVIII expression to platelets results in FVIII storage together with von Willebrand factor (VWF) in platelet α-granules and that platelet-derived FVIII (2bF8) corrects the murine hemophilia A phenotype even in the presence of high-titer anti-FVIII inhibitory antibodies (inhibitors). OBJECTIVE To explore how VWF has an impact on platelet gene therapy for hemophilia A with inhibitors. METHODS 2bF8 transgenic mice in the FVIII(-/-) background (2bF8(tg+/-) F8(-/-) ) with varying VWF phenotypes were used in this study. Animals were analyzed by VWF ELISA, FVIII activity assay, Bethesda assay and tail clip survival test. RESULTS Only 18% of 2bF8(tg+/-) F8(-/-) VWF(-/-) animals, in which VWF was deficient, survived the tail clip challenge with inhibitor titers of 3-8000 BU mL(-1) . In contrast, 82% of 2bF8(tg+/-) F8(-/-) VWF(+/+) mice, which had normal VWF levels, survived tail clipping with inhibitor titers of 10-50,000 BU mL(-1) . All 2bF8(tg+/-) F8(-/-) VWF(-/-) mice without inhibitors survived tail clipping and no VWF(-/-) F8(-/-) mice survived this challenge. Because VWF is synthesized by endothelial cells and megakaryocytes and is distributed in both plasma and platelets in peripheral blood, we further investigated the effect of each compartment of VWF on platelet-FVIII gene therapy for hemophilia A with inhibitors. In the presence of inhibitors, 42% of animals survived tail clipping in the group with plasma-VWF and 50% survived in the platelet-VWF group. CONCLUSION VWF is essential for platelet gene therapy for hemophilia A with inhibitors. Both platelet-VWF and plasma-VWF are required for optimal platelet-derived FVIII gene therapy for hemophilia A in the presence of inhibitors.
Collapse
Affiliation(s)
- Q Shi
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, USA
- Children's Research Institute, Children's Hospital of Wisconsin, Milwaukee, WI, USA
- MACC Fund Research Center, Milwaukee, WI, USA
| | - J A Schroeder
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, USA
- Children's Research Institute, Children's Hospital of Wisconsin, Milwaukee, WI, USA
| | - E L Kuether
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, USA
- Children's Research Institute, Children's Hospital of Wisconsin, Milwaukee, WI, USA
| | - R R Montgomery
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, USA
- Children's Research Institute, Children's Hospital of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
7
|
Doering CB, Spencer HT. Replacing bad (F)actors: hemophilia. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2014; 2014:461-467. [PMID: 25696895 DOI: 10.1182/asheducation-2014.1.461] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Hemophilia A and B are bleeding disorders that result from functional deficiencies in specific circulating blood clotting factors termed factor VIII (FVIII) and factor IX (FIX), respectively, and collectively display an incidence of 1 in 4000 male births. Stem cell transplantation therapies hold the promise of providing a cure for hemophilia, but currently available transplantable stem cell products do not confer endogenous FIX or FVIII biosynthesis. For this reason, stem cell-based approaches for hemophilia have focused primarily on genetic engineering of pluripotent or multipotent stem cells. While pluripotent stem cells have been branded with high expectation and promise, they remain poorly characterized in terms of clinical utility and safety. In contrast, adult-lineage-restricted stem cells are established agents in the clinical armamentarium. Of the clinically established stem cell types, hematopoietic stem cells (HSCs) are the most utilized and represent the standard of care for several genetic and acquired diseases. Furthermore, HSCs are ideal cellular vehicles for gene therapy applications because they self-renew, repopulate the entire blood lineage while concurrently amplifying the transgene copy number >10(6) fold, and also have direct access to the bloodstream. Current research on HSC transplantation gene therapy approaches for hemophilia A and B is focused on the following: (1) identification of safe and efficient methods of nucleic acid transfer, (2) optimization of transgene product expression, (3) minimization of conditioning-regimen-related toxicity while maintaining HSC engraftment, and (4) overcoming preexisting immunity. Based on the existing data and current rate of progress, clinical trials of HSC transplantation gene therapy for hemophilia are predicted to begin in the coming years.
Collapse
Affiliation(s)
- Christopher B Doering
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - H Trent Spencer
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
8
|
Platelet-targeted gene therapy with human factor VIII establishes haemostasis in dogs with haemophilia A. Nat Commun 2014; 4:2773. [PMID: 24253479 PMCID: PMC3868233 DOI: 10.1038/ncomms3773] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 10/15/2013] [Indexed: 12/29/2022] Open
Abstract
It is essential to improve therapies for controlling excessive bleeding in patients with haemorrhagic disorders. As activated blood platelets mediate the primary response to vascular injury, we hypothesize that storage of coagulation Factor VIII within platelets may provide a locally inducible treatment to maintain haemostasis for haemophilia A. Here we show that haematopoietic stem cell gene therapy can prevent the occurrence of severe bleeding episodes in dogs with haemophilia A for at least 2.5 years after transplantation. We employ a clinically relevant strategy based on a lentiviral vector encoding the ITGA2B gene promoter, which drives platelet-specific expression of human FVIII permitting storage and release of FVIII from activated platelets. One animal receives a hybrid molecule of FVIII fused to the von Willebrand Factor propeptide-D2 domain that traffics FVIII more effectively into α-granules. The absence of inhibitory antibodies to platelet-derived FVIII indicates that this approach may have benefit in patients who reject FVIII replacement therapies. Thus, platelet FVIII may provide effective long-term control of bleeding in patients with haemophilia A.
Collapse
|
9
|
Abstract
The primary cellular source of factor VIII (FVIII) biosynthesis is controversial, with contradictory evidence supporting an endothelial or hepatocyte origin. LMAN1 is a cargo receptor in the early secretory pathway that is responsible for the efficient secretion of factor V (FV) and FVIII to the plasma. Lman1 mutations result in combined deficiency of FV and FVIII, with levels of both factors reduced to ~10% to 15% of normal in human patients. We generated Lman1 conditional knockout mice to characterize the FVIII secretion profiles of endothelial cells and hepatocytes. We demonstrate that endothelial cells are the primary biosynthetic source of murine FVIII and that hepatocytes make no significant contribution to the plasma FVIII pool. Utilizing RiboTag mice and polyribosome immunoprecipitation, we performed endothelial cell-specific messenger RNA isolation and quantitative polymerase chain reaction analyses to confirm that endothelial cells highly express F8 and to explore the heterogeneity of F8 expression in different vascular beds. We demonstrate that endothelial cells from multiple, but not all, tissues contribute to the plasma FVIII pool in the mouse.
Collapse
|
10
|
Montgomery RR, Shi Q. Platelet and endothelial expression of clotting factors for the treatment of hemophilia. Thromb Res 2012; 129 Suppl 2:S46-8. [PMID: 22421106 DOI: 10.1016/j.thromres.2012.02.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hemostasis is achieved by the coordinate interaction of plasma, platelets, and vascular endothelium. Coagulation factors circulate in plasma with synthesis in liver and in endothelium. Interaction between Factor VIII (FVIII) and von Willebrand factor (VWF) in plasma is critically important, but there remains some question about whether this relationship is first established within the endothelial cell or in plasma. When FVIII is expressed with VWF in a cell that stores VWF, FVIII will also be stored and released. The manuscript will summarize some studies in which gene therapy exploits this relationship between VWF and FVIII to achieve hemostasis even in the presence of circulating inhibitory antibodies to FVIII. VWF is critical to this efficacy in the presence of inhibitors. Since FIX expression in platelets is effective for hemophilia B, efficacy in the presence of inhibitory antibodies to FIX was not achieved and emphasized the importance of VWF to the efficacy of platelet FVIII expression. These approaches have been studied in murine models but will need further study before this approach can be attempted clinically.
Collapse
Affiliation(s)
- Robert R Montgomery
- Blood Research Institute of BloodCenter of Wisconsin and Medical College of Wisconsin, Milwaukee, WI, USA.
| | | |
Collapse
|
11
|
Shi Q, Kuether EL, Schroeder JA, Fahs SA, Montgomery RR. Intravascular recovery of VWF and FVIII following intraperitoneal injection and differences from intravenous and subcutaneous injection in mice. Haemophilia 2012; 18:639-46. [PMID: 22221819 DOI: 10.1111/j.1365-2516.2011.02735.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Intravenous infusion studies in humans suggest that both von Willebrand factor (VWF) and factor VIII (FVIII) remain intravascular in contrast to other coagulation proteins. We explored whether infusion of VWF and FVIII by either intraperitoneal (i.p.) or subcutaneous (s.c.) injection would result in efficient absorption of these large proteins into the vascular circulation. FVIII(null) or VWF(null) mice were infused with plasma-derived or recombinant VWF and/or FVIII by i.p., s.c., or intravenous (i.v.) injection. Both VWF and FVIII were absorbed into the blood circulation after i.p. injection with a peak between 2 and 4 h at levels similar to those observed in mice infused intravenously. In contrast, neither VWF nor FVIII was detected in the plasma following s.c. injection. Although i.v. injection achieved peak plasma levels quickly, both human VWF and FVIII rapidly decreased during the first 2 h following i.v. injection. Following both i.v. and i.p. infusion of VWF, the multimeric structure of circulating VWF was similar to that observed in the infusate. These results demonstrate that both VWF and FVIII can be efficiently absorbed into the blood circulation following i.p., but not s.c. injection, indicating that i.p. administration could be an alternative route for VWF or FVIII infusion.
Collapse
Affiliation(s)
- Q Shi
- Department of Pediatrics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | | | | | | | | |
Collapse
|
12
|
Selvaraj SR, Scheller AN, Miao HZ, Kaufman RJ, Pipe SW. Bioengineering of coagulation factor VIII for efficient expression through elimination of a dispensable disulfide loop. J Thromb Haemost 2012; 10:107-15. [PMID: 22044596 PMCID: PMC3290727 DOI: 10.1111/j.1538-7836.2011.04545.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Heterologous expression of factor VIII (FVIII) is about two to three orders of magnitude lower than similarly sized proteins. Bioengineering strategies aimed at different structural and biochemical attributes of FVIII have been successful in enhancing its expression levels. OBJECTIVE Disulfide bonds are vital to the proper folding, secretion and stability of most secretory proteins. In an effort to explore additional targeted bioengineering approaches, the role of disulfide bonds in FVIII secretion and function was probed in this study. METHODS AND RESULTS Single and paired cysteine mutants were generated by substituting with serine or glycine residues and analyzed by transient transfection into COS-1 and CHO cells. Seven of the eight disulfide bonds in FVIII were found to be indispensable for proper secretion and function. However, elimination of the disulfide bond formed by C1899 and C1903 within the conserved A3 domain improved the secretion of FVIII. The addition of the C1899G/C1903G mutations to a previously described FVIII variant, 226/N6, with high secretion efficiency increased its secretion by 2.2-fold. Finally, the addition of the A1-domain mutation, F309S, in conjunction with the disulfide mutation had an additive effect, resulting in a net improvement in secretion of between 35 and 45-fold higher than wild-type FVIII in CHO cells. CONCLUSION Such combined targeted bioengineering strategies may facilitate more efficient production of recombinant FVIII and contribute toward low-cost factor replacement therapy for hemophilia A.
Collapse
Affiliation(s)
- S R Selvaraj
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
13
|
Swiech K, Kamen A, Ansorge S, Durocher Y, Picanço-Castro V, Russo-Carbolante EMS, Neto MSA, Covas DT. Transient transfection of serum-free suspension HEK 293 cell culture for efficient production of human rFVIII. BMC Biotechnol 2011; 11:114. [PMID: 22115125 PMCID: PMC3254136 DOI: 10.1186/1472-6750-11-114] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 11/24/2011] [Indexed: 12/03/2022] Open
Abstract
Background Hemophilia A is a bleeding disorder caused by deficiency in coagulation factor VIII. Recombinant factor VIII (rFVIII) is an alternative to plasma-derived FVIII for the treatment of hemophilia A. However, commercial manufacturing of rFVIII products is inefficient and costly and is associated to high prices and product shortage, even in economically privileged countries. This situation may be solved by adopting more efficient production methods. Here, we evaluated the potential of transient transfection in producing rFVIII in serum-free suspension HEK 293 cell cultures and investigated the effects of different DNA concentration (0.4, 0.6 and 0.8 μg/106 cells) and repeated transfections done at 34° and 37°C. Results We observed a decrease in cell growth when high DNA concentrations were used, but no significant differences in transfection efficiency and in the biological activity of the rFVIII were noticed. The best condition for rFVIII production was obtained with repeated transfections at 34°C using 0.4 μg DNA/106 cells through which almost 50 IU of active rFVIII was produced six days post-transfection. Conclusion Serum-free suspension transient transfection is thus a viable option for high-yield-rFVIII production. Work is in progress to further optimize the process and validate its scalability.
Collapse
Affiliation(s)
- Kamilla Swiech
- Regional Blood Center of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Pipe SW, Miao H, Butler SP, Calcaterra J, Velander WH. Functional factor VIII made with von Willebrand factor at high levels in transgenic milk. J Thromb Haemost 2011; 9:2235-42. [PMID: 21920013 PMCID: PMC3444248 DOI: 10.1111/j.1538-7836.2011.04505.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Current manufacturing methods for recombinant human factor VIII (rFVIII) within mammalian cell cultures are inefficient, hampering the production of sufficient amounts for affordable, worldwide treatment of hemophilia A. However, rFVIII has been expressed at very high levels by the transgenic mammary glands of mice, rabbits, sheep, and pigs. Unfortunately, it is secreted into milk with low specific activity, owing in part to the labile, heterodimeric structure that results from furin processing of its B domain. OBJECTIVES To express biologically active rFVIII in the milk of transgenic mice through targeted bioengineering. METHODS Transgenic mice were made with a mammary-specific FVIII gene (226/N6) bioengineered for efficient expression and stability, encoding a protein containing a B domain with no furin cleavage sites. 226/N6 was expressed with and without von Willebrand factor (VWF). 226/N6 was evaluated by ELISA, SDS-PAGE, western blot, and one-stage and two-stage clotting assays. The hemostatic activity of immunoaffinity-enriched 226/N6 was studied in vivo by infusion into hemophilia A knockout mice. RESULTS AND CONCLUSIONS With or without coexpression of VWF, 226/N6 was secreted into milk as a biologically active single-chain molecule that retained high specific activity, similar to therapeutic-grade FVIII. 226/N6 had > 450-fold higher IU mL(-1) than previously reported in cell culture for rFVIII. 226/N6 exhibited similar binding to plasma-derived VWF as therapeutic-grade rFVIII, and intravenous infusion of transgenic 226/N6 corrected the bleeding phenotype of hemophilia A mice. This provides proof-of-principle for the study of expression of 226/N6 and perhaps other single-chain bioengineered rFVIIIs in the milk of transgenic livestock.
Collapse
Affiliation(s)
- Steven W. Pipe
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
| | - Hongzhi Miao
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
| | - Stephen P. Butler
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Jennifer Calcaterra
- Department of Chemical & Biomolecular Engineering, University of Nebraska, Lincoln, NE
| | - William H. Velander
- Department of Chemical & Biomolecular Engineering, University of Nebraska, Lincoln, NE
| |
Collapse
|
15
|
Maintenance and break of immune tolerance against human factor VIII in a new transgenic hemophilic mouse model. Blood 2011; 118:3698-707. [DOI: 10.1182/blood-2010-11-316521] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Replacement of the missing factor VIII (FVIII) is the current standard of care for patients with hemophilia A. However, the short half-life of FVIII makes frequent treatment necessary. Current efforts focus on the development of longer-acting FVIII concentrates by introducing chemical and genetic modifications to the protein. Any modification of the FVIII protein, however, risks increasing its immunogenic potential to induce neutralizing antibodies (FVIII inhibitors), and this is one of the major complications in current therapy. It would be highly desirable to identify candidates with a high risk for increased immunogenicity before entering clinical development to minimize the risk of exposing patients to such altered FVIII proteins. In the present study, we describe a transgenic mouse line that expresses a human F8 cDNA. This mouse is immunologically tolerant to therapeutic doses of native human FVIII but is able to mount an antibody response when challenged with a modified FVIII protein that possesses altered immunogenic properties. In this situation, immunologic tolerance breaks down and antibodies develop that recognize both the modified and the native human FVIII. The applicability of this new model for preclinical immunogenicity assessment of new FVIII molecules and its potential use for basic research are discussed.
Collapse
|
16
|
Optimisation of the Factor VIII yield in mammalian cell cultures by reducing the membrane bound fraction. J Biotechnol 2011; 151:357-62. [DOI: 10.1016/j.jbiotec.2010.12.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 12/20/2010] [Accepted: 12/23/2010] [Indexed: 11/18/2022]
|
17
|
Abstract
Gene therapy for hemophilia A would be facilitated by development of smaller expression cassettes encoding factor VIII (FVIII), which demonstrate improved biosynthesis and/or enhanced biologic properties. B domain deleted (BDD) FVIII retains full procoagulant function and is expressed at higher levels than wild-type FVIII. However, a partial BDD FVIII, leaving an N-terminal 226 amino acid stretch (N6), increases in vitro secretion of FVIII tenfold compared with BDD-FVIII. In this study, we tested various BDD constructs in the context of either wild-type or codon-optimized cDNA sequences expressed under control of the strong, ubiquitous Spleen Focus Forming Virus promoter within a self-inactivating HIV-based lentiviral vector. Transduced 293T cells in vitro demonstrated detectable FVIII activity. Hemophilic mice treated with lentiviral vectors showed expression of FVIII activity and phenotypic correction sustained over 250 days. Importantly, codon-optimized constructs achieved an unprecedented 29- to 44-fold increase in expression, yielding more than 200% normal human FVIII levels. Addition of B domain sequences to BDD-FVIII did not significantly increase in vivo expression. These significant findings demonstrate that shorter FVIII constructs that can be more easily accommodated in viral vectors can result in increased therapeutic efficacy and may deliver effective gene therapy for hemophilia A.
Collapse
|
18
|
Shi Q, Montgomery RR. Platelets as delivery systems for disease treatments. Adv Drug Deliv Rev 2010; 62:1196-203. [PMID: 20619307 DOI: 10.1016/j.addr.2010.06.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 06/29/2010] [Indexed: 12/23/2022]
Abstract
Platelets are small, anucleate, discoid shaped blood cells that play a fundamental role in hemostasis. Platelets contain a large number of biologically active molecules within cytoplasmic granules that are critical to normal platelet function. Because platelets circulate in blood through out the body, release biological molecules and mediators on demand and participate in hemostasis as well as many other pathophysiologic processes, targeting expression of proteins of interest to platelets and utilizing platelets as delivery systems for disease treatment would be a logical approach. This paper reviews the genetic therapy for inherited bleeding disorders utilizing platelets as delivery system, with a particular focus on platelet-derived FVIII for hemophilia A treatment.
Collapse
|
19
|
Ku SCY, Toh PC, Lee YY, Chusainow J, Yap MGS, Chao SH. Regulation of XBP-1 signaling during transient and stable recombinant protein production in CHO cells. Biotechnol Prog 2010; 26:517-26. [PMID: 19938059 DOI: 10.1002/btpr.322] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
X-box binding protein 1 (XBP-1) is a key regulator of cellular unfolded protein response (UPR). The spliced isoform of XBP-1, XBP-1S, is a transcription activator, which is expressed only when UPR is induced. However, the impact of recombinant protein production on the regulation of XBP-1 signaling in CHO cells is not well understood. In this report, we cloned the Chinese hamster XBP-1 homolog to aid the investigation of the interplay between protein productivity, culture conditions, and endogenous XBP-1 signaling in CHO cells. Interestingly, expression of XBP-1S is detected in the non-producing and unstressed CHO-K1 cells. Transient expression of recombinant erythropoietin reveals a positive correlation between XBP-1 mRNA abundance and protein production level. However, such a correlation is not observed in batch cultivation of stable producing cell lines. The increased XBP-1 splicing is detected in late-phase cultures, suggesting that induction of XBP-1S may be a result of nutrient limitations or other environmental stresses rather than that of increased intracellular accumulation of recombinant proteins. Our data suggest that XBP-1 is a key determinant for the secretory capacity of CHO cells. Understanding its dynamic regulation hence provides a rational basis for cellular engineering strategies to improve recombinant protein secretion.
Collapse
Affiliation(s)
- Sebastian C Y Ku
- Expression Engineering Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668, Singapore
| | | | | | | | | | | |
Collapse
|
20
|
Montgomery RR, Shi Q. Alternative strategies for gene therapy of hemophilia. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2010; 2010:197-202. [PMID: 21239794 PMCID: PMC3383974 DOI: 10.1182/asheducation-2010.1.197] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Hemophilia A and B are monogenic disorders that were felt to be ideal targets for initiation of gene therapy. Although the first hemophilia gene therapy trial has been over 10 years ago, few trials are currently actively recruiting. Although preclinical studies in animals were promising, levels achieved in humans did not achieve long-term expression at adequate levels to achieve cures. Transplantation as a source of cellular replacement therapy for both hemophilia A and B have been successful following liver transplantation in which the recipient produces normal levels of either factor VIII (FVIII) or factor IX (FIX). Most of these transplants have been conducted for the treatment of liver failure rather than for "curing" hemophilia. There are a variety of new strategies for delivering the missing clotting factor through ectopic expression of the deficient protein. One approach uses hematopoietic stem cells using either a nonspecific promoter or using a lineage-specific promoter. An alternative strategy includes enhanced expression in endothelial cells or blood-outgrowth endothelial cells. An additional approach includes the expression of FVIII or FIX intraarticularly to mitigate the intraarticular bleeding that causes much of the disability for hemophilia patients. Because activated factor VII (FVIIa) can be used to treat patients with inhibitory antibodies to replacement clotting factors, preclinical gene therapy has been performed using platelet- or liver-targeted FVIIa expression. All of these newer approaches are just beginning to be explored in large animal models. Whereas improved recombinant replacement products continue to be the hallmark of hemophilia therapy, the frequency of replacement therapy is beginning to be addressed through longer-acting replacement products. A safe cure of hemophilia is still the desired goal, but many barriers must still be overcome.
Collapse
Affiliation(s)
- Robert R. Montgomery
- Blood Research Institute, BloodCenter of Wisconsin, and Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
| | - Qizhen Shi
- Blood Research Institute, BloodCenter of Wisconsin, and Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
21
|
Su RJ, Epp A, Latchman Y, Bolgiano D, Pipe SW, Josephson NC. Suppression of FVIII inhibitor formation in hemophilic mice by delivery of transgene modified apoptotic fibroblasts. Mol Ther 2009; 18:214-22. [PMID: 19755963 DOI: 10.1038/mt.2009.209] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The development of inhibitory antibodies to factor VIII (FVIII) is currently the most significant complication of FVIII replacement therapy in the management of patients with severe hemophilia A. Immune tolerance protocols for the eradication of inhibitors require daily delivery of intravenous FVIII for at least 6 months and are unsuccessful in 20-40% of treated patients. We hypothesize that tolerance can be induced more efficiently and reliably by delivery of FVIII antigen within autologous apoptotic cells (ACs). In this study, we demonstrated suppression of the T cell and inhibitor responses to FVIII by infusion of FVIII expression vector modified apoptotic syngeneic fibroblasts in both naive and preimmunized hemophilia A mice. ACs without FVIII antigen exerted modest generalized immune suppression mediated by anti-inflammatory signals. However, FVIII expressing apoptotic syngeneic fibroblasts produced much stronger antigen-specific immune suppression. Mice treated with these fibroblasts generated CD4+ T cells that suppressed the immune response to FVIII after adoptive transfer into naive recipients and antigen-specific CD4+CD25+ regulatory T cells (Tregs) that inhibited the proliferation of FVIII responsive effector T cells in vitro. These preclinical results demonstrate the potential for using FVIII vector modified autologous ACs to treat high-titer inhibitors in patients with hemophilia A.
Collapse
Affiliation(s)
- Rui-Jun Su
- Puget Sound Blood Center, Seattle, Washington 98104-1256, USA
| | | | | | | | | | | |
Collapse
|
22
|
Takeyama M, Nogami K, Okuda M, Shima M. Von Willebrand factor protects the Ca2+-dependent structure of the factor VIII light chain. Br J Haematol 2009; 146:531-7. [DOI: 10.1111/j.1365-2141.2009.07792.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Terraube V, O'Donnell JS, Jenkins PV. Factor VIII and von Willebrand factor interaction: biological, clinical and therapeutic importance. Haemophilia 2009; 16:3-13. [PMID: 19473409 DOI: 10.1111/j.1365-2516.2009.02005.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interaction of factor VIII (FVIII) with von Willebrand Factor (VWF) is of direct clinical significance in the diagnosis and treatment of patients with haemophilia A and von Willebrand disease (VWD). A normal haemostatic response to vascular injury requires both FVIII and VWF. It is well-established that in addition to its role in mediating platelet to platelet and platelet to matrix binding, VWF has a direct role in thrombin and fibrin generation by acting as a carrier molecule for the cofactor FVIII. Recent studies show that the interaction affects not only the biology of both FVIII and VWF, and the pathology of haemophilia and VWD, but also presents opportunities in the treatment of haemophilia. This review details the mechanisms and the molecular determinants of FVIII interaction with VWF, and the role of FVIII-VWF interaction in modulating FVIII interactions with other proteases, cell types and cellular receptors. The effect of defective interaction of FVIII with VWF as a result of mutations in either protein is discussed.
Collapse
Affiliation(s)
- V Terraube
- Haemostasis Research Group, Institute of Molecular Medicine, Trinity College, Dublin, Ireland
| | | | | |
Collapse
|
24
|
Grillberger L, Kreil TR, Nasr S, Reiter M. Emerging trends in plasma-free manufacturing of recombinant protein therapeutics expressed in mammalian cells. Biotechnol J 2009; 4:186-201. [PMID: 19226552 PMCID: PMC2699044 DOI: 10.1002/biot.200800241] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mammalian cells are the expression system of choice for therapeutic proteins, especially those requiring complex post‐translational modifications. Traditionally, these cells are grown in medium supplemented with serum and other animal‐ or human‐derived components to support viability and productivity. Such proteins are also typically added as excipients and stabilizers in the final drug formulation. However, the transmission of hepatitis B in the 1970s and of hepatitis C and HIV in the 1980s through plasma‐derived factor VIII concentrates had catastrophic consequences for hemophilia patients. Thus, due to regulatory concerns about the inherent potential for transmission of infectious agents as well as the heterogeneity and lack of reliability of the serum supply, a trend has emerged to eliminate the use of plasma‐derived additives in the production and formulation of recombinant protein therapeutics. This practice began with products used in the treatment of hemophilia and is progressively expanding throughout the entire industry. The plasma‐free method of producing recombinant therapeutics is accomplished by the use of both cell culture media and final product formulations that do not contain animal‐ or human‐derived additives. A number of recombinant therapeutic proteins for the treatment of several different diseases have been produced by plasma‐free processes, with the objective of improving safety by eliminating blood‐borne pathogens or by reducing immunogenicity. This review describes the factors that drove the development of plasma‐free protein therapeutics and provides examples of advances in manufacturing that have made possible the removal of human and animal‐derived products from all steps of recombinant protein production.
Collapse
|
25
|
Takeyama M, Nogami K, Okuda M, Sakurai Y, Matsumoto T, Tanaka I, Yoshioka A, Shima M. Selective factor VIII and V inactivation by iminodiacetate ion exchange resin through metal ion adsorption. Br J Haematol 2008; 142:962-70. [PMID: 18643923 DOI: 10.1111/j.1365-2141.2008.07289.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The procoagulant activity of factors VIII and V depends on the presence of metal ion(s). We examined the effect of cation-exchange resins with different functional groups on both factors, of which only reaction with iminodiacetate resin resulted in the complete loss of their activity levels in plasma. However, the antigen level of factor VIII was preserved by >95%. This resin reduced divalent cations content present in factor VIII preparations, indicating that it inactivated this factor by direct deprivation of predominant Ca(2+) (>Mn(2+)>>Cu(2+)), rather than adsorption of the factor itself. The antigen level of recombinant factor VIII alone was decreased by >95% by reaction with resin, whilst that complexed with von Willebrand factor was preserved by >95%. Iminodiacetate resin-treated plasma was evaluated by measuring factor VIII and V activity in plasma with various levels of either activity. These were significantly correlated to the values obtained using factor VIII- or V-deficient plasma prepared commercially by immunodepletion. We demonstrated that iminodiacetate resin-induced factors VIII and V inactivation is because of direct deprivation of metal ions, predominantly Ca(2+), which is more essential for the functional structure of their molecules. Furthermore, iminodiacetate resin-treated plasma would be useful as a substrate for measuring the activity of these factors.
Collapse
Affiliation(s)
- Masahiro Takeyama
- Department of Paediatrics, Nara Medical University, Kashihara, Nara, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Campos-da-Paz M, Costa CS, Quilici LS, Simões IDC, Kyaw CM, Maranhão AQ, Brigido MM. Production of Recombinant Human Factor VIII in Different Cell Lines and the Effect of Human XBP1 Co-Expression. Mol Biotechnol 2008; 39:155-8. [DOI: 10.1007/s12033-008-9055-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
|
28
|
van den Biggelaar M, Bierings R, Storm G, Voorberg J, Mertens K. Requirements for cellular co-trafficking of factor VIII and von Willebrand factor to Weibel-Palade bodies. J Thromb Haemost 2007; 5:2235-42. [PMID: 17958741 DOI: 10.1111/j.1538-7836.2007.02737.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND von Willebrand factor (VWF) serves a critical role as a carrier of factor (F)VIII in circulation. While it is generally believed that FVIII and VWF assemble in circulation after secretion from different cells, an alternative view is that cells should exist that co-express FVIII and VWF. OBJECTIVES In this study, intracellular co-expression of FVIII and VWF was studied, with particular reference to complex assembly and high-affinity interaction. METHODS Using yellow fluorescent protein-tagged FVIII (FVIII-YFP) and cyan fluorescent protein-tagged VWF (VWF-CFP), we studied intracellular trafficking in human embryonic kidney (HEK293) cells and human umbilical vein endothelial cells (HUVEC). The role of the high-affinity interaction between FVIII and VWF was assessed using a FVIII-YFP variant carrying a Tyr1680Phe substitution, which abolishes high-affinity binding to VWF. Cellular trafficking studies were complemented by binding studies employing purified proteins. RESULTS Solid phase binding assays employing FVIII-YFP demonstrated that the presence of the fluorescent moiety did not compromise high-affinity binding (K(d) = 0.065 +/- 0.008 nm) whereas the binding of the Tyr1680Phe FVIII-YFP variant was significantly reduced. Co-expression studies in HEK293 cells revealed intracellular co-storage of both FVIII-YFP and Tyr1680Phe FVIII-YFP within VWF-containing storage organelles. In addition, expression of FVIII-YFP and Tyr1680Phe FVIII-YFP in HUVEC demonstrated co-trafficking with endogenous VWF to authentic Weibel-Palade bodies (WPBs). CONCLUSIONS Our findings demonstrate that FVIII trafficking to WPBs is independent of Tyr1680 and high-affinity binding to VWF. We therefore conclude that the structural requirements that determine intracellular co-trafficking differ from those that determine complex assembly in circulation.
Collapse
|
29
|
Ishaque A, Thrift J, Murphy JE, Konstantinov K. Over-expression of Hsp70 in BHK-21 cells engineered to produce recombinant factor VIII promotes resistance to apoptosis and enhances secretion. Biotechnol Bioeng 2007; 97:144-55. [PMID: 17054114 DOI: 10.1002/bit.21201] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Production of coagulation factor VIII (FVIII) by recombinant cell lines is limited by its failure to reach or maintain the native conformation in the endoplasmic reticulum. This results in significant cytoplasmic degradation and/or aggregation of the misfolded product. The molecular chaperone Hsp70 was overexpressed in an attempt to increase the recombinant FVIII (rFVIII) secretion. The characteristics of increased Hsp70 expression were investigated by comparing a clone of BHK-21 cells expressing rFVIII (rBHK-21(host)) to a chaperone clone derived by transfection of the host clone with human Hsp70 (rBHK-21(Hsp70)) in small-scale batch cell cultures. To aid this investigation a number of fluorescence based cellular apoptosis assays were developed and optimized. These assays demonstrated sub-populations of rBHK-21(host) cells that were apoptotic in nature and were identified prior to the loss in plasma membrane integrity. Dual staining for intracellular rFVIII and caspase-3 activation showed a reduction in intracellular rFVIII in rBHK-21(host) cells that correlated with a significant increase in active caspase-3, suggesting that apoptosis was a factor limiting rFVIII secretion. In sharp contrast there was more intracellular rFVIII and less active caspase-3 in rBHK-21(Hsp70) cell cultures. Moreover when grown in batch culture, rBHK-21(Hsp70) cells released rFVIII of higher specific activity (active FVIII protein/total FVIII protein), suggesting improved product quality. Thus, increased expression of HSP70 led to an increased yield of a secreted recombinant protein by inhibition of apoptosis and promoting proper conformational maturation of rFVIII in sub-optimal bioreactor conditions.
Collapse
Affiliation(s)
- Adiba Ishaque
- Research and Development, Process Sciences, Bayer Healthcare, Biological Products Division, 800 Dwight Way, Berkeley, California 94701, USA
| | | | | | | |
Collapse
|
30
|
Yarovoi H, Nurden AT, Montgomery RR, Nurden P, Poncz M. Intracellular interaction of von Willebrand factor and factor VIII depends on cellular context: lessons from platelet-expressed factor VIII. Blood 2005; 105:4674-6. [PMID: 15731176 DOI: 10.1182/blood-2004-12-4701] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Abstract
We have previously reported that ectopically expressed factor VIII (FVIII) is stored within platelets and is released upon platelet activation. Studies by others in various cell lines have suggested that having von Willebrand factor (VWF) coexpression is necessary for FVIII granular storage and for its secretion. We tested the importance of VWF coexpression for ectopic storage of FVIII in platelets and for its bioavailability. Transgenic mice expressing platelet-specific FVIII were crossed onto a VWF-/- background. Antigenic levels of platelet FVIII in these mice were nearly unchanged whether VWF was present or not. Whole-blood clotting times and FeCl3 carotid artery injury correction demonstrated that platelet FVIII demonstrably improved the bleeding diathesis in FVIIInull mice independent of the platelets' VWF status. Immunogold electron microscopy demonstrated that platelet FVIII is stored in platelet α-granules independent of the presence of VWF. It appears that FVIII's interaction with VWF and its intracellular transportation, storage, and secretion differ greatly depending on the cell type. The molecular basis for these differences now needs to be elucidated. (Blood. 2005;105:4674-4676)
Collapse
Affiliation(s)
- Helen Yarovoi
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
31
|
Ewenstein B, Collins P, Tarantino M, Negrier C, Blanchette V, Shapiro A, Baker D, Spotts G, Sensel M, Yi S, Gomperts E. Hemophilia therapy innovation: development of an advanced category recombinant factor VIII by a plasma/albumin-free method. Semin Hematol 2004. [DOI: 10.1053/j.seminhematol.2004.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
Rosén H, Calafat J, Holmberg L, Olsson I. Sorting of Von Willebrand factor to lysosome-related granules of haematopoietic cells. Biochem Biophys Res Commun 2004; 315:671-8. [PMID: 14975753 DOI: 10.1016/j.bbrc.2004.01.106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Indexed: 10/26/2022]
Abstract
The aim of this work was to investigate sorting mechanisms of von Willebrand factor (VWF) when expressed in haematopoietic cells. The processing and sorting of both the wild-type VWF and a multimerization defective propeptide-mutant (VWF(m)) were investigated after expression in the 32D cell line. Normal proteolytic processing was observed for both proteins, however the processing of VWF(m) was much slower and a large portion was unprocessed. Results from subcellular fractionation and immunoelectron microscopy confirmed that a part of VWF, but not VWF(m), was targeted to lysosome-related granules. Partial constitutive secretion was also observed for all forms of VWF and VWF(m). Inhibition of acidification by chloroquine blocked VWF processing but allowed unprocessed pro-VWF targeting to dense organelles. In conclusion, our observations are consistent with VWF multimerization being of importance in cellular retention and targeting to lysosome-related organelles in haematopoietic cells, suggesting a role of protein aggregation for sorting in these cells.
Collapse
Affiliation(s)
- Hanna Rosén
- Department of Hematology, C14, BMC, S-221 84 Lund, Sweden
| | | | | | | |
Collapse
|
33
|
Doering CB, Healey JF, Parker ET, Barrow RT, Lollar P. Identification of Porcine Coagulation Factor VIII Domains Responsible for High Level Expression via Enhanced Secretion. J Biol Chem 2004; 279:6546-52. [PMID: 14660593 DOI: 10.1074/jbc.m312451200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Blood coagulation factor VIII has a domain structure designated A1-A2-B-ap-A3-C1-C2. Human factor VIII is present at low concentration in normal plasma and, comparably, is produced at low levels in vitro and in vivo using transgenic expression techniques. Heterologous expression of B domain-deleted porcine factor VIII in mammalian cell culture is significantly greater than B domain-deleted human or murine factor VIII. Novel hybrid human/porcine factor VIII molecules were constructed to identify porcine factor VIII domains that confer high level expression. Hybrid human/porcine factor VIII constructs containing the porcine factor VIII A1 and ap-A3 domains expressed at levels comparable with recombinant porcine factor VIII. A hybrid construct containing only the porcine A1 domain expressed at intermediate levels between human and porcine factor VIII, whereas a hybrid construct containing the porcine ap-A3 domain expressed at levels comparable with human factor VIII. Additionally, hybrid murine/porcine factor VIII constructs containing the porcine factor VIII A1 and ap-A3 domain sequences expressed at levels significantly higher than recombinant murine factor VIII. Therefore, the porcine A1 and ap-A3 domains are necessary and sufficient for the high level expression associated with porcine factor VIII. Metabolic radiolabeling experiments demonstrated that high level expression was attributable to enhanced secretory efficiency.
Collapse
|
34
|
Miao HZ, Sirachainan N, Palmer L, Kucab P, Cunningham MA, Kaufman RJ, Pipe SW. Bioengineering of coagulation factor VIII for improved secretion. Blood 2004; 103:3412-9. [PMID: 14726380 DOI: 10.1182/blood-2003-10-3591] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Factor VIII (FVIII) functions as a cofactor within the intrinsic pathway of blood coagulation. Quantitative or qualitative deficiencies of FVIII result in the inherited bleeding disorder hemophilia A. Expression of FVIII (domain structure A1-A2-B-A3-C1-C2) in heterologous mammalian systems is 2 to 3 orders of magnitude less efficient compared with other proteins of similar size compromising recombinant FVIII production and gene therapy strategies. FVIII expression is limited by unstable mRNA, interaction with endoplasmic reticulum (ER) chaperones, and a requirement for facilitated ER to Golgi transport through interaction with the mannose-binding lectin LMAN1. Bioengineering strategies can overcome each of these limitations. B-domain-deleted (BDD)-FVIII yields higher mRNA levels, and targeted point mutations within the A1 domain reduce interaction with the ER chaperone immunoglobulin-binding protein. In order to increase ER to Golgi transport we engineered several asparagine-linked oligosaccharides within a short B-domain spacer within BDD-FVIII. A bioengineered FVIII incorporating all of these elements was secreted 15- to 25-fold more efficiently than full-length FVIII both in vitro and in vivo. FVIII bioengineered for improved secretion will significantly increase potential for success in gene therapy strategies for hemophilia A as well as improve recombinant FVIII production in cell culture manufacturing or transgenic animals.
Collapse
Affiliation(s)
- Hongzhi Z Miao
- Department of Pediatrics, Howard Hughes Medical Institute, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Karges HE. Plasmafraktionierung und therapeutische Plasmaproteine. TRANSFUSIONSMEDIZIN 2004. [DOI: 10.1007/978-3-662-10597-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Affiliation(s)
- R J Kaufman
- Department of Biological Chemistry, Howard Hughes Medical Institute, University of Michigan Medical Center, Ann Arbor, MI 48109-0650, USA.
| |
Collapse
|
37
|
Yarovoi HV, Kufrin D, Eslin DE, Thornton MA, Haberichter SL, Shi Q, Zhu H, Camire R, Fakharzadeh SS, Kowalska MA, Wilcox DA, Sachais BS, Montgomery RR, Poncz M. Factor VIII ectopically expressed in platelets: efficacy in hemophilia A treatment. Blood 2003; 102:4006-13. [PMID: 12881300 DOI: 10.1182/blood-2003-05-1519] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activated platelets release their granule content in a concentrated fashion at sites of injury. We examined whether ectopically expressed factor VIII in developing megakaryocytes would be stored in alpha-granules and whether its release from circulating platelets would effectively ameliorate bleeding in a factor VIIInull mice model. Using the proximal glycoprotein 1b alpha promoter to drive expression of a human factor VIII cDNA construct, transgenic lines were established. One line had detectable human factor VIII that colocalizes with von Willebrand factor in platelets. These animals had platelet factor VIII levels equivalent to 3% to 9% plasma levels, although there was no concurrent plasma human factor VIII detectable. When crossed onto a factor VIIInull background, whole blood clotting time was partially corrected, equivalent to a 3% correction level. In a cuticular bleeding time study, these animals also had only a partial correction, but in an FeCl3 carotid artery, thrombosis assay correction was equivalent to a 50% to 100% level. These studies show that factor VIII can be expressed and stored in platelet alpha-granules. Our studies also suggest that platelet-released factor VIII is at least as potent as an equivalent plasma level and perhaps even more potent in an arterial thrombosis model.
Collapse
Affiliation(s)
- Helen V Yarovoi
- The Children's Hospital of Philadelphia, 1 Civic Center, ARC, Rm 317, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Shi Q, Wilcox DA, Fahs SA, Kroner PA, Montgomery RR. Expression of human factor VIII under control of the platelet-specific alphaIIb promoter in megakaryocytic cell line as well as storage together with VWF. Mol Genet Metab 2003; 79:25-33. [PMID: 12765843 DOI: 10.1016/s1096-7192(03)00049-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hemophilia A, which results in defective or deficient factor VIII (FVIII) protein, is one of the genetic diseases that has been addressed through gene therapy trials. FVIII synthesis does not occur in normal megakaryocytes. In hemophilia patients who have inhibitors to FVIII activity, megakaryocytes could be a protected site of FVIII synthesis and subsequent release. Since von Willebrand factor (VWF) is a carrier protein for FVIII, we hypothesize that by directing FVIII synthesis to megakaryocytes, it would traffick together with VWF to storage in megakaryocyte alpha-granules and the platelets derived from these cells. Such synthesis would establish a protected, releasable alpha-granule pool of FVIII together with VWF. When platelets are activated in a region of local vascular damage, FVIII and VWF could potentially be released together to provide improved local hemostatic effectiveness. To direct FVIII expression to the megakaryocyte lineage, we designed a FVIII expression cassette where the human B-domain deleted FVIII cDNA was placed under the control of the megakaryocytic/platelet-specific glycoprotein IIb (alphaIIb) promoter. We demonstrated by means of a functional FVIII activity assay that the biosynthesis of FVIII occurred normally in Dami cells transfected with FVIII. FVIII production was higher when driven by the alphaIIb promoter compared to the CMV promoter, and was increased about 8-fold following PMA treatment of the transfected Dami cells. Immunofluorescence staining of the transfected cells showed that FVIII stored together with VWF in the granules. The data indicate that the megakaryocytic compartment of hematopoietic cells may represent a potential target of gene therapy for hemophilia A-especially in those patients who have developed inhibitors to plasma FVIII.
Collapse
Affiliation(s)
- Q Shi
- Department of Pediatrics, Medical College of Wisconsin, MACC Fund Research Center (MFRC), 8701 Watertown Plank Road, Milwaukee 53226-0509, USA
| | | | | | | | | |
Collapse
|
39
|
Doering CB, Healey JF, Parker ET, Barrow RT, Lollar P. High level expression of recombinant porcine coagulation factor VIII. J Biol Chem 2002; 277:38345-9. [PMID: 12138172 DOI: 10.1074/jbc.m206959200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recombinant human factor VIII expression levels, in vitro and in vivo, are significantly lower than levels obtained for other recombinant coagulation proteins. Here we describe the generation, high level expression and characterization of a recombinant B-domain-deleted porcine factor VIII molecule. Recombinant B-domain-deleted porcine factor VIII expression levels are 10- to 14-fold greater than recombinant B-domain-deleted human factor VIII levels by transient and stable expression in multiple cell lines. Peak expression of 140 units x 10(6) cells(-1) x 24 h(-1) was observed from a baby hamster kidney-derived cell line stably expressing recombinant porcine factor VIII. Factor VIII expression was performed in serum-free culture medium and in the absence of exogenous von Willebrand factor, thus greatly simplifying protein purification. Real time reverse transcription-PCR analysis demonstrated that the differences in protein production were not caused by differences in steady-state factor VIII mRNA levels. The identification of sequence(s) in porcine factor VIII responsible for high level expression may lead to a better understanding of the mechanisms that limit factor VIII expression.
Collapse
|
40
|
Tonn T, Herder C, Becker S, Seifried E, Grez M. Generation and characterization of human hematopoietic cell lines expressing factor VIII. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 2002; 11:695-704. [PMID: 12201958 DOI: 10.1089/15258160260194848] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Considering the plasticity of hematopoietic stem cells (HSC), they would be ideal targets for gene therapy of hemophilia A by virtue of their progeny providing immediate access to the bloodstream. However, several attempts to show expression of recombinant factor VIII (rFVIII) by primary hematopoietic cells and cell lines have failed; this failure was attributed to the inability of HSC to secrete rFVIII. Here we describe the generation of stable, FVIII-secreting hematopoietic cell lines representing different blood-cell types using a bicistronic lentiviral vector encoding for a B-domain-deleted FVIII (FVIII Delta B) and enhanced green fluorescence protein (EGFP). Transduced cell lines with erythroid and/or megakaryocytic background, (K562-F8 and TF-1-F8) secrete high levels of FVIII in the order of 76.4 and 41.6 ng FVIII:C/ml, whereas moderate and low levels are observed in B lymphoblastoid Raji-F8 cells and the T leukemia line Jurkat-F8 which secrete 6.73 and 1.83 ng FVIII:C/ml, respectively. The capacity to secrete rFVIII appeared to depend on factors related to the cell lineage rather than on the transduction efficacy. Stimulation of transduced cells with the protein kinase C (PKC)-activator phorbol myristate acetate (PMA) resulted in a marked augmentation of rFVIII secretion and enhanced green fluorescent protein (EGFP). Incubation with 0.1 and 1 ng/ml PMA resulted in up to 2.7-fold (K562-F8, Raji-F8) and 1.8-fold (293T-F8) increased rFVIII secretion. The established cell lines should be helpful in further elucidating mechanisms that are able to improve FVIII secretion in hematopoietic cells on a post-translational level and suggest reanalysis of hematopoietic cells as target for gene therapy of hemophilia.
Collapse
Affiliation(s)
- T Tonn
- Institute for Biomedical Research, Georg-Speyer-Haus, Frankfurt/Main, Germany.
| | | | | | | | | |
Collapse
|
41
|
Soukharev S, Hammond D, Ananyeva NM, Anderson JAM, Hauser CAE, Pipe S, Saenko EL. Expression of factor VIII in recombinant and transgenic systems. Blood Cells Mol Dis 2002; 28:234-48. [PMID: 12064919 DOI: 10.1006/bcmd.2002.0508] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Deficiency in a coagulation factor VIII (FVIII) causes a genetic disorder hemophilia A, which is treated by repeated infusions of expensive FVIII products. Recombinant FVIII (rFVIII), the culmination of years of extensive international research, is an important alternative to plasma-derived FVIII (pdFVIII) and is considered to have a higher margin of safety. Advances in biotechnology allowed production of rFVIII at industrial scale, which significantly improved treatment of hemophilia A patients. We review the contemporary methods used for FVIII expression in mammalian cell culture systems and discuss the factors responsible for insufficient recoveries of rFVIII, such as inefficient accumulation of FVIII mRNA in the cell, complexity of the mechanisms of FVIII secretion, and instability of secreted FVIII. The approaches to improve the yield of rFVIII in cell culture systems include genetic engineering of B-domain-deleted FVIII, introduction of introns into FVIII cDNA constructs for more efficient processing and accumulation of FVIII mRNA, and introduction of mutations into chaperone-binding sites of FVIII to improve its secretion. Design of FVIII with prolonged half-life in vivo is considered as another promising direction in improving rFVIII protein and efficiency of hemophilia A therapy. As an alternative to expression of rFVIII in cell culture systems, we discuss production of rFVIII in transgenic animals, where high levels of rFVIII have been successfully secreted into milk. We also pay attention to the major limitations of this approach, such as safety issues associated with potential transmission of animal pathogens. Finally, we present a brief characterization of commercial recombinant FVIII products currently available on the market for hemophilia A treatment.
Collapse
Affiliation(s)
- Serguei Soukharev
- Department of Plasma Derivatives, Holland Laboratory, American Red Cross, 15601 Crabbs Branch Way, Rockville, Maryland 20855, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Chen C, Wang Q, Fang X, Xu Q, Chi C, Gu J. Roles of phytanoyl-CoA alpha-hydroxylase in mediating the expression of human coagulation factor VIII. J Biol Chem 2001; 276:46340-6. [PMID: 11574539 DOI: 10.1074/jbc.m106124200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The coagulation factor VIII (FVIII) is the coagulation factor deficient in the X-chromosome-linked bleeding disorder hemophilia A. Previous transfection studies demonstrated that factor VIII was 10-100-fold less efficiently expressed than the homologous coagulation factor, factor V. To investigate the regulatory mechanisms of FVIII synthesis and secretion, we used the yeast two-hybrid system as an approach to search for proteins that associated with FVIII. The A2 domain (337-740 amino acids) of factor VIII (FVIII-A2) was used as a bait and phytanoyl-CoA alpha-hydroxylase (PAHX) was identified as a binding protein of FVIII-A2. PAHX had potential to interact with the residues 373-508 within the A2 domain, but not with A1 and A3 (the homologous domains of A2). The interaction between the A2 domain and PAHX was independent of the type 2 peroxisomal targeting signal (PTS2) of PAHX. Overexpression of PAHX in FVIII-produced cells decreased the expression of FVIII by about 70%. The elevated expression of von Willebrand factor had no effect on the suppression of FVIII secretion by PAHX. Expression of the green fluorescent PAHX fusion protein in SMMC-7721 cells affected the intracellular trafficking of FVIII-A2. These results suggested that the interaction between PAHX and FVIII-A2 was in part responsible for the low-level expression of factor VIII.
Collapse
Affiliation(s)
- C Chen
- Gene Research Center, Medical Center of Fudan University, Shanghai 200032, China
| | | | | | | | | | | |
Collapse
|
43
|
Rosenberg JB, Greengard JS, Montgomery RR. Genetic induction of a releasable pool of factor VIII in human endothelial cells. Arterioscler Thromb Vasc Biol 2000; 20:2689-95. [PMID: 11116073 DOI: 10.1161/01.atv.20.12.2689] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although it is known that factor VIII (FVIII) plasma levels increase rapidly in response to a number of stimuli, the biological stimuli behind this release is less clear. Previously, we showed that FVIII can traffic together with von Willebrand factor (vWF) into storage granules in a pituitary tumor cell line, AtT-20; however, AtT-20 cells could not be used to address the release or functional activity of released FVIII. To investigate the regulated secretion of stored FVIII, endothelial cells with intact agonist-stimulated release pathways were used. Human umbilical vein endothelial cells (HUVECs) were transduced with retroviral FVIII construct [hFVIII(V)] to create a FVIII/vWF storage pool. Immunofluorescent staining of transduced cells demonstrated FVIII in Weibel-Palade bodies. In contrast, the transduction of hFVIII(V) into HT-1080 and HepG2 cells displayed FVIII only in the cytoplasm. We studied the regulated release of both FVIII and vWF from endothelial cells after agonist-induced stimulation and demonstrated a parallel release of FVIII and vWF proteins. This released FVIII was functionally active. Hence, endothelial cells transduced with hFVIII(V) store FVIII together with vWF in Weibel-Palade bodies, creating a releasable storage pool of both proteins. Because FVIII secretion can be physiologically regulated by agonists in culture, this may explain the pharmacological agonist-induced release of FVIII by drugs such as desmopressin in vivo and suggests vascular endothelium as a reasonable target of gene therapy of hemophilia A.
Collapse
Affiliation(s)
- J B Rosenberg
- Blood Research Institute, The Blood Center of Southeastern Wisconsin, Milwaukee, WI, USA
| | | | | |
Collapse
|
44
|
Yamaguchi H, Yamashita H, Mori H, Okazaki I, Nomizu M, Beck K, Kitagawa Y. High and low affinity heparin-binding sites in the G domain of the mouse laminin alpha 4 chain. J Biol Chem 2000; 275:29458-65. [PMID: 10893232 DOI: 10.1074/jbc.m003103200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
G domains of the mouse laminin alpha 1 and alpha 4 chains consisting of its five subdomains LG1-LG5 were overexpressed in Chinese hamster ovary cells and purified by heparin chromatography. alpha 1LG1-LG5 and alpha 4LG1-LG5 eluted at NaCl concentrations of 0.30 and 0.47 m, respectively. In solid phase binding assays with immobilized heparin, half-maximal concentrations of 14 (alpha 1LG1-LG5) and 1.4 nm (alpha 4LG1-LG5) were observed. N-Glycan cleavage of alpha 4LG1-LG5 did not affect affinity to heparin. The affinity of alpha 4LG1-LG5 was significantly reduced upon denaturation with 8 m urea but could be recovered by removing urea. Chymotrypsin digestion of alpha 4LG1-LG5 yielded high and low heparin affinity fragments containing either the alpha 4LG4-LG5 or alpha 4LG2-LG3 modules, respectively. Trypsin digestion of heparin-bound alpha 4LG1-LG5 yielded a high affinity fragment of about 190 residues corresponding to the alpha 4LG4 module indicating that the high affinity binding site is contained within alpha 4LG4. Competition for heparin binding of synthetic peptides covering the alpha 4LG4 region with complete alpha 4LG1-LG5 suggests that the sequence AHGRL1521 is crucial for high affinity binding. Introduction of mutation of H1518A or R1520A in glutathione S-transferase fusion protein of the alpha 4LG4 module produced in Escherichia coli markedly reduced heparin binding activity of the wild type. When compared with the known structure of alpha 2LG5, this sequence corresponds to the turn connecting strands E and F of the 14-stranded beta-sheet sandwich, which is opposite to the proposed binding sites for calcium ion, alpha-dystroglycan, and heparan sulfate.
Collapse
Affiliation(s)
- H Yamaguchi
- Graduate Course for Regulation of Biological Signals, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Nogami K, Shima M, Hosokawa K, Nagata M, Koide T, Saenko EL, Tanaka I, Shibata M, Yoshioka A. Factor VIII C2 domain contains the thrombin-binding site responsible for thrombin-catalyzed cleavage at Arg1689. J Biol Chem 2000; 275:25774-80. [PMID: 10831589 DOI: 10.1074/jbc.m002007200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thrombin-catalyzed factor VIII activation is an essential positive feedback mechanism regulating intrinsic blood coagulation. A factor VIII human antibody, A-FF, with C2 epitope, exclusively inhibited factor VIII activation and cleavage at Arg(1689) by thrombin. The results suggested that A-FF prevented the interaction of thrombin with factor VIII and that the C2 domain was involved in the interaction with thrombin. We performed direct binding assays using anhydro-thrombin, a catalytically inactive derivative of thrombin in which the active-site serine is converted to dehydroalanine. Intact factor VIII, 80-kDa light chain, 72-kDa light chain, and heavy chain fragments bound dose-dependently to anhydro-thrombin, and the K(d) values were 48, 150, 106, and 180 nm, respectively. The C2 and A2 domains also dose-dependently bound to anhydro-thrombin, and the K(d) values were 440 and 488 nm, respectively. The A1 domain did not bind to anhydro-thrombin. A-FF completely inhibited C2 domain binding to anhydro-thrombin (IC(50), 18 nm), whereas it did not inhibit A2 domain binding. Furthermore, C2-specific affinity purified F(ab)'(2) of A-FF, and the recombinant C2 domain inhibited thrombin cleavage at Arg(1689). Our results indicate that the C2 domain contains the thrombin-binding site responsible for the cleavage at Arg(1689).
Collapse
Affiliation(s)
- K Nogami
- Department of Pediatrics, Nara Medical University, Kashihara City, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- P R Robinson
- Department of Biological Sciences, University of Maryland, Baltimore County 21250, USA
| |
Collapse
|
47
|
Montgomery RR, Gill JC. Interactions between von Willebrand factor and Factor VIII: where did they first meet. J Pediatr Hematol Oncol 2000; 22:269-75. [PMID: 10864063 DOI: 10.1097/00043426-200005000-00017] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- R R Montgomery
- Medical College of Wisconsin, Blood Research Institute, Milwaukee 53201-2178, USA
| | | |
Collapse
|
48
|
Saenko EL, Yakhyaev AV, Mikhailenko I, Strickland DK, Sarafanov AG. Role of the low density lipoprotein-related protein receptor in mediation of factor VIII catabolism. J Biol Chem 1999; 274:37685-92. [PMID: 10608826 DOI: 10.1074/jbc.274.53.37685] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the present study, we found that catabolism of coagulation factor VIII (fVIII) is mediated by the low density lipoprotein receptor-related protein (LPR), a liver multiligand endocytic receptor. In a solid phase assay, fVIII was shown to bind to LRP (K(d) 116 nM). The specificity was confirmed by a complete inhibition of fVIII/LRP binding by 39-kDa receptor-associated protein (RAP), an antagonist of all LRP ligands. The region of fVIII involved in its binding to LRP was localized within the A2 domain residues 484-509, based on the ability of the isolated A2 domain and the synthetic A2 domain peptide 484-509 to prevent fVIII interaction with LRP. Since vWf did not inhibit fVIII binding to LRP, we proposed that LRP receptor may internalize fVIII from its complex with vWf. Consistent with this hypothesis, mouse embryonic fibroblasts that express LRP, but not fibroblasts genetically deficient in LRP, were able to catabolize (125)I-fVIII complexed with vWf, which was not internalized by the cells. These processes could be inhibited by RAP and A2 subunit of fVIII, indicating that cellular internalization and degradation were mediated by interaction of the A2 domain of fVIII with LRP. In vivo studies of (125)I-fVIII.vWf complex clearance in mice demonstrated that RAP completely inhibited the fast phase of the biphasic (125)I-fVIII clearance that is responsible for removal of 60% of fVIII from circulation. Inhibition of the RAP-sensitive phase prolonged the half-life of (125)I-fVIII in circulation by 3.3-fold, indicating that LRP receptor plays an important role in fVIII clearance.
Collapse
Affiliation(s)
- E L Saenko
- Holland Laboratory, American Red Cross, Rockville, Maryland 20855, USA
| | | | | | | | | |
Collapse
|
49
|
Nogami K, Shima M, Hosokawa K, Suzuki T, Koide T, Saenko EL, Scandella D, Shibata M, Kamisue S, Tanaka I, Yoshioka A. Role of factor VIII C2 domain in factor VIII binding to factor Xa. J Biol Chem 1999; 274:31000-7. [PMID: 10521497 DOI: 10.1074/jbc.274.43.31000] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Factor VIII (FVIII) is activated by proteolytic cleavages with thrombin and factor Xa (FXa) in the intrinsic blood coagulation pathway. The anti-C2 monoclonal antibody ESH8, which recognizes residues 2248-2285 and does not inhibit FVIII binding to von Willebrand factor or phospholipid, inhibited FVIII activation by FXa in a clotting assay. Furthermore, analysis by SDS-polyacrylamide gel electrophoresis showed that ESH8 inhibited FXa cleavage in the presence or absence of phospholipid. The light chain (LCh) fragments (both 80 and 72 kDa) and the recombinant C2 domain dose-dependently bound to immobilized anhydro-FXa, a catalytically inactive derivative of FXa in which dehydroalanine replaces the active-site serine. The affinity (K(d)) values for the 80- and 72-kDa LCh fragments and the C2 domain were 55, 51, and 560 nM, respectively. The heavy chain of FVIII did not bind to anhydro-FXa. Similarly, competitive assays using overlapping synthetic peptides corresponding to ESH8 epitopes (residues 2248-2285) demonstrated that a peptide designated EP-2 (residues 2253-2270; TSMYVKEFLISSSQDGHQ) inhibited the binding of the C2 domain or the 72-kDa LCh to anhydro-FXa by more than 95 and 84%, respectively. Our results provide the first evidence for a direct role of the C2 domain in the association between FVIII and FXa.
Collapse
Affiliation(s)
- K Nogami
- Department of Pediatrics, Nara Medical University, 840 Shijo-cho Kashihara City, Nara 634, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Nogami K, Shima M, Nakai H, Tanaka I, Suzuki H, Morichika S, Shibata M, Saenko EL, Scandella D, Giddings JC, Yoshioka A. Identification of a factor VIII peptide, residues 2315-2330, which neutralizes human factor VIII C2 inhibitor alloantibodies: requirement of Cys2326 and Glu2327 for maximum effect. Br J Haematol 1999; 107:196-203. [PMID: 10520041 DOI: 10.1046/j.1365-2141.1999.01673.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Factor VIII (FVIII) inhibitor alloantibodies react with combinations of the A2, C2 and A3-C1 domains of the FVIII molecule. Some inhibitors block binding of FVIII to both von Willebrand factor (VWF) and phospholipid, and recognize a C2 domain epitope which overlaps both binding sites. In order to determine the essential binding regions for alloantibodies inhibitory for FVIII activity, we have performed inhibitor neutralization assays and competitive inhibition assays using 10 overlapping synthetic peptides spanning the carboxy-terminal region of the C2 domain (residues 2288-2332). We found one peptide (2315-2330, L9) which neutralized the anti-FVIII activity of four out of five different C2 alloantibodies by 50%, 39%, 47% and 57%, respectively. Neutralization of these alloantibodies by recombinant C2 domain (residues 2173-2332) was 68%, 50%, 59%, 86% and >95%, respectively. The inhibitor which was not neutralized by L9 peptide and reacted by immunoblotting with peptide 2218-2307, did not prevent binding of FVIII to VWF and only partially inhibited binding of FVIII to phosphatidylserine. Mutants of the L9 peptide were prepared in which each residue from 2315-2330 was sequentially substituted by glycine. Inhibitor neutralization experiments using these peptides demonstrated that Arg2320 and Cys2326 or Glu2327 are important for the effect of L9 peptide, since their substitution by glycine reduced its neutralizing effect by 60% to >90%, suggesting that they are crucial for formation of the one of the C2 inhibitor epitopes.
Collapse
Affiliation(s)
- K Nogami
- Department of Paediatrics, Nara Medical University, Kashihara City, Nara, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|