1
|
Gaboriaud J, Wu PYJ. Insights into the Link between the Organization of DNA Replication and the Mutational Landscape. Genes (Basel) 2019; 10:genes10040252. [PMID: 30934791 PMCID: PMC6523204 DOI: 10.3390/genes10040252] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/21/2019] [Accepted: 03/21/2019] [Indexed: 12/17/2022] Open
Abstract
The generation of a complete and accurate copy of the genetic material during each cell cycle is integral to cell growth and proliferation. However, genetic diversity is essential for adaptation and evolution, and the process of DNA replication is a fundamental source of mutations. Genome alterations do not accumulate randomly, with variations in the types and frequencies of mutations that arise in different genomic regions. Intriguingly, recent studies revealed a striking link between the mutational landscape of a genome and the spatial and temporal organization of DNA replication, referred to as the replication program. In our review, we discuss how this program may contribute to shaping the profile and spectrum of genetic alterations, with implications for genome dynamics and organismal evolution in natural and pathological contexts.
Collapse
Affiliation(s)
- Julia Gaboriaud
- CNRS, University of Rennes, Institute of Genetics and Development of Rennes, 35043 Rennes, France.
| | - Pei-Yun Jenny Wu
- CNRS, University of Rennes, Institute of Genetics and Development of Rennes, 35043 Rennes, France.
| |
Collapse
|
2
|
Dimitrova DS. DNA replication initiation patterns and spatial dynamics of the human ribosomal RNA gene loci. J Cell Sci 2011; 124:2743-52. [DOI: 10.1242/jcs.082230] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Typically, only a fraction of the ≥600 ribosomal RNA (rRNA) gene copies in human cells are transcriptionally active. Expressed rRNA genes coalesce in specialized nuclear compartments – the nucleoli – and are believed to replicate during the first half of S phase. Paradoxically, attempts to visualize replicating rDNA during early S phase have failed. Here, I show that, in human (HeLa) cells, early-replicating rDNA is detectable at the nucleolar periphery and, more rarely, even outside nucleoli. Early-replicated rDNA relocates to the nucleolar interior and reassociates with the transcription factor UBF, implying that it predominantly represents expressed rDNA units. Contrary to the established model for active gene loci, replication initiates randomly throughout the early-replicating rDNA. By contrast, mostly silent rDNA copies replicate inside the nucleoli during mid and late S phase. At this stage, replication origins are fired preferentially within the non-transcribed intergenic spacers (NTSs), and ongoing rDNA transcription is required to maintain this specific initiation pattern. I propose that the unexpected spatial dynamics of the early-replicating rDNA repeats serve to ensure streamlined efficient replication of the most heavily transcribed genomic loci while simultaneously reducing the risk of chromosome breaks and rDNA hyper-recombination.
Collapse
|
3
|
Hiratani I, Gilbert DM. Autosomal Lyonization of Replication Domains During Early Mammalian Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 695:41-58. [DOI: 10.1007/978-1-4419-7037-4_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
4
|
Watanabe Y, Shibata K, Ikemura T, Maekawa M. Replication timing of extremely large genes on human chromosomes 11q and 21q. Gene 2008; 421:74-80. [DOI: 10.1016/j.gene.2008.06.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 06/13/2008] [Accepted: 06/16/2008] [Indexed: 01/10/2023]
|
5
|
Abstract
Profiling chromatin in a particular cell type provides a valuable 'signature' for cell identity and developmental stage. One approach has been to assay and use the timing of DNA replication across a panel of loci as an indicator of chromatin structure. This epigenetic profiling used on pluripotent embryonic stem (ES) cells has reliably distinguished them from cells that have a more restricted lineage potential. Thus, such an approach may become increasingly useful for understanding the molecular basis of pluripotency and lineage induction, especially in the context of stem-cell therapy. Here I describe in detail the DNA replication timing method, whereby unsynchronized cell populations are pulse-labeled with 5-bromo-2'-deoxyuridine (BrdU), fractionated according to cell-cycle stage and the abundance of candidate sequences within newly replicated DNA is determined by PCR. This robust protocol has been used consistently by several laboratories and might offer some advantages over conventional transcription-based profiling for characterizing cell populations. The procedure requires 3-4 d to complete.
Collapse
Affiliation(s)
- Véronique Azuara
- Epigenetics & Development, Stem Cell Initiative, Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 ONN, UK.
| |
Collapse
|
6
|
Abstract
Regions of metazoan genomes replicate at defined times within S phase. This observation suggests that replication origins fire with a defined timing pattern that remains the same from cycle to cycle. However, an alterative model based on the stochastic firing of origins may also explain replication timing. This model assumes varying origin efficiency instead of a strict origin-timing programme. Here, we discuss the evidence for both models.
Collapse
Affiliation(s)
- Nicholas Rhind
- Biochemistry and Molecular Pharmacology Department, University of Massachusetts Medical School, 364 Plantation Street, LRB904, Worcester, MA 01605, USA.
| |
Collapse
|
7
|
Wintersberger E. Biochemical events controlling initiation and propagation of the S phase of the cell cycle. Rev Physiol Biochem Pharmacol 2005; 118:49-95. [PMID: 1754800 DOI: 10.1007/bfb0031481] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- E Wintersberger
- Institut für Molekularbiologie der Universität Wien, Austria
| |
Collapse
|
8
|
Radichev I, Parashkevova A, Anachkova B. Initiation of DNA replication at a nuclear matrix-attached chromatin fraction. J Cell Physiol 2005; 203:71-7. [PMID: 15493011 DOI: 10.1002/jcp.20203] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
It is still unclear what nuclear components support initiation of DNA replication. To address this issue, we developed a cell-free replication system in which the nuclear matrix along with the residual matrix-attached chromatin was used as a substrate for DNA replication. We found out that initiation occurred at late G1 residual chromatin but not at early G1 chromatin and depended on cytosolic and nuclear factors present in S phase cells but not in G1 cells. Initiation of DNA replication occurred at discrete replication foci in a pattern typical for early S phase. To prove that the observed initiation takes place at legitimate DNA replication origins, the in vitro synthesized nascent DNA strands were isolated and analyzed. It was shown that they were enriched in sequences from the core origin region of the early firing, dihydrofolate reductase origin of replication ori-beta and not in distal to the origin sequences. A conclusion is drawn that initiation of DNA replication occurs at discrete sub-chromosomal structures attached to the nuclear matrix.
Collapse
Affiliation(s)
- Ilian Radichev
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | | |
Collapse
|
9
|
Maya-Mendoza A, Hernández-Muñoz R, Gariglio P, Aranda-Anzaldo A. Gene positional changes relative to the nuclear substructure during carbon tetrachloride-induced hepatic fibrosis in rats. J Cell Biochem 2005; 93:1084-98. [PMID: 15449316 DOI: 10.1002/jcb.20264] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In the interphase nucleus the DNA of higher eukaryotes is organized in loops anchored to a substructure known as the nuclear matrix (NM). The topological relationship between gene sequences located in the DNA loops and the NM appears to be very important for nuclear physiology because processes such as replication, transcription, and processing of primary transcripts occur at macromolecular complexes located at discrete sites upon the NM. Mammalian hepatocytes rarely divide but preserve a proliferating capacity that is displayed in vivo after specific stimulus. We have previously shown that transient changes in the relative position of specific genes to the NM occur during the process of liver regeneration after partial ablation of the liver, but also that such changes correlate with the replicating status of the cells. Moreover, since chronic exposure to carbon tetrachloride (CCl4) leads to bouts of hepatocyte damage and regeneration, and eventually to non-reversible liver fibrosis in the rat, we used this animal model in order to explore if genes that show differential activity in the liver change or modify their relative position to the NM during the process of liver fibrosis induction. We found that changes in the relative position of specific genes to the NM occur during the chronic administration of CCl4, but also that such changes correlate with the proliferating status of the hepatocytes that goes from quiescence to regeneration to replicative senescence along the course of CCl4-induced liver fibrosis, indicating that specific configurations in the higher-order DNA structure underlie the stages of progression towards liver fibrosis.
Collapse
Affiliation(s)
- Apolinar Maya-Mendoza
- Laboratorio de Biología Molecular, Facultad de Medicina, Universidad Autónoma del Estado de México, Apdo. Postal 428, C.P. 50000, Toluca, Edo. Méx., México
| | | | | | | |
Collapse
|
10
|
Ren Y, Wu JR. Differential activation of intra-S-phase checkpoint in response to tripchlorolide and its effects on DNA replication. Cell Res 2004; 14:227-33. [PMID: 15225416 DOI: 10.1038/sj.cr.7290223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
DNA replication is tightly regulated during the S phase of the cell cycle, and the activation of the intra-S-phase checkpoint due to DNA damage usually results in arrest of DNA synthesis. However, the molecular details about the correlation between the checkpoint and regulation of DNA replication are still unclear. To investigate the connections between DNA replication and DNA damage checkpoint, a DNA-damage reagent, tripchlorolide, was applied to CHO (Chinese ovary hamster) cells at early- or middle-stages of the S phase. The early-S-phase treatment with TC significantly delayed the progression of the S phase and caused the phosphorylation of the Chk1 checkpoint protein, whereas the middle-S-phase treatment only slightly slowed down the progression of the S phase. Furthermore, the analysis of DNA replication patterns revealed that replication pattern II was greatly prolonged in the cells treated with the drug during the early-S phase, whereas the late-replication patterns of these cells were hardly detected, suggesting that the activation of the intra-S-phase checkpoint inhibits the late-origin firing of DNA replication. We conclude that cells at different stages of the S phase are differentially sensitive to the DNA-damage reagent, and the activation of the intra-S-phase checkpoint blocks the DNA replication progression in the late stage of S phase.
Collapse
Affiliation(s)
- Yan Ren
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | | |
Collapse
|
11
|
Djeliova V, Russev G, Anachkova B. DNase I sensitive site in the core region of the human beta-globin origin of replication. J Cell Biochem 2004; 87:279-83. [PMID: 12397609 DOI: 10.1002/jcb.10298] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
HeLa cells were synchronized at late G1, early S, and late S phase of the cell cycle by nocodazole treatment. The cells were permeabilized with Triton X-100, digested with DNAse I, and extracted with 0.2 M ammonium sulfate to remove the digested chromatin. DNA was isolated from the residual chromatin attached to the nuclear matrix, digested with Hind III, and subjected to hybridization with [(32)P] labeled probe located upstream of the core region of the human beta-globin replication origin. The hybridization pattern revealed the existence of a DNase I sensitive site in the core region of the beta-globin replicator. The results suggest that association with the nuclear matrix induce alteration in the chromatin structure of the origin of replication that represents a more open chromatin configuration.
Collapse
Affiliation(s)
- Vera Djeliova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | | |
Collapse
|
12
|
Azuara V, Brown KE, Williams RRE, Webb N, Dillon N, Festenstein R, Buckle V, Merkenschlager M, Fisher AG. Heritable gene silencing in lymphocytes delays chromatid resolution without affecting the timing of DNA replication. Nat Cell Biol 2003; 5:668-74. [PMID: 12833066 DOI: 10.1038/ncb1006] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2003] [Accepted: 04/30/2003] [Indexed: 11/09/2022]
Abstract
Temporal control of DNA replication has been implicated in epigenetic regulation of gene expression on the basis of observations that certain tissue-specific genes replicate earlier in expressing than non-expressing cells. Here, we show evidence that several leukocyte-specific genes replicate early in lymphocytes regardless of their transcription and also in fibroblasts, where these genes are never normally expressed. Instead, the heritable silencing of some genes (Rag-1, TdT, CD8alpha and lambda5) and their spatial recruitment to heterochromatin domains within the nucleus of lymphocytes resulted in a markedly delayed resolution of sister chromatids into doublet signals discernable by 3D fluorescence in situ hybridization (FISH). Integration of transgenes within heterochromatin (in cis) did, however, confer late replication and this was reversed after variegated transgene expression. These findings emphasise that chromosomal location is important for defining the replication timing of genes and show that retarded sister-chromatid resolution is a novel feature of inactive chromatin.
Collapse
Affiliation(s)
- Véronique Azuara
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, Du Cane Road, London W12 ONN, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
In general, transcriptionally active euchromatin replicates during the first half of S phase, whereas silent heterochromatin replicates during the second half. Moreover, changes in replication timing accompany key stages of development. Although there is not a strict correlation between replication timing and transcription per se, recent results reveal a strong relationship between heritably repressed chromatin and late replication that is conserved in all eukaryotes. A long-standing question is whether replication timing dictates the structure of chromatin or vice versa. Mounting evidence supports a model in which replication timing is both cause and consequence of chromatin structure by providing a means to inherit chromatin states that, in turn, regulate replication timing in the subsequent cell cycle. Moreover, new findings relating aberrations in replication timing to defects in centromere function, chromosome cohesion and genome instability suggest that the role of replication timing extends beyond its relationship to transcription. Novel systems in both yeasts and mammals are finally beginning to reveal some of the determinants that regulate replication timing, which should pave the way for a long-anticipated molecular dissection of this complex liaison.
Collapse
Affiliation(s)
- David M Gilbert
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA.
| |
Collapse
|
14
|
Li F, Chen J, Izumi M, Butler MC, Keezer SM, Gilbert DM. The replication timing program of the Chinese hamster beta-globin locus is established coincident with its repositioning near peripheral heterochromatin in early G1 phase. J Cell Biol 2001; 154:283-92. [PMID: 11470818 PMCID: PMC1255917 DOI: 10.1083/jcb.200104043] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have examined the dynamics of nuclear repositioning and the establishment of a replication timing program for the actively transcribed dihydrofolate reductase (DHFR) locus and the silent beta-globin gene locus in Chinese hamster ovary cells. The DHFR locus was internally localized and replicated early, whereas the beta-globin locus was localized adjacent to the nuclear periphery and replicated during the middle of S phase, coincident with replication of peripheral heterochromatin. Nuclei were prepared from cells synchronized at various times during early G1 phase and stimulated to enter S phase by introduction into Xenopus egg extracts, and the timing of DHFR and beta-globin replication was evaluated in vitro. With nuclei isolated 1 h after mitosis, neither locus was preferentially replicated before the other. However, with nuclei isolated 2 or 3 h after mitosis, there was a strong preference for replication of DHFR before beta-globin. Measurements of the distance of DHFR and beta-globin to the nuclear periphery revealed that the repositioning of the beta-globin locus adjacent to peripheral heterochromatin also took place between 1 and 2 h after mitosis. These results suggest that the CHO beta-globin locus acquires the replication timing program of peripheral heterochromatin upon association with the peripheral subnuclear compartment during early G1 phase.
Collapse
Affiliation(s)
- F Li
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | | | | | |
Collapse
|
15
|
Dijkwel PA, Mesner LD, Levenson VV, d'Anna J, Hamlin JL. Dispersive initiation of replication in the Chinese hamster rhodopsin locus. Exp Cell Res 2000; 256:150-7. [PMID: 10739662 DOI: 10.1006/excr.2000.4809] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several higher eukaryotic replication origins appear to be composed of broad zones of potential nascent strand start sites, while others are more circumscribed, resembling those of yeast, bacteria, and viruses. The most delocalized origin identified so far is approximately 55 kb in length and lies between the convergently transcribed dihydrofolate reductase (DHFR) and the 2BE2121 genes on chromosome 2 in the Chinese hamster genome. In some of our studies, we have utilized the rhodopsin origin as an early replicating internal standard for assessing the effects of deleting various parts of the DHFR locus on DHFR origin activity. However, it had not been previously established that the rhodopsin locus was located at a site far enough away to be immune to such deletions, nor had the mechanism of initiation at this origin been characterized. In the present study, we have localized the rhodopsin domain to a pair of small metacentric chromosomes and have used neutral/neutral 2-D gel replicon mapping to show that initiation in this origin is also highly delocalized, encompassing a region more than 50 kb in length that includes the nontranscribed rhodopsin gene itself. The initiation zone is flanked at least on one end by an actively transcribed gene that does not support initiation. Thus, the DHFR and rhodopsin origins belong to a class of complex, polydisperse origins that appears to be unique to higher eukaryotic cells.
Collapse
Affiliation(s)
- P A Dijkwel
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA.
| | | | | | | | | |
Collapse
|
16
|
Dimitrova DS, Gilbert DM. Regulation of mammalian replication origin usage in Xenopus egg extract. J Cell Sci 1998; 111 ( Pt 19):2989-98. [PMID: 9730990 DOI: 10.1242/jcs.111.19.2989] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xenopus embryos initiate replication at random closely spaced sites until a certain concentration of nuclei is achieved within the embryo, after which fewer, more specific chromosomal sites are utilized as origins. We have examined the relationship between nucleo-cytosolic ratio and origin specification when Chinese hamster ovary (CHO) cell nuclei are introduced into Xenopus egg extracts. At concentrations of intact late-G1-phase nuclei that approximate early Xenopus embryos, the entire genome was duplicated nearly 4 times faster than in culture, accompanied by a de-localization of initiation sites at the dihydrofolate reductase (DHFR) locus. As the concentration of nuclei was increased, the number of initiation sites per nucleus decreased and initiation at the DHFR locus became localized to the physiologically utilized DHFR origin. Origin specification was optimal at nuclear concentrations that approximate the Xenopus mid-blastula transition (MBT). Higher concentrations resulted in an overall inhibition of DNA synthesis. By contrast, with intact early G1-phase nuclei, replication initiated at apparently random sites at all concentrations, despite an identical relationship between nucleo-cytosolic ratio and replicon size. Furthermore, permeabilization of late-G1-phase nuclei, using newly defined conditions that preserve the overall rate of replication, eliminated site-specificity, even at nuclear concentrations optimal for DHFR origin recognition. These data show that both nucleo-cytosolic ratio and nuclear structure play important but independent roles in the regulation of replication origin usage. Nucleo-cytosolic ratio clearly influences the number of replication origins selected. However, titration of cytosolic factors is not sufficient to focus initiation to specific sites. An independent mechanism, effecting changes within G1-phase nuclei, dictates which of many potential initiation sites will function as an origin.
Collapse
Affiliation(s)
- D S Dimitrova
- Department of Biochemistry and Molecular Biology, SUNY Health Science Center, Syracuse, NY 13210, USA
| | | |
Collapse
|
17
|
Eberhart DE, Warren ST. Nuclease sensitivity of permeabilized cells confirms altered chromatin formation at the fragile X locus. SOMATIC CELL AND MOLECULAR GENETICS 1996; 22:435-41. [PMID: 9131013 DOI: 10.1007/bf02369435] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Fragile X syndrome is caused by the expansion and concomitant methylation of a CGG repeat in the 5' untranslated region of the FMR1 gene which results in the transcriptional silencing of the FMR1 gene, delayed replication of the FMR1 locus, and the formation of a folate sensitive fragile site (FRAXA) at Xq27.3. The mechanism by which repeat expansion and methylation causes these changes is unknown. An in vivo system in which cells were permeabilized with lysophosphatidylcholine followed by digestion with MspI endonuclease was utilized to assess the chromatin conformation at the fragile X locus. The FMR1 gene was inaccessible to MspI digestion in fragile X patients, but not in normal or carrier individuals, confirming that altered chromatin conformation results from the repeat expansion and methylation seen in fragile X syndrome.
Collapse
Affiliation(s)
- D E Eberhart
- Howard Hughes Medical Institute, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
18
|
Crissman HA, Oishi N, Tobey RA. Reversible synchronization of cultured rodent and human diploid fibroblast cells in G2 phase. ACTA ACUST UNITED AC 1996. [DOI: 10.1007/bf00122168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
van Driel R, Wansink DG, van Steensel B, Grande MA, Schul W, de Jong L. Nuclear domains and the nuclear matrix. INTERNATIONAL REVIEW OF CYTOLOGY 1996; 162A:151-89. [PMID: 8575880 DOI: 10.1016/s0074-7696(08)61231-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This overview describes the spatial distribution of several enzymatic machineries and functions in the interphase nucleus. Three general observations can be made. First, many components of the different nuclear machineries are distributed in the nucleus in a characteristic way for each component. They are often found concentrated in specific domains. Second, nuclear machineries for the synthesis and processing of RNA and DNA are associated with an insoluble nuclear structure, called nuclear matrix. Evidently, handling of DNA and RNA is done by immobilized enzyme systems. Finally, the nucleus seems to be divided in two major compartments. One is occupied by compact chromosomes, the other compartment is the space between the chromosomes. In the latter, transcription takes place at the surface of chromosomal domains and it houses the splicing machinery. The relevance of nuclear organization for efficient gene expression is discussed.
Collapse
Affiliation(s)
- R van Driel
- E. C. Slater Instituut, University of Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
20
|
Sasvari-Szekely M, Banfalvi G, Bott KF, Sarkar N. Origin of replication of the Bacillus subtilis chromosome: in vitro approach to the isolation of early replicating segments. DNA Cell Biol 1995; 14:1049-55. [PMID: 8534371 DOI: 10.1089/dna.1995.14.1049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have developed a permeable cell system for the study of the molecular mechanisms involved in the control and initiation of DNA replication at the origin of the Bacillus subtilis chromosome. Our system take advantage of the synchronous initiation of DNA replication that occurs in outgrowing B. subtilis spores and the curtailment of DNA elongation by novobiocin. Early replicating DNA sequences were identified by the use of 5-mercury-dCTP as substrate, which allows the isolation of nascent DNA chains by affinity chromatography on thiol agarose. The average size of the isolated nascent DNA was 1,000 bp, and more than 80% of the nascent DNA chains had RNA primers at their 5' end. The study of the temporal order of chromosome replication near the origin using this experimental system showed that a segment containing recF and gyrB replicated earlier than a segment containing gyrA and part of the rRNA operon (rrnO). This observation is in agreement with previous in vivo data on the replication of origin region and supports the conclusion that the major activity in our in vitro system was the faithful replication of the ori region.
Collapse
|
21
|
Affiliation(s)
- M L DePamphilis
- Roche Research Center, Roche Institute of Molecular Biology, Nutley, New Jersey 07110, USA
| |
Collapse
|
22
|
Wansink DG, Manders EE, van der Kraan I, Aten JA, van Driel R, de Jong L. RNA polymerase II transcription is concentrated outside replication domains throughout S-phase. J Cell Sci 1994; 107 ( Pt 6):1449-56. [PMID: 7962188 DOI: 10.1242/jcs.107.6.1449] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription and replication are, like many other nuclear functions and components, concentrated in nuclear domains. Transcription domains and replication domains may play an important role in the coordination of gene expression and gene duplication in S-phase. We have investigated the spatial relationship between transcription and replication in S-phase nuclei after fluorescent labelling of nascent RNA and nascent DNA, using confocal immunofluorescence microscopy. Permeabilized human bladder carcinoma cells were labelled with 5-bromouridine 5′-triphosphate and digoxigenin-11-deoxyuridine 5′-triphosphate to visualize sites of RNA synthesis and DNA synthesis, respectively. Transcription by RNA polymerase II was localized in several hundreds of domains scattered throughout the nucleoplasm in all stages of S-phase. This distribution resembled that of nascent DNA in early S-phase. In contrast, replication patterns in late S-phase consisted of fewer, larger replication domains. In double-labelling experiments we found that transcription domains did not colocalize with replication domains in late S-phase nuclei. This is in agreement with the notion that late replicating DNA is generally not actively transcribed. Also in early S-phase nuclei, transcription domains and replication domains did not colocalize. We conclude that nuclear domains exist, large enough to be resolved by light microscopy, that are characterized by a high activity of either transcription or replication, but never both at the same time. This probably means that as soon as the DNA in a nuclear domain is being replicated, transcription of that DNA essentially stops until replication in the entire domain is completed.
Collapse
Affiliation(s)
- D G Wansink
- E.C. Slater Institute, University of Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
23
|
Sagesaka T, Boubnov N, Okuyama T, Paulus H, Sarkar N. Deoxyribonucleic acid replication in fetal cells. Am J Obstet Gynecol 1994; 170:468-73. [PMID: 8116699 DOI: 10.1016/s0002-9378(94)70213-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVES Our purpose was to develop a sensitive method for assessing the replication time of specific human genes in cultured fetal cells and for detecting potential replication defects. STUDY DESIGN Synchronous progression of diploid human fetal lung cells through S phase was achieved by releasing from serum restriction with minimum essential medium alpha modification plus 10% fetal bovine serum, followed by hydroxyurea blockage at the G1/S boundary. Deoxyribonucleic acid replication was studied in permeabilized cells using mercurated nucleotides to label nascent deoxyribonucleic acid. RESULTS A high degree of synchrony in traversal of S phase was indicated by flow cytometry and a well-defined 7-hour period of deoxyribonucleic acid synthesis. The replication of the topoisomerase II gene occurred in a narrow time span 3 hours after entry into S phase. CONCLUSIONS Fetal cells have been highly synchronized at the beginning of S phase, and the replication time of a specific gene can be defined within a narrow time window.
Collapse
Affiliation(s)
- T Sagesaka
- Department of Metabolic Regulation, Boston Biomedical Research Institute, Massachusetts
| | | | | | | | | |
Collapse
|
24
|
Falaschi A, Giacca M, Zentilin L, Norio P, Diviacco S, Dimitrova D, Kumar S, Tuteja R, Biamonti G, Perini G. Searching for replication origins in mammalian DNA. Gene 1993; 135:125-35. [PMID: 8276249 DOI: 10.1016/0378-1119(93)90057-a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The attempts at identifying precise replication origins (ori) in mammalian DNA have been pursued mainly through physico-chemical and biochemical approaches, in view of the essential failure of the search for autonomously replicating sequences in cultured cells. These approaches involve the mapping of short stretches of nascent DNA, the identification of the regions where either leading or lagging strands switch polarity, or the localization of replication intermediates by two-dimensional gel electrophoresis. Due to the complexity of animal cell genomes, most of these studies have been performed on amplified domains and with the use of synchronization procedures. The results obtained have been controversial. In order to avoid the use of experimental procedures potentially affecting the physiological mechanism of DNA replication, we have developed a method for the localization of ori in single-copy loci in exponentially growing cells. This method entails the absolute quantification of the abundance of selected DNA fragments along a genomic region within samples of newly synthesized DNA by competitive polymerase chain reaction (PCR); the latter is immune to all the uncontrollable variables which severely affect the reproducibility of conventional PCR. The application of this method to SV40 ori-driven plasmid replication precisely identifies the known ori localization. Using the same approach, we have mapped an ori for bi-directional DNA replication in a 13.7-kb locus of human chromosome 19 encoding lamin B2.
Collapse
Affiliation(s)
- A Falaschi
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
It has been almost twenty-five years since Huberman and Riggs first showed that there are multiple bidirectional origins of replication scattered at approximately 100 kb intervals along mammalian chromosomal fibers. Since that time, every conceivable physical property unique to replicating DNA has been taken advantage of to determine whether origins of replication are defined sequence elements, as they are in microorganisms. The most thoroughly studied mammalian locus to date is the dihydrofolate reductase domain of Chinese hamster cells, which will be used as a model to discuss the various methods of investigation. While several laboratories agree on the rough location of the 'initiation locus' in this large chromosomal domain, different experimental approaches paint different pictures of the mechanism by which initiation occurs. However, a variety of new techniques and synchronizing agents promises to clarify the picture for this particular locus, and to provide the means for identifying and isolating other origins of replication for comparison.
Collapse
Affiliation(s)
- J L Hamlin
- University of Virginia School of Medicine, Charlottesville 22908
| |
Collapse
|
26
|
Gale JM, Tobey RA, D'Anna JA. Localization and DNA sequence of a replication origin in the rhodopsin gene locus of Chinese hamster cells. J Mol Biol 1992; 224:343-58. [PMID: 1560457 DOI: 10.1016/0022-2836(92)90999-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A chromosomal origin of DNA replication has been localized within the single-copy rhodopsin gene locus in Chinese hamster (line CHO) cells using two methods. In the first method, single-copy segments were identified at 3 to 15 kb intervals within approximately 75 kb (kb = 10(3) bases) of cloned genomic DNA containing the early-replicating rhodopsin gene near its middle. The cloned single-copy segments were then used as hybridization probes to quantify the replication of their corresponding genomic segments as synchronized cells progressed into S phase. In the second method, genomic DNA synthesized in vivo or in permeabilized early S phase cells was hybridized with slot-blots of the cloned single-copy DNA segments to identify the earliest replicating part of the 75 kb mapped region. The first method indicates that the earliest replicating DNA is located within a 10 kb region beginning 4 kb upstream from and extending 1 kb beyond the rhodopsin gene. The second method confirms the location in the vicinity of the rhodopsin gene and indicates that the earliest replicating region is located within or very near the 4.5 kb rhodopsin gene itself. An extended region of 12 kb that encompasses the entire early-replicating region has been sequenced for analysis and comparison with currently characterized origin regions associated with the CHO dihydrofolate reductase (dhfr) and human c-myc genes. There are several sequence similarities between the dhfr rhodopsin origin regions, including common transcription promoter consensus sequences, rodent Alu repeats with their 3'-A+T rich flanking sequences, A+T-rich yeast ARS and Drosophila SAR consensus sequences, and simple (GA)n repeats, but there are no extended regions of direct similarity. The rhodopsin gene locus is the second sequenced CHO origin region.
Collapse
Affiliation(s)
- J M Gale
- Life Sciences Division, Los Alamos National Laboratory, NM 87545
| | | | | |
Collapse
|
27
|
Russev G, Boulikas T. Repair of transcriptionally active and inactive genes during S and G2 phases of the cell cycle. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 204:267-72. [PMID: 1740138 DOI: 10.1111/j.1432-1033.1992.tb16633.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To study the effect of ultraviolet irradiation on S and G2 phases of the cell cycle, BB88 mouse cells synchronized by a double thymidine block were exposed to ultraviolet light, and rates of DNA synthesis and mitotic indexes were determined at regular intervals. It was found that with increasing ultraviolet dose, semiconservative DNA synthesis decreased and the sharp mitotic wave observed in the unirradiated cells gradually degenerated. To study repair, semiconservative DNA replication was inhibited with hydroxyurea at different time intervals after releasing cells from the block and the DNA synthesized as a result of repair of the ultraviolet damage was labeled with 5'-bromodeoxyuridine (BrdU). The newly repaired DNA was separated from bulk DNA by immunoprecipitation with monoclonal anti-BrdU antibody, labeled with 32P and hybridized to nine different gene and oncogene probes dot-blotted in excess on nylon membranes to determine their abundance in the repaired DNA. The results showed that: (a) the most actively repaired segment was a 211-bp sequence adjacent to the promotor region of the beta-actin gene; (b) all transcriptionally active genes were repaired at similar and constant rates throughout S and G2 phases; (c) the nontranscribed genes were repaired at much lower rates in early S phase, but later in S phase and especially in G2 phase, their repair rates increased and approached those of the transcribed genes.
Collapse
Affiliation(s)
- G Russev
- Linus Pauling Institute of Science and Medicine, Palo Alto, California 94306
| | | |
Collapse
|
28
|
Abstract
Metaphase chromosomes are dynamically modified in interphase. This review focuses on how these structures can be modified, and explores the functional mechanisms and significance of these changes. Current analyses of genes often focus on relatively short stretches of DNA and consider chromatin conformations that incorporate only a few kilobases of DNA. In interphase nuclei, however, orderly transcription and replication can involve highly folded chromosomal domains containing hundreds of kilobases of DNA. Specific "junk" DNA sequences within selected chromosome domains may participate in more complex levels of chromosome folding, and may index different genetic compartments for orderly transcription and replication. Three-dimensional chromosome positions within the nucleus may also contribute to phenotypic expression. Entire chromosomes are maintained as discrete, reasonably compact entities in the nucleus, and heterochromatic coiled domains of several thousand kilobases can acquire unique three-dimensional positions in differentiated cell types. Some aspects of neoplasia may relate to alterations in chromosome structure at several higher levels of organization.
Collapse
|
29
|
Caddle MS, Heintz NH. The replication timing of the amplified dihydrofolate reductase genes in the Chinese hamster ovary cell line CHOC 400. Biochem Biophys Res Commun 1990; 170:134-9. [PMID: 2372283 DOI: 10.1016/0006-291x(90)91250-v] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have examined the timing of replication of the amplified dihydrofolate reductase genes in the methotrexate-resistant Chinese hamster ovary cell line CHOC 400 using two synchronization procedures. DNA replicated in the presence of 5-bromodeoxyuridine was collected from cells of various times during the DNA synthesis phase and the extent of replication for defined sequences was determined by Southern blotting analysis of CsCl density gradient fractions. We report that under these conditions the DHFR gene replicates throughout the course of S phase in a mode similar to the bulk of the replicated genomic DNA. This contrasts with previous data that shows the non-amplified DHFR gene replicates during the first quarter of S phase. Therefore, we conclude that gene amplification alters the replication timing of the DHFR gene in CHOC 400 cells.
Collapse
Affiliation(s)
- M S Caddle
- University of Vermont, College of Medicine, Department of Pathology, Burlington 05401
| | | |
Collapse
|
30
|
Abstract
A new method for determining the timing of DNA replication in specific regions of the mammalian genome without the use of DNA density labeling and DNA density centrifugation is described. The method is based on determination of average relative DNA copy numbers in specific genomic regions as cells progress through S phase, and "time of replication" for a specific region is described in terms of the cell's DNA content when the region is replicated. DNA is isolated from synchronized populations of G1 and S phase cells, it is slot-blotted at the same DNA concentration(s) for each population, and it is hybridized with 32P-labeled DNA probes that are specific to the regions of interest. Quantitation of the slot blot autoradiograms and flow cytometric analysis allows determination of (a) average relative DNA copy numbers for the regions of interest in synchronized cell populations, and (b) the average total DNA content in each population of synchronized cells. This information and the flow cytometry histograms are then used to calculate the cellular DNA content at which each region of interest is replicated. The results have a precision of less than or equal to +/- 10% of S phase for Chinese hamster (line CHO) rhodopsin, metallothionein II, the 5'-end of dihydrofolate reductase, the telomeric repeated sequence, pHuR-093 (also located near the centromeres in CHO chromosomes), and the c-Ki-ras family.
Collapse
Affiliation(s)
- J A D'Anna
- Life Sciences Division, Los Alamos National Laboratory, New Mexico 87545
| | | | | | | |
Collapse
|
31
|
Chen TL, Manuelidis L. SINEs and LINEs cluster in distinct DNA fragments of Giemsa band size. Chromosoma 1989; 98:309-16. [PMID: 2692996 DOI: 10.1007/bf00292382] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
By in situ hybridization, short interspersed repeated DNA elements (SINEs), exemplified by Alu repeats, are located principally in Giemsa-light human metaphase chromosome bands. In contrast, the L1 family of long interspersed repeats (LINEs) preferentially cluster in Giemsa-dark bands. These SINE/LINE patterns also generally correspond to early and later replication band patterns. In order to provide a molecular link between structurally visible chromosome bands and a framework of interspersed repeats, we investigated patterns of SINE and LINE hybridization using pulse-field gel electrophoresis (PFGE). Interspersed SINEs and LINEs hybridize with high intensity to specific size fragments of 0.2-3 megabase pairs (Mb). Using appropriate restriction enzymes and pulse-field conditions, a number of fragments were delineated that were either SINE or LINE rich, and were mutually exclusive. Control studies with a human endogenous retroviral repeat that is related in sequence to the major LINE family, delineated a subset of fragments of 0.07-0.4 Mb with unequal intensity. Thus these less numerous repeats also appear to cluster selectively in DNA domains that are larger than a chromosome loop (60-120 kb). In summary, PFGE studies independently confirm the clustering of interspersed repeats on contiguous DNA loops. Selective clustering of repeat motifs may contribute to special structural or functional properties of large chromosome domains, such as chromatin extension/condensation or replication characteristics. In some cases the DNA fragments defined by these repeats approach the size of tandem satellite arrays.
Collapse
Affiliation(s)
- T L Chen
- Yale Medical School, New Haven, CT 06510
| | | |
Collapse
|