1
|
Maio N, Rouault TA. Mammalian iron sulfur cluster biogenesis: From assembly to delivery to recipient proteins with a focus on novel targets of the chaperone and co‐chaperone proteins. IUBMB Life 2022; 74:684-704. [PMID: 35080107 PMCID: PMC10118776 DOI: 10.1002/iub.2593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/05/2021] [Accepted: 12/23/2021] [Indexed: 12/17/2022]
Affiliation(s)
- Nunziata Maio
- Molecular Medicine Branch Eunice Kennedy Shriver National Institute of Child Health and Human Development Bethesda Maryland USA
| | - Tracey A. Rouault
- Molecular Medicine Branch Eunice Kennedy Shriver National Institute of Child Health and Human Development Bethesda Maryland USA
| |
Collapse
|
2
|
Comparative analysis of the coordinated motion of Hsp70s from different organelles observed by single-molecule three-color FRET. Proc Natl Acad Sci U S A 2021; 118:2025578118. [PMID: 34389669 DOI: 10.1073/pnas.2025578118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cellular function depends on the correct folding of proteins inside the cell. Heat-shock proteins 70 (Hsp70s), being among the first molecular chaperones binding to nascently translated proteins, aid in protein folding and transport. They undergo large, coordinated intra- and interdomain structural rearrangements mediated by allosteric interactions. Here, we applied a three-color single-molecule Förster resonance energy transfer (FRET) combined with three-color photon distribution analysis to compare the conformational cycle of the Hsp70 chaperones DnaK, Ssc1, and BiP. By capturing three distances simultaneously, we can identify coordinated structural changes during the functional cycle. Besides the known conformations of the Hsp70s with docked domains and open lid and undocked domains with closed lid, we observed additional intermediate conformations and distance broadening, suggesting flexibility of the Hsp70s in adopting the states in a coordinated fashion. Interestingly, the difference of this distance broadening varied between DnaK, Ssc1, and BiP. Study of their conformational cycle in the presence of substrate peptide and nucleotide exchange factors strengthened the observation of additional conformational intermediates, with BiP showing coordinated changes more clearly compared to DnaK and Ssc1. Additionally, DnaK and BiP were found to differ in their selectivity for nucleotide analogs, suggesting variability in the recognition mechanism of their nucleotide-binding domains for the different nucleotides. By using three-color FRET, we overcome the limitations of the usual single-distance approach in single-molecule FRET, allowing us to characterize the conformational space of proteins in higher detail.
Collapse
|
3
|
PCDHGB7 Increases Chemosensitivity to Carboplatin by Inhibiting HSPA9 via Inducing Apoptosis in Breast Cancer. DISEASE MARKERS 2019; 2019:6131548. [PMID: 31379979 PMCID: PMC6652090 DOI: 10.1155/2019/6131548] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/12/2019] [Accepted: 05/23/2019] [Indexed: 12/31/2022]
Abstract
Breast cancer is one of the most serious cancers worldwide, and chemotherapy resistance frequently drives cancer progression. Triple-negative breast cancer (TNBC) has a high recurrence rate and poor prognosis given its resistance to chemotherapy. In our previous study, we found a remarkable abnormal methylation modification of the PCDHGB7 gene in breast cancer. However, the roles of PCDHGB7 in the progression and treatment of breast cancer are unclear. In this study, we examined the effects of PCDHGB7 on the sensitivity of TNBC cells to carboplatin and investigated the underlying mechanism. By knocking down and overexpressing PCDHGB7 in HS578T and BT549 cells, we confirmed that PCDHGB7 increases TNBC cell chemosensitivity to carboplatin. Mechanistically, we found that PCDHGB7 negatively regulates the expression of HSPA9, uplifting its inhibition on P53 translocation and caspase-3 activation. Thus, we demonstrated that PCDHGB7 increases chemosensitivity of TNBC cells to carboplatin by inhibiting HSPA9 via inducing apoptosis. PCDHGB7 and HSPA9 represent potential therapeutic targets for chemosensitivity in breast cancer.
Collapse
|
4
|
Koike N, Hatano Y, Ushimaru T. Heat shock transcriptional factor mediates mitochondrial unfolded protein response. Curr Genet 2018; 64:907-917. [PMID: 29423676 DOI: 10.1007/s00294-018-0809-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/24/2018] [Accepted: 01/29/2018] [Indexed: 12/22/2022]
Abstract
For maintenance of cytoplasmic protein quality control (PQC), cytoplasmic heat shock proteins (HSPs) negatively control heat shock transcriptional factor (HSF) in a negative feedback loop. However, how mitochondrial protein quality control (mtPQC) is maintained is largely unknown. Here we present evidence that HSF directly monitors mtPQC in the budding yeast Saccharomyces cerevisiae. Mitochondrial HSP70 (Ssc1) negatively regulated HSF activity. Importantly, HSF was localized not only in the nucleus but also on mitochondria. The mitochondrial localization of HSF was increased by heat shock and compromised by SSC1 overexpression. Furthermore, the mitochondrial protein translocation system downregulated HSF activity. Finally, mtPQC modulated the mtHSP genes SSC1 and MDJ1 via HSF, and SSC1 overexpression compromised mitochondrial function. These findings illustrate a model in which HSF directly monitors mtPQC.
Collapse
Affiliation(s)
- Naoki Koike
- Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan
| | - Yuuki Hatano
- Faculty of Science, Shizuoka University, 836 Ohya, Shizuoka, 422-8529, Japan
| | - Takashi Ushimaru
- Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan. .,Faculty of Science, Shizuoka University, 836 Ohya, Shizuoka, 422-8529, Japan.
| |
Collapse
|
5
|
Teigen LE, Orczewska JI, McLaughlin J, O’Brien KM. Cold acclimation increases levels of some heat shock protein and sirtuin isoforms in threespine stickleback. Comp Biochem Physiol A Mol Integr Physiol 2015; 188:139-47. [DOI: 10.1016/j.cbpa.2015.06.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/23/2015] [Accepted: 06/23/2015] [Indexed: 10/23/2022]
|
6
|
Controlled and Impaired Mitochondrial Quality in Neurons: Molecular Physiology and Prospective Pharmacology. Pharmacol Res 2015; 99:410-24. [DOI: 10.1016/j.phrs.2015.03.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 03/27/2015] [Accepted: 03/27/2015] [Indexed: 01/08/2023]
|
7
|
Manos-Turvey A, Brodsky JL, Wipf P. The Effect of Structure and Mechanism of the Hsp70 Chaperone on the Ability to Identify Chemical Modulators and Therapeutics. TOPICS IN MEDICINAL CHEMISTRY 2015. [DOI: 10.1007/7355_2015_90] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Mortalin and DJ-1 coordinately regulate hematopoietic stem cell function through the control of oxidative stress. Blood 2014; 123:41-50. [DOI: 10.1182/blood-2013-06-508333] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Key Points
Mitochondrial heat shock protein, mortalin, is essential for the maintenance of HSCs via the control of oxidative stress. Mortalin directly interact with DJ-1 to regulate ROS levels in the mitochondria of HSCs.
Collapse
|
9
|
Peng C, Yang P, Cui Y, He M, Liang L, Di Y. HSPA9 overexpression inhibits apoptin-induced apoptosis in the HepG2 cell line. Oncol Rep 2013; 29:2431-7. [PMID: 23589050 DOI: 10.3892/or.2013.2399] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 03/15/2013] [Indexed: 11/06/2022] Open
Abstract
Apoptin, a small protein derived from chicken anemia virus, possesses the capacity to specifically kill tumor cells while leaving normal cells intact. Previous studies have indicated that the subcellular localization of apoptin appears to be crucial for this tumor-selective activity. Apoptin resides in the cytoplasm of normal cells; however, in cancer cells it translocates into the nucleus. In the present study, purified prokaryotic native His-apoptin served as a bait for capturing apoptin-associated proteins in both a hepatoma carcinoma cell line (HepG2) and a human fetal liver cell line (L-02). The captured proteins obtained from a pull-down assay were separated by two-dimensional gel electrophoresis. Mass spectrometry was employed to detect the effect of HSPA9 overexpression (one of the interacting proteins with apoptin in vitro) and downregulation of HSPA9 on HepG2 cells. The data revealed that HSPA9 overexpression resulted in partial distribution of apoptin in the cytoplasm. Notably, HSPA9 overexpression markedly decreased the apoptosis rate of HepG2 cells from 41.2 to 31.7%, while the downregulation of HSPA9 using small interfering RNA significantly enhanced the apoptosis of HepG2 cells. Our results suggest new insights into the localization mechanism of apoptin which is tightly associated with HSPA9 overexpression and its crucial role in cellular apoptosis both in a tumor cell line (HepG2) and a normal cell line (L-02). These findings shed new light on the elucidation of the underlying mechanism of anticancer action of apoptin.
Collapse
Affiliation(s)
- Chuanmei Peng
- Clinical Laboratory of Yanan Hospital of Kunming, and Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming 650051, PR China
| | | | | | | | | | | |
Collapse
|
10
|
Pérez-Sánchez J, Borrel M, Bermejo-Nogales A, Benedito-Palos L, Saera-Vila A, Calduch-Giner JA, Kaushik S. Dietary oils mediate cortisol kinetics and the hepatic mRNA expression profile of stress-responsive genes in gilthead sea bream (Sparus aurata) exposed to crowding stress. Implications on energy homeostasis and stress susceptibility. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2013; 8:123-30. [PMID: 23466468 DOI: 10.1016/j.cbd.2013.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/05/2013] [Accepted: 02/05/2013] [Indexed: 10/27/2022]
Abstract
Juveniles of gilthead sea bream were fed with plant protein-based diets with fish oil (FO diet) or vegetable oils (66VO diet) as dietary lipid sources. No differences in growth performance were found between both groups, and fish with an average body mass of 65-70 g were crowded (90-100 kg/m(3)) to assess the stress response within the 72 h after the onset of stressor. The rise in plasma cortisol and glucose levels was higher in stressed fish of group 66VO (66VO-S) than in FO group (FO-S), but the former stressed group regained more quickly the cortisol resting values of the corresponding non-stressed diet group. The cell-tissue repair response represented by derlin-1, 75 kDa glucose-regulated protein and 170 kDa glucose-regulated protein was triggered at a lower level in 66VO-S than in FO-S fish. This occurred in concert with a long-lasting up-regulation of glucocorticoid receptors, antioxidant enzymes, enzyme subunits of the mitochondrial respiratory chain, and enzymes involved in tissue fatty acid uptake and β-oxidation. This gene expression pattern allows a metabolic phenotype that is prone to "high power" mitochondria, which would support the replacement of fish oil with vegetable oils when theoretical requirements in essential fatty acids for normal growth are met by diet.
Collapse
Affiliation(s)
- Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology, Instituto de Acuicultura Torre de la Sal, IATS-CSIC, Castellón, Spain.
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Good fortune let me be an innocent child during World War II, a hopeful adolescent with encouraging parents during the years of German recovery, and a self-determined adult in a period of peace, freedom, and wealth. My luck continued as a scientist who could entirely follow his fancy. My mind was always set on understanding how things are made. At a certain point, I found myself confronted with the question of how mitochondria and organelles, which cannot be formed de novo, are put together. Intracellular transport of proteins, their translocation across the mitochondrial membranes, and their folding and assembly were the processes that fascinated me. Now, after some 30 years, we have wonderful insights, unimagined views of a complex and at the same time simple machinery and its workings. We have glimpses of how orderly processes are established in the cell to assemble from single molecules our beautiful mitochondria that every day make some 50 kg of ATP for each of us. At the same time, we have learned amazing lessons from the tinkering of evolution that developed mitochondria from bacteria.
Collapse
Affiliation(s)
- Walter Neupert
- Ludwig-Maximilians-Universität München and Max Planck Institute of Biochemistry, Martinsried D-82152, Germany
| |
Collapse
|
12
|
Sun L, Edelmann FT, Kaiser CJO, Papsdorf K, Gaiser AM, Richter K. The lid domain of Caenorhabditis elegans Hsc70 influences ATP turnover, cofactor binding and protein folding activity. PLoS One 2012; 7:e33980. [PMID: 22479492 PMCID: PMC3315512 DOI: 10.1371/journal.pone.0033980] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 02/20/2012] [Indexed: 12/27/2022] Open
Abstract
Hsc70 is a conserved ATP-dependent molecular chaperone, which utilizes the energy of ATP hydrolysis to alter the folding state of its client proteins. In contrast to the Hsc70 systems of bacteria, yeast and humans, the Hsc70 system of C. elegans (CeHsc70) has not been studied to date. We find that CeHsc70 is characterized by a high ATP turnover rate and limited by post-hydrolysis nucleotide exchange. This rate-limiting step is defined by the helical lid domain at the C-terminus. A certain truncation in this domain (CeHsc70-Δ545) reduces the turnover rate and renders the hydrolysis step rate-limiting. The helical lid domain also affects cofactor affinities as the lidless mutant CeHsc70-Δ512 binds more strongly to DNJ-13, forming large protein complexes in the presence of ATP. Despite preserving the ability to hydrolyze ATP and interact with its cofactors DNJ-13 and BAG-1, the truncation of the helical lid domain leads to the loss of all protein folding activity, highlighting the requirement of this domain for the functionality of the nematode's Hsc70 protein.
Collapse
Affiliation(s)
| | | | | | | | | | - Klaus Richter
- Center for Integrated Protein Science Munich (CIPSM) and Department Chemie, Technische Universität München, Garching, Germany
- * E-mail:
| |
Collapse
|
13
|
Nuclear GRP75 binds retinoic acid receptors to promote neuronal differentiation of neuroblastoma. PLoS One 2011; 6:e26236. [PMID: 22022577 PMCID: PMC3194821 DOI: 10.1371/journal.pone.0026236] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 09/22/2011] [Indexed: 11/19/2022] Open
Abstract
Retinoic acid (RA) has been approved for the differentiation therapy of neuroblastoma (NB). Previous work revealed a correlation between glucose-regulated protein 75 (GRP75) and the RA-elicited neuronal differentiation of NB cells. The present study further demonstrated that GRP75 translocates into the nucleus and physically interacts with retinoid receptors (RARα and RXRα) to augment RA-elicited neuronal differentiation. GRP75 was required for RARα/RXRα-mediated transcriptional regulation and was shown to reduce the proteasome-mediated degradation of RARα/RXRαin a RA-dependent manner. More intriguingly, the level of GRP75/RARα/RXRα tripartite complexes was tightly associated with the RA-induced suppression of tumor growth in animals and the histological grade of differentiation in human NB tumors. The formation of GRP75/RARα/RXRα complexes was intimately correlated with a normal MYCN copy number of NB tumors, possibly implicating a favorable prognosis of NB tumors. The present findings reveal a novel function of nucleus-localized GRP75 in actively promoting neuronal differentiation, delineating the mode of action for the differentiation therapy of NB by RA.
Collapse
|
14
|
Mitochondrial dysfunction in some oxidative stress-related genetic diseases: Ataxia-Telangiectasia, Down Syndrome, Fanconi Anaemia and Werner Syndrome. Biogerontology 2010; 11:401-19. [PMID: 20237955 DOI: 10.1007/s10522-010-9269-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 02/26/2010] [Indexed: 12/26/2022]
Abstract
Oxidative stress is a phenotypic hallmark in several genetic disorders characterized by cancer predisposition and/or propensity to premature ageing. Here we review the published evidence for the involvement of oxidative stress in the phenotypes of Ataxia-Telangiectasia (A-T), Down Syndrome (DS), Fanconi Anaemia (FA), and Werner Syndrome (WS), from the viewpoint of mitochondrial dysfunction. Mitochondria are recognized as both the cell compartment where energetic metabolism occurs and as the first and most susceptible target of reactive oxygen species (ROS) formation. Thus, a critical evaluation of the basic mechanisms leading to an in vivo pro-oxidant state relies on elucidating the features of mitochondrial impairment in each disorder. The evidence for different mitochondrial dysfunctions reported in A-T, DS, and FA is reviewed. In the case of WS, clear-cut evidence linking human WS phenotype to mitochondrial abnormalities is lacking so far in the literature. Nevertheless, evidence relating mitochondrial dysfunctions to normal ageing suggests that WS, as a progeroid syndrome, is likely to feature mitochondrial abnormalities. Hence, ad hoc research focused on elucidating the nature of mitochondrial dysfunction in WS pathogenesis is required. Based on the recognized, or reasonably suspected, role of mitochondrial abnormalities in the pathogenesis of these disorders, studies of chemoprevention with mitochondria-targeted supplements are warranted.
Collapse
|
15
|
Squina FM, Leal J, Cipriano VTF, Martinez-Rossi NM, Rossi A. Transcription of the Neurospora crassa 70-kDa class heat shock protein genes is modulated in response to extracellular pH changes. Cell Stress Chaperones 2010; 15:225-31. [PMID: 19618296 PMCID: PMC2866986 DOI: 10.1007/s12192-009-0131-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Revised: 06/25/2009] [Accepted: 06/30/2009] [Indexed: 10/20/2022] Open
Abstract
Heat shock proteins belong to a conserved superfamily of molecular chaperones found in prokaryotes and eukaryotes. These proteins are linked to a myriad of physiological functions. In this study, we show that the N. crassa hsp70-1 (NCU09602.3) and hsp70-2 (NCU08693.3) genes are preferentially expressed in an acidic milieu after 15 h of cell growth in sufficient phosphate at 30 degrees C. No significant accumulation of these transcripts was detected at alkaline pH values. Both genes accumulated to a high level in mycelia that were incubated for 1 h at 45 degrees C, regardless of the phosphate concentration and extracellular pH changes. Transcription of the hsp70-1 and hsp70-2 genes was dependent on the pacC (+) background in mycelia cultured under optimal growth conditions or at 45 degrees C. The pacC gene encodes a Zn-finger transcription factor that is involved in the regulation of gene expression by pH. Heat shock induction of these two hsp genes in mycelia incubated in low-phosphate medium was almost not altered in the nuc-1 (-) background under both acidic and alkaline pH conditions. The NUC-1 transcriptional regulator is involved in the derepression of nucleases, phosphatases, and transporters that are necessary for fulfilling the cell's phosphate requirements. Transcription of the hsp70-3 (NCU01499.3) gene followed a different pattern of induction-the gene was depressed under insufficient phosphate conditions but was apparently unaffected by alkalinization of the culture medium. Moreover, this gene was not induced by heat shock. These results reveal novel aspects of the heat-sensing network of N. crassa.
Collapse
Affiliation(s)
- Fabio M. Squina
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirão Preto, SP Brazil
- Centro de Ciência e Tecnologia do Bioetanol-CTBE, Associação Brasileira de Tecnologia de Luz Síncrotron, Campinas, SP Brazil
| | - Juliana Leal
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirão Preto, SP Brazil
| | - Vivian T. F. Cipriano
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirão Preto, SP Brazil
| | - Nilce M. Martinez-Rossi
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirão Preto, SP Brazil
| | - Antonio Rossi
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirão Preto, SP Brazil
| |
Collapse
|
16
|
Saera-Vila A, Calduch-Giner JA, Prunet P, Pérez-Sánchez J. Dynamics of liver GH/IGF axis and selected stress markers in juvenile gilthead sea bream (Sparus aurata) exposed to acute confinement: differential stress response of growth hormone receptors. Comp Biochem Physiol A Mol Integr Physiol 2009; 154:197-203. [PMID: 19524697 DOI: 10.1016/j.cbpa.2009.06.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 06/01/2009] [Accepted: 06/02/2009] [Indexed: 01/29/2023]
Abstract
The time courses of liver GH/IGF axis and selected stress markers were analyzed in juvenile gilthead sea bream (Sparus aurata) sampled at zero time and at fixed intervals (1.5, 3, 6, 24, 72 and 120 h) after acute confinement (120 kg/m(3)). Fish remained unfed throughout the course of the confinement study, and the fasting-induced increases in plasma growth hormone (GH) levels were partially masked by the GH-stress inhibitory tone. Hepatic mRNA levels of growth hormone receptor-I (GHR-I) were not significantly altered by confinement, but a persistent 2-fold decrease in GHR-II transcripts was found at 24 and 120 h. A consistent decrease in circulating levels of insulin-like growth factor-I (IGF-I) was also found through most of the experimental period, and the down-regulated expression of GHR-II was positively correlated with changes in hepatic IGF-I and IGF-II transcripts. This stress-specific response was concurrent with plasma increases in cortisol and glucose levels, reflecting the cortisol peak (60-70 ng/mL), the intensity and duration of the stressor when data found in the literature were compared. Adaptive responses against oxidative damage were also found, and a rapid enhanced expression was reported in the liver tissue for mitochondrial heat-shock proteins (glucose regulated protein 75). At the same time, the down-regulated expression of proinflammatory cytokines (tumour necrosis factor-alpha) and detoxifying enzymes (cytochrome P450 1A1) might dictate the hepatic depletion of potential sources of reactive oxygen species. These results provide suitable evidence for a functional partitioning of hepatic GHRs under states of reduced IGF production and changing cellular environment resulting from acute confinement.
Collapse
Affiliation(s)
- Alfonso Saera-Vila
- Nutrition and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal (CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | | | | | | |
Collapse
|
17
|
Abstract
Multisubunit complexes containing molecular chaperones regulate protein production, stability, and degradation in virtually every cell type. We are beginning to recognize how generalized and tissue-specific chaperones regulate specialized aspects of erythropoiesis. For example, chaperones intersect with erythropoietin signaling pathways to protect erythroid precursors against apoptosis. Molecular chaperones also participate in hemoglobin synthesis, both directly and indirectly. Current knowledge in these areas only scratches the surface of what is to be learned. Improved understanding of how molecular chaperones regulate erythropoietic development and hemoglobin homeostasis should identify biochemical pathways amenable to pharmacologic manipulation in a variety of red blood cell disorders including thalassemia and other anemias associated with hemoglobin instability.
Collapse
|
18
|
Vickery LE, Cupp-Vickery JR. Molecular Chaperones HscA/Ssq1 and HscB/Jac1 and Their Roles in Iron-Sulfur Protein Maturation. Crit Rev Biochem Mol Biol 2008; 42:95-111. [PMID: 17453917 DOI: 10.1080/10409230701322298] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Genetic and biochemical studies have led to the identification of several cellular pathways for the biosynthesis of iron-sulfur proteins in different organisms. The most broadly distributed and highly conserved system involves an Hsp70 chaperone and J-protein co-chaperone system that interacts with a scaffold-like protein involved in [FeS]-cluster preassembly. Specialized forms of Hsp70 and their co-chaperones have evolved in bacteria (HscA, HscB) and in certain fungi (Ssq1, Jac1), whereas most eukaryotes employ a multifunctional mitochondrial Hsp70 (mtHsp70) together with a specialized co-chaperone homologous to HscB/Jac1. HscA and Ssq1 have been shown to specifically bind to a conserved sequence present in the [FeS]-scaffold protein designated IscU in bacteria and Isu in fungi, and the crystal structure of a complex of a peptide containing the IscU recognition region bound to the HscA substrate binding domain has been determined. The interaction of IscU/Isu with HscA/Ssq1 is regulated by HscB/Jac1 which bind the scaffold protein to assist delivery to the chaperone and stabilize the chaperone-scaffold complex by enhancing chaperone ATPase activity. The crystal structure of HscB reveals that the N-terminal J-domain involved in regulation of HscA ATPase activity is similar to other J-proteins, whereas the C-terminal domain is unique and appears to mediate specific interactions with IscU. At the present time the exact function(s) of chaperone-[FeS]-scaffold interactions in iron-sulfur protein biosynthesis remain(s) to be established. In vivo and in vitro studies of yeast Ssq1 and Jac1 indicate that the chaperones are not required for [FeS]-cluster assembly on Isu. Recent in vitro studies using bacterial HscA, HscB and IscU have shown that the chaperones destabilize the IscU[FeS] complex and facilitate cluster delivery to an acceptor apo-protein consistent with a role in regulating cluster release and transfer. Additional genetic and biochemical studies are needed to extend these findings to mtHsp70 activities in higher eukaryotes.
Collapse
Affiliation(s)
- Larry E Vickery
- Department of Physiology and Biophysics, University of California, Irvine, California 92617, USA.
| | | |
Collapse
|
19
|
|
20
|
Deocaris CC, Kaul SC, Wadhwa R. From proliferative to neurological role of an hsp70 stress chaperone, mortalin. Biogerontology 2008; 9:391-403. [PMID: 18770009 DOI: 10.1007/s10522-008-9174-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2008] [Accepted: 08/18/2008] [Indexed: 12/21/2022]
Abstract
Although the brain makes up approximately 2% of a person's body weight, it consumes more than 15% of total cardiac output and has a per capita caloric requirement of 10 times more than the rest of the body. Such continuous metabolic demand that supports the generation of action potentials in neuronal cells relies on the mitochondria, the main organelle for power generation. The phenomenon of mitochondrial biogenesis, although has long been a neglected theme in neurobiology, can be regarded as critical to brain physiology. The present review emphasizes the role of a key molecular player of mitochondrial biogenesis, the mortalin/mthsp70. Brain mortalin is discussed in relation to its aptitude to impact on mitochondrial function and homeostasis, to its interfacing energy metabolic functions with synaptic plasticity, and to its modulation of brain aging via the cellular senescence pathways. Recently, this chaperone has been implicated in Alzheimer's (AD) and Parkinson's (PD) diseases, with proteomic studies consistently identifying oxidatively-damaged mortalin as potential biomarker. Hence, it is possible that mitochondrial dysfunction coincides with the collapse in the mitochondrial chaperone network that aim not only to import, sort and maintain integrity of protein components within the mitochondria, but also to act as buffer to the molecular heterogeneity of damaged and aging mitochondrial proteins within a ROS-rich microenvironment. Inversely, it may also seem that vulnerability to mitochondrial dysfunction could be precipitated by malevolent (anti-chaperone) gain-of-function of a 'sick mortalin'.
Collapse
Affiliation(s)
- Custer C Deocaris
- Institute of Health and Sports Science, University of Tsukuba, Ibaraki, 305-8574, Japan
| | | | | |
Collapse
|
21
|
Bermejo-Nogales A, Benedito-Palos L, Saera-Vila A, Calduch-Giner JA, Sitjà-Bobadilla A, Pérez-Sánchez J. Confinement exposure induces glucose regulated protein 75 (GRP75/mortalin/mtHsp70/PBP74/HSPA9B) in the hepatic tissue of gilthead sea bream (Sparus aurata L.). Comp Biochem Physiol B Biochem Mol Biol 2008; 149:428-38. [DOI: 10.1016/j.cbpb.2007.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 11/13/2007] [Accepted: 11/14/2007] [Indexed: 11/25/2022]
|
22
|
Changes in immunoreactivity of HSP60 and its neuroprotective effects in the gerbil hippocampal CA1 region induced by transient ischemia. Exp Neurol 2007; 208:247-56. [DOI: 10.1016/j.expneurol.2007.08.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 08/16/2007] [Accepted: 08/22/2007] [Indexed: 12/31/2022]
|
23
|
Tkach JM, Glover JR. Nucleocytoplasmic trafficking of the molecular chaperone Hsp104 in unstressed and heat-shocked cells. Traffic 2007; 9:39-56. [PMID: 17973656 DOI: 10.1111/j.1600-0854.2007.00666.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Hsp104 is a molecular chaperone in yeast that restores solubility and activity to inactivated proteins after severe heat shock. We investigated the mechanisms that influence Hsp104 subcellular distribution in both unstressed and heat-shocked cells. In unstressed cells, Hsp104 and a green fluorescent protein-Hsp104 fusion protein were detected in both the nucleus and the cytoplasm. We demonstrate that a 17-amino-acid sequence of Hsp104 nuclear localization sequence 17 (NLS17) is sufficient to target a reporter molecule to the nucleus and is also necessary for normal Hsp104 subcellular distribution. The nuclear targeting function of NLS17 is genetically dependent on KAP95 and KAP121. In addition, wild-type Hsp104, but not an NLS17-mutated Hsp104 variant, accumulated in the nucleus of cells depleted for the general export factor Xpo1. Interestingly, severe, nonlethal heat shock enhances the nuclear levels of Hsp104 in an NLS17-independent manner. Under these conditions, we demonstrate that karyopherin-mediated nuclear transport is impaired, while the integrity of the nuclear-cytoplasmic barrier remains intact. Based on these observations, we propose that Hsp104 continues to access the nucleus during severe heat shock using a karyopherin-independent mechanism.
Collapse
Affiliation(s)
- Johnny M Tkach
- Department of Biochemistry, University of Toronto, Room 5302, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | | |
Collapse
|
24
|
Ohtsuka R, Abe Y, Fujii T, Yamamoto M, Nishimura J, Takayanagi R, Muta K. Mortalin is a novel mediator of erythropoietin signaling. Eur J Haematol 2007; 79:114-25. [PMID: 17635236 DOI: 10.1111/j.1600-0609.2007.00870.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Erythropoietin (EPO) stimulates erythroid growth by enhancing the proliferation, maturation and survival of late-stage erythroid progenitor cells. However, the entire process of EPO stimulation remains undetermined. To further clarify the intracellular mechanisms by which EPO affects the growth of erythroid progenitor cells, we analyzed proteins obtained from purified human erythroid colony-forming cells (ECFCs) cultured with or without EPO, and one of the proteins apparently related with EPO stimuli was identified as mortalin (mthsp70/PBP74/Grp75/mot-2), which is a member of the heat shock protein 70 family of chaperones. The amount of mortalin mRNA in ECFCs increased in an EPO dose-dependent manner, and ECFC growth was dependent on the amount of mortalin. Furthermore, expression of mortalin in ECFCs was suppressed by a phosphatidylinositol 3-kinase inhibitor. Finally, we analyzed gene expression patterns in ECFCs cultured with or without EPO after treatment with mortalin small interfering RNA (siRNA) using a DNA microarray. When ECFCs treated with mortalin siRNA were cultured with EPO, the expression of several genes overlapped with the profile seen in control ECFCs cultured without EPO. Our data suggest that mortalin is involved in the mediation of EPO signaling and plays an important role in stimulating the growth of erythroid progenitor cells.
Collapse
Affiliation(s)
- Rie Ohtsuka
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Daugaard M, Rohde M, Jäättelä M. The heat shock protein 70 family: Highly homologous proteins with overlapping and distinct functions. FEBS Lett 2007; 581:3702-10. [PMID: 17544402 DOI: 10.1016/j.febslet.2007.05.039] [Citation(s) in RCA: 790] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2007] [Revised: 05/14/2007] [Accepted: 05/14/2007] [Indexed: 12/12/2022]
Abstract
The human heat shock protein 70 (Hsp70) family contains at least eight homologous chaperone proteins. Endoplasmatic reticulum and mitochondria have their specific Hsp70 proteins, whereas the remaining six family members reside mainly in the cytosol and nucleus. The requirement for multiple highly homologous although different Hsp70 proteins is still far from clear, but their individual and tissue-specific expression suggests that they are assigned distinct biological tasks. This concept is supported by the fact that mice knockout for different Hsp70 genes display remarkably discrete phenotypes. Moreover, emerging data suggest that individual Hsp70 proteins can bring about non-overlapping and chaperone-independent functions essential for growth and survival of cancer cells. This review summarizes our present knowledge of the individual members of human Hsp70 family and elaborate on the functional differences between the cytosolic/nuclear representatives.
Collapse
Affiliation(s)
- Mads Daugaard
- Apoptosis Department and Centre for Genotoxic Stress Response, Institute of Cancer Biology, Danish Cancer Society, Strandboulevarden 49, DK-2100 Copenhagen, Denmark
| | | | | |
Collapse
|
26
|
Chardonnet S, Decottignies P, Amar L, Le Caer JP, Davis S, Laroche S, Le Maréchal P. New mortalin and histidyl tRNA synthetase isoforms point out a pitfall in proteomic analysis of Egr1 genetically modified mice. Proteomics 2007; 7:289-98. [PMID: 17205600 DOI: 10.1002/pmic.200600513] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Egr1 (Zif268) is an immediate early gene encoding an inducible transcription factor involved in synaptic plasticity and several forms of memory in rodents. Using 2-DE and MS, we compared proteomes of hippocampal subregions and cortex in Egr1-deficient and wild-type littermates. Two significant differences were identified: a shift in the pI of the molecular chaperone mortalin (mtHsp70/PBP74/Grp75) and the apparent disappearance of histidyl tRNA synthetase (HisRS). We found that the pI shift for mortalin in Egr1-deficient mice was caused by a difference in protein sequence: D626G. Using cDNA sequencing, we demonstrated for both mortalin and HisRS that protein differences were not due to a lack of Egr1 but to DNA polymorphism between the C57Bl/6J and 129/Sv strains used to generate the Egr1-deficient mice. Our results show that mortalin and HisRS genes, which map closely to the Egr1 locus, have conserved the 129/Sv haplotype despite numerous back-crossing of the null mice progeny with C57Bl/6J animals. This demonstrates that allelic differences between mouse strains can introduce variations in differential proteomic analyses of genetically modified organisms. Finally, we report the identification of new isoforms of HisRS and mortalin (mot-3) encoded by the 129/Sv haplotype.
Collapse
Affiliation(s)
- Solenne Chardonnet
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, UMR 8619, CNRS, Université Paris-Sud, Orsay Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
27
|
Rassow J, Pfanner N. Molecular chaperones and intracellular protein translocation. Rev Physiol Biochem Pharmacol 2006; 126:199-264. [PMID: 7886379 DOI: 10.1007/bfb0049777] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- J Rassow
- Biochemisches Institut, Universität Freiburg, Germany
| | | |
Collapse
|
28
|
Wadhwa R, Takano S, Kaur K, Deocaris CC, Pereira-Smith OM, Reddel RR, Kaul SC. Upregulation of mortalin/mthsp70/Grp75 contributes to human carcinogenesis. Int J Cancer 2006; 118:2973-80. [PMID: 16425258 DOI: 10.1002/ijc.21773] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Mortalin, also known as mthsp70/GRP75/PBP74, interacts with the tumor suppressor protein p53 and inactivates its transcriptional activation and apoptotic functions. Here, we examined the level of mortalin expression in a large variety of tumor tissues, tumor-derived and in vitro immortalized human cells. It was elevated in many human tumors, and in all of the tumor-derived and in vitro immortalized cells. In human embryonic fibroblasts immortalized with an expression plasmid for hTERT, the telomerase catalytic subunit, with or without human papillomavirus E6 and E7 genes, we found that subclones with spontaneously increased mortalin expression levels became anchorage-independent and acquired the ability to form tumors in nude mice. Furthermore, overexpression of mortalin was sufficient to increase the malignancy of breast carcinoma cells. The study demonstrates that upregulation of mortalin contributes significantly to tumorigenesis, and thus is a good candidate target for cancer therapy.
Collapse
Affiliation(s)
- Renu Wadhwa
- Gene Function Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Matsumoto R, Akama K, Rakwal R, Iwahashi H. The stress response against denatured proteins in the deletion of cytosolic chaperones SSA1/2 is different from heat-shock response in Saccharomyces cerevisiae. BMC Genomics 2005; 6:141. [PMID: 16209719 PMCID: PMC1262714 DOI: 10.1186/1471-2164-6-141] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Accepted: 10/07/2005] [Indexed: 11/10/2022] Open
Abstract
Background A yeast strain lacking the two genes SSA1 and SSA2, which encode cytosolic molecular chaperones, acquires thermotolerance as well as the mild heat-shocked wild-type yeast strain. We investigated the genomic response at the level of mRNA expression to the deletion of SSA1/2 in comparison with the mild heat-shocked wild-type using cDNA microarray. Results Yeast cDNA microarray analysis revealed that genes involved in the stress response, including molecular chaperones, were up-regulated in a similar manner in both the ssa1/2 deletion mutant and the mild heat-shocked wild-type. Genes involved in protein synthesis were up-regulated in the ssa1/2 deletion mutant, but were markedly suppressed in the mild heat-shocked wild-type. The genes involved in ubiquitin-proteasome protein degradation were also up-regulated in the ssa1/2 deletion mutant, whereas the unfolded protein response (UPR) genes were highly expressed in the mild heat-shocked wild-type. RT-PCR confirmed that the genes regulating protein synthesis and cytosolic protein degradation were up-regulated in the ssa1/2 deletion mutant. At the translational level, more ubiquitinated proteins and proteasomes were detected in the ssa1/2 deletion mutant, than in the wild-type, confirming that ubiquitin-proteasome protein degradation was up-regulated by the deletion of SSA1/2. Conclusion These results suggest that the mechanism for rescue of denatured proteins in the ssa1/2 deletion mutant is different from that in the mild heat-shocked wild-type: Activated protein synthesis in the ssa1/2 deletion mutant supplies a deficiency of proteins by their degradation, whereas mild heat-shock induces UPR.
Collapse
Affiliation(s)
- Rena Matsumoto
- Graduate School of Science and Technology, Chiba University, 1-33 Yayoi-cho, Inage, Chiba, Chiba 263-8522, Japan
- International Patent Organism Depositary (IPOD), National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Kuniko Akama
- Graduate School of Science and Technology, Chiba University, 1-33 Yayoi-cho, Inage, Chiba, Chiba 263-8522, Japan
| | - Randeep Rakwal
- Human Stress Signal Research Center (HSSRC), AIST, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Hitoshi Iwahashi
- Graduate School of Science and Technology, Chiba University, 1-33 Yayoi-cho, Inage, Chiba, Chiba 263-8522, Japan
- Human Stress Signal Research Center (HSSRC), AIST, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| |
Collapse
|
30
|
Sichting M, Mokranjac D, Azem A, Neupert W, Hell K. Maintenance of structure and function of mitochondrial Hsp70 chaperones requires the chaperone Hep1. EMBO J 2005; 24:1046-56. [PMID: 15719019 PMCID: PMC554129 DOI: 10.1038/sj.emboj.7600580] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Accepted: 01/20/2005] [Indexed: 11/08/2022] Open
Abstract
Hsp70 chaperones mediate folding of proteins and prevent their misfolding and aggregation. We report here on a new kind of Hsp70 interacting protein in mitochondria, Hep1. Hep1 is a highly conserved protein present in virtually all eukaryotes. Deletion of HEP1 results in a severe growth defect. Cells lacking Hep1 are deficient in processes that need the function of mitochondrial Hsp70s, such as preprotein import and biogenesis of proteins containing FeS clusters. In the mitochondria of these cells, Hsp70s, Ssc1 and Ssq1 accumulate as insoluble aggregates. We show that it is the nucleotide-free form of mtHsp70 that has a high tendency to self-aggregate. This process is efficiently counteracted by Hep1. We conclude that Hep1 acts as a chaperone that is necessary and sufficient to prevent self-aggregation and to thereby maintain the function of the mitochondrial Hsp70 chaperones.
Collapse
Affiliation(s)
- Martin Sichting
- Adolf-Butenandt-Institut, Lehrstuhl für Physiologische Chemie, Ludwig-Maximilians-Universität München, München, Germany
| | - Dejana Mokranjac
- Adolf-Butenandt-Institut, Lehrstuhl für Physiologische Chemie, Ludwig-Maximilians-Universität München, München, Germany
| | - Abdussalam Azem
- Department of Biochemistry, Tel-Aviv University, Tel-Aviv, Israel
| | - Walter Neupert
- Adolf-Butenandt-Institut, Lehrstuhl für Physiologische Chemie, Ludwig-Maximilians-Universität München, München, Germany
- Adolf-Butenandt-Institut, Lehrstuhl für Physiologische Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5, 81377 München, Germany. Tel.: +49 89 2180 77095; Fax: +49 89 2180 77093; E-mail:
| | - Kai Hell
- Adolf-Butenandt-Institut, Lehrstuhl für Physiologische Chemie, Ludwig-Maximilians-Universität München, München, Germany
| |
Collapse
|
31
|
Yoneda T, Benedetti C, Urano F, Clark SG, Harding HP, Ron D. Compartment-specific perturbation of protein handling activates genes encoding mitochondrial chaperones. J Cell Sci 2004; 117:4055-66. [PMID: 15280428 DOI: 10.1242/jcs.01275] [Citation(s) in RCA: 456] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Protein folding in the mitochondria is assisted by nuclear-encoded compartment-specific chaperones but regulation of the expression of their encoding genes is poorly understood. We found that the mitochondrial matrix HSP70 and HSP60 chaperones, encoded by the Caenorhabditis elegans hsp-6 and hsp-60 genes, were selectively activated by perturbations that impair assembly of multi-subunit mitochondrial complexes or by RNAi of genes encoding mitochondrial chaperones or proteases, which lead to defective protein folding and processing in the organelle. hsp-6 and hsp-60 induction was specific to perturbed mitochondrial protein handling, as neither heat-shock nor endoplasmic reticulum stress nor manipulations that impair mitochondrial steps in intermediary metabolism or ATP synthesis activated the mitochondrial chaperone genes. These observations support the existence of a mitochondrial unfolded protein response that couples mitochondrial chaperone gene expression to changes in the protein handling environment in the organelle.
Collapse
Affiliation(s)
- Takunari Yoneda
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | | | | | | | | | | |
Collapse
|
32
|
Kumaraguru U, Pack CD, Rouse BT. Toll-like receptor ligand links innate and adaptive immune responses by the production of heat-shock proteins. J Leukoc Biol 2003; 73:574-83. [PMID: 12714571 DOI: 10.1189/jlb.0902470] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The report shows that CpG can exert additional adjuvant effects by inducing cells that are normally inferior antigen (Ag)-presenting cells to participate in immune induction by cross-priming. Macrophages (Mphi) exposed to protein Ag in the presence of bioactive CpG DNA released material that induced primary CD8(+) T cell responses in DC-naïve T cell cultures. This cross-priming event was accompanied by up-regulation of the stress protein response as well as inflammatory cytokine expression in treated Mphi. The material released was indicated to contain inducible heat shock protein-70 and epitope peptide, which in turn, were presented by dendritic cells (DCs) to responder T cells. Such an adjuvant effect by CpG may serve to salvage immunogenic material from otherwise inert depot cellular sites and additionally stimulate DCs to effectively cross-prime. The cross-priming, shown also to occur in vivo, may be particularly useful when Ag doses are low and have minimal opportunity for delivery to DCs for consequent direct priming.
Collapse
|
33
|
Tamura S, Kinouchi H, Izaki K, Okubo A, Sugawara T, Kunizuka H, Mizoi K. Induction of heat shock protein 40 and GrpE mRNAs following transient focal cerebral ischemia in the rat. Brain Res 2003; 960:277-81. [PMID: 12505684 DOI: 10.1016/s0006-8993(02)03887-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cerebral ischemia is associated with the induction of several heat shock proteins (HSPs), but the effects on HSP40 and GrpE are less clear. The present study investigated the induction of Hsp40 and GrpE mRNAs following 30 min of middle cerebral artery occlusion in the rat model. Reverse transcription-polymerase chain reaction (PCR) and in situ hybridization analyses showed significant induction of both mRNAs in the ischemic cortex. These results demonstrate the synergic induction of HSP70 molecular chaperone machinery in cerebral ischemia.
Collapse
Affiliation(s)
- Shin'ya Tamura
- Department of Neurosurgery, Akita University School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Cernila B, Cresnar B, Breskvar K. Molecular characterization of genes encoding cytosolic Hsp70s in the zygomycete fungus Rhizopus nigricans. Cell Stress Chaperones 2003; 8:317-28. [PMID: 15115284 PMCID: PMC514903 DOI: 10.1379/1466-1268(2003)008<0317:mcogec>2.0.co;2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Previous studies have shown that some stressors, including steroid hormones 21-OH progesterone and testosterone, stimulate the accumulation of heat shock protein 70 (hsp70) messenger ribonucleic acid (mRNA) population in the zygomycete filamentous fungus Rhizopus nigricans. In this study we report the cloning of 3 R nigricans hsp70 genes (Rnhsp70-1, Rnhsp70-2, and Rnhsp70-3) encoding cytosolic Hsp70s. With a Southern blot experiment under high stringency conditions we did not detect any additional highly homologous copies of the cytosolic hsp70 genes in the R nigricans genome. Sequence analyses showed that all 3 genes contain introns within the open reading frame. The dynamics of the R nigricans molecular response to progesterone, 21-OH progesterone, and testosterone, as well as to heat shock, copper ions, hydrogen peroxide, and ethanol was studied by temporal analysis of Rnhsp70-1 and Rnhsp70-2 mRNA accumulation. Northern blot experiments revealed that the Rnhsp70-2 transcript level is not affected by testosterone, whereas mRNA levels of both genes are rapidly increased with all the other stressors studied. Moreover, the decrease of transcript levels is notably delayed in ethanol stress, and a difference is observed between the profiles of Rnhsp70-1 and Rnhsp70-2 transcripts during heat stress.
Collapse
Affiliation(s)
- Bostjan Cernila
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | | | | |
Collapse
|
35
|
Abstract
Mortalin, also known as mthsp70/PBP74/GRP75, resides in multiple subcellular sites including mitochondria, ER, plasma membrane, cytoplasmic vesicles and cytosol. It is differentially distributed in normal and cancerous cells; the latter, when reverted back to normal phenotype, also show change in mortalin staining pattern similar to normal cells. Depending on its different subcellular niche and binding partner therein, mortalin is expected to perform multiple functions relevant to cell survival, control of proliferation and stress response.
Collapse
Affiliation(s)
- Sunil C Kaul
- Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | | | | | | |
Collapse
|
36
|
Affiliation(s)
- M T Ryan
- Department of Biochemistry, La Trobe University, 3086 Melbourne, Australia
| | | |
Collapse
|
37
|
Abstract
Proteins that are destined for the matrix of mitochondria are transported into this organelle by two translocases: the TOM complex, which transports proteins across the outer mitochondrial membrane; and the TIM23 complex, which gets them through the inner mitochondrial membrane. Two models have been proposed to explain how this protein-import machinery works -- a targeted Brownian ratchet, in which random motion is translated into vectorial motion, or a 'power stroke', which is exerted by a component of the import machinery. Here, we review the data for and against each model.
Collapse
Affiliation(s)
- Walter Neupert
- Institut für Physiologische Chemie, Universität München, Butenandtstrabetae 5, Gebäude B, D-81377 Munich, Germany.
| | | |
Collapse
|
38
|
Abstract
Mortalin/mthsp70/PBP74/Grp75 (called mortalin hereafter), a member of the Hsp70 family of chaperones, was shown to have different subcellular localizations in normal and immortal cells. It has been assigned to multiple subcellular sites and implicated in multiple functions ranging from stress response, intracellular trafficking, antigen processing, control of cell proliferation, differentiation, and tumorigenesis. The present article compiles and reviews information on the multiple sites and functions of mortalin in different organisms. The relevance of its differential distributions and functions in normal and immortal cell phenotypes is discussed.
Collapse
Affiliation(s)
- Renu Wadhwa
- Chugai Research Institute for Medical Sciences, 153-2 Nagai, Niihari, Ibaraki 300-4101, Japan
| | | | | |
Collapse
|
39
|
Kawai A, Nishikawa S, Hirata A, Endo T. Loss of the mitochondrial Hsp70 functions causes aggregation of mitochondria in yeast cells. J Cell Sci 2001; 114:3565-74. [PMID: 11682615 DOI: 10.1242/jcs.114.19.3565] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Ssc1p, a member of the Hsp70 family in the mitochondrial matrix of budding yeast, mediates protein import into mitochondria and prevents irreversible aggregation of proteins in the mitochondrial matrix during folding/assembly or at elevated temperature. Here, we show that functional inactivation of the mitochondrial Hsp70 system causes aggregation of mitochondria. When temperature-sensitive mitochondrial Hsp70 mutant cells were incubated at restrictive temperature, a tubular network of mitochondria was collapsed to form aggregates. Inhibition of protein synthesis in the cytosol did not suppress the mitochondrial aggregation and functional impairment of Tim23, a subunit of mitochondrial protein translocator in the inner membrane, did not cause mitochondrial aggregation. Therefore defects of the Hsp70 function in protein import into mitochondria or resulting accumulation of precursor forms of mitochondrial proteins outside the mitochondria are not the causal reason for the aberrant mitochondrial morphology. By contrast, deletion of Mdj1p, a functional partner for mitochondrial Hsp70 in prevention of irreversible protein aggregation in the matrix, but not in protein import into mitochondria, caused aggregation of mitochondria, which was enhanced at elevated temperature (37°C). The aggregation of mitochondria at 37°C was reversed when the temperature was lowered to 23°C unless protein synthesis was blocked. On the basis of these results, we propose that the mitochondrial matrix contains a protein that is responsible for the maintenance of mitochondrial morphology and requires mitochondrial Hsp70 for its function.
Collapse
Affiliation(s)
- A Kawai
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | | | | | | |
Collapse
|
40
|
Abstract
Most mitochondrial proteins are nuclear-encoded and synthesised as preproteins on polysomes in the cytosol. They must be targeted to and translocated into mitochondria. Newly synthesised preproteins interact with cytosolic factors until their recognition by receptors on the surface of mitochondria. Import into or across the outer membrane is mediated by a dynamic protein complex coined the translocase of the outer membrane (TOM). Preproteins that are imported into the matrix or inner membrane of mitochondria require the action of one of two translocation complexes of the inner membrane (TIMs). The import pathway of preproteins is predetermined by their intrinsic targeting and sorting signals. Energy input in the form of ATP and the electrical gradient across the inner membrane is required for protein translocation into mitochondria. Newly imported proteins may require molecular chaperones for their correct folding.
Collapse
Affiliation(s)
- K N Truscott
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Strasse 7, D-79104 Freiburg, Germany
| | | | | |
Collapse
|
41
|
Izaki K, Kinouchi H, Watanabe K, Owada Y, Okubo A, Itoh H, Kondo H, Tashima Y, Tamura S, Yoshimoto T, Mizoi K. Induction of mitochondrial heat shock protein 60 and 10 mRNAs following transient focal cerebral ischemia in the rat. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 88:14-25. [PMID: 11295228 DOI: 10.1016/s0169-328x(01)00012-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Heat shock proteins (HSPs) 60 and 10 are stress-inducible mitochondrial matrix proteins that form a chaperonin complex that is important for mitochondrial protein folding and function. The effect of cerebral ischemia on mitochondrial HSPs is unclear. The topographical and chronological patterns of HSP60 and HSP10 messenger ribonucleic acid (mRNA) expression and induction were investigated in the rat focal cerebral ischemia model. Focal cerebral ischemia was produced by transient middle cerebral artery occlusion for 30 or 90 min. Expression of mRNAs was analyzed using reverse transcription-polymerase chain reaction (RT-PCR) and in situ hybridization. RT-PCR analysis showed that both HSP60 and HSP10 mRNA levels increased significantly in the ischemic cortex from 4 to 24 h of reperfusion after 30 min of occlusion. In situ hybridization analysis demonstrated significant induction of both mRNAs in the whole ischemic cortex after 30 min of occlusion and in the dorsomedial border (penumbra) of the ischemic cortex and ipsilateral hippocampus after 90 min of occlusion. Expression patterns and the timing of the induction of both HSP60 and HSP10 mRNAs were identical throughout the experiments. Simultaneous induction of the mRNAs for the mitochondrial chaperonins, HSP60 and HSP10, in various regions in focal cerebral ischemia demonstrates that mitochondrial stress conditions persist concomitantly with cytosolic stress conditions in focal cerebral ischemia.
Collapse
Affiliation(s)
- K Izaki
- Department of Neurosurgery, Akita University School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kaul SC, Reddel RR, Mitsui Y, Wadhwa R. An N-terminal region of mot-2 binds to p53 in vitro. Neoplasia 2001; 3:110-4. [PMID: 11420746 PMCID: PMC1505414 DOI: 10.1038/sj.neo.7900139] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2000] [Accepted: 12/07/2000] [Indexed: 11/09/2022] Open
Abstract
The mouse mot-2 protein was earlier shown to bind to the tumor suppressor protein, p53. The mot-2 binding site of p53 was mapped to C-terminal amino acid residues 312-352, which includes the cytoplasmic sequestration domain. In the present study, we have found that both mot-1 and mot-2 bind to p53 in vitro. By using His-tagged deletion mutant proteins, the p53-binding domain of mot-2 was mapped to its N-terminal amino acid residues 253-282, which are identical in mot-1 and mot-2 proteins. Some peptides containing the p53-binding region of mot-2 were able to compete with the full-length protein for p53 binding. The data provided rationale for in vitro binding of mot-1 and mot-2 proteins to p53 and supported the conclusion that inability of mot-1 protein to bind p53 in vivo depends on secondary structure or its binding to other cellular factors. Most interestingly, the p53-binding region of mot-2 was common to its MKT-077, a cationic dye that exhibits antitumor activity, binding region. Therefore it is most likely that MKT-077-induced nuclear translocation and restoration of wild-type p53 function in transformed cells takes place by a competitional mechanism.
Collapse
Affiliation(s)
- Sunil C Kaul
- National Institute of Bioscience and Human Technology, AIST, 1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Roger R Reddel
- Children's Medical Research Institute, 214 Hawkesbury Road, Westmead, Sydney, NSW 2145, Australia
| | - Youji Mitsui
- National Institute of Bioscience and Human Technology, AIST, 1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Renu Wadhwa
- Chugai Research Institute for Molecular Medicine, 153-2 Nagai, Niihari-mura, Ibaraki 300-41, Japan
| |
Collapse
|
43
|
Abstract
The biogenesis of mitochondria depends on the coordinated import of precursor proteins from the cytosol coupled with the export of mitochondrially coded proteins from the matrix to the inner membrane. The mitochondria contain an elaborate network of protein translocases in the outer and inner membrane along with a battery of chaperones and processing enzymes in the matrix and intermembrane space to mediate protein translocation. A mitochondrial protein, often with an amino-terminal targeting sequence, is escorted through the cytosol by chaperones to the TOM complex (translocase of the outer membrane). After crossing the outer membrane, the import pathway diverges; however, one of two TIM complexes (translocase of inner membrane) is generally utilized. This review is focused on the later stages of protein import after the outer membrane has been crossed. An accompanying paper by Lithgow reviews the early stages of protein translocation.
Collapse
Affiliation(s)
- C M Koehler
- Department of Chemistry and Biochemistry, Box 951569, University of California, 90095-1569, Los Angeles, CA, USA.
| |
Collapse
|
44
|
Santacruz H, Vriz S, Angelier N. Molecular characterization of a heat shock cognate cDNA of zebrafish, hsc70, and developmental expression of the corresponding transcripts. DEVELOPMENTAL GENETICS 2000; 21:223-33. [PMID: 9397538 DOI: 10.1002/(sici)1520-6408(1997)21:3<223::aid-dvg5>3.0.co;2-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To elucidate the potential role of the hsp70 gene family in developmental processes in vertebrates, we chose to study the expression of one of these genes in zebrafish. A zebrafish gastrula cDNA library was screened with a Pleurodeles waltl hsp70 cDNA probe. A 2.3-kb cDNA was thus isolated and sequenced. The predicted amino acid sequence contained an open reading frame encoding for a 649-amino acid polypeptide. Sequence analysis showed strong homology with hsp70-related gene sequences in other species; in particular, the strongest homology was found with the cognate members of this family. Tests of heat inducibility revealed that transcripts were expressed at normal temperature, but the level of transcript expression increased after heat shock. Moreover, experiments of the neosynthesis of total proteins in heat shock conditions and corresponding immunoblotting assays showed that 24-h-stage embryos are able to respond to heat shock. The quantity of 70 kDa proteins, recognized by a specific antibody of the HSP/C70 protein family, is expressed in control condition and increased significantly after heat shock. Furthermore, Northern blot analysis of transcript expression showed that the corresponding mRNAs were detected throughout embryonic development in the absence of any heat shock. Our clone, named hsc70, thus corresponded to a cognate member of the hsp70 gene family, expressed under normal conditions during development, but also heat inducible. The spatio-temporal pattern of transcripts during development was determined by in situ hybridization on wholemount embryos at different stages. As a maternal RNA, hsc70 mRNA was uniformly present in the embryo, up to the end of gastrulation. Later, a tissue-specific enrichment of hsc70 transcripts was detected in the central nervous system (CNS) and in a fraction of the somites. These results suggest that the hsc70 gene may be involved in developmental differentiation events.
Collapse
Affiliation(s)
- H Santacruz
- Laboratoire de Biologie Moléculaire et Cellulaire du Développement, UA 1135 CNRS-UPMC, Paris, France
| | | | | |
Collapse
|
45
|
Abstract
Chloroplast transit peptides have been proposed to function as substrates for Hsp70 molecular chaperones. Many models of chloroplast protein import depict Hsp70s as the translocation motors that drive protein import into the organelle, but to our knowledge, no direct evidence has demonstrated that transit peptides function either in vivo or in vitro as substrates for the chaperone. In this report, we demonstrate that DnaK binds SStp (the full-length transit peptide for the precursor to the small subunit of Rubisco) in vivo when fused to either glutathione-S-transferase (GST) or to an His6-S-peptide tag (His-S) via an ATP-dependent mechanism. Three independent biophysical and biochemical assays confirm the ability of DnaK and SStp to interact in vitro. The cochaperones, DnaJ and GrpE, were also associated with the DnaK/SStp complex. Therefore, both GST-SStp and His-S-SStp can be used as affinity-tagged substrates to study prokaryotic chaperone/transit peptide interactions as well as to provide a novel functional probe to study the dynamics of DnaK/DnaJ/GrpE interactions in vivo. The combination of these results provides the first experimental support for a transit peptide-dependent interaction between a chloroplast precursor and Hsp70. These results are discussed in light of a general mechanism for protein translocation into chloroplasts and mitochondria.
Collapse
Affiliation(s)
- R A Ivey
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee at Knoxville, 37996, USA
| | | |
Collapse
|
46
|
|
47
|
Ivey RA, Bruce BD. In vivo and in vitro interaction of DnaK and a chloroplast transit peptide. Cell Stress Chaperones 2000; 5:62-71. [PMID: 10701841 PMCID: PMC312911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/1999] [Revised: 09/07/1999] [Accepted: 09/07/1999] [Indexed: 02/15/2023] Open
Abstract
Chloroplast transit peptides have been proposed to function as substrates for Hsp70 molecular chaperones. Many models of chloroplast protein import depict Hsp70s as the translocation motors that drive protein import into the organelle, but to our knowledge, no direct evidence has demonstrated that transit peptides function either in vivo or in vitro as substrates for the chaperone. In this report, we demonstrate that DnaK binds SStp (the full-length transit peptide for the precursor to the small subunit of Rubisco) in vivo when fused to either glutathione-S-transferase (GST) or to an His6-S-peptide tag (His-S) via an ATP-dependent mechanism. Three independent biophysical and biochemical assays confirm the ability of DnaK and SStp to interact in vitro. The cochaperones, DnaJ and GrpE, were also associated with the DnaK/SStp complex. Therefore, both GST-SStp and His-S-SStp can be used as affinity-tagged substrates to study prokaryotic chaperone/transit peptide interactions as well as to provide a novel functional probe to study the dynamics of DnaK/DnaJ/GrpE interactions in vivo. The combination of these results provides the first experimental support for a transit peptide-dependent interaction between a chloroplast precursor and Hsp70. These results are discussed in light of a general mechanism for protein translocation into chloroplasts and mitochondria.
Collapse
Affiliation(s)
- Robert A. Ivey
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee at Knoxville, Knoxville, TN 37996, USA
| | - Barry D. Bruce
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee at Knoxville, Knoxville, TN 37996, USA
- Center for Legume Research, University of Tennessee at Knoxville, Knoxville, TN 37996, USA
- Correspondence to: Barry D. Bruce, Tel: 423 974-4082; Fax: 423 974-6306; E-mail:
| |
Collapse
|
48
|
Voos W, Martin H, Krimmer T, Pfanner N. Mechanisms of protein translocation into mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1422:235-54. [PMID: 10548718 DOI: 10.1016/s0304-4157(99)00007-6] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mitochondrial biogenesis utilizes a complex proteinaceous machinery for the import of cytosolically synthesized preproteins. At least three large multisubunit protein complexes, one in the outer membrane and two in the inner membrane, have been identified. These translocase complexes cooperate with soluble proteins from the cytosol, the intermembrane space and the matrix. The translocation of presequence-containing preproteins through the outer membrane channel includes successive electrostatic interactions of the charged mitochondrial targeting sequence with a chain of import components. Translocation across the inner mitochondrial membrane utilizes the energy of the proton motive force of the inner membrane and the hydrolysis of ATP. The matrix chaperone system of the mitochondrial heat shock protein 70 forms an ATP-dependent import motor by interaction with the polypeptide chain in transit and components of the inner membrane translocase. The precursors of integral inner membrane proteins of the metabolite carrier family interact with newly identified import components of the intermembrane space and are inserted into the inner membrane by a second translocase complex. A comparison of the full set of import components between the yeast Sacccharomyces cerevisiae and the nematode Caenorhabditis elegans demonstrates an evolutionary conservation of most components of the mitochondrial import machinery with a possible greater divergence for the import pathway of the inner membrane carrier proteins.
Collapse
Affiliation(s)
- W Voos
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Str. 7, D-79104, Freiburg, Germany.
| | | | | | | |
Collapse
|
49
|
Schroda M, Vallon O, Wollman FA, Beck CF. A chloroplast-targeted heat shock protein 70 (HSP70) contributes to the photoprotection and repair of photosystem II during and after photoinhibition. THE PLANT CELL 1999; 11:1165-78. [PMID: 10368186 PMCID: PMC144243 DOI: 10.1105/tpc.11.6.1165] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Dark-grown Chlamydomonas reinhardtii cultures that were illuminated at low fluence rates before exposure to high-light conditions exhibited a faster rate of recovery from photoinhibition than did dark-grown cells that were directly exposed to photoinhibitory conditions. This pretreatment has been shown to induce the expression of several nuclear heat shock protein 70 (HSP70) genes, including HSP70B, encoding a chloroplast-localized chaperone. To investigate a possible role of plastidic HSP70B in photoprotection and repair of photosystem II, which is the major target of photoinhibition, we have constructed strains overexpressing or underexpressing HSP70B. The effect of light stress on photosystem II in nuclear transformants harboring HSP70B in the sense or antisense orientation was monitored by measuring variable fluorescence, flash-induced charge separation, and relative amounts of various photosystem II polypeptides. Underexpression of HSP70B caused an increased light sensitivity of photosystem II, whereas overexpression of HSP70B had a protective effect. Furthermore, the reactivation of photosystem II after photoinhibition was enhanced in the HSP70B-overexpressing strain when compared with the wild type, both in the presence or absence of synthesis of chloroplast-encoded proteins. Therefore, HSP70B may participate in vivo both in the molecular protection of the photosystem II reaction centers during photoinhibition and in the process of photosystem II repair.
Collapse
Affiliation(s)
- M Schroda
- Institut für Biologie III, Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | | | | | | |
Collapse
|
50
|
Kubo Y, Tsunehiro T, Nishikawa S, Nakai M, Ikeda E, Toh-e A, Morishima N, Shibata T, Endo T. Two distinct mechanisms operate in the reactivation of heat-denatured proteins by the mitochondrial Hsp70/Mdj1p/Yge1p chaperone system. J Mol Biol 1999; 286:447-64. [PMID: 9973563 DOI: 10.1006/jmbi.1998.2465] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The yeast mitochondrial Hsp70, Ssc1p, functions as a molecular chaperone with its partner proteins, Mdj1p (DnaJ homologue) and Yge1p (GrpE homologue). We have purified a mature form of Ssc1p from yeast mitochondria and those of Mdj1p and Yge1p from Escherichia coli overexpresser cells. With these purified components of the mitochondrial Hsp70 chaperone system, we have succeeded in reconstituting their chaperone functions in the protection of firefly luciferase against thermal damage in vitro. Heat-denatured luciferase is prevented from irreversible aggregation and is maintained in a refolding-competent state by Ssc1p and/or Mdj1p at 42 degreesC. Luciferase denatured at 42 degreesC is actively reactivated by Ssc1p, Mdj1p and/or Yge1p after lowering the temperature to 25 degreesC. The reactivation process of heat-denatured luciferase shows two-phase kinetics. The slow refolding process requires either Ssc1p or Mdj1p at 42 degreesC but the presence of Ssc1p, Mdj1p and Yge1p, and ATP hydrolysis, is essential at 25 degreesC. The slow refolding of luciferase involves multiple rounds of formation and dissociation of the complex between luciferase and Mdj1p/Ssc1p. On the other hand, the fast refolding process is most enhanced when luciferase is incubated with Ssc1p alone at 42 degreesC, and it requires neither the assistance of Mdj1p and Yge1p nor ATP hydrolysis. We have observed a similar two-pathway reactivation of heat-denatured luciferase by the bacterial Hsp70 and the yeast cytosolic Hsp70 systems.
Collapse
Affiliation(s)
- Y Kubo
- Department of Chemistry Faculty of Science, Nagoya University, Nagoya, 464-8602, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|