1
|
Chen S, Lei Z, Sun T. The critical role of miRNA in bacterial zoonosis. Int Immunopharmacol 2024; 143:113267. [PMID: 39374566 DOI: 10.1016/j.intimp.2024.113267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/21/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024]
Abstract
The public's health and the financial sustainability of international societies remain threatened by bacterial zoonoses, with limited reliable diagnostic and therapeutic options available for bacterial diseases. Bacterial infections influence mammalian miRNA expression in host-pathogen interactions. In order to counteract bacterial infections, miRNAs participate in gene-specific expression and play important regulatory roles that rely on translational inhibition and target gene degradation by binding to the 3' non-coding region of target genes. Intriguingly, according to current studies, that exogenous miRNAs derived from plants could potentially serve as effective medicinal components sourced from traditional Chinese medicine plants. These exogenous miRNAs exhibit stable functionality in mammals and mimic the regulatory roles of endogenous miRNAs, illuminating the molecular processes behind the therapeutic effects of plants. This review details the immune defense mechanisms of inflammation, apoptosis, autophagy and cell cycle disturbance caused by some typical bacterial infections, summarizes the role of some mammalian miRNAs in regulating these mechanisms, and introduces the cGAS-STING signaling pathway in detail. Evidence suggests that this newly discovered immune defense mechanism in mammalian cells can also be affected by miRNAs. Meanwhile, some examples of transboundary regulation of mammalian mRNA and even bacterial diseases by exogenous miRNAs from plants are also summarized. This viewpoint provides fresh understanding of microbial tactics and host mechanisms in the management of bacterial illnesses.
Collapse
Affiliation(s)
- Si Chen
- School of Chemistry, Chemical Engineering and Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Disease, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Zhixin Lei
- School of Chemistry, Chemical Engineering and Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Disease, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Disease, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| |
Collapse
|
2
|
Hendrickson OD, Byzova NA, Dzantiev BB, Zherdev AV. Prussian-Blue-Nanozyme-Enhanced Simultaneous Immunochromatographic Control of Two Relevant Bacterial Pathogens in Milk. Foods 2024; 13:3032. [PMID: 39410067 PMCID: PMC11475848 DOI: 10.3390/foods13193032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Salmonella typhimurium and Listeria monocytogenes are relevant foodborne bacterial pathogens which may cause serious intoxications and infectious diseases in humans. In this study, a sensitive immunochromatographic analysis (ICA) for the simultaneous detection of these two pathogens was developed. For this, test strips containing two test zones with specific monoclonal antibodies (MAb) against lipopolysaccharides of S. typhimurium and L. monocytogenes and one control zone with secondary antibodies were designed, and the double-assay conditions were optimized to ensure high analytical parameters. Prussian blue nanoparticles (PBNPs) were used as nanozyme labels and were conjugated with specific MAbs to perform a sandwich format of the ICA. Peroxidase-mimic properties of PBNPs allowed for the catalytic amplification of the colorimetric signal on test strips, enhancing the assay sensitivity. The limits of detection (LODs) of Salmonella and Listeria cells were 2 × 102 and 7 × 103 cells/mL, respectively. LODs were 100-fold less than those achieved due to the ICA based on the traditional gold label. The developed double ICA was approbated for the detection of bacteria in cow milk samples, which were processed by simple dilution by buffer before the assay. For S. typhimurium and L. monocytogenes, the recoveries from milk were 86.3 ± 9.8 and 118.2 ± 10.5% and correlated well with those estimated by the enzyme-linked immunosorbent assay as a reference method. The proposed approach was characterized by high specificity: no cross-reactivity with other bacteria strains was observed. The assay satisfies the requirements for rapid tests: a full cycle from sample acquisition to result assessment in less than half an hour. The developed ICA has a high application potential for the multiplex detection of other foodborne pathogens.
Collapse
Affiliation(s)
| | | | | | - Anatoly V. Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia; (O.D.H.); (N.A.B.); (B.B.D.)
| |
Collapse
|
3
|
Hailu W, Alemayehu H, Wolde D, Hailu L, Medhin G, Rajashekara G, Gebreyes WA, Eguale T. Prevalence and antimicrobial susceptibility profile of Salmonella isolated from vegetable farms fertilized with animal manure in Addis Ababa Ethiopia. Sci Rep 2024; 14:19169. [PMID: 39160213 PMCID: PMC11333614 DOI: 10.1038/s41598-024-70173-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024] Open
Abstract
The resistance of foodborne pathogens to antimicrobial agents is a potential danger to human health. Hence, establishing the status of good agricultural practices (GAPs) and the antimicrobial susceptibility of major foodborne pathogens has a significant programmatic implication in planning interventions. The objective of this study was to assess the gap in attaining GAP and estimate the prevalence and antimicrobial susceptibility profile of Salmonella in vegetable farms fertilized with animal manure in Addis Ababa, Ethiopia. A total of 81 vegetable farms from four sub-cities in Addis Ababa were visited, and 1119 samples were collected: soil (n = 271), manure (n = 375), vegetables (n = 398), and dairy cattle feces (n = 75). Additional data were collected using a structured questionnaire. Isolation of Salmonella was done using standard microbiology techniques and antimicrobial susceptibility testing was conducted using disk diffusion assays. Carriage for antimicrobial resistance genes was tested using polymerase chain reaction (PCR). Among the 81 vegetable farms visited, 24.7% used animal manure without any treatment, 27.2% used properly stored animal manure and 80.2% were easily accessible to animals. The prevalence of Salmonella was 2.3% at the sample level, 17.3% at the vegetable farm level, and 2.5% in vegetables. The highest rate of resistance was recorded for streptomycin, 80.7% (21 of 26), followed by kanamycin, 65.4% (17 of 26), and gentamicin, 61.5% (16 of 26). Multidrug resistance was detected in 61.5% of the Salmonella isolates. Vegetable farms have a gap in attaining GAPs, which could contribute to increased contamination and the transfer of antimicrobial resistance to the vegetables. The application of GAPs, including proper preparation of compost and the appropriate use of antimicrobials in veterinary practices, are recommended to reduce the emergence and spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Woinshet Hailu
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.
- College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.
| | - Haile Alemayehu
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Deneke Wolde
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Wachemo University, P.O. Box 667, Hossana, Ethiopia
| | - Lulit Hailu
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Girmay Medhin
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Gireesh Rajashekara
- Global One Health Initiative (GOHi), Ohio State University, Columbus, OH, USA
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH, USA
| | - Wondwossen A Gebreyes
- Global One Health Initiative (GOHi), Ohio State University, Columbus, OH, USA
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Tadesse Eguale
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- Ohio State University Global One Health LLC, Addis Ababa, Ethiopia
| |
Collapse
|
4
|
Jiang X, Liu J, Xi Y, Zhang Q, Wang Y, Zhao M, Lu X, Wu H, Shan T, Ni B, Zhang W, Ma X. Virome of high-altitude canine digestive tract and genetic characterization of novel viruses potentially threatening human health. mSphere 2023; 8:e0034523. [PMID: 37724888 PMCID: PMC10597464 DOI: 10.1128/msphere.00345-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/25/2023] [Indexed: 09/21/2023] Open
Abstract
The majority of currently emerging infectious illnesses are zoonotic infections, which have caused serious public health and economic implications. The development of viral metagenomics has helped us to explore unknown viruses. We collected 1,970 canine feces from Yushu and Guoluo in the plateau region of China for this study to do a metagenomics analysis of the viral community of the canine digestive tract. Our analysis identified 203 novel viruses, classified into 11 known families and 2 unclassified groups. These viruses include the hepatitis E virus, first identified in dogs, and the astrovirus, coronavirus, polyomavirus, and others. The relationship between the newly identified canine viruses and known viruses was investigated through the use of phylogenetic analysis. Furthermore, we demonstrated the cross-species transmission of viruses and predicted new viruses that may cause diseases in both humans and animals, providing technical support for the prevention and control of diseases caused by environmental pollution viruses. IMPORTANCE Most emerging infectious diseases are due to zoonotic disease agents. Because of their effects on the security of human or animal life, agriculture production, and food safety, zoonotic illnesses and livestock diseases are of worldwide significance. Because dogs are closely related to humans and domestic animals, they serve as one of the important links in the transmission of zoonotic and livestock diseases. Canines can contaminate the environment in which humans live such as water and soil through secretions, potentially altering the human gut microbiota or causing diseases. Our study enriched the viral community in the digestive tract microbiome of dogs and found types of viruses that threaten human health, providing technical support for the prevention and control of early warning of diseases caused by environmental contaminant viruses.
Collapse
Affiliation(s)
- Xiaojie Jiang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jia Liu
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, Qinghai, China
| | - Yuan Xi
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qing Zhang
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, Qinghai, China
| | - Yongshun Wang
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, Qinghai, China
| | - Min Zhao
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiang Lu
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Haisheng Wu
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, Qinghai, China
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Bin Ni
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wen Zhang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiao Ma
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, Qinghai, China
| |
Collapse
|
5
|
Li Z, Lei Z, Cai Y, Cheng DB, Sun T. MicroRNA therapeutics and nucleic acid nano-delivery systems in bacterial infection: a review. J Mater Chem B 2023; 11:7804-7833. [PMID: 37539650 DOI: 10.1039/d3tb00694h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Bacteria that have worked with humans for thousands of years pose a major threat to human health even today, as drug resistance has become a prominent problem. Compared to conventional drug therapy, nucleic acid-based therapies are a promising and potential therapeutic strategy for diseases in which nucleic acids are delivered through a nucleic acid delivery system to regulate gene expression in specific cells, offering the possibility of curing intractable diseases that are difficult to treat at this stage. Among the many nucleic acid therapeutic ideas, microRNA, a class of small nucleic acids with special properties, has made great strides in biology and medicine in just over two decades, showing promise in preclinical drug development. In this review, we introduce recent advances in nucleic acid delivery systems and their clinical applications, highlighting the potential of nucleic acid therapies, especially miRNAs extracted from traditional herbs, in combination with the existing set of nucleic acid therapeutic systems, to potentially open up a new line of thought in the treatment of cancer, viruses, and especially bacterial infectious diseases.
Collapse
Affiliation(s)
- Ze Li
- School of Chemistry, Chemical Engineering and Life Science, Hospital of Wuhan University of Technology, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Zhixin Lei
- School of Chemistry, Chemical Engineering and Life Science, Hospital of Wuhan University of Technology, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Yilun Cai
- School of Chemistry, Chemical Engineering and Life Science, Hospital of Wuhan University of Technology, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Dong-Bing Cheng
- School of Chemistry, Chemical Engineering and Life Science, Hospital of Wuhan University of Technology, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Hospital of Wuhan University of Technology, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| |
Collapse
|
6
|
Zaher HA, El Baz S, Alothaim AS, Alsalamah SA, Alghonaim MI, Alawam AS, Eraqi MM. Molecular Basis of Methicillin and Vancomycin Resistance in Staphylococcus aureus from Cattle, Sheep Carcasses and Slaughterhouse Workers. Antibiotics (Basel) 2023; 12:antibiotics12020205. [PMID: 36830115 PMCID: PMC9952529 DOI: 10.3390/antibiotics12020205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/21/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is a serious infection-causing pathogen in humans and animal. In particular, methicillin-resistant S. aureus (MRSA) is considered one of the major life-threatening pathogens due to its rapid resistance to several antibiotics in clinical practice. MRSA strains have recently been isolated in a number of animals utilized in food production processes, and these species are thought to be the important sources of the spread of infection and disease in both humans and animals. The main objective of the current study was to assess the prevalence of drug-resistant S. aureus, particularly vancomycin-resistant S. aureus (VRSA) and MRSA, by molecular methods. To address this issue, a total of three hundred samples (200 meat samples from cattle and sheep carcasses (100 of each), 50 hand swabs, and 50 stool samples from abattoir workers) were obtained from slaughterhouses in Egypt provinces. In total, 19% S. aureus was isolated by standard culture techniques, and the antibiotic resistance was confirmed genotypically by amplification nucA gen. Characteristic resistance genes were identified by PCR with incidence of 31.5%, 19.3%, 8.7%, and 7% for the mecA, VanA, ermA, and tet L genes, respectively, while the aac6-aph gene was not found in any of the isolates. In this study, the virulence genes responsible for S. aureus' resistance to antibiotics had the highest potential for infection or disease transmission to animal carcasses, slaughterhouse workers, and meat products.
Collapse
Affiliation(s)
- Hanan A. Zaher
- Food Hygiene and Control Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Shimaa El Baz
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Abdulaziz S. Alothaim
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Sulaiman A. Alsalamah
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Mohammed Ibrahim Alghonaim
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Abdullah S. Alawam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Mostafa M. Eraqi
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah 11952, Saudi Arabia
- Microbiology and Immunology Department, Veterinary Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
- Correspondence: ; Tel.: +966-565709849
| |
Collapse
|
7
|
Golob M, Pate M, Kušar D, Zajc U, Papić B, Ocepek M, Zdovc I, Avberšek J. Antimicrobial Resistance and Molecular Characterization of Methicillin-Resistant Staphylococcus aureus from Two Pig Farms: Longitudinal Study of LA-MRSA. Antibiotics (Basel) 2022; 11:1532. [PMID: 36358187 PMCID: PMC9687068 DOI: 10.3390/antibiotics11111532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 10/29/2023] Open
Abstract
Pigs were identified as the most important reservoir of livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA), mostly belonging to the emergent zoonotic clonal complex (CC) 398. Here, we investigated the presence of MRSA in sows and piglets over a period of several months in two pig farms (intensive farm A and family-run farm B). Isolates underwent antimicrobial susceptibility testing, PCR characterization and spa typing. We collected 280 samples, namely 206 nasal swabs from pigs and 74 environmental samples from pig housings at 12 consecutive time points. A total of 120/161 (74.5%) and 75/119 (63.0%) samples were MRSA-positive in farms A and B, respectively. All isolates harbored mecA but lacked mecC and PVL-encoding genes. The identified spa types (t571, t034, t1250 and t898 in farm A, t1451 and t011 in farm B) were indicative of CC398. Antimicrobial resistance patterns (all multidrug resistant in farm A, 57.2% in farm B) depended on the farm, suggesting the impact of farm size and management practices on the prevalence and characteristics of MRSA. Due to the intermittent colonization of pigs and the high contamination of their immediate environment, MRSA status should be determined at the farm level when considering preventive measures or animal trade between farms.
Collapse
Affiliation(s)
- Majda Golob
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, SI-1000 Ljubljana, Slovenia
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Mariotti M, Lombardini G, Rizzo S, Scarafile D, Modesto M, Truzzi E, Benvenuti S, Elmi A, Bertocchi M, Fiorentini L, Gambi L, Scozzoli M, Mattarelli P. Potential Applications of Essential Oils for Environmental Sanitization and Antimicrobial Treatment of Intensive Livestock Infections. Microorganisms 2022; 10:822. [PMID: 35456873 PMCID: PMC9029798 DOI: 10.3390/microorganisms10040822] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022] Open
Abstract
The extensive use of antibiotics has contributed to the current antibiotic resistance crisis. Livestock infections of Salmonella spp, Clostridium spp. and E. coli antimicrobial-resistant bacteria represent a public threat to human and animal health. To reduce the incidence of these zoonoses, essential oils (EOs) could be effective antibiotic alternatives. This study aims at identifying EOs safe for use, effective both in complementary therapy and in the environmental sanitization of intensive farming. Natural products were chemo-characterized by gas chromatography. Three S. Typhimurium, three C. perfringens and four E. coli strains isolated from poultry and swine farms were used to assess the antimicrobial properties of nine EOs and a modified GR-OLI (mGR-OLI). The toxicity of the most effective ones (Cinnamomum zeylanicum, Cz; Origanum vulgare, Ov) was also evaluated on porcine spermatozoa and Galleria mellonella larvae. Cz, Ov and mGR-OLI showed the strongest antimicrobial activity; their volatile components were also able to significantly inhibit the growth of tested strains. In vitro, Ov toxicity was slightly lower than Cz, while it showed no toxicity on G. mellonella larvae. In conclusion, the study confirms the importance of evaluating natural products to consolidate the idea of safe EO applications in reducing and preventing intensive livestock infections.
Collapse
Affiliation(s)
- Melinda Mariotti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (G.L.); (S.R.)
| | - Giulia Lombardini
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (G.L.); (S.R.)
| | - Silvia Rizzo
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (G.L.); (S.R.)
| | - Donatella Scarafile
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Università di Bologna, Viale G. Fanin 42, 40127 Bologna, Italy; (D.S.); (M.M.); (P.M.)
| | - Monica Modesto
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Università di Bologna, Viale G. Fanin 42, 40127 Bologna, Italy; (D.S.); (M.M.); (P.M.)
| | - Eleonora Truzzi
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy; (E.T.); (S.B.)
| | - Stefania Benvenuti
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy; (E.T.); (S.B.)
| | - Alberto Elmi
- Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.E.); (M.B.)
| | - Martina Bertocchi
- Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.E.); (M.B.)
| | - Laura Fiorentini
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER)—Sede Territoriale di Forlì, Via Don Eugenio Servadei 3E/3F, 47122 Forlì, Italy; (L.F.); (L.G.)
| | - Lorenzo Gambi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER)—Sede Territoriale di Forlì, Via Don Eugenio Servadei 3E/3F, 47122 Forlì, Italy; (L.F.); (L.G.)
| | - Maurizio Scozzoli
- Società Italiana per la Ricerca sugli Oli Essenziali (SIROE), Viale Regina Elena 299, 00161 Rome, Italy;
| | - Paola Mattarelli
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Università di Bologna, Viale G. Fanin 42, 40127 Bologna, Italy; (D.S.); (M.M.); (P.M.)
| |
Collapse
|
9
|
Characterization of NDM-1-Producing Carbapenemase in Proteus mirabilis among Broilers in China. Microorganisms 2021; 9:microorganisms9122443. [PMID: 34946044 PMCID: PMC8707091 DOI: 10.3390/microorganisms9122443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/14/2021] [Accepted: 11/23/2021] [Indexed: 11/28/2022] Open
Abstract
Carbapenem-resistant pathogens mediated by metallo-beta-lactamases (MBLs) have spread worldwide, where NDM-1 is a typical and key MBL. Here, we firstly discussed the distribution characterization of NDM-1, which produces multidrug-resistant Proteus mirabilis among broilers in China. From January to April 2019, 40 (18.1%, 40/221) blaNDM-1-carrying P. mirabilis strains were recovered from commercial broilers in slaughterhouse B in China. All the isolates were resistant to imipenem, meropenem and other β-lactams. These isolates belong to five clusters identified via pulsed field gel electrophoresis (PFGE). Further studies on twenty representative strains revealed that seven blaNDM-1 genes were located on plasmids with sizes of 104.5–138.9 kb. Notably, only three strains (PB72, PB96 and PB109) were successfully transferred to Escherichia coli J53, while the other four isolates were located in nontransferable plasmids. The rest were harbored in chromosomes. Ulteriorly, based on whole genome sequencing (WGS), these twenty isolates showed four typical phylogenetic clades according to single nucleotide polymorphisms (SNPs) of a core genome and presented four main genomic backbone profiles, in which type II/III strains shared a similar genetic context. All of the above is evidence of blaNDM-1 transmission and evolution in P. mirabilis, suggesting that the prevalence may be more diverse in broiler farms. Accordingly, as intestinal and environmental symbiotic pathogens, blaNDM-1-positive P. mirabilis will pose greater threats to the environment and public health.
Collapse
|
10
|
Evidence of bovine leukemia virus circulating in sheep and buffaloes in Colombia: insights into multispecies infection. Arch Virol 2021; 167:807-817. [PMID: 34762149 PMCID: PMC8581130 DOI: 10.1007/s00705-021-05285-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/15/2021] [Indexed: 12/18/2022]
Abstract
Bovine leukemia virus (BLV) is the causative agent of leukemia/lymphoma in cattle. However, previous evidence has shown its presence in other species of livestock as well as in humans, suggesting that other species can be accidental hosts of the virus. In viral infections, receptors that are common to different animal species are proposed to be involved in cross-species infections. For BLV, AP3D1 has been proposed to be its receptor, and this protein is conserved in most mammalian species. In Colombia, BLV has been reported in cattle with high prevalence rates, but there has been no evidence of BLV infections in other animal species. In this study, we tested for the virus in sheep (n = 44) and buffaloes (n = 61) from different regions of Colombia by nested PCR, using peripheral blood samples collected from the animals. BLV was found in 25.7% of the animals tested (12 buffaloes and 15 sheep), and the results were confirmed by Sanger sequencing. In addition, to gain more information about the capacity of the virus to infect these species, the predicted interactions of AP3D1 of sheep and buffaloes with the BLV-gp51 protein were analyzed in silico. Conserved amino acids in the binding domains of the proteins were identified. The detection of BLV in sheep and buffaloes suggests circulation of the virus in multiple species, which could be involved in dissemination of the virus in mixed livestock production settings. Due to the presence of the virus in multiple species and the high prevalence rates observed, integrated prevention and control strategies in the livestock industry should be considered to decrease the spread of BLV.
Collapse
|
11
|
Chen D, Mechlowitz K, Li X, Schaefer N, Havelaar AH, McKune SL. Benefits and Risks of Smallholder Livestock Production on Child Nutrition in Low- and Middle-Income Countries. Front Nutr 2021; 8:751686. [PMID: 34778344 PMCID: PMC8579112 DOI: 10.3389/fnut.2021.751686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
Livestock production may improve nutritional outcomes of pregnant women and children by increasing household income, availability of nutrient-dense foods, and women's empowerment. Nevertheless, the relationship is complex, and the nutritional status of children may be impaired by presence of or proximity to livestock and their pathogens. In this paper, we review the benefits and risks of livestock production on child nutrition. Evidence supports the nutritional benefits of livestock farming through income, production, and women's empowerment. Increasing animal source food consumption requires a combination of efforts, including improved animal management so that herd size is adequate to meet household income needs and consumption and addressing sociocultural and gendered norms. Evidence supports the inclusion of behavior change communication strategies into livestock production interventions to facilitate the sustainability of nutritional benefits over time, particularly interventions that engage women and foster dimensions of women's empowerment. In evaluating the risks of livestock production, evidence indicates that a broad range of enteric pathogens may chronically infect the intestines of children and, in combination with dietary deficits, may cause environmental enteric dysfunction (EED), a chronic inflammation of the gut. Some of the most important pathogens associated with EED are zoonotic in nature with livestock as their main reservoir. Very few studies have aimed to understand which livestock species contribute most to colonization with these pathogens, or how to reduce transmission. Control at the point of exposure has been investigated in a few studies, but much less effort has been spent on improving animal husbandry practices, which may have additional benefits. There is an urgent need for dedicated and long-term research to understand which livestock species contribute most to exposure of young children to zoonotic enteric pathogens, to test the potential of a wide range of intervention methods, to assess their effectiveness in randomized trials, and to assure their broad adaptation and sustainability. This review highlights the benefits and risks of livestock production on child nutrition. In addition to identifying research gaps, findings support inclusion of poor gut health as an immediate determinant of child undernutrition, expanding the established UNICEF framework which includes only inadequate diet and disease.
Collapse
Affiliation(s)
- Dehao Chen
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Karah Mechlowitz
- Department of Social and Behavioral Sciences, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Xiaolong Li
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Nancy Schaefer
- Health Science Center Libraries, University of Florida, Gainesville, FL, United States
| | - Arie H. Havelaar
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
- Institute for Sustainable Food Systems, University of Florida, Gainesville, FL, United States
| | - Sarah L. McKune
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
- Center for African Studies, University of Florida, Gainesville, FL, United States
| |
Collapse
|
12
|
Livestock-Associated Meticillin-Resistant Staphylococcus aureus—Current Situation and Impact From a One Health Perspective. CURRENT CLINICAL MICROBIOLOGY REPORTS 2021. [DOI: 10.1007/s40588-021-00170-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
Purpose of Review
In this article, we aim to provide an overview of the occurrence and characteristics of livestock-associated (LA-) meticillin-resistant Staphylococcus aureus (MRSA). We further question the role of LA-MRSA as a potential foodborne pathogen. We investigate recent findings and developments from a One Health perspective also highlighting current strategies and initiatives aiming to improve reporting, control, and prevention of LA-MRSA.
Recent Findings
While the overall number of invasive MRSA infections in humans is decreasing (in most European countries and the USA) or steadily increasing (in the Asia-Pacific region), the role of LA-MRSA as causative agent of invasive disease and as potential foodborne pathogen is still poorly understood. LA-MRSA prevalence in livestock remains high in many geographical regions and the acquisition of new virulence and resistance determinants constitutes a growing threat for human health.
Summary
The true incidence of LA-MRSA infections due to occupational exposure is unknown. Improved MRSA monitoring and tracking procedures are urgently needed. Strain typing is crucial to enable improved understanding of the impact of LA-MRSA on human and animal health.
Collapse
|
13
|
Hull DM, Harrell E, van Vliet AHM, Correa M, Thakur S. Antimicrobial resistance and interspecies gene transfer in Campylobacter coli and Campylobacter jejuni isolated from food animals, poultry processing, and retail meat in North Carolina, 2018-2019. PLoS One 2021; 16:e0246571. [PMID: 33571292 PMCID: PMC7877606 DOI: 10.1371/journal.pone.0246571] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/21/2021] [Indexed: 12/17/2022] Open
Abstract
The Center for Disease Control and Prevention identifies antimicrobial resistant (AMR) Campylobacter as a serious threat to U.S. public health due to high community burden, increased transmissibility, and limited treatability. The National Antimicrobial Resistance Monitoring System (NARMS) plays an important role in surveillance of AMR bacterial pathogens in humans, food animals and retail meats. This study investigated C. coli and C. jejuni from live food animals, poultry carcasses at production, and retail meat in North Carolina between January 2018-December 2019. Whole genome sequencing and bioinformatics were used for phenotypic and genotypic characterization to compare AMR profiles, virulence factors associated with Guillain-Barré Syndrome (GBS) (neuABC and cst-II or cst-III), and phylogenic linkage between 541 Campylobacter isolates (C. coli n = 343, C. jejuni n = 198). Overall, 90.4% (489/541) Campylobacter isolates tested positive for AMR genes, while 43% (233/541) carried resistance genes for three or more antibiotic classes and were classified molecularly multidrug resistant. AMR gene frequencies were highest against tetracyclines (64.3%), beta-lactams (63.6%), aminoglycosides (38.6%), macrolides (34.8%), quinolones (24.4%), lincosamides (13.5%), and streptothricins (5%). A total of 57.6% (114/198) C. jejuni carried GBS virulence factors, while three C. coli carried the C. jejuni-like lipooligosaccharide locus, neuABC and cst-II. Further evidence of C. coli and C. jejuni interspecies genomic exchange was observed in identical multilocus sequence typing, shared sequence type (ST) 7818 clonal complex 828, and identical species-indicator genes mapA, ceuE, and hipO. There was a significant increase in novel STs from 2018 to 2019 (2 in 2018 and 21 in 2019, p<0.002), illustrating variable Campylobacter genomes within food animal production. Introgression between C. coli and C. jejuni may aid pathogen adaption, lead to higher AMR and increase Campylobacter persistence in food processing. Future studies should further characterize interspecies gene transfer and evolutionary trends in food animal production to track evolving risks to public health.
Collapse
Affiliation(s)
- Dawn M Hull
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Erin Harrell
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Arnoud H M van Vliet
- School of Veterinary Medicine, University of Surrey, Guildford, Surrey, United Kingdom
| | - Maria Correa
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Siddhartha Thakur
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|