1
|
Yang X, Zeng X, Huang J, Yang L, Mao S, Chen X, Wang Y, Wei X, Li S. Loop-mediated isothermal amplification linked a nanoparticles-based biosensor for detecting Epstein-Barr virus. Appl Microbiol Biotechnol 2024; 108:91. [PMID: 38212962 PMCID: PMC10784390 DOI: 10.1007/s00253-023-12948-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 01/13/2024]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous gamma herpesvirus that maintains a lifelong latent association with B lymphocytes. Here, a rapid and reliable diagnosis platform for detecting EBV infection, employing loop-mediated isothermal amplification (LAMP) combined with a gold nanoparticles-based lateral flow biosensors (AuNPs-LFB) (termed LAMP Amplification Mediated AuNPs-LFB Detection, LAMAD), was developed in the current study. A set of specific LAMP primers targeting the Epstein-Barr nuclear antigen (EBNA) leader protein (EBNA-LP) gene was designed and synthesized. Subsequently, these templates extracted from various pathogens and whole blood samples were used to optimize and evaluate the EBV-LAMAD assay. As a result, the limit of detection (LoD) of the EBV-LAMAD assay was 45 copies/reaction. The EBV-LAMAD assay can detect all representative EBV pathogens used in the study, and of note, no cross-reactions were observed with other non-EBV organisms. Moreover, the whole workflow of the EBV-LAMAD assay can be completed within 70 min, including rapid EBV template preparation, EBV-LAMP amplification, and AuNPs-LFB-mediated detection. Taken together, the EBV-LAMAD assay targeting the EBNA-LP gene is a rapid, simplified, sensitive, reliable, and easy-to-use detection protocol that can be used as a competitive potential diagnostic/screening tool for EBV infection in clinical settings, especially in basic laboratories in resource-limited regions. KEY POINTS: • A novel, simplified, and easy-to-use AuNPs-LFB biosensor was designed and prepared. • LAMP combined with an AuNPs-LFB targeting the novel EBNA-LP gene was established. • EBV-LAMAD is a rapid, sensitive, and reliable detection protocol for EBV infection.
Collapse
Affiliation(s)
- Xinggui Yang
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, 550004, Guizhou, People's Republic of China
| | - Xiaoyan Zeng
- The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550003, Guizhou, People's Republic of China
| | - Junfei Huang
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, 550004, Guizhou, People's Republic of China
| | - Ludi Yang
- Tongren People's Hospital, Tongren, 554399, Guizhou, People's Republic of China
| | - Sha Mao
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, 550004, Guizhou, People's Republic of China
| | - Xu Chen
- The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550003, Guizhou, People's Republic of China
| | - Yu Wang
- Department of Clinical Laboratory, The First People's Hospital of Guiyang, Guiyang, 550002, Guizhou, People's Republic of China
| | - Xiaoyu Wei
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, 550004, Guizhou, People's Republic of China
| | - Shijun Li
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, 550004, Guizhou, People's Republic of China.
| |
Collapse
|
2
|
Liang B, Mah J, Sahoo MK, Pinsky BA. Epstein-Barr virus qPCR testing on bronchoalveolar lavage fluid from immunocompromised patients. J Clin Virol 2024; 174:105705. [PMID: 39002309 DOI: 10.1016/j.jcv.2024.105705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Epstein-Barr Virus (EBV) is associated with lung disease in immunocompromised patients, particularly transplant recipients. EBV DNA testing of lower respiratory tract specimens may have diagnostic utility. METHODS This was a retrospective, observational study of all patients with bronchoalveolar lavage (BAL) fluids submitted for EBV qPCR testing from February 2016 to June 2022 at the Stanford Clinical Virology Laboratory. RESULTS There were 140 patients that underwent 251 EBV qPCR BAL tests (median 1; range 1 - 10). These patients had a mean age of 15.9 years (standard deviation, 15.1 years) and 50 % were female. Transplant recipients accounted for 67.1 % (94/140) of patients, including 67.0 % (63/94) solid organ transplant (SOT) and 33.0 % (31/94) hematopoietic cell transplant. Diagnostic testing was performed more commonly than surveillance testing [57.0 % (143/251) v. 43.0 % (108/251)]; 96.2 % (104/108) of surveillance samples were from lung transplant recipients. Excluding internal control failures, 34.7 % (83/239) of BAL had detectable EBV DNA, encompassing a wide range of viral loads (median=3.03 log10 IU/mL, range 1.44 to 6.06). Overall agreement of EBV DNA in BAL compared to plasma was 74.1 % [117/158; 95 % confidence interval (CI): 66.5 % to 80.7 %], with a kappa coefficient of 0.44 (95 % CI: 0.30 to 0.57). Only 20.1 % (48/239) of results were discussed in a subsequent clinical note, and one result (0.4 %; 1/239) changed clinical management. CONCLUSIONS EBV qPCR testing on BAL offers limited clinical impact. Additional biomarkers are required to improve the diagnosis of EBV-associated lung diseases.
Collapse
Affiliation(s)
- Brooke Liang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Jordan Mah
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Malaya K Sahoo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Benjamin A Pinsky
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States; Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, United States.
| |
Collapse
|
3
|
McSteen BW, Ying XH, Lucero C, Jesudian AB. Viral etiologies of acute liver failure. World J Virol 2024; 13:97973. [PMID: 39323454 PMCID: PMC11401000 DOI: 10.5501/wjv.v13.i3.97973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
Acute liver failure (ALF) is a rare cause of liver-related mortality worldwide, with an estimated annual global incidence of more than one million cases. While drug-induced liver injury, including acetaminophen toxicity, is the leading cause of ALF in the Western world, viral infections remain a significant cause of ALF and the most common cause in many developing nations. Given the high mortality rates associated with ALF, healthcare providers should be aware of the broad range of viral infections that have been implicated to enable early diagnosis, rapid treatment initiation when possible, and optimal management, which may include liver transplantation. This review aims to provide a summary of viral causes of ALF, diagnostic approaches, treatment options, and expected outcomes.
Collapse
Affiliation(s)
- Brian W McSteen
- Department of Medicine, New York-Presbyterian/Weill Cornell Campus, New York, NY 10021, United States
| | - Xiao-Han Ying
- Department of Medicine, New York-Presbyterian/Weill Cornell Campus, New York, NY 10021, United States
| | - Catherine Lucero
- Department of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY 10021, United States
| | - Arun B Jesudian
- Department of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY 10021, United States
| |
Collapse
|
4
|
Chuckpaiwong V, Phimpho P, Lekhanont K, Kaewkorn P, Jongkhajornpong P. Epstein-Barr Virus Keratouveitis-Induced Malignant Glaucoma After Penetrating Keratoplasty: A Case Report and Literature Review. Ocul Immunol Inflamm 2024; 32:1205-1211. [PMID: 37155286 DOI: 10.1080/09273948.2023.2208659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023]
Abstract
PURPOSE To report a case of Epstein-Barr virus (EBV) keratouveitis-induced malignant glaucoma after repeat penetrating keratoplasty (PK). METHODS Retrospective review of the patient's medical records and review of literature on EBV corneal endotheliitis and/or anterior uveitis. RESULTS A 78-year-old Thai female patient presented with a markedly edematous corneal graft, dense pigmented keratic precipitates, fibrinous anterior chamber reaction, uniformly flat anterior chamber, and ocular hypertension of 55 mmHg in the left eye on the first day after the third PK. An aqueous tap for polymerase chain reaction analysis was positive for EBV DNA but negative for other herpesviruses. The patient was diagnosed with EBV endotheliitis and anterior uveitis-induced malignant glaucoma; and successfully treated with oral valacyclovir and topical 2% ganciclovir eye drops. CONCLUSIONS EBV endotheliitis and anterior uveitis can induce malignant glaucoma following PK. A high index of suspicion is required when a patient has a history of unexplained multiple graft rejections.
Collapse
MESH Headings
- Humans
- Keratoplasty, Penetrating/adverse effects
- Female
- Eye Infections, Viral/diagnosis
- Eye Infections, Viral/virology
- Eye Infections, Viral/etiology
- Eye Infections, Viral/drug therapy
- Aged
- Epstein-Barr Virus Infections/diagnosis
- Epstein-Barr Virus Infections/complications
- Epstein-Barr Virus Infections/virology
- Uveitis, Anterior/virology
- Uveitis, Anterior/diagnosis
- Uveitis, Anterior/etiology
- Uveitis, Anterior/drug therapy
- Herpesvirus 4, Human/genetics
- Intraocular Pressure
- Antiviral Agents/therapeutic use
- DNA, Viral/analysis
- Ganciclovir/therapeutic use
- Aqueous Humor/virology
- Valacyclovir/therapeutic use
- Keratitis/virology
- Keratitis/diagnosis
- Keratitis/etiology
- Keratitis/drug therapy
- Endothelium, Corneal/virology
- Endothelium, Corneal/pathology
- Glaucoma/etiology
- Glaucoma/virology
- Glaucoma/diagnosis
- Glaucoma/surgery
- Polymerase Chain Reaction
Collapse
Affiliation(s)
| | | | | | - Puttiya Kaewkorn
- Department of Ophthalmology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Passara Jongkhajornpong
- Department of Ophthalmology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
5
|
Portet Sulla V, Kadi A, Mouna L, Fenaux H, Cechura H, Rafek R, Di Ciccone JL, Warnakulasuriya F, Vauloup-Fellous C. Investigation of atypical serological profiles for Epstein-Barr virus (EBV). J Virol Methods 2024; 329:115002. [PMID: 39067186 DOI: 10.1016/j.jviromet.2024.115002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/31/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Commercial immunoassays that detect IgG and IgM directed toward VCA and IgG EBNA are used in combination to assess EBV immune status. However, this strategy does not always confirm/exclude recent/past EBV infection or absence of immunity. OBJECTIVES The aim of our study was to perform complementary investigations on samples with atypical EBV serological profiles, in order to identify the clinical situation they correspond to. STUDY DESIGN EBV serology was performed using EBV VCA IgM/IgG and EBNA IgG LXL® DiaSorin assay. Complementary investigations included ELISA IgM VCA, immunoblots, CMV IgM/IgG and CMV IgG avidity, and EBV PCR. RESULTS In our study, 12810 EBV serological results were analyzed, and 3580 atypical profiles were detected (28 %). Among these latter, isolated VCA IgG represented 42.9 %, the three positive markers accounted for 29.1 %, isolated EBNA IgG represented 18.5 %, isolated VCA IgM accounted for 6.4 % and positive VCA IgM & positive EBNA IgG represented 3.1 %. VCA IgG detected alone were specific in 100 % cases and EBNA IgG detected alone were specific in 91.7 % cases. VCA IgM detected alone were false positive or due to a cross reaction with CMV in 52.8 % cases. The pattern positive VCA IgM and positive EBNA IgG correspond to a false positive in VCA IgM, EBNA IgG or both in 83.4 % cases. Positive EBV VCA IgM/IgG and EBNA IgG were unreliable to detect active EBV infection in 66.7 % cases. DISCUSSION Atypical EBV serological profiles may correspond to several clinical situations and complementary investigations allow to determine the immune status in more than 98.5 % cases.
Collapse
Affiliation(s)
- Vincent Portet Sulla
- Division of Virology, WHO Rubella National Reference Laboratory, Dept of Biology Genetics, Paul Brousse Hospital, Paris Saclay University Hospital, APHP, Villejuif, France; Paris Saclay University, INSERM U1184, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France.
| | - Amina Kadi
- Division of Virology, WHO Rubella National Reference Laboratory, Dept of Biology Genetics, Paul Brousse Hospital, Paris Saclay University Hospital, APHP, Villejuif, France
| | - Lina Mouna
- Division of Virology, WHO Rubella National Reference Laboratory, Dept of Biology Genetics, Paul Brousse Hospital, Paris Saclay University Hospital, APHP, Villejuif, France
| | - Honorine Fenaux
- Division of Virology, WHO Rubella National Reference Laboratory, Dept of Biology Genetics, Paul Brousse Hospital, Paris Saclay University Hospital, APHP, Villejuif, France
| | - Hugo Cechura
- Division of Virology, WHO Rubella National Reference Laboratory, Dept of Biology Genetics, Paul Brousse Hospital, Paris Saclay University Hospital, APHP, Villejuif, France
| | - Rana Rafek
- Division of Virology, WHO Rubella National Reference Laboratory, Dept of Biology Genetics, Paul Brousse Hospital, Paris Saclay University Hospital, APHP, Villejuif, France
| | - Julia Lubrano Di Ciccone
- Division of Virology, WHO Rubella National Reference Laboratory, Dept of Biology Genetics, Paul Brousse Hospital, Paris Saclay University Hospital, APHP, Villejuif, France
| | - Fairly Warnakulasuriya
- Division of Virology, WHO Rubella National Reference Laboratory, Dept of Biology Genetics, Paul Brousse Hospital, Paris Saclay University Hospital, APHP, Villejuif, France
| | - Christelle Vauloup-Fellous
- Division of Virology, WHO Rubella National Reference Laboratory, Dept of Biology Genetics, Paul Brousse Hospital, Paris Saclay University Hospital, APHP, Villejuif, France; Paris Saclay University, INSERM U1184, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| |
Collapse
|
6
|
Hao YP. Evaluating the role of interleukin-2 and interleukin-12 in pediatric patients with concurrent Mycoplasma pneumoniae and Epstein-Barr virus infections. World J Clin Cases 2024; 12:5346-5353. [PMID: 39156096 PMCID: PMC11238690 DOI: 10.12998/wjcc.v12.i23.5346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/24/2024] [Accepted: 06/11/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Mycoplasma pneumoniae (MP) frequently causes respiratory infections in children, whereas Epstein-Barr virus (EBV) typically presents subclinical manifestations in immunocompetent pediatric populations. The incidence of MP and EBV co-infections is often overlooked clinically, with the contributory role of EBV in pulmonary infections alongside MP remaining unclear. AIM To evaluate the serum concentrations of interleukin-2 (IL-2) and interleukin-12 (IL-12) in pediatric patients with MP pneumonia co-infected with EBV and assess their prognostic implications. METHODS We retrospectively analyzed clinical data from patients diagnosed with MP and EBV co-infection, isolated MP infection, and a control group of healthy children, spanning from January 1, 2018 to December 31, 2021. Serum IL-2 and IL-12 levels were quantified using enzyme-linked immunosorbent assay. Logistic regression was employed to identify factors influencing poor prognosis, while receiver operating characteristic (ROC) curves evaluated the prognostic utility of serum IL-2 and IL-12 levels in co-infected patients. RESULTS The co-infection group exhibited elevated serum IL-2 and C-reactive protein (CRP) levels compared to both the MP-only and control groups, with a reverse trend observed for IL-12 (P < 0.05). In the poor prognosis cohort, elevated CRP and IL-2 levels, alongside prolonged fever duration, contrasted with reduced IL-12 levels (P < 0.05). Logistic regression identified elevated IL-2 as an independent risk factor and high IL-12 as a protective factor for adverse outcomes (P < 0.05). ROC analysis indicated that the area under the curves for IL-2, IL-12, and their combination in predicting poor prognosis were 0.815, 0.895, and 0.915, respectively. CONCLUSION Elevated serum IL-2 and diminished IL-12 levels in pediatric patients with MP and EBV co-infection correlate with poorer prognosis, with combined IL-2 and IL-12 levels offering enhanced predictive accuracy.
Collapse
Affiliation(s)
- Yan-Ping Hao
- Department of Pediatrics, Maternal and Child Health Hospital, Shaoxing 312400, Zhejiang Province, China
| |
Collapse
|
7
|
Law N, Logan C, Taplitz R. EBV Reactivation and Disease in Allogeneic Hematopoietic Stem Cell Transplant (HSCT) Recipients and Its Impact on HSCT Outcomes. Viruses 2024; 16:1294. [PMID: 39205268 PMCID: PMC11359191 DOI: 10.3390/v16081294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/02/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
The acquisition or reactivation of Epstein-Barr virus (EBV) after allogeneic Hematopoietic Stem Cell Transplant (HSCT) can be associated with complications including the development of post-transplant lymphoproliferative disorder (PTLD), which is associated with significant morbidity and mortality. A number of risk factors for PTLD have been defined, including T-cell depletion, and approaches to monitoring EBV, especially in high-risk patients, with the use of preemptive therapy upon viral activation have been described. Newer therapies for the preemption or treatment of PTLD, such as EBV-specific cytotoxic T-cells, hold promise. Further studies to help define risks, diagnosis, and treatment of EBV-related complications are needed in this at-risk population.
Collapse
Affiliation(s)
- Nancy Law
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, La Jolla, CA 92093, USA
| | - Cathy Logan
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, La Jolla, CA 92093, USA
| | - Randy Taplitz
- Division of Infectious Diseases, Department of Medicine, City of Hope National Medical Center, Duarte, CA 91010, USA;
| |
Collapse
|
8
|
Zarate-Pinzon L, Peña-Pulgar LF, Cifuentes-González C, Rojas-Carabali W, Salgar MJ, de-la-Torre A. Panuveitis by Coinfection with Toxoplasma gondii and Epstein Barr Virus. Should We Use Antiviral Therapy? - A Case Report. Ocul Immunol Inflamm 2024; 32:1105-1110. [PMID: 36892911 DOI: 10.1080/09273948.2023.2182326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 03/10/2023]
Abstract
BACKGROUND To report the atypical presentation and treatment in a case of Toxoplasma gondii (Tg) and Epstein Barr Virus (EBV) intraocular coinfection. CASE PRESENTATION A 60-year-old male patient who presented anterior hypertensive uveitis followed by a new finding of a yellowish-white fluffy retinochoroidal lesion in the superior-temporal quadrant. He was initially treated with antiviral therapy without improvement. Next, due to the Tg infection suspicion, anti-toxoplasmic treatment was added, and therapeutic and diagnostic vitrectomy was performed along with intravitreal clindamycin. Polymerase chain reaction (PCR) analysis in intraocular fluids confirmed Tg and EBV coinfection. Then, anti-Toxoplasma oral treatment and antiviral and oral corticosteroids were administrated, achieving improvement. CONCLUSIONS In a patient with atypical retinochoroidal lesions, an intraocular fluids PCR should be performed, in addition to the serological laboratories to rule out coinfection, confirm the diagnosis, and establish an appropriate treatment. Coinfection could impact the pathogenesis and prognosis of the disease.Abbreviations: OT: Ocular toxoplasmosis; Tg: Toxoplasma gondii; EBV: Epstein Barr Virus; CMV: Cytomegalovirus; HIV: Human Immunodeficiency Virus; HSV: Herpes Simplex Virus; VZV: Varicella Zoster Virus; PCR: Polymerase chain reaction; OD: Right eye; OS: Left eye; BCVA: best-corrected visual acuity.
Collapse
MESH Headings
- Humans
- Male
- Middle Aged
- Epstein-Barr Virus Infections/diagnosis
- Epstein-Barr Virus Infections/complications
- Epstein-Barr Virus Infections/drug therapy
- Epstein-Barr Virus Infections/virology
- Coinfection/drug therapy
- Coinfection/diagnosis
- Coinfection/virology
- Toxoplasmosis, Ocular/drug therapy
- Toxoplasmosis, Ocular/diagnosis
- Toxoplasma/isolation & purification
- Toxoplasma/genetics
- Eye Infections, Viral/diagnosis
- Eye Infections, Viral/drug therapy
- Eye Infections, Viral/virology
- Panuveitis/drug therapy
- Panuveitis/diagnosis
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/isolation & purification
- Antiviral Agents/therapeutic use
- Polymerase Chain Reaction
- DNA, Viral/analysis
- Vitrectomy
- DNA, Protozoan/analysis
- Fluorescein Angiography
- Tomography, Optical Coherence
- Visual Acuity
Collapse
Affiliation(s)
- Laura Zarate-Pinzon
- Neuroscience (NEUROS) Research Group, Neurovitae Research Center, Institute of Translational Medicine (IMT). Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
- Ophthalmology Interest Group, Neuroscience (NEUROS) Research Group, Neurovitae Research Center, Institute of Translational Medicine (IMT). Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Luisa Fernanda Peña-Pulgar
- Neuroscience (NEUROS) Research Group, Neurovitae Research Center, Institute of Translational Medicine (IMT). Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
- Ophthalmology Interest Group, Neuroscience (NEUROS) Research Group, Neurovitae Research Center, Institute of Translational Medicine (IMT). Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Carlos Cifuentes-González
- Neuroscience (NEUROS) Research Group, Neurovitae Research Center, Institute of Translational Medicine (IMT). Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - William Rojas-Carabali
- Neuroscience (NEUROS) Research Group, Neurovitae Research Center, Institute of Translational Medicine (IMT). Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - María José Salgar
- Clínica de Uveítis. Hospital, Universitario de La Samaritana, Bogotá, Colombia
| | - Alejandra de-la-Torre
- Neuroscience (NEUROS) Research Group, Neurovitae Research Center, Institute of Translational Medicine (IMT). Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
- Ophthalmology Interest Group, Neuroscience (NEUROS) Research Group, Neurovitae Research Center, Institute of Translational Medicine (IMT). Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
9
|
Zhao Y, Zhang Q, Zhang B, Dai Y, Gao Y, Li C, Yu Y, Li C. Epstein-Barr Viruses: Their Immune Evasion Strategies and Implications for Autoimmune Diseases. Int J Mol Sci 2024; 25:8160. [PMID: 39125729 PMCID: PMC11311853 DOI: 10.3390/ijms25158160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Epstein-Barr virus (EBV), a member of the γ-herpesvirus family, is one of the most prevalent and persistent human viruses, infecting up to 90% of the adult population globally. EBV's life cycle includes primary infection, latency, and lytic reactivation, with the virus primarily infecting B cells and epithelial cells. This virus has evolved sophisticated strategies to evade both innate and adaptive immune responses, thereby maintaining a lifelong presence within the host. This persistence is facilitated by the expression of latent genes such as EBV nuclear antigens (EBNAs) and latent membrane proteins (LMPs), which play crucial roles in viral latency and oncogenesis. In addition to their well-known roles in several types of cancer, including nasopharyngeal carcinoma and B-cell lymphomas, recent studies have identified the pathogenic roles of EBV in autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, and systemic lupus erythematosus. This review highlights the intricate interactions between EBV and the host immune system, underscoring the need for further research to develop effective therapeutic and preventive strategies against EBV-associated diseases.
Collapse
Affiliation(s)
- Yuehong Zhao
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (Q.Z.); (B.Z.); (Y.D.); (Y.G.); (C.L.)
| | - Qi Zhang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (Q.Z.); (B.Z.); (Y.D.); (Y.G.); (C.L.)
| | - Botian Zhang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (Q.Z.); (B.Z.); (Y.D.); (Y.G.); (C.L.)
| | - Yihao Dai
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (Q.Z.); (B.Z.); (Y.D.); (Y.G.); (C.L.)
| | - Yifei Gao
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (Q.Z.); (B.Z.); (Y.D.); (Y.G.); (C.L.)
| | - Chenzhong Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (Q.Z.); (B.Z.); (Y.D.); (Y.G.); (C.L.)
| | - Yijing Yu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (Q.Z.); (B.Z.); (Y.D.); (Y.G.); (C.L.)
| | - Conglei Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (Q.Z.); (B.Z.); (Y.D.); (Y.G.); (C.L.)
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
10
|
Oladipo EK, Ojo TO, Elegbeleye OE, Bolaji OQ, Oyewole MP, Ogunlana AT, Olalekan EO, Abiodun B, Adediran DA, Obideyi OA, Olufemi SE, Salamatullah AM, Bourhia M, Younous YA, Adelusi TI. Exploring the nuclear proteins, viral capsid protein, and early antigen protein using immunoinformatic and molecular modeling approaches to design a vaccine candidate against Epstein Barr virus. Sci Rep 2024; 14:16798. [PMID: 39039173 PMCID: PMC11263613 DOI: 10.1038/s41598-024-66828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/04/2024] [Indexed: 07/24/2024] Open
Abstract
The available Epstein Barr virus vaccine has tirelessly harnessed the gp350 glycoprotein as its target epitope, but the result has not been preventive. Right here, we designed a global multi-epitope vaccine for EBV; with special attention to making sure all strains and preventive antigens are covered. Using a robust computational vaccine design approach, our proposed vaccine is armed with 6-16 mers linear B-cell epitopes, 4-9 mer CTL epitopes, and 8-15 mer HTL epitopes which are verified to induce interleukin 4, 10 & IFN-gamma. We employed deep computational mining coupled with expert intelligence in designing the vaccine, using human Beta defensin-3-which has been reported to induce the same TLRs as EBV-as the adjuvant. The tendency of the vaccine to cause autoimmune disorder is quenched by the assurance that the construct contains no EBNA-1 homolog. The protein vaccine construct exhibited excellent physicochemical attributes such as Aliphatic index 59.55 and GRAVY - 0.710; and a ProsaWeb Z score of - 3.04. Further computational analysis revealed the vaccine docked favorably with EBV indicted TLR 1, 2, 4 & 9 with satisfactory interaction patterns. With global coverage of 85.75% and the stable molecular dynamics result obtained for the best two interactions, we are optimistic that our nontoxic, non-allergenic multi-epitope vaccine will help to ameliorate the EBV-associated diseases-which include various malignancies, tumors, and cancers-preventively.
Collapse
Affiliation(s)
- Elijah Kolawole Oladipo
- Division of Vaccine Design and Development, Helix Biogen Institute, Ogbomoso, 210214, Nigeria
- Department of Microbiology, Laboratory of Molecular Biology, Immunology and Bioinformatics, Adeleke University, Ede, 232104, Nigeria
| | - Taiwo Ooreoluwa Ojo
- Division of Vaccine Design and Development, Helix Biogen Institute, Ogbomoso, 210214, Nigeria
- Computational Biology and Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, (LAUTECH), Ogbomoso, 210214, Nigeria
| | - Oluwabamise Emmanuel Elegbeleye
- Computational Biology and Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, (LAUTECH), Ogbomoso, 210214, Nigeria
| | - Olawale Quadri Bolaji
- Computational Biology and Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, (LAUTECH), Ogbomoso, 210214, Nigeria
| | - Moyosoluwa Precious Oyewole
- Division of Vaccine Design and Development, Helix Biogen Institute, Ogbomoso, 210214, Nigeria
- Department of Biochemistry, Bowen University, Iwo, 232101, Nigeria
| | - Abdeen Tunde Ogunlana
- Institute of Advanced Medical Research and Training (IAMRAT), College of Medicine, University of Ibadan, Ibadan, 200005, Nigeria
| | - Emmanuel Obanijesu Olalekan
- Computational Biology and Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, (LAUTECH), Ogbomoso, 210214, Nigeria
| | - Bamidele Abiodun
- Computational Biology and Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, (LAUTECH), Ogbomoso, 210214, Nigeria
| | - Daniel Adewole Adediran
- Division of Vaccine Design and Development, Helix Biogen Institute, Ogbomoso, 210214, Nigeria
| | | | - Seun Elijah Olufemi
- Division of Vaccine Design and Development, Helix Biogen Institute, Ogbomoso, 210214, Nigeria
| | - Ahmad Mohammad Salamatullah
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, 11, P.O. Box 2460, 11451, Riyadh, Saudi Arabia
| | - Mohammed Bourhia
- Laboratory of Therapeutic and Organic Chemistry, Faculty of Pharmacy, University of Montpellier, Montpellier, 34000, France
| | | | - Temitope Isaac Adelusi
- Computational Biology and Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, (LAUTECH), Ogbomoso, 210214, Nigeria.
- Department of Surgery, School of Medicine, University of Connecticut Health, Farmington Ave, Farmington, CT, 06030, USA.
| |
Collapse
|
11
|
Zhang H, Wang J, Zhang K, Shi J, Gao Y, Zheng J, He J, Zhang J, Song Y, Zhang R, Shi X, Jin L, Li H. Association between heavy metals exposure and persistent infections: the mediating role of immune function. Front Public Health 2024; 12:1367644. [PMID: 39104887 PMCID: PMC11298456 DOI: 10.3389/fpubh.2024.1367644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/11/2024] [Indexed: 08/07/2024] Open
Abstract
Introduction Persistent infections caused by certain viruses and parasites have been associated with multiple diseases and substantial mortality. Heavy metals are ubiquitous environmental pollutants with immunosuppressive properties. This study aimed to determine whether heavy metals exposure suppress the immune system, thereby increasing the susceptibility to persistent infections. Methods Using data from NHANES 1999-2016, we explored the associations between heavy metals exposure and persistent infections: Cytomegalovirus (CMV), Epstein-Barr Virus (EBV), Hepatitis C Virus (HCV), Herpes Simplex Virus Type-1 (HSV-1), Toxoplasma gondii (T. gondii), and Toxocara canis and Toxocara cati (Toxocara spp.) by performing logistic regression, weighted quantile sum (WQS) and Bayesian kernel machine regression (BKMR) models. Mediation analysis was used to determine the mediating role of host immune function in these associations. Results Logistic regression analysis revealed positive associations between multiple heavy metals and the increased risk of persistent infections. In WQS models, the heavy metals mixture was associated with increased risks of several persistent infections: CMV (OR: 1.58; 95% CI: 1.17, 2.14), HCV (OR: 2.94; 95% CI: 1.68, 5.16), HSV-1 (OR: 1.25; 95% CI: 1.11, 1.42), T. gondii (OR: 1.97; 95% CI: 1.41, 2.76), and Toxocara spp. (OR: 1.76; 95% CI: 1.16, 2.66). BKMR models further confirmed the combined effects of heavy metals mixture and also identified the individual effect of arsenic, cadmium, and lead. On mediation analysis, the systemic immune inflammation index, which reflects the host's immune status, mediated 12.14% of the association of mixed heavy metals exposure with HSV-1 infection. Discussion The findings of this study revealed that heavy metals exposure may increase susceptibility to persistent infections, with the host's immune status potentially mediating this relationship. Reducing exposure to heavy metals may have preventive implications for persistent infections, and further prospective studies are needed to confirm these findings.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Lina Jin
- School of Public Health, Jilin University, Changchun, China
| | - Hui Li
- School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
12
|
Singh P, Gadgeel M, AlQanber B, Farooqi A, Savaşan S. Flow Cytometry as the Tool to Define Peripheral Blood Leukocyte Signatures in Acute EBV Infection. Cells 2024; 13:963. [PMID: 38891094 PMCID: PMC11171800 DOI: 10.3390/cells13110963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Primary Epstein-Barr virus (EBV) infection which can manifest as infectious mononucleosis (IM) is commonly acquired during childhood. EBV primarily invades B cells leading to a lytic reaction; the control of the infection is handled by natural killer and T cells in immunocompetent individuals. The infection has a wide spectrum of clinical findings and can lead to serious complications in patients with certain underlying immunological dysfunctions. We retrospectively investigated peripheral white blood cell populations' surface marker characteristics in IM using a comprehensive flow cytometry marker panel. Twenty-one cases of IM and seventeen EBV-seropositive cases without IM serving as controls were included. We observed novel alterations in lymphocyte, neutrophil, and monocyte populations. In addition to increased activated cytotoxic T cells and low B cells, we demonstrated high T-large granular lymphocyte (T-LGL) populations in IM cases. Furthermore, despite T cells' increased HLA-DR expression, another activation marker, CD11b, was lower in T-LGL populations. Monocytes showed increased CD16 expression; CD64 was higher in neutrophils. Our findings point to monocyte and neutrophil activation which may account for acute clinical features and may contribute to the understanding of IM immunobiology. Furthermore, they may serve as a useful tool in investigating inherited and post-transplant conditions characterized by deficiencies in controlling EBV infection.
Collapse
Affiliation(s)
- Pragya Singh
- Children’s Hospital of Michigan, Detroit, MI 48201, USA;
| | - Manisha Gadgeel
- Hematology/Oncology Flow Cytometry Laboratory, Division of Hematology/Oncology, Children’s Hospital of Michigan, Detroit, MI 48201, USA; (M.G.); (B.A.)
| | - Batool AlQanber
- Hematology/Oncology Flow Cytometry Laboratory, Division of Hematology/Oncology, Children’s Hospital of Michigan, Detroit, MI 48201, USA; (M.G.); (B.A.)
- Department of Pediatrics, Central Michigan University College of Medicine, Saginaw, MI 48602, USA;
| | - Ahmad Farooqi
- Department of Pediatrics, Central Michigan University College of Medicine, Saginaw, MI 48602, USA;
| | - Süreyya Savaşan
- Hematology/Oncology Flow Cytometry Laboratory, Division of Hematology/Oncology, Children’s Hospital of Michigan, Detroit, MI 48201, USA; (M.G.); (B.A.)
- Department of Pediatrics, Central Michigan University College of Medicine, Saginaw, MI 48602, USA;
- School of Medicine, Wayne State University, Detroit, MI 48202, USA
- Barbara Ann Karmanos Cancer Center, Division of Hematology/Oncology, Pediatric Blood and Marrow Transplant Program, Children’s Hospital of Michigan, Detroit, MI 48201, USA
| |
Collapse
|
13
|
Xie W, Bruce K, Belz GT, Farrell HE, Stevenson PG. Indirect CD4 + T cell protection against mouse gamma-herpesvirus infection via interferon gamma. J Virol 2024; 98:e0049324. [PMID: 38578092 PMCID: PMC11092340 DOI: 10.1128/jvi.00493-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 04/06/2024] Open
Abstract
CD4+ T cells play a key role in γ-herpesvirus infection control. However, the mechanisms involved are unclear. Murine herpesvirus type 4 (MuHV-4) allows relevant immune pathways to be dissected experimentally in mice. In the lungs, it colonizes myeloid cells, which can express MHC class II (MHCII), and type 1 alveolar epithelial cells (AEC1), which lack it. Nevertheless, CD4+ T cells can control AEC1 infection, and this control depends on MHCII expression in myeloid cells. Interferon-gamma (IFNγ) is a major component of CD4+ T cell-dependent MuHV-4 control. Here, we show that the action of IFNγ is also indirect, as CD4+ T cell-mediated control of AEC1 infection depended on IFNγ receptor (IFNγR1) expression in CD11c+ cells. Indirect control also depended on natural killer (NK) cells. Together, the data suggest that the activation of MHCII+ CD11c+ antigen-presenting cells is key to the CD4+ T cell/NK cell protection axis. By contrast, CD8+ T cell control of AEC1 infection appeared to operate independently. IMPORTANCE CD4+ T cells are critical for the control of gamma-herpesvirus infection; they act indirectly, by recruiting natural killer (NK) cells to attack infected target cells. Here, we report that the CD4+ T cell/NK cell axis of gamma-herpesvirus control requires interferon-γ engagement of CD11c+ dendritic cells. This mechanism of CD4+ T cell control releases the need for the direct engagement of CD4+ T cells with virus-infected cells and may be a common strategy for host control of immune-evasive pathogens.
Collapse
Affiliation(s)
- Wanxiaojie Xie
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Kimberley Bruce
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Gabrielle T. Belz
- The University of Queensland Frazer Institute, Brisbane, Queensland, Australia
| | - Helen E. Farrell
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Philip G. Stevenson
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
14
|
Tang-Siegel GG, Maughan DW, Frownfelter MB, Light AR. Mitochondrial DNA Missense Mutations ChrMT: 8981A > G and ChrMT: 6268C > T Identified in a Caucasian Female with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Triggered by the Epstein-Barr Virus. Case Rep Genet 2024; 2024:6475425. [PMID: 38756740 PMCID: PMC11098598 DOI: 10.1155/2024/6475425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/18/2024] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a multisystem disabling disease with unclear etiology and pathophysiology, whose typical symptoms include prolonged debilitating recovery from fatigue or postexertional malaise (PEM). Disrupted production of adenosine triphosphate (ATP), the intracellular energy that fuels cellular activity, is a cause for fatigue. Here, we present a long-term case of ME/CFS: a 75-year-old Caucasian female patient, whose symptoms of ME/CFS were clearly triggered by an acute infection of the Epstein-Barr virus 24 years ago (mononucleosis). Before then, the patient was a healthy professional woman. A recent DNA sequence analysis identified missense variants of mitochondrial respiratory chain enzymes, including ATP6 (ChrMT: 8981A > G; Q152R) and Cox1 (ChrMT: 6268C > T; A122V). Protein subunits ATP6 and Cox1 are encoded by mitochondrial DNA outside of the nucleus: the Cox1 gene encodes subunit 1 of complex IV (CIV: cytochrome c oxidase) and the ATP6 gene encodes subunit A of complex V (CV: ATP synthase). CIV and CV are the last two of five essential enzymes that perform the mitochondrial electron transport respiratory chain reaction to generate ATP. Further analysis of the blood sample using transmission electron microscopy demonstrated abnormal, circulating, extracellular mitochondria. These results indicate that the patient had dysfunctional mitochondria, which may contribute directly to her major symptoms, including PEM and neurological and cognitive changes. Furthermore, the identified variants of ATP6 (ChrMT: 8981A > G; Q152R) and Cox1 (ChrMT: 6268C > T; A122V), functioning at a later stage of mitochondrial ATP production, may play a role in the abnormality of the patient's mitochondria and the development of her ME/CFS symptoms.
Collapse
Affiliation(s)
- Gaoyan G. Tang-Siegel
- Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont, Burlington, VT, USA
| | - David W. Maughan
- Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont, Burlington, VT, USA
| | | | - Alan R. Light
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
15
|
Cinti L, Roberto P, Rossi M, Napoli A, Russo G, Iori AP, Gentile G, Augurusa M, Girmenia C, Antonelli G, Gaeta A. Molecular monitoring of viral infections in immunocompromised patients in a large university hospital in Italy: reflections after thirteen years of real-life activity. Eur J Clin Microbiol Infect Dis 2024; 43:979-989. [PMID: 38517571 PMCID: PMC11108949 DOI: 10.1007/s10096-024-04812-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024]
Abstract
PURPOSE This study aimed to investigate the prevalence and viral reactivations of clinical interest in the immunocompromised patient with particular focus on hematologic and solid organ transplant recipients. METHODS Molecular screening data of CMV, EBV, JCV and BKV from 2011 to 2023 were analyzed. This extensive time span allowed the access to more than 100,000 samples from over 20,000 patients treated at Policlinico Umberto I. It was possible to temporally investigate patient attendance patterns, average age distribution, seasonality of infections, and positivity rates of the analyzed viruses. RESULTS Between 2019 and 2022 a significant reduction in organ transplants performed and in the positive molecular detection of EBV, JCV and BKV was observed. Additionally, there has been a noteworthy decrease in CMV reactivations, with a reduction of up to 50% starting in 2019. A remarkable reduction of 39% in the rate of CMV viral reactivation has been also achieved in SOT between 2016 and 2023. CONCLUSION The years following 2019 were profoundly impacted by the COVID-19 pandemic era. This period resulted in a substantial reduction in healthcare services and hospital visits. Furthermore, the introduction of the drug Letermovir in Italy in 2019 demonstrated remarkable efficacy, evidenced by a reduction in CMV reactivations. Additionally, the adoption of a novel clinical approach centered on personalized therapy facilitated improved management of immunocompromised patients.
Collapse
Affiliation(s)
- Lilia Cinti
- Laboratory of Microbiology and Virology, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena, Roma, 324-00161, Italy
| | - Piergiorgio Roberto
- Laboratory of Microbiology and Virology, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena, Roma, 324-00161, Italy.
| | - Matteo Rossi
- Laboratory of Microbiology and Virology, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena, Roma, 324-00161, Italy
| | - Anna Napoli
- Laboratory of Microbiology and Virology, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena, Roma, 324-00161, Italy
| | - Gianluca Russo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Roma, Italy
| | - Anna Paola Iori
- Hematology, Department of Hematology, Oncology and Dermatology, AOU Policlinico Umberto I, Sapienza University of Rome, Roma, Italy
| | - Giuseppe Gentile
- Department of Translational and Precision Medicine, Sapienza University Rome, Roma, Italy
- University Hospital "Policlinico Umberto I", Rome, Italy
| | - Maria Augurusa
- University Hospital "Policlinico Umberto I", Rome, Italy
| | - Corrado Girmenia
- Hematology, Department of Hematology, Oncology and Dermatology, AOU Policlinico Umberto I, Sapienza University of Rome, Roma, Italy
| | - Guido Antonelli
- Laboratory of Microbiology and Virology, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena, Roma, 324-00161, Italy
- University Hospital "Policlinico Umberto I", Rome, Italy
| | - Aurelia Gaeta
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Roma, Italy
- University Hospital "Policlinico Umberto I", Rome, Italy
| |
Collapse
|
16
|
Manwar S, Sapkale B, Patil T, Vagga A. A Twist in Perception: A Case of an Eight-Year-Old Female With Alice in Wonderland Syndrome. Cureus 2024; 16:e60182. [PMID: 38868275 PMCID: PMC11167684 DOI: 10.7759/cureus.60182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024] Open
Abstract
The article aims to explore the challenges involved in diagnosing and managing Alice in Wonderland Syndrome (AIWS) in pediatric cases, focusing on an eight-year-old female with perceptual distortions affecting vision, hearing, and time perception. AIWS, a rare neurological phenomenon, manifests as distortions in the perception of the body and external stimuli. The lack of established diagnostic criteria, particularly in the pediatric population, complicates accurate identification. The presented case illustrates visual anomalies, auditory abnormalities, and tachysensia, emphasizing the multisensory nature of AIWS. The temporal association with underlying causes, such as migraines and viral infections, highlights the need for a comprehensive evaluation. The Acharya Vinoba Bhave Rural Hospital management approach involves a systematic assessment, identification of underlying chronic conditions, and targeted treatment. Migraine prophylaxis, utilizing prescription drugs and a low-tyramine diet, plays a central role. The limited use of antipsychotics underscores the neurological origin of AIWS. The article contributes valuable insights into pediatric AIWS, advocating for further research and awareness. The article also aims to highlight the lack of established diagnostic criteria for AIWS, particularly in the pediatric population, and to present a systematic management approach based on a specific case study. The multidisciplinary collaboration, regular follow-ups, and patient education constitute a comprehensive approach to enhance understanding and alleviate symptoms in AIWS cases.
Collapse
Affiliation(s)
- Suchita Manwar
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Bhagyesh Sapkale
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Truptesh Patil
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Anjali Vagga
- Biochemistry, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
17
|
Chavoshpour-Mamaghani S, Shoja Z, Jalilvand S. The Prevalence of Epstein-Barr Virus in Normal, Premalignant, and Malignant Uterine Cervical Samples in Iran. Intervirology 2024; 67:64-71. [PMID: 38621370 PMCID: PMC11251647 DOI: 10.1159/000538734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/26/2024] [Indexed: 04/17/2024] Open
Abstract
INTRODUCTION It is suggested that Epstein-Barr virus (EBV) may play an important role in cervical cancer development. Most studies found a higher rate of EBV in cervical cancer samples in comparison to premalignant and normal groups. In this regard, this study aimed to investigate the prevalence of EBV in cervical samples. METHODS In total, 364 samples from 179 healthy subjects, 124 women with premalignant lesions, and 61 patients with cervical cancer were investigated using nested-PCR. RESULTS The mean age ± SE was 54.1 ± 13.4 in women with cervical cancer, 36.1 ± 9.4 among women with premalignant lesions, and 36.6 ± 11.5 in healthy individuals. In total, 290 out of 364 samples were human papillomavirus (HPV) positive and the following HPV genotypes were detected among them: HPV 16/18 was found in 43.1%, 23.9%, and 65.5% of normal, premalignant, and malignant samples, respectively, and other high-risk types were detected in 56.9% of normal, 76.1% of premalignant, and 34.5% of malignant samples. The prevalence of EBV was found to be 9.8%, 2.4%, and 2.8% in cervical cancer, premalignant lesions, and normal specimens, respectively, and the difference was statistically significant (p = 0.028). The overall frequency of coinfection between EBV and HPV was shown to be 3.6%. The coinfection was more prevalent among HPV 16/18-infected samples than other high-risk HPVs (6.6 vs. 2.9%) although the difference was not reached a statistically significant difference (p = 0.23). CONCLUSION Our findings indicated that EBV could play an important role as a cofactor in the progression of cervical cancer. However, future studies with larger sample sizes and the expression analysis of EBV transcripts or proteins are mandatory.
Collapse
Affiliation(s)
| | | | - Somayeh Jalilvand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Qian H, Yang X, Zhang T, Zou P, Zhang Y, Tian W, Mao Z, Wei J. Improving the safety of CAR-T-cell therapy: The risk and prevention of viral infection for patients with relapsed or refractory B-cell lymphoma undergoing CAR-T-cell therapy. Am J Hematol 2024; 99:662-678. [PMID: 38197307 DOI: 10.1002/ajh.27198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy, an innovative immunotherapeutic against relapsed/refractory B-cell lymphoma, faces challenges due to frequent viral infections. Despite this, a comprehensive review addressing risk assessment, surveillance, and treatment management is notably absent. This review elucidates immune response compromises during viral infections in CAR-T recipients, collates susceptibility risk factors, and deliberates on preventive strategies. In the post-pandemic era, marked by the Omicron variant, new and severe threats to CAR-T therapy emerge, necessitating exploration of preventive and treatment measures for COVID-19. Overall, the review provides recommendations for viral infection prophylaxis and management, enhancing CAR-T product safety and recipient survival.
Collapse
Affiliation(s)
- Hu Qian
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingcheng Yang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Zhang
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Ping Zou
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiwei Tian
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Zekai Mao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Wei
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| |
Collapse
|
19
|
Huang Z, Fu Y, Yang H, Zhou Y, Shi M, Li Q, Liu W, Liang J, Zhu L, Qin S, Hong H, Liu Y. Liquid biopsy in T-cell lymphoma: biomarker detection techniques and clinical application. Mol Cancer 2024; 23:36. [PMID: 38365716 PMCID: PMC10874034 DOI: 10.1186/s12943-024-01947-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/25/2024] [Indexed: 02/18/2024] Open
Abstract
T-cell lymphoma is a highly invasive tumor with significant heterogeneity. Invasive tissue biopsy is the gold standard for acquiring molecular data and categorizing lymphoma patients into genetic subtypes. However, surgical intervention is unfeasible for patients who are critically ill, have unresectable tumors, or demonstrate low compliance, making tissue biopsies inaccessible to these patients. A critical need for a minimally invasive approach in T-cell lymphoma is evident, particularly in the areas of early diagnosis, prognostic monitoring, treatment response, and drug resistance. Therefore, the clinical application of liquid biopsy techniques has gained significant attention in T-cell lymphoma. Moreover, liquid biopsy requires fewer samples, exhibits good reproducibility, and enables real-time monitoring at molecular levels, thereby facilitating personalized health care. In this review, we provide a comprehensive overview of the current liquid biopsy biomarkers used for T-cell lymphoma, focusing on circulating cell-free DNA (cfDNA), circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), Epstein-Barr virus (EBV) DNA, antibodies, and cytokines. Additionally, we discuss their clinical application, detection methodologies, ongoing clinical trials, and the challenges faced in the field of liquid biopsy.
Collapse
Affiliation(s)
- Zongyao Huang
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yao Fu
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Hong Yang
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yehan Zhou
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Min Shi
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Qingyun Li
- Genecast Biotechnology Co., Ltd, Wuxi, 214104, China
| | - Weiping Liu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Junheng Liang
- Nanjing Geneseeq Technology Inc., Nanjing, 210032, Jiangsu, China
| | - Liuqing Zhu
- Nanjing Geneseeq Technology Inc., Nanjing, 210032, Jiangsu, China
| | - Sheng Qin
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Huangming Hong
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Yang Liu
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
20
|
Chen X, Chen Y, Di L, Liu N, Liu T, Cai Y, Di W. Cerebellar encephalitis associated with anti-mGluR1 antibodies: a case report and comprehensive literature review. Front Neurol 2024; 15:1333658. [PMID: 38410193 PMCID: PMC10894994 DOI: 10.3389/fneur.2024.1333658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 02/02/2024] [Indexed: 02/28/2024] Open
Abstract
Anti-metabotropic glutamate receptor 1 encephalitis is an uncommon autoimmune condition characterized by a subacute onset of cerebellar syndrome. Frequently, it also manifests as sleep disorders and cognitive or behavioral changes. While immunotherapy is the primary treatment approach, the disease remains poorly understood. Herein, we present a case of anti-metabotropic glutamate receptor 1 encephalitis, highlighting its primary cerebellar syndrome manifestation. The first magnetic resonance imaging scan showed no obvious abnormality. Lumbar puncture showed increased cerebrospinal fluid pressure, increased white blood cell count and protein level. The next-generation sequencing of cerebrospinal fluid showed Epstein-Barr virus infection, and the patient was diagnosed with viral cerebellar encephalitis. However, antiviral therapy was ineffective. Finally, anti-metabotropic glutamate receptor 1 was measured at 1:1,000, and the patient was definitely diagnosed with anti-metabotropic glutamate receptor 1 encephalitis. Therefore, clinicians should pay attention to such diseases to avoid misdiagnosis.
Collapse
Affiliation(s)
- Xue Chen
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, China
| | - Yanan Chen
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, China
| | - Lu Di
- Hospital of Stomatology Hebei Medical University, Shijiazhuang, China
| | - Na Liu
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, China
| | - Ting Liu
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, China
| | - Yun Cai
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, China
| | - Weiying Di
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
21
|
Jia X, Zhou J, Xiao F, Huang X, He W, Hu W, Kong Y, Yan W, Ji J, Qi Y, Wang Y, Tai J. Multiple cross displacement amplification combined with nanoparticle-based lateral flow biosensor for rapid and sensitive detection of Epstein-Barr virus. Front Cell Infect Microbiol 2024; 13:1321394. [PMID: 38259964 PMCID: PMC10800922 DOI: 10.3389/fcimb.2023.1321394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Epstein-Barr virus (EBV) is a highly dangerous virus that is globally prevalent and closely linked to the development of nasopharyngeal cancer (NPC). Plasma EBV DNA analysis is an effective strategy for early detection, prognostication and monitoring of treatment response of NPC. Methods Here, we present a novel molecular diagnostic technique termed EBV-MCDA-LFB, which integrates multiple cross displacement amplification (MCDA) with nanoparticle-based lateral flow (LFB) to enable simple, rapid and specific detection of EBV. In the EBV-MCDA-LFB system, a set of 10 primers was designed for rapidly amplifying the highly conserved tandem repeat BamHI-W region of the EBV genome. Subsequently, the LFB facilitate direct assay reading, eliminating the use of extra instruments and reagents. Results The outcomes showed that the 65°C within 40 minutes was the optimal reaction setting for the EBV-MCDA system. The sensitivity of EBV-MCDA-LFB assay reached 7 copies per reaction when using EBV recombinant plasmid, and it showed 100% specificity without any cross-reactivity with other pathogens. The feasibility of the EBV-MCDA-LFB method for EBV detection was successfully validated by 49 clinical plasma samples. The complete detection process, consisting of rapid template extraction (15 minutes), MCDA reaction (65°C for 40 minutes), and LFB result reading (2 minutes), can be finalized within a 60-minutes duration. Discussion EBV-MCDA-LFB assay designed here is a fast, extremely sensitive and specific technique for detecting EBV in field and at the point-of-care (PoC), which is especially beneficial for countries and regions with a high prevalence of the disease and limited economic resources.
Collapse
Affiliation(s)
- Xinbei Jia
- Department of Otorhinolaryngology Head and Neck Surgery, Children’s Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Juan Zhou
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| | - Fei Xiao
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| | - Xiaolan Huang
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| | - Wenqiang He
- Department of Otolaryngology, Head and Neck Surgery, Children’s Hospital Capital Institute of Pediatrics, Beijing, China
| | - Wen Hu
- Department of Otolaryngology, Head and Neck Surgery, Children’s Hospital Capital Institute of Pediatrics, Beijing, China
| | - Yaru Kong
- Department of Otorhinolaryngology Head and Neck Surgery, Children’s Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Weiheng Yan
- Department of Otorhinolaryngology Head and Neck Surgery, Children’s Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jie Ji
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Children′s Hospital, Capital Medical University, National Center for Children′s Health, Beijing, China
| | - Yuwei Qi
- Department of Otolaryngology, Head and Neck Surgery, Children’s Hospital Capital Institute of Pediatrics, Beijing, China
| | - Yi Wang
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| | - Jun Tai
- Department of Otorhinolaryngology Head and Neck Surgery, Children’s Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
22
|
Grąźlewska W, Holec-Gąsior L. Antibody Cross-Reactivity in Serodiagnosis of Lyme Disease. Antibodies (Basel) 2023; 12:63. [PMID: 37873860 PMCID: PMC10594444 DOI: 10.3390/antib12040063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/25/2023] Open
Abstract
Lyme disease is a tick-borne disease caused by spirochetes belonging to the Borrelia burgdorferi sensu lato complex. The disease is characterized by a varied course; therefore, the basis for diagnosis is laboratory methods. Currently, a two-tiered serological test is recommended, using an ELISA as a screening test and a Western blot as a confirmatory test. This approach was introduced due to the relatively high number of false-positive results obtained when using an ELISA alone. However, even this approach has not entirely solved the problem of false-positive results caused by cross-reactive antibodies. Many highly immunogenic B. burgdorferi s.l. proteins are recognized nonspecifically by antibodies directed against other pathogens. This also applies to antigens, such as OspC, BmpA, VlsE, and FlaB, i.e., those commonly used in serodiagnostic assays. Cross-reactions can be caused by both bacterial (relapsing fever Borrelia, Treponema pallidum) and viral (Epstein-Baar virus, Cytomegalovirus) infections. Additionally, a rheumatoid factor has also been shown to nonspecifically recognize B. burgdorferi s.l. proteins, resulting in false-positive results. Therefore, it is necessary to carefully interpret the results of serodiagnostic tests so as to avoid overdiagnosis of Lyme disease, which causes unnecessary implementations of strong antibiotic therapies and delays in the correct diagnosis.
Collapse
Affiliation(s)
| | - Lucyna Holec-Gąsior
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland;
| |
Collapse
|
23
|
Xu M, Li Y, Cao M, Su Y, Ji Z, Zhou W. Expression and Clinical Significance of Peripheral Blood IL-17A, IL-22, Tim-3, and gal-9 in Children with Infectious Mononucleosis. Viral Immunol 2023; 36:458-465. [PMID: 37566493 DOI: 10.1089/vim.2022.0203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023] Open
Abstract
To investigate the expression and clinical significance of peripheral blood interleukin (IL)-17A, IL-22, T cell immunoglobulin molecule-3 (Tim-3), and galectin-9 (gal-9) in children with infectious mononucleosis (IM) caused by the Epstein-Barr virus (EBV). Peripheral blood of 54 children with IM (case group) was collected and divided into a liver damage group and a non-liver damage group. During the same period, 20 healthy children were in the control group. IL-17A and IL-22 were measured by enzyme-linked immunosorbent assay. Real-time quantitative polymerase chain reaction was used to measure the mRNA expression of Tim-3 and gal-9. Their correlation with clinical indicators was then analyzed. The IL-17A expression level was higher in the case group than in the control group, while Tim-3, gal-9, and IL-22 were lower than those in the control group. Tim-3 was positively correlated with gal-9, but negatively correlated with IL-17A. Tim-3 and gal-9 were positively correlated with CD4+/CD8+ cells. Conversely, they were negatively correlated with CD3+, CD3+CD8+, white blood cell, lymphocyte (L), alanine transaminase (ALT), aspartate transaminase (AST), glutamyl transpeptidase (GGT), and lactate dehydrogenase (LDH). In the case group, IL-17A was positively correlated with L, GGT, and LDH, but negatively correlated with the natural killer (NK) cell count. IL-17A and IL-22 were positively correlated with CD3+, CD3+CD8+, ALT, and AST, but they were negatively correlated with the ratio of CD4+/CD8+. In the liver damage group, IL-17A, IL-22, CD3+, CD3+CD8+, immunoglobulin A (IgA), IgG, IgM, L, ALT, AST, GGT, LDH, and α-hydroxybutyrate levels were higher than those in the non-liver damage group. However, Tim-3, gal-9, the ratio of CD4+/CD8+, and NK were lower than those in the non-liver damage group. IL-17A, IL-22, Tim-3, and gal-9 are involved in the immune pathogenesis of IM caused by EBV infection in children, which may be related to immune liver injury.
Collapse
Affiliation(s)
- Mengli Xu
- Department of Infectious Disease and Children's Hospital of Soochow University, Suzhou, China
| | - Yuqin Li
- Department of Infectious Disease and Children's Hospital of Soochow University, Suzhou, China
| | - Meng Cao
- Department of Infectious Disease and Children's Hospital of Soochow University, Suzhou, China
| | - Yuewen Su
- Department of Infectious Disease and Children's Hospital of Soochow University, Suzhou, China
| | - Zhenghua Ji
- Department of Clinical Laboratory, Children's Hospital of Soochow University, Suzhou, China
| | - Weifang Zhou
- Department of Infectious Disease and Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
24
|
Shi X, Liu X, Sun Y. The Pathogenesis of Cytomegalovirus and Other Viruses Associated with Hearing Loss: Recent Updates. Viruses 2023; 15:1385. [PMID: 37376684 DOI: 10.3390/v15061385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Virus infection is one of the most common etiologies of hearing loss. Hearing loss associated with viral infection can be unilateral or bilateral, mild or severe, sudden or progressive, and permanent or recoverable. Many viruses cause hearing loss in adults and children; however, the pathogenesis of hearing loss caused by viral infection is not fully understood. This review describes cytomegalovirus, the most common virus causing hearing loss, and other reported hearing loss-related viruses. We hope to provide a detailed description of pathogenic characteristics and research progress on pathology, hearing phenotypes, possible associated mechanisms, treatment, and prevention measures. This review aims to provide diagnostic and treatment assistance to clinical workers.
Collapse
Affiliation(s)
- Xinyu Shi
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaozhou Liu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
25
|
Kobayashi K, Kishi Y, Serizawa Y, Kimizuka Y, Ueno H. Splenic Infarction Associated With Epstein-Barr Virus in an Adult With an Anatomic Anomaly: A Case Report. Cureus 2023; 15:e40530. [PMID: 37461773 PMCID: PMC10350304 DOI: 10.7759/cureus.40530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2023] [Indexed: 07/20/2023] Open
Abstract
Splenic infarction (SI) is often associated with circulatory and hematological diseases and infections. Here, we report a rare case of SI in an adult with infectious mononucleosis (IM) caused by the Epstein-Barr (EB) virus. A 31-year-old male with an unremarkable medical history presented with abdominal pain and fever. Contrast-enhanced computed tomography revealed focal SI. The splenic artery branching from the superior mesenteric artery was <5 mm in diameter. The diagnosis of EB virus infection was made based on physical examination and blood test results. As no evidence of cardiogenic disease, malignant lymphoma, or other infections were present, a diagnosis of SI associated with IM was made. A symptomatic treatment was administered, and the splenomegaly and SI improved two weeks after discharge. IM was assumed as the cause of the focal SI.
Collapse
Affiliation(s)
| | - Yoji Kishi
- Surgery, National Defence Medical College, Tokorozawa, JPN
| | - Yusuke Serizawa
- Internal Medicine, National Defence Medical College, Tokorozawa, JPN
| | | | - Hideki Ueno
- Surgery, National Defence Medical College, Tokorozawa, JPN
| |
Collapse
|
26
|
Yao Y, Kong W, Yang L, Ding Y, Cui H. Immunity and Immune Evasion Mechanisms of Epstein-Barr Virus. Viral Immunol 2023; 36:303-317. [PMID: 37285188 DOI: 10.1089/vim.2022.0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
Epstein-Barr virus (EBV) is the first human oncogenic virus to be identified, which evades the body's immune surveillance through multiple mechanisms that allow long-term latent infection. Under certain pathological conditions, EBVs undergo a transition from the latent phase to the lytic phase and cause targeted dysregulation of the host immune system, leading to the development of EBV-related diseases. Therefore, an in-depth understanding of the mechanism of developing an immune response to EBV and the evasion of immune recognition by EBV is important for the understanding of the pathogenesis of EBV, which is of great significance for finding strategies to prevent EBV infection, and developing a therapy to treat EBV-associated diseases. In this review, we will discuss the molecular mechanisms of host immunological responses to EBV infection and the mechanisms of EBV-mediated immune evasion during chronic active infection.
Collapse
Affiliation(s)
- Yanqing Yao
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Weijing Kong
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lijun Yang
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yingxue Ding
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hong Cui
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
27
|
Chen X, Li Y, Deng L, Wang L, Zhong W, Hong J, Chen L, Yang J, Huang B, Xiao X. Cardiovascular involvement in Epstein-Barr virus infection. Front Immunol 2023; 14:1188330. [PMID: 37292213 PMCID: PMC10246501 DOI: 10.3389/fimmu.2023.1188330] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/05/2023] [Indexed: 06/10/2023] Open
Abstract
Cardiovascular involvement is an uncommon but severe complication of Epstein-Barr virus (EBV) infection caused by direct damage and immune injury. Recently, it has drawn increasing attention due to its dismal prognosis. It can manifest in various ways, including coronary artery dilation (CAD), coronary artery aneurysm (CAA), myocarditis, arrhythmias, and heart failure, among others. If not treated promptly, cardiovascular damage can progress over time and even lead to death, which poses a challenge to clinicians. Early diagnosis and treatment can improve the prognosis and reduce mortality. However, there is a lack of reliable large-scale data and evidence-based guidance for the management of cardiovascular damage. Consequently, in this review, we attempt to synthesize the present knowledge of cardiovascular damage associated with EBV and to provide an overview of the pathogenesis, classification, treatment, and prognosis, which may enhance the recognition of cardiovascular complications related to EBV and may be valuable to their clinical management.
Collapse
Affiliation(s)
- Xinying Chen
- Department of Pediatrics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yingying Li
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lijun Deng
- Department of Pediatrics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lianyu Wang
- Department of Pediatrics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenting Zhong
- Department of Pediatrics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junbin Hong
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liyu Chen
- Department of Pediatrics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinghua Yang
- Department of Pediatrics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Ying Lv’s Expert Inheritance Studio, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Bin Huang
- Department of Pediatrics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaolan Xiao
- Department of Pediatrics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
28
|
Debuysschere C, Nekoua MP, Hober D. Markers of Epstein-Barr Virus Infection in Patients with Multiple Sclerosis. Microorganisms 2023; 11:1262. [PMID: 37317236 DOI: 10.3390/microorganisms11051262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 06/16/2023] Open
Abstract
Viral infections have been suspected of being involved in the pathogenesis of certain autoimmune diseases for many years. Epstein-Barr virus (EBV), a DNA virus belonging to the Herpesviridae family, is thought to be associated with the onset and/or the progression of multiple sclerosis (MS), systemic lupus erythematosus, rheumatoid arthritis, Sjögren's syndrome and type 1 diabetes. The lifecycle of EBV consists of lytic cycles and latency programmes (0, I, II and III) occurring in infected B-cells. During this lifecycle, viral proteins and miRNAs are produced. This review provides an overview of the detection of EBV infection, focusing on markers of latency and lytic phases in MS. In MS patients, the presence of latency proteins and antibodies has been associated with lesions and dysfunctions of the central nervous system (CNS). In addition, miRNAs, expressed during lytic and latency phases, may be detected in the CNS of MS patients. Lytic reactivations of EBV can occur in the CNS of patients as well, with the presence of lytic proteins and T-cells reacting to this protein in the CNS of MS patients. In conclusion, markers of EBV infection can be found in MS patients, which argues in favour of a relationship between EBV and MS.
Collapse
Affiliation(s)
- Cyril Debuysschere
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, 59000 Lille, France
| | | | - Didier Hober
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, 59000 Lille, France
| |
Collapse
|
29
|
Shi T, Ding Q, Liu X, Ai G, Zhou H, Huang L. Concordance of adenosine deaminase with immunoglobulins and lymphocyte subsets in EBV-related diseases. Ital J Pediatr 2023; 49:49. [PMID: 37095577 PMCID: PMC10127006 DOI: 10.1186/s13052-023-01457-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/17/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Clinical manifestations of Epstein-Barr virus (EBV) infection are diverse. This study aimed to explore the immune response in EBV-related diseases and the correlation between immune cells and adenosine deaminase (ADA) levels. METHODS This study was conducted at the Children's Hospital of Soochow University. In total, 104 patients with EBV-associated respiratory tract infection (EBV-RTI), 32 patients with atypical EBV infection, 54 patients with EBV-associated infectious mononucleosis (IM1, with normal alanine aminotransferase [ALT] levels), 50 patients with EBV-IM2 (with elevated ALT levels), 50 patients with acute respiratory infection (AURI, with other pathogens), and 30 healthy controls were enrolled in this study. Indicators of ADA, immunoglobulins (Igs), and lymphocyte subsets were analyzed for EBV-related diseases. RESULTS Differences in the white blood cell, lymphocyte counts, ADA levels, IgA, IgG and IgM titers, percentage of CD3+, CD3+CD4+, CD3+CD8+, CD16+CD56+, CD3-CD19+, and CD19+CD23+ lymphocytes, and CD4+/CD8+ ratio between EBV-related disease groups were all statistically significant (P < 0.01). ADA levels in the EBV-related disease groups were significantly higher than those in the control group (P < 0.01). The lymphocyte count, ADA levels, IgA and IgG titers, and percentage of CD3+ and CD3+CD8 + lymphocytes in the atypical EBV infection, EBV-IM1, and EBV-IM2 groups were significantly higher than those in the EBV-RTI, AUTI, and control groups (P < 0.01), whereas the percentage of CD3+CD4+, CD3-CD19+, and CD19+CD23+ lymphocytes and CD4+/CD8+ ratio showed the opposite trend. ADA levels were consistent with and closely related to the viral load and cellular and humoral immunity in EBV-related diseases. CONCLUSIONS ADA levels, humoral immunity, and cellular immunity were diverse in EBV-related diseases, and ADA was closely related to Igs and lymphocyte subsets.
Collapse
Affiliation(s)
- Ting Shi
- Department of Infectious Diseases, Children's Hospital of Soochow University, 303 Jingde Road, Suzhou, 215000, Jiangsu, China
| | - Qi Ding
- Department of Dermatology, Medical School, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Xinglou Liu
- Department of Pediatrics, Tongji hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guo Ai
- Department of Pediatrics, Tongji hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hua Zhou
- Department of Pediatrics, Tongji hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Linlin Huang
- Department of Infectious Diseases, Children's Hospital of Soochow University, 303 Jingde Road, Suzhou, 215000, Jiangsu, China.
- Pediatric Intensive Care Unit, Children's Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
30
|
Guo X, Liu D, Huang Y, Deng Y, Wang Y, Mao J, Zhou Y, Xiong Y, Gao X. Revolutionizing viral disease vaccination: the promising clinical advancements of non-replicating mRNA vaccines. Virol J 2023; 20:64. [PMID: 37029389 PMCID: PMC10081822 DOI: 10.1186/s12985-023-02023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/28/2023] [Indexed: 04/09/2023] Open
Abstract
The mRNA vaccine technology was developed rapidly during the global pandemic of COVID-19. The crucial role of the COVID-19 mRNA vaccine in preventing viral infection also have been beneficial to the exploration and application of other viral mRNA vaccines, especially for non-replication structure mRNA vaccines of viral disease with outstanding research results. Therefore, this review pays attention to the existing mRNA vaccines, which are of great value for candidates for clinical applications in viral diseases. We provide an overview of the optimization of the mRNA vaccine development process as well as the good immune efficacy and safety shown in clinical studies. In addition, we also provide a brief description of the important role of mRNA immunomodulators in the treatment of viral diseases. After that, it will provide a good reference or strategy for research on mRNA vaccines used in clinical medicine with more stable structures, higher translation efficiency, better immune efficacy and safety, shorter production time, and lower production costs than conditional vaccines to be used as preventive or therapeutic strategy for the control of viral diseases in the future.
Collapse
Affiliation(s)
- Xiao Guo
- School of Basic Medicine, Zunyi Medical University, West No. 6 Xuefu Road, Xinpu District, Zunyi, 563006 Guizhou People’s Republic of China
| | - Dongying Liu
- School of Basic Medicine, Zunyi Medical University, West No. 6 Xuefu Road, Xinpu District, Zunyi, 563006 Guizhou People’s Republic of China
| | - Yukai Huang
- School of Basic Medicine, Zunyi Medical University, West No. 6 Xuefu Road, Xinpu District, Zunyi, 563006 Guizhou People’s Republic of China
| | - Youcai Deng
- Department of Hematology, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, People’s Republic of China
| | - Ying Wang
- Modern Medical Teaching and Research Section, Department of Tibetan Medicine, University of Tibetan Medicine, No. 10 Dangre Middle Rd, Chengguan District, Lhasa, 850000 Tibet Autonomous Region People’s Republic of China
| | - Jingrui Mao
- School of Basic Medicine, Zunyi Medical University, West No. 6 Xuefu Road, Xinpu District, Zunyi, 563006 Guizhou People’s Republic of China
| | - Yuancheng Zhou
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy. No, 6 Niusha Road, Jinjiang District, Chengdu, 610299 People’s Republic of China
| | - Yongai Xiong
- School of Pharmacy, Zunyi Medical University, West No. 6 Xuefu Road, Xinpu District, Zunyi, 563006 Guizhou People’s Republic of China
| | - Xinghong Gao
- School of Basic Medicine, Zunyi Medical University, West No. 6 Xuefu Road, Xinpu District, Zunyi, 563006 Guizhou People’s Republic of China
- Key Laboratory of Infectious Disease and Bio-Safety, Provincial Department of Education, Zunyi Medical University, West No. 6 Xuefu Road, Xinpu District, Zunyi, 563006 Guizhou People’s Republic of China
| |
Collapse
|
31
|
Cressot L, Galleri-Paris C, Tronchon M, Vonau S. [RCC1, a new partner stabilizing the Epstein-Barr virus genome]. Med Sci (Paris) 2023; 39:392-394. [PMID: 37094275 DOI: 10.1051/medsci/2023046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Affiliation(s)
- Lucie Cressot
- École normale supérieure de Lyon, département de biologie, Master Biosciences, Lyon, France
| | - Célia Galleri-Paris
- École normale supérieure de Lyon, département de biologie, Master Biosciences, Lyon, France
| | - Marine Tronchon
- École normale supérieure de Lyon, département de biologie, Master Biosciences, Lyon, France
| | - Samantha Vonau
- École normale supérieure de Lyon, département de biologie, Master Biosciences, Lyon, France
| |
Collapse
|
32
|
Grundy BS, Parikh H, Jacob S, Banura P, Moore CC, Liu J, Houpt ER. Pathogen Detection Using Metagenomic Next-Generation Sequencing of Plasma Samples from Patients with Sepsis in Uganda. Microbiol Spectr 2023; 11:e0431222. [PMID: 36625651 PMCID: PMC9927450 DOI: 10.1128/spectrum.04312-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Metagenomic sequencing is a promising new method for pathogen detection. We aimed to detect pathogens from archived plasma using metagenomic sequencing in a previously well-characterized cohort of 254 predominantly HIV-infected patients with sepsis in Uganda. We used Illumina sequencing and the Chan Zuckerberg ID metagenomics platform to sequence and identify pathogens. On average, each plasma sample yielded 3,404,737 ± 2,201,997 reads (mean ± standard deviation), of which 220,032 ± 416,691 (6.3% ± 8.6%) were identified as nonhuman reads. Using a background model filter, 414 genus-specific pathogen identifications were found in the 254 samples. Nineteen pathogens were previously detected positive by quantitative PCR (qPCR), compared to sequencing, which demonstrated 30.2% sensitivity and 99.5% specificity. Sensitivity was higher for viral pathogens than nonviral pathogens (37% versus 5%). For example, HIV viremia was detected in 69% of samples using qPCR, and sequencing revealed 70% sensitivity and 92% specificity. There were 75 genus-specific potential pathogens identified by sequencing in this cohort, including hepatitis B and Epstein-Barr virus (EBV), among several others. qPCR showed a prevalence of hepatitis B and EBV viremia of 17% and 45%, respectively. In-hospital mortality was associated with a lower qPCR threshold cycle value for EBV (adjusted odds ratio, 0.85; P < .001) but not for hepatitis B or HIV. In conclusion, a broad range of potential pathogens were identified by metagenomic sequencing in patients with sepsis in Uganda. Unexpectedly high rates of hepatitis B and EBV viremia were found. Whether these viral infections in HIV patients with sepsis are clinically important requires further study. IMPORTANCE The use of next-generation sequencing (NGS) in blood samples is an emerging technology for clinical microbiology labs. In this work, we performed NGS on plasma samples from a well-characterized cohort, where all samples had been previously tested by PCR for 43 pathogens. Therefore, we could compare sequencing performance against that of PCR and identify clinical correlates. A broad range of potential pathogens were identified by metagenomic sequencing in patients with sepsis in Uganda, particularly viruses, which we confirmed by PCR. In addition to HIV viremia, unexpectedly high rates of hepatitis B and EBV viremia were found, which may have important clinical implications.
Collapse
Affiliation(s)
- Brian S. Grundy
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Hardik Parikh
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Shevin Jacob
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Patrick Banura
- Ministry of Health, National Disease Control Department, Kampala, Uganda
| | - Chris C. Moore
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Jie Liu
- School of Public Health, Qingdao University, Qingdao, China
| | - Eric R. Houpt
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
33
|
Rzepka M, Depka D, Gospodarek-Komkowska E, Bogiel T. Diagnostic Value of Whole-Blood and Plasma Samples in Epstein-Barr Virus Infections. Diagnostics (Basel) 2023; 13:diagnostics13030476. [PMID: 36766581 PMCID: PMC9914079 DOI: 10.3390/diagnostics13030476] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
Epstein-Barr virus (EBV) is an oncogenic virus classified by the World Health Organization as a class 1 carcinogen. Post-transplant lymphoproliferative disorders are believed to be strongly related to an EBV infection. Monitoring of EBV DNAemia is recommended to assess the risk of reactivation of latent infection and to assess the effectiveness of therapy. Currently, various types of clinical specimens are used for this purpose. The aim of the study was to assess a reliable method of EBV viral load investigation depending on the clinical material used: whole blood or plasma samples. We found that of 134 EBV-DNA-positive whole-blood samples derived from 51 patients (mostly hemato-oncology or post-transplantation), only 43 (32.1%) were plasma-positive. Of these, 37 (86.0%) had lower plasma DNAemia compared to the corresponding whole-blood samples. We conclude that whole-blood samples have a higher sensitivity than plasma samples in EBV DNA detection. The clinical utility of the tests is unclear, but our results suggest that either whole blood or plasma should be used consistently for EBV viral load monitoring.
Collapse
Affiliation(s)
- Mateusz Rzepka
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland
- Department of Clinical Microbiology, Antoni Jurasz University Hospital No. 1, 85-094 Bydgoszcz, Poland
- Correspondence: (M.R.); (T.B.); Tel.: +48-52-585-44-80 (M.R.)
| | - Dagmara Depka
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland
- Department of Clinical Microbiology, Antoni Jurasz University Hospital No. 1, 85-094 Bydgoszcz, Poland
| | - Eugenia Gospodarek-Komkowska
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland
- Department of Clinical Microbiology, Antoni Jurasz University Hospital No. 1, 85-094 Bydgoszcz, Poland
| | - Tomasz Bogiel
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland
- Department of Clinical Microbiology, Antoni Jurasz University Hospital No. 1, 85-094 Bydgoszcz, Poland
- Correspondence: (M.R.); (T.B.); Tel.: +48-52-585-44-80 (M.R.)
| |
Collapse
|
34
|
Wang L, Gong WH. Epstein-Barr virus infection mimicking acute appendicitis: a case report. World J Emerg Med 2023; 14:148-151. [PMID: 36911066 PMCID: PMC9999132 DOI: 10.5847/wjem.j.1920-8642.2023.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/13/2022] [Indexed: 01/13/2023] Open
Affiliation(s)
- Li Wang
- Department of Emergency Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Wei-hua Gong
- Department of Surgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310052, China
| |
Collapse
|
35
|
Hassan STS, Šudomová M. Molecular Mechanisms of Flavonoids against Tumor Gamma-Herpesviruses and Their Correlated Cancers-A Focus on EBV and KSHV Life Cycles and Carcinogenesis. Int J Mol Sci 2022; 24:ijms24010247. [PMID: 36613688 PMCID: PMC9820319 DOI: 10.3390/ijms24010247] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Epstein-Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV) are cancer-causing viruses that belong to human gamma-herpesviruses. They are DNA viruses known to establish lifelong infections in humans, with the ability to develop various types of cancer. Drug resistance remains the main barrier to achieving effective therapies for viral infections and cancer. Thus, new medications with dual antiviral and anticancer actions are highly needed. Flavonoids are secondary metabolites biosynthesized by plants with diverse therapeutic effects on human health. In this review, we feature the potential role of flavonoids (flavones, protoflavones, isoflavones, flavanones, flavonols, dihydroflavonols, catechins, chalcones, anthocyanins, and other flavonoid-type compounds) in controlling gamma-herpesvirus-associated cancers by blocking EBV and KSHV infections and inhibiting the formation and growth of the correlated tumors, such as nasopharyngeal carcinoma, Burkitt's lymphoma, gastric cancer, extranodal NK/T-cell lymphoma, squamous cell carcinoma, Kaposi sarcoma, and primary effusion lymphoma. The underlying mechanisms via targeting EBV and KSHV life cycles and carcinogenesis are highlighted. Moreover, the effective concentrations or doses are emphasized.
Collapse
Affiliation(s)
- Sherif T. S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
- Correspondence:
| | - Miroslava Šudomová
- Museum of Literature in Moravia, Klášter 1, 664 61 Rajhrad, Czech Republic
| |
Collapse
|
36
|
Gao J, Wang Q, Tang YD, Zhai J, Hu W, Zheng C. When ferroptosis meets pathogenic infections. Trends Microbiol 2022; 31:468-479. [PMID: 36496309 DOI: 10.1016/j.tim.2022.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022]
Abstract
Apoptosis, necrosis, or autophagy are diverse types of regulated cell death (RCD), recognized as the strategies that host cells use to defend against pathogens such as viruses, bacteria, or fungi. Pathogens can induce or block different types of host cell RCD, promoting propagation or evading host immune surveillance. Ferroptosis is a newly identified RCD. Evidence has demonstrated how pathogens regulate ferroptosis to promote their replication, dissemination, and pathogenesis. However, the interaction between ferroptosis and pathogenic infections still needs to be completely elucidated. This review summarizes the advances in the interaction between pathogenic infections and host ferroptotic processes, focusing on the underlying mechanisms of how pathogens exploit ferroptosis, and discussing possible therapeutic measures against pathogen-associated diseases in a ferroptosis-dependent manner.
Collapse
|
37
|
Ottmann M. [These viruses that inhabit and visit us: The human virome]. Med Sci (Paris) 2022; 38:1028-1038. [PMID: 36692282 DOI: 10.1051/medsci/2022161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recent advances in new sequencing technologies have opened the way to the deciphering of human virome. So far, human virome is defined as the complete list of viruses found in human body. Those viruses could be endogenous, prokaryotic, archaeal and eukaryotic. In addition, each compartment of the human body constitutes a different microenvironment with its own virome. Viral infections can be categorized according to the outcome of the acute phase and until recently, only symptomatic and pathological infections were studied. It is now well established that a healthy person has an extremely diverse virome. This review summarizes the current state of our knowledge and also proposes another classification of the human virome based on principles of ecology.
Collapse
Affiliation(s)
- Michèle Ottmann
- Centre international de recherche en infectiologie (CIRI), université Claude Bernard-Lyon 1, université de Lyon, Inserm U1111 - CNRS UMR 5308 - ENS, Laboratoire de virologie et pathologies humaines, Faculté de médecine RTH Laennec, 7 rue Guillaume Paradin, 69372 Lyon cedex 08, France
| |
Collapse
|
38
|
Hassan STS, Šudomová M, Mazurakova A, Kubatka P. Insights into Antiviral Properties and Molecular Mechanisms of Non-Flavonoid Polyphenols against Human Herpesviruses. Int J Mol Sci 2022; 23:ijms232213891. [PMID: 36430369 PMCID: PMC9693824 DOI: 10.3390/ijms232213891] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/30/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Herpesviruses are one of the most contagious DNA viruses that threaten human health, causing severe diseases, including, but not limited to, certain types of cancer and neurological complications. The overuse and misuse of anti-herpesvirus drugs are key factors leading to drug resistance. Therefore, targeting human herpesviruses with natural products is an attractive form of therapy, as it might improve treatment efficacy in therapy-resistant herpesviruses. Plant polyphenols are major players in the health arena as they possess diverse bioactivities. Hence, in this article, we comprehensively summarize the recent advances that have been attained in employing plant non-flavonoid polyphenols, such as phenolic acids, tannins and their derivatives, stilbenes and their derivatives, lignans, neolignans, xanthones, anthraquinones and their derivatives, curcuminoids, coumarins, furanocoumarins, and other polyphenols (phloroglucinol) as promising anti-herpesvirus drugs against various types of herpesvirus such as alpha-herpesviruses (herpes simplex virus type 1 and 2 and varicella-zoster virus), beta-herpesviruses (human cytomegalovirus), and gamma-herpesviruses (Epstein-Barr virus and Kaposi sarcoma-associated herpesvirus). The molecular mechanisms of non-flavonoid polyphenols against the reviewed herpesviruses are also documented.
Collapse
Affiliation(s)
- Sherif T. S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
- Correspondence: ; Tel.: +420-774-630-604
| | - Miroslava Šudomová
- Museum of Literature in Moravia, Klášter 1, 664 61 Rajhrad, Czech Republic
| | - Alena Mazurakova
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4D, 03601 Martin, Slovakia
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| |
Collapse
|
39
|
Shi S, Li L, Pan C, Yang Y, Chen G, He Y. Case report: Systemic muscle involvement as the primary clinical manifestation of chronic active Epstein–Barr virus infection: A case-based review. Front Immunol 2022; 13:1027859. [PMID: 36275709 PMCID: PMC9585235 DOI: 10.3389/fimmu.2022.1027859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic active Epstein–Barr virus infection (CAEBV) is common in Asian countries and characterized by recurrent or persistent infectious mononucleosis-like symptoms. Here, we describe a rare case of CAEBV-associated generalized myositis with extranodal NK/T-cell lymphoma, who initially presented with swelling and muscle soreness in the extremities and was diagnosed as polymyositis at the initial stage. CAEBV-associated generalized myositis is different from polymyositis and other types of myositis. Furthermore, it is prone to lymphoma with poor prognosis.
Collapse
Affiliation(s)
- Shanfen Shi
- Department of Rheumatology, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
- *Correspondence: Shanfen Shi,
| | - Liangda Li
- Department of Neurology, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Cuiping Pan
- Department of Rheumatology, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Yandi Yang
- Department of Rheumatology, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Gun Chen
- Department of Pathology, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Yongping He
- Department of Rheumatology, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
40
|
Zhou J, Chen J, Peng Y, Xie Y, Xiao Y. A Promising Tool in Serological Diagnosis: Current Research Progress of Antigenic Epitopes in Infectious Diseases. Pathogens 2022; 11:1095. [PMID: 36297152 PMCID: PMC9609281 DOI: 10.3390/pathogens11101095] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 07/30/2023] Open
Abstract
Infectious diseases, caused by various pathogens in the clinic, threaten the safety of human life, are harmful to physical and mental health, and also increase economic burdens on society. Infections are a complex mechanism of interaction between pathogenic microorganisms and their host. Identification of the causative agent of the infection is vital for the diagnosis and treatment of diseases. Etiological laboratory diagnostic tests are therefore essential to identify pathogens. However, due to its rapidity and automation, the serological diagnostic test is among the methods of great significance for the diagnosis of infections with the basis of detecting antigens or antibodies in body fluids clinically. Epitopes, as a special chemical group that determines the specificity of antigens and the basic unit of inducing immune responses, play an important role in the study of immune responses. Identifying the epitopes of a pathogen may contribute to the development of a vaccine to prevent disease, the diagnosis of the corresponding disease, and the determination of different stages of the disease. Moreover, both the preparation of neutralizing antibodies based on useful epitopes and the assembly of several associated epitopes can be used in the treatment of disease. Epitopes can be divided into B cell epitopes and T cell epitopes; B cell epitopes stimulate the body to produce antibodies and are therefore commonly used as targets for the design of serological diagnostic experiments. Meanwhile, epitopes can fall into two possible categories: linear and conformational. This article reviews the role of B cell epitopes in the clinical diagnosis of infectious diseases.
Collapse
|
41
|
Viral Agents as Potential Drivers of Diffuse Large B-Cell Lymphoma Tumorigenesis. Viruses 2022; 14:v14102105. [DOI: 10.3390/v14102105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Among numerous causative agents recognized as oncogenic drivers, 13% of total cancer cases occur as a result of viral infections. The intricacy and diversity of carcinogenic processes, however, raise significant concerns about the mechanistic function of viruses in cancer. All tumor-associated viruses have been shown to encode viral oncogenes with a potential for cell transformation and the development of malignancies, including diffuse large B-cell lymphoma (DLBCL). Given the difficulties in identifying single mechanistic explanations, it is necessary to combine ideas from systems biology and viral evolution to comprehend the processes driving viral cancer. The potential for more efficient and acceptable therapies lies in targeted medicines that aim at viral proteins or trigger immune responses to either avoid infection or eliminate infected or cancerous cells. In this review, we aim to describe the role of viral infections and their mechanistic approaches in DLBCL tumorigenesis. To the best of our knowledge, this is the first review summarizing the oncogenic potential of numerous viral agents in DLBCL development.
Collapse
|
42
|
Shi T, Shen Y, Zhang W, Qian M, Chen X, Huang L, Tian J. Diversity of adenosine deaminase in children with EBV-related diseases. Ital J Pediatr 2022; 48:148. [PMID: 35986367 PMCID: PMC9392243 DOI: 10.1186/s13052-022-01338-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/06/2022] [Indexed: 11/24/2022] Open
Abstract
Background Adenosine deaminase (ADA) is an enzyme involved in purine metabolism with an important role in cellular immunity. Thus, this study investigated the association between ADA and Epstein–Barr virus (EBV)-related diseases. Methods We retrospectively collected data from all children admitted to the Children’s Hospital of Soochow University, Suzhou, China, between May 1, 2018, and March 31, 2019, who underwent plasma EBV-DNA polymerase chain reaction, alanine aminotransferase (ALT), and ADA testing. Results Of 6868 children, 1877 had an elevated level of ADA, and 4991 had a level within the normal range. Multivariate logistic regression analysis indicated that ALT (adjusted odds radio [aOR] = 1.001, 95% confidence interval [CI]: 1.001–1.002), EBV infection (aOR = 8.486, 95% CI: 6.753–10.663), inflammatory disease (aOR = 3.915, 95% CI: 3.198–4.794), autoimmune disease (aOR = 2.307, 95% CI: 1.823–2.920), and malignant disease (aOR = 1.381; 95% CI: 1.101–1.734) were risk factors for an elevated ADA level. Furthermore, the ADA levels among EBV-related diseases significantly differed, including infectious mononucleosis, atypical EBV infection, respiratory infection, malignant disease, and other diseases (P < 0.05). In addition, the ADA level positively correlated with the Epstein–Barr viral load (r = 0.501, P < 0.05). Conclusions This large, retrospective study identified a correlation between ADA and EBV-related diseases, which may help clinicians detect these diseases earlier based on the plasma ADA concentration.
Collapse
|
43
|
PCR Detection of Epstein-Barr Virus (EBV) DNA in Patients with Head and Neck Squamous Cell Carcinoma, in Patients with Chronic Tonsillitis, and in Healthy Individuals. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8506242. [PMID: 35993047 PMCID: PMC9381848 DOI: 10.1155/2022/8506242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/24/2022] [Accepted: 07/27/2022] [Indexed: 11/26/2022]
Abstract
Epstein-Barr virus (EBV) is a common virus worldwide that is an etiologic agent in the development of many diseases, including cancer. Recent reports have shown the association of EBV with tumorigenesis in head and neck squamous cell carcinoma (HNSCC). Moreover, EBV has been reported to be present in tonsillar tissues, which suggests a close relationship between viral infections and tonsillar diseases, including chronic tonsillitis. The aim of the study was to analyze the prevalence of EBV DNA in 86 patients with HNSCC, in 70 patients with chronic tonsillitis, and in 144 healthy individuals (control group) and the associations between EBV infection and clinicopathological and demographic characteristics and the use of stimulants in all study groups. The objective of this study was also to analyze the prevalence of coinfection with human papillomavirus (HPV). After prior DNA isolation, EBV detection was performed using an EBV kit by real-time polymerase chain reaction. The prevalence of EBV infection in patients with HNSCC, patients with chronic tonsillitis, and the control group was 47.7%, 60%, and 24.3%, respectively. Compared to controls, a significantly higher prevalence of EBV in patients with chronic tonsillitis and HNSCC may suggest that EBV is a potential risk factor. No association was found between EBV infection and demographic or clinical data. Further studies are warranted due to inconclusive reports that were mainly related to geographic distribution, sample type, and detection technique. Considering the prevalence of the virus and the risk of serious diseases, attention should be paid to screening diagnosis and prevention of the infection.
Collapse
|
44
|
Effects of Exosomal Viral Components on the Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14143552. [PMID: 35884611 PMCID: PMC9317196 DOI: 10.3390/cancers14143552] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Oncogenic viral infection may lead to cancers, such as nasopharyngeal carcinoma, hepatocellular carcinoma, and cervical cancer. In addition to the tumor cells themselves, the tumor microenvironment also plays a decisive role in tumor evolution. Oncogenic viruses can affect the tumor microenvironment via exosomes influencing the occurrence and development of tumors by encapsulating and transporting viral components. This review focuses on the effects of virus-infected cancer exosomes on tumor microenvironment and tumor progression. Abstract Exosomes are extracellular membrane vesicles with a diameter of 30–100 nm, produced by different eukaryotic cells that contain multitudinous lipids, nucleic acids, and proteins. They transfer membrane components and nucleic acids between cells, thereby performing an information exchange between cells. Many studies have shown that a variety of tumor-associated viruses can exert their biological functions through exosomes. The tumor microenvironment (TME) is very important in the occurrence, development, and chemoresistance of tumors. It is composed of tumor cells, fibroblasts, endothelial cells, immune cells, stromal cells, and acellular components, such as exosomes and cytokines. This review focuses on the effects of virus-related components secreted by tumor cells over the TME in several virus-associated cancers.
Collapse
|
45
|
Novoa-Aponte L, Argüello JM. Unique underlying principles shaping copper homeostasis networks. J Biol Inorg Chem 2022; 27:509-528. [PMID: 35802193 PMCID: PMC9470648 DOI: 10.1007/s00775-022-01947-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/27/2022] [Indexed: 12/27/2022]
Abstract
Abstract Copper is essential in cells as a cofactor for key redox enzymes. Bacteria have acquired molecular components that sense, uptake, distribute, and expel copper ensuring that cuproenzymes are metallated and steady-state metal levels are maintained. Toward preventing deleterious reactions, proteins bind copper ions with high affinities and transfer the metal via ligand exchange, warranting that copper ions are always complexed. Consequently, the directional copper distribution within cell compartments and across cell membranes requires specific dynamic interactions and metal exchange between cognate holo-apo protein partners. These metal exchange reactions are determined by thermodynamic and kinetics parameters and influenced by mass action. Then, copper distribution can be conceptualized as a molecular system of singular interacting elements that maintain a physiological copper homeostasis. This review focuses on the impact of copper high-affinity binding and exchange reactions on the homeostatic mechanisms, the conceptual models to describe the cell as a homeostatic system, the various molecule functions that contribute to copper homeostasis, and the alternative system architectures responsible for copper homeostasis in model bacteria. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Lorena Novoa-Aponte
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 60 Prescott St, Worcester, MA, 01605, USA.,Genetics and Metabolism Section, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, 20892, USA
| | - José M Argüello
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 60 Prescott St, Worcester, MA, 01605, USA.
| |
Collapse
|
46
|
Li JY, Chen XP, Tie YQ, Sun XL, Zhang RQ, He AN, Nie MZ, Fan GH, Li FY, Tian FY, Shen XX, Feng ZS, Ma XJ. Detection of low-load Epstein-Barr virus in blood samples by enriched recombinase aided amplification assay. AMB Express 2022; 12:71. [PMID: 35689713 PMCID: PMC9188631 DOI: 10.1186/s13568-022-01415-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 06/03/2022] [Indexed: 11/10/2022] Open
Abstract
Epstein-Barr virus (EBV), a common human γ-herpesvirus, infects more than 90% of adults worldwide. The purpose of this study was to establish a novel EBV detection method by combining the recombinase aided amplification (RAA) assay with an initial enrichment step that utilizes magnetic beads coated with a recombinant human mannan-binding lectin (rhMBL, M1 protein). An M1 protein–protein A magnetic bead complex (M1 beads) was prepared and used to achieve separation and enrichment of EBV from blood. After nucleic acid extraction, DNA was amplified by RAA. Using 388 whole blood samples and 1 serum sample, we explored the specificity, sensitivity and applicability of the newly developed detection method and compared it with commercial quantitative real-time polymerase chain reaction (qPCR) following M1 bead enrichment, traditional qPCR and traditional RAA. After enrichment, the positivity rate of EBV was increased from 15.94% to 17.74% by RAA (P < 0.05) and from 7.20% to 15.17% by qPCR (P < 0.05). The viral loads after enrichment were increased by 1.13 to 23.19-fold (P < 0.05). Our data demonstrates that an RAA assay incorporating M1 bead enrichment is a promising tool for detecting low EBV viral loads in blood samples that will facilitate an early response to EBV infection. The RAA with an enrichment step that utilizes magnetic beads coated with M1 protein. A very effective method for detecting low-load virus in blood samples. The first report describing virus detection using this method.
Collapse
Affiliation(s)
- Jing-Yi Li
- Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050031, Hebei, China.,Hebei General Hospital, No. 348 West Heping Road, Shijiazhuang, 050070, Hebei, China.,NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, No. 155, Changbai Street, Changping District, Beijing, 102206, China
| | - Xiao-Ping Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, No. 155, Changbai Street, Changping District, Beijing, 102206, China
| | - Yan-Qing Tie
- Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050031, Hebei, China.,Hebei General Hospital, No. 348 West Heping Road, Shijiazhuang, 050070, Hebei, China
| | - Xiu-Li Sun
- Hebei General Hospital, No. 348 West Heping Road, Shijiazhuang, 050070, Hebei, China.,NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, No. 155, Changbai Street, Changping District, Beijing, 102206, China.,North China University of Science and Technology, No. 46 West Xinhua Road, Tangshan, 063009, Hebei, China
| | - Rui-Qing Zhang
- NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, No. 155, Changbai Street, Changping District, Beijing, 102206, China
| | - An-Na He
- NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, No. 155, Changbai Street, Changping District, Beijing, 102206, China.,North China University of Science and Technology, No. 46 West Xinhua Road, Tangshan, 063009, Hebei, China
| | - Ming-Zhu Nie
- Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050031, Hebei, China.,Hebei General Hospital, No. 348 West Heping Road, Shijiazhuang, 050070, Hebei, China.,NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, No. 155, Changbai Street, Changping District, Beijing, 102206, China
| | - Guo-Hao Fan
- NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, No. 155, Changbai Street, Changping District, Beijing, 102206, China
| | - Feng-Yu Li
- Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050031, Hebei, China.,Hebei General Hospital, No. 348 West Heping Road, Shijiazhuang, 050070, Hebei, China.,NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, No. 155, Changbai Street, Changping District, Beijing, 102206, China
| | - Feng-Yu Tian
- Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050031, Hebei, China.,Hebei General Hospital, No. 348 West Heping Road, Shijiazhuang, 050070, Hebei, China.,NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, No. 155, Changbai Street, Changping District, Beijing, 102206, China
| | - Xin-Xin Shen
- NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, No. 155, Changbai Street, Changping District, Beijing, 102206, China.
| | - Zhi-Shan Feng
- Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050031, Hebei, China. .,Hebei General Hospital, No. 348 West Heping Road, Shijiazhuang, 050070, Hebei, China.
| | - Xue-Jun Ma
- NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, No. 155, Changbai Street, Changping District, Beijing, 102206, China.
| |
Collapse
|
47
|
Liaudanskaya AI, Vychik PV, Maximova NP, Verameyenka KG. Genome analysis of Pseudomonas chlororaphis subsp. aurantiaca mutant strains with increased production of phenazines. Arch Microbiol 2022; 204:247. [PMID: 35397008 DOI: 10.1007/s00203-021-02648-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 09/24/2021] [Accepted: 10/05/2021] [Indexed: 11/30/2022]
Abstract
Genomes of three strains-phenazine producers-Pseudomonas chlororaphis subsp. aurantiaca (B-162 (wild type), mutant strain B-162/255, and its derivative B-162/17) were sequenced and compared. Comparison of a wild-type strain and B-162/255 mutant genomes revealed 32 mutations. 19 new mutations were detected in the genome of B-162/17. Further bioinformatics analysis allowed us to predict mutant protein functions and secondary structures of five gene products, mutations which might potentially influence phenazine synthesis and secretion in Pseudomonas bacteria. These genes encode phenylalanine hydroxylase transcriptional activator PhhR, type I secretion system permease/ATPase, transcriptional regulator MvaT, GacA response regulator, and histidine kinase. Amino acid substitutions were found in domains of studied proteins. One deletion in an intergenic region could affect a potential transcription factor binding site that participates in the regulation of gene that encodes ABC transporter.
Collapse
Affiliation(s)
| | - Pavel V Vychik
- Belarusian State University, Nezavisimisty Ave. 4, 220030, Minsk, Belarus
| | - Natalia P Maximova
- Belarusian State University, Nezavisimisty Ave. 4, 220030, Minsk, Belarus
| | | |
Collapse
|
48
|
An Unusual Presentation of Glandular Fever. Case Rep Infect Dis 2022; 2022:5981070. [PMID: 35340747 PMCID: PMC8956444 DOI: 10.1155/2022/5981070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/10/2022] [Accepted: 03/02/2022] [Indexed: 11/24/2022] Open
Abstract
Epstein-Barr virus (EBV) is an ubiquitous DNA herpesvirus with >90% of adults >40 years of age showing a serological response. While in their youth, primary EBV infection may pass unnoticed, young adults have a high incidence of infectious mononucleosis (IM). This is characterized by a triad of pharyngitis, cervical lymphadenopathy, and fever because of a self-limiting lymphoproliferative disease. Common complications include but are not limited to hepatitis, splenomegaly, encephalitis, and haemophagocytic lymphohistiocytosis (HLH) with evidence that Caucasian males and smokers are more likely to suffer severe disease. Here we present a 21-year-old male who presented with a 2-week history of fever, dry cough, and a 4-week history of pharyngitis. He had no exposure to unwell contacts and denied any new sexual partners. Examination revealed general pallor with tender bilateral cervical lymphadenopathy and pharyngeal erythema. Admission bloods revealed pancytopenia (WCC 1.5 × 109/L, Plt 84 × 109/L, and Hb 82 g/L) with normal reticulocyte count and raised mean corpuscular volume (114 fL). Serum vitamin B12 and folate were low with serum ferritin raised (1027 µg/L) suggesting a proinflammatory state. Admission liver function tests, coeliac serology, autoimmune panel (ANA, ANCA, and anti-dsDNA), hepatitic (hepatitis A, B, and E), human immunodeficiency virus (HIV), toxoplasmosis, parvovirus, and CMV serology were normal. The monospot test on day 1 of the presentation was negative. Ultrasound (US) of the abdomen on day 3 of the presentation revealed isolated splenomegaly (16.8 cm). Day 4 EBV serology (VCA IgM, VCA IgG, and EBNA IgG) was negative as such haematological investigations including JAK2, serum free light chains, and BCR-ABL were undertaken alongside cervical lymph node core biopsy. Repeat Monospot testing on day 7 came back positive. Repeat EBV serology now showed equivocal EBV VCA IgG (0.77 OD) and positive VCA IgM (9.04 OD) with concurrent new hepatitis. Histopathology of the core biopsy revealed Sternberg-reed cells and a mixed immunoblastic reaction in keeping with resolving IM. This case highlights the need for physicians to have a strong clinical suspicion of IM and understand the multiple ways in which IM may be present as well as the time lag to positivity in serological testing.
Collapse
|
49
|
Šudomová M, Berchová-Bímová K, Mazurakova A, Šamec D, Kubatka P, Hassan STS. Flavonoids Target Human Herpesviruses That Infect the Nervous System: Mechanisms of Action and Therapeutic Insights. Viruses 2022; 14:v14030592. [PMID: 35336999 PMCID: PMC8949561 DOI: 10.3390/v14030592] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
Human herpesviruses (HHVs) are large DNA viruses with highly infectious characteristics. HHVs can induce lytic and latent infections in their host, and most of these viruses are neurotropic, with the capacity to generate severe and chronic neurological diseases of the peripheral nervous system (PNS) and central nervous system (CNS). Treatment of HHV infections based on strategies that include natural products-derived drugs is one of the most rapidly developing fields of modern medicine. Therefore, in this paper, we lend insights into the recent advances that have been achieved during the past five years in utilizing flavonoids as promising natural drugs for the treatment of HHVs infections of the nervous system such as alpha-herpesviruses (herpes simplex virus type 1, type 2, and varicella-zoster virus), beta-herpesviruses (human cytomegalovirus), and gamma-herpesviruses (Epstein–Barr virus and Kaposi sarcoma-associated herpesvirus). The neurological complications associated with infections induced by the reviewed herpesviruses are emphasized. Additionally, this work covers all possible mechanisms and pathways by which flavonoids induce promising therapeutic actions against the above-mentioned herpesviruses.
Collapse
Affiliation(s)
- Miroslava Šudomová
- Museum of Literature in Moravia, Klášter 1, 664 61 Rajhrad, Czech Republic;
| | - Kateřina Berchová-Bímová
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic;
| | - Alena Mazurakova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Dunja Šamec
- Department of Food Technology, University Center Koprivnica, University North, Trga Dr. Žarka Dolinara 1, 48 000 Koprivnica, Croatia;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Sherif T. S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic;
- Correspondence: ; Tel.: +420-774-630-604
| |
Collapse
|
50
|
Decoding Acinetobacter baumannii biofilm dynamics and associated protein markers: proteomic and bioinformatics approach. Arch Microbiol 2022; 204:200. [PMID: 35239017 DOI: 10.1007/s00203-022-02807-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 01/27/2022] [Accepted: 02/15/2022] [Indexed: 12/11/2022]
Abstract
Biofilm formation by Acinetobacter baumannii is one of the major cause of its persistence in hospital environment. Biofilm phenotypes are more resistant to physical as well as chemical stresses than their planktonic counterparts. The present study was carried in quest of biofilm-associated protein markers and their association with various biological pathways of A. baumannii. The study was designed with an aim to highlight the crucial common factor present in the majority of the A. baumannii strains irrespective of its resistance nature. A label-free proteome comparison of biofilm and planktonic phenotypes of A. baumannii was done using QExactive tandem mass spectrometry. Our investigation suggests key elevation of adhesion factors, acetate metabolism, nutrient transporters, and secretion system proteins are required for biofilm formation in A. baumannii. Elevation of biofilm-associated proteins revealed that biofilm is the unique phenotype with the potential to form robust matrix-embedded colonies and defeat stress condition. Further, core protein markers of biofilm phenotypes could be used as targets for new clinical interventions to combat biofilm-associated infections.
Collapse
|