1
|
Doranga S, Krogfelt KA, Cohen PS, Conway T. Nutrition of Escherichia coli within the intestinal microbiome. EcoSal Plus 2024; 12:eesp00062023. [PMID: 38417452 PMCID: PMC11636361 DOI: 10.1128/ecosalplus.esp-0006-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/03/2023] [Indexed: 03/01/2024]
Abstract
In this chapter, we update our 2004 review of "The Life of Commensal Escherichia coli in the Mammalian Intestine" (https://doi.org/10.1128/ecosalplus.8.3.1.2), with a change of title that reflects the current focus on "Nutrition of E. coli within the Intestinal Microbiome." The earlier part of the previous two decades saw incremental improvements in understanding the carbon and energy sources that E. coli and Salmonella use to support intestinal colonization. Along with these investigations of electron donors came a better understanding of the electron acceptors that support the respiration of these facultative anaerobes in the gastrointestinal tract. Hundreds of recent papers add to what was known about the nutrition of commensal and pathogenic enteric bacteria. The fact that each biotype or pathotype grows on a different subset of the available nutrients suggested a mechanism for succession of commensal colonizers and invasion by enteric pathogens. Competition for nutrients in the intestine has also come to be recognized as one basis for colonization resistance, in which colonized strain(s) prevent colonization by a challenger. In the past decade, detailed investigations of fiber- and mucin-degrading anaerobes added greatly to our understanding of how complex polysaccharides support the hundreds of intestinal microbiome species. It is now clear that facultative anaerobes, which usually cannot degrade complex polysaccharides, live in symbiosis with the anaerobic degraders. This concept led to the "restaurant hypothesis," which emphasizes that facultative bacteria, such as E. coli, colonize the intestine as members of mixed biofilms and obtain the sugars they need for growth locally through cross-feeding from polysaccharide-degrading anaerobes. Each restaurant represents an intestinal niche. Competition for those niches determines whether or not invaders are able to overcome colonization resistance and become established. Topics centered on the nutritional basis of intestinal colonization and gastrointestinal health are explored here in detail.
Collapse
Affiliation(s)
- Sudhir Doranga
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Karen A. Krogfelt
- Department of Science and Environment, Pandemix Center Roskilde University, Roskilde, Denmark
| | - Paul S. Cohen
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island, USA
| | - Tyrrell Conway
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
2
|
Tian S, Ding T, Li H. Oral microbiome in human health and diseases. MLIFE 2024; 3:367-383. [PMID: 39359681 PMCID: PMC11442140 DOI: 10.1002/mlf2.12136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/13/2024] [Accepted: 05/05/2024] [Indexed: 10/04/2024]
Abstract
The oral cavity contains the second-largest microbiota in the human body. The cavity's anatomically and physiologically diverse niches facilitate a wide range of symbiotic bacteria living at distinct oral sites. Consequently, the oral microbiota exhibits site specificity, with diverse species, compositions, and structures influenced by specific aspects of their placement. Variations in oral microbiota structure caused by changes in these influencing factors can impact overall health and lead to the development of diseases-not only in the oral cavity but also in organs distal to the mouth-such as cancer, cardiovascular disease, and respiratory disease. Conversely, diseases can exacerbate the imbalance of the oral microbiota, creating a vicious cycle. Understanding the heterogeneity of both the oral microbiome and individual humans is important for investigating the causal links between the oral microbiome and diseases. Additionally, understanding the intricacies of the oral microbiome's composition and regulatory factors will help identify the potential causes of related diseases and develop interventions to prevent and treat illnesses in this domain. Therefore, turning to the extant research in this field, we systematically review the relationship between oral microbiome dynamics and human diseases.
Collapse
Affiliation(s)
- Siqi Tian
- Department of Immunology and Microbiology, Zhongshan School of Medicine Sun Yat-Sen University Guangzhou China
- Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University) Ministry of Education Guangzhou China
| | - Tao Ding
- Department of Immunology and Microbiology, Zhongshan School of Medicine Sun Yat-Sen University Guangzhou China
- Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University) Ministry of Education Guangzhou China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University) Ministry of Education, China Guangzhou China
| | - Hui Li
- Department of Immunology and Microbiology, Zhongshan School of Medicine Sun Yat-Sen University Guangzhou China
- Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University) Ministry of Education Guangzhou China
| |
Collapse
|
3
|
Charalambous EG, Mériaux SB, Guebels P, Muller CP, Leenen FAD, Elwenspoek MMC, Thiele I, Hertel J, Turner JD. The oral microbiome is associated with HPA axis response to a psychosocial stressor. Sci Rep 2024; 14:15841. [PMID: 38982178 PMCID: PMC11233668 DOI: 10.1038/s41598-024-66796-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024] Open
Abstract
Intense psychosocial stress during early life has a detrimental effect on health-disease balance in later life. Simultaneously, despite its sensitivity to stress, the developing microbiome contributes to long-term health. Following stress exposure, HPA-axis activation regulates the "fight or flight" response with the release of glucose and cortisol. Here, we investigated the interaction between the oral microbiome and the stress response. We used a cohort of 115 adults, mean age 24, who either experienced institutionalisation and adoption (n = 40) or were non-adopted controls (n = 75). Glucose and cortisol measurements were taken from participants following an extended socially evaluated cold pressor test (seCPT) at multiple time points. The cohort´s oral microbiome was profiled via 16S-V4 sequencing on microbial DNA from saliva and buccal samples. Using mixed-effect linear regressions, we identified 12 genera that exhibited an interaction with host's cortisol-glucose response to stress, strongly influencing intensity and clearance of cortisol and glucose following stress exposure. Particularly, the identified taxa influenced the glucose and cortisol release profiles and kinetics following seCPT exposure. In conclusion, our study provided evidence for the oral microbiome modifying the effect of stress on the HPA-axis and human metabolism, as shown in glucose-cortisol time series data.
Collapse
Affiliation(s)
- Eleftheria G Charalambous
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, 4354, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur Alzette, Luxembourg
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greisfwald, Germany
- Department of Psychology, University of Cyprus, 2109, Nicosia, Cyprus
| | - Sophie B Mériaux
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, 4354, Esch-sur-Alzette, Luxembourg
| | - Pauline Guebels
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, 4354, Esch-sur-Alzette, Luxembourg
| | - Claude P Muller
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, 4354, Esch-sur-Alzette, Luxembourg
| | - Fleur A D Leenen
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, 4354, Esch-sur-Alzette, Luxembourg
| | - Martha M C Elwenspoek
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, 4354, Esch-sur-Alzette, Luxembourg
| | - Ines Thiele
- School of Medicine, National University of Ireland, Galway, Ireland
- Ryan Institute, National University of Galway, Galway, Ireland
- Division of Microbiology, National University of Galway, Galway, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Johannes Hertel
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur Alzette, Luxembourg
- German Center for Cardiovascular Diseases (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Jonathan D Turner
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, 4354, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
4
|
Zheng J, Wang X, Zhang T, Jiang J, Wu J. Comparative characterization of supragingival plaque microbiomes in malocclusion adult female patients undergoing orthodontic treatment with removable aligners or fixed appliances: a descriptive cross-sectional study. Front Cell Infect Microbiol 2024; 14:1350181. [PMID: 38803569 PMCID: PMC11129559 DOI: 10.3389/fcimb.2024.1350181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/10/2024] [Indexed: 05/29/2024] Open
Abstract
Objectives This study aimed to explore the effects of removable aligners and fixed appliances on the supragingival bacterial communities in adult female patients undergoing orthodontic treatment. Methods Supragingival plaque samples from 48 female individuals underwent microbiome analysis (16S rRNA gene sequencing) using PacBio Sequel sequencing. The study included 13 adults without orthodontic treatment needs as the control group (Group C), and 35 patients with comparable initial orthodontic conditions who received treatment at a university clinic in Beijing, China. The treatment involved either traditional fixed brackets (Group B, n = 17) or Invisalign® aligners (Group AT, n = 18). Bioinformatics methods were used for data analysis. Results From the 48 plaque samples, a total of 334,961 valid reads were obtained, averaging 6,978 sequences per sample. The 16S rDNA sequences were classified into 25,727 amplicon sequence variants (ASVs). Significant variances in alpha and beta diversity among the groups were noted. Group B microbiome exhibited an increased presence of Gram-negative bacteria. At the phylum level, Actinobacteriota was significantly more prevalent in Group C samples, while Bacteroidota was enriched in Group B samples. Family-level relative abundance analysis showed a notable increase in Saccharibacteria (formerly TM7) and Prevotellaceae in Group B. Genus-level analysis revealed a significant rise in Lautropia in Group AT. Fixed orthodontic appliances were linked to oral microbiome changes, notably an enhanced relative abundance of anaerobes, including periodontal pathogens. Conclusion The observation points to the impact of orthodontic appliance on the oral microbial community, highlighting the difference between traditional braces (Group B) and clear aligners (Group AT)in terms of the predominance of anaerobic and gram negative bacteria. This emphasizes the importance of considering the microbiological effects when choosing orthodontic appliance and underscores the need for tailored oral hygiene practices for individuals undergoing these treatments. This research might provide insights that could assist in the development of innovative cleaning techniques and antibacterial materials.
Collapse
Affiliation(s)
- Jiajia Zheng
- First Clinical Division, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Xiujing Wang
- First Clinical Division, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Ting Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Jiuhui Jiang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Jiaqi Wu
- First Clinical Division, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| |
Collapse
|
5
|
Choi A, Dong K, Williams E, Pia L, Batagower J, Bending P, Shin I, Peters DI, Kaspar JR. Human saliva modifies growth, biofilm architecture, and competitive behaviors of oral streptococci. mSphere 2024; 9:e0077123. [PMID: 38319113 PMCID: PMC10900908 DOI: 10.1128/msphere.00771-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
The bacteria within supragingival biofilms participate in complex exchanges with other microbes inhabiting the same niche. One example is the mutans group streptococci (Streptococcus mutans), implicated in the development of tooth decay, and other health-associated commensal streptococci species. Previously, our group transcriptomically characterized intermicrobial interactions between S. mutans and several species of oral bacteria. However, these experiments were carried out in a medium without human saliva. To better mimic their natural environment, we first evaluated how inclusion of saliva affected growth and biofilm formation of eight Streptococcus species individually and found saliva to positively benefit growth rates while negatively influencing biofilm biomass accumulation and altering spatial arrangement. These results carried over during evaluation of 29 saliva-derived isolates of various species. Surprisingly, we also found that addition of saliva increased the competitive behaviors of S. mutans in coculture competitions against commensal streptococci that led to increases in biofilm microcolony volumes. Through transcriptomically characterizing mono- and cocultures of S. mutans and Streptococcus oralis with and without saliva, we determined that each species developed a nutritional niche under mixed-species growth, with S. mutans upregulating carbohydrate uptake and utilization pathways while S. oralis upregulated genome features related to peptide uptake and glycan foraging. S. mutans also upregulated genes involved in oxidative stress tolerance, particularly manganese uptake, which we could artificially manipulate by supplementing in manganese leading to an advantage over its opponent. Our report highlights observable changes in microbial behaviors through leveraging environmental- and host-supplied resources over their competitors. IMPORTANCE Dental caries (tooth decay) is the most prevalent disease for both children and adults nationwide. Caries are initiated from demineralization of the enamel due to organic acid production through the metabolic activity of oral bacteria growing in biofilm communities attached to the tooth's surface. Mutans group streptococci are closely associated with caries development and initiation of the cariogenic cycle, which decreases the amount of acid-sensitive, health-associated commensal bacteria while selecting for aciduric and acidogenic species that then further drives the disease process. Defining the exchanges that occur between mutans group streptococci and oral commensals in a condition that closely mimics their natural environment is of critical need toward identifying factors that can influence odontopathogen establishment, persistence, and outgrowth. The goal of our research is to develop strategies, potentially through manipulation of microbial interactions characterized here, that prevent the emergence of mutans group streptococci while keeping the protective flora intact.
Collapse
Affiliation(s)
- Allen Choi
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Kevin Dong
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Emily Williams
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Lindsey Pia
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Jordan Batagower
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Paige Bending
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Iris Shin
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Daniel I. Peters
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Justin R. Kaspar
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| |
Collapse
|
6
|
Ealla KKR, Kumari N, Chintalapani S, Uppu S, Sahu V, Veeraraghavan VP, Ramani P, Govindool SR. Interplay between dental caries pathogens, periodontal pathogens, and sugar molecules: approaches for prevention and treatment. Arch Microbiol 2024; 206:127. [PMID: 38416201 DOI: 10.1007/s00203-024-03856-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/13/2024] [Accepted: 01/20/2024] [Indexed: 02/29/2024]
Abstract
Globally, oral diseases affect nearly 3.5 billion people, accounting for 4.6% of the healthcare expenditure. Common oral diseases include dental caries and periodontal disease, associated with biofilms formed by cariogenic pathogens. Epidemiological studies associate carbohydrates with these diseases due to the sugars metabolized by cariogenic pathogens. This review focuses on dental caries and periodontal pathogens, quorum sensing, lectin-carbohydrate interactions, and various sugar molecules. Cariogenic sugars significantly influence biofilms by enhancing pathogen adhesion, viability, and gene expressions associated with biofilm formation. Moreover, lectin-carbohydrate interactions contribute to biofilm stability. Disrupting these interactions is a potential strategy for oral disease prevention. The use of nanoparticles, such as quantum dots, provides novel insights into lectin-sugar interactions and the development of inhibitors. Additionally, nanomaterials like calcium phosphate nanoparticles neutralize acids and inhibit microbial growth. This overview emphasizes understanding the relationships between oral diseases, microbial communities, and sugars to devise preventive and therapeutic strategies against oral diseases.
Collapse
Affiliation(s)
- Kranti Kiran Reddy Ealla
- Oral and Maxillofacial Pathology, Malla Reddy Institute of Dental Sciences, Hyderabad, Telangana, India.
- Oral and Maxillofacial Pathology, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India.
| | - Neema Kumari
- Department of Microbiology, Malla Reddy Institute of Medical Sciences, Hyderabad, Telangana, India.
| | - Srikanth Chintalapani
- Department of Periodontology, Malla Reddy Institute of Dental Sciences, Hyderabad, Telangana, India
| | - Supriya Uppu
- Oral and Maxillofacial Pathology, Malla Reddy Institute of Dental Sciences, Hyderabad, Telangana, India
| | - Vikas Sahu
- Oral and Maxillofacial Pathology, Malla Reddy Institute of Dental Sciences, Hyderabad, Telangana, India
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Pratibha Ramani
- Oral and Maxillofacial Pathology, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Sharaschandra Reddy Govindool
- Department of Periodontics and Endodontics, School of Dental Medicine, University at Buffalo, 240D Squire Hall, Buffalo, NY, 14214, USA
| |
Collapse
|
7
|
Katkowska M, Garbacz K, Kwapisz E, Suligowska K, Kusiak A, Cichońska D, Świetlik D. High oral carriage of multidrug resistant Gram-negative bacilli in adolescents: the SOPKARD-Junior study. Front Cell Infect Microbiol 2023; 13:1265777. [PMID: 38035342 PMCID: PMC10687414 DOI: 10.3389/fcimb.2023.1265777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction The colonization of the oral cavity by potentially pathogenic antimicrobial-resistant bacteria in adolescents and its consequences is very poorly understood. The present study focused on the occurrence of oral colonization by Gram-negative bacilli (GNB) and their multidrug resistance, including the production of extended-spectrum β-lactamases (ESBLs) and carbapenemases, among healthy adolescents and risk factors associated with GNB colonization. Materials and methods This study was conducted as part of "A program for the early detection of risk factors for lifestyle diseases SOPKARD-Junior" (SOPKARD-Junior). Oral samples were collected from 182 adolescents from four public elementary schools in Sopot, Poland, aged 13-14 years. Bacterial strains were identified by the MALDI-TOF MS method. Screening of antimicrobial resistance was performed using a disk diffusion method. The NG-Test® CARBA-5 was used to detect and differentiate the five most widely distributed carbapenemases. Demographic and clinical data were collected and statistical analysis of risk factors was performed. Results A total of 68 out of 182 (37.4%) healthy adolescents was documented oral colonization with Gram-negative bacilli, including 50/182 (27.5%) multidrug resistant (MDR-GNB) strains. Over 60% of oral carriage concerned three main genera Enterobacter spp., Pseudomonas spp., and Serratia spp., which were detected in 22.1%, 19.1%, and 19.1% of participants, respectively. Citrobacter spp., Escherichia coli, Klebsiella spp., Hafnia spp., Aeromonas spp., Acinetobacter spp., and Stenotrophomonas spp. were also isolated. The antimicrobial resistance to ampicillin (100%), ceftazidime (69.1%), meropenem (60.3%), gentamycin (60.3%), piperacillin/tazobactam (52.9%), and piperacillin (45.6%) were the most common. Among 73.5% GNB strains multidrug resistance was observed, including all Pseudomonas spp. strains. Among MDR-GNB, 30.4% were resistant to four groups of antibiotics, half of the MDR Pseudomonas spp. strains were resistant to 10 groups of antibiotics. Extended-spectrum β-lactamases were produced by Enterobacter cloacae, Klebsiella spp., and Serratia spp. (7.4%). Colonization by ESBLs-positive GNB strains was significantly associated with recurrent respiratory infections, nasal congestion, and bronchitis (p<0.05). Conclusion Our study revealed high oral carriage of multi-drug resistant Gram-negative bacilli in healthy adolescents and the association of ESBL-producing strains with respiratory infections. Further studies on oral colonization with GNB are necessary due to the possibility of distinct infections and the acquisition of antibiotic resistance by resident microbiota.
Collapse
Affiliation(s)
- Marta Katkowska
- Department of Oral Microbiology, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Katarzyna Garbacz
- Department of Oral Microbiology, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Ewa Kwapisz
- Department of Oral Microbiology, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Klaudia Suligowska
- Department of Dental Techniques and Masticatory System Dysfunctions, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
- Department of Preventive Medicine and Education, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Aida Kusiak
- Department of Periodontology and Oral Mucosa Diseases, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Dominika Cichońska
- Department of Periodontology and Oral Mucosa Diseases, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Dariusz Świetlik
- Division of Biostatistics and Neural Networks, Medical University of Gdansk, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
8
|
Choi A, Dong K, Williams E, Pia L, Batagower J, Bending P, Shin I, Peters DI, Kaspar JR. Human Saliva Modifies Growth, Biofilm Architecture and Competitive Behaviors of Oral Streptococci. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.554151. [PMID: 37662325 PMCID: PMC10473590 DOI: 10.1101/2023.08.21.554151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The bacteria within supragingival biofilms participate in complex exchanges with other microbes inhabiting the same niche. One example are the mutans group streptococci (Streptococcus mutans), implicated in the development of tooth decay, and other health-associated commensal streptococci species. Previously, our group transcriptomically characterized intermicrobial interactions between S. mutans and several species of oral bacteria. However, these experiments were carried out in a medium that was absent of human saliva. To better mimic their natural environment, we first evaluated how inclusion of saliva affected growth and biofilm formation of eight streptococci species individually, and found saliva to positively benefit growth rates while negatively influencing biomass accumulation and altering spatial arrangement. These results carried over during evaluation of 29 saliva-derived isolates of various species. Surprisingly, we also found that addition of saliva increased the competitive behaviors of S. mutans in coculture competitions against commensal streptococci that led to increases in biofilm microcolony volumes. Through transcriptomically characterizing mono- and cocultures of S. mutans and Streptococcus oralis with and without saliva, we determined that each species developed a nutritional niche under mixed-species growth, with S. mutans upregulating carbohydrate uptake and utilization pathways while S. oralis upregulated genome features related to peptide uptake and glycan foraging. S. mutans also upregulated genes involved in oxidative stress tolerance, particularly manganese uptake, which we could artificially manipulate by supplementing in manganese to give it an advantage over its opponent. Our report highlights observable changes in microbial behaviors via leveraging environmental- and host-supplied resources over their competitors.
Collapse
Affiliation(s)
- Allen Choi
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Kevin Dong
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Emily Williams
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Lindsey Pia
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Jordan Batagower
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Paige Bending
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Iris Shin
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Daniel I Peters
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Justin R Kaspar
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| |
Collapse
|
9
|
Zhao A, Sun J, Liu Y. Understanding bacterial biofilms: From definition to treatment strategies. Front Cell Infect Microbiol 2023; 13:1137947. [PMID: 37091673 PMCID: PMC10117668 DOI: 10.3389/fcimb.2023.1137947] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/09/2023] [Indexed: 04/08/2023] Open
Abstract
Bacterial biofilms are complex microbial communities encased in extracellular polymeric substances. Their formation is a multi-step process. Biofilms are a significant problem in treating bacterial infections and are one of the main reasons for the persistence of infections. They can exhibit increased resistance to classical antibiotics and cause disease through device-related and non-device (tissue) -associated infections, posing a severe threat to global health issues. Therefore, early detection and search for new and alternative treatments are essential for treating and suppressing biofilm-associated infections. In this paper, we systematically reviewed the formation of bacterial biofilms, associated infections, detection methods, and potential treatment strategies, aiming to provide researchers with the latest progress in the detection and treatment of bacterial biofilms.
Collapse
Affiliation(s)
- Ailing Zhao
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Jiazheng Sun
- Department of Vasculocardiology, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yipin Liu
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
- *Correspondence: Yipin Liu,
| |
Collapse
|
10
|
Hyvärinen E, Kashyap B, Kullaa AM. Oral Sources of Salivary Metabolites. Metabolites 2023; 13:metabo13040498. [PMID: 37110157 PMCID: PMC10145445 DOI: 10.3390/metabo13040498] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/10/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
The oral cavity is very diverse, where saliva plays an important role in maintaining oral health. The metabolism of saliva has been used to investigate oral diseases as well as general diseases, mainly to detect diagnostic biomarkers. There are many sources of salivary metabolites in the mouth. The online English language search and PubMed databases were searched to retrieve relevant studies on oral salivary metabolites. The physiological balance of the mouth is influenced by many factors that are reflected in the salivary metabolite profile. Similarly, the dysbiosis of microbes can alter the salivary metabolite profile, which may express oral inflammation or oral diseases. This narrative review highlights the factors to be considered when examining saliva and its use as a diagnostic biofluid for different diseases. Salivary metabolites, mainly small molecular metabolites may enter the bloodstream and cause illness elsewhere in the body. The importance of salivary metabolites produced in the oral cavity as risk factors for general diseases and their possible relationship to the body’s function are also discussed.
Collapse
|
11
|
Leo F, Svensäter G, Lood R, Wickström C. Characterization of a highly conserved MUC5B-degrading protease, MdpL, from Limosilactobacillus fermentum. Front Microbiol 2023; 14:1127466. [PMID: 36925480 PMCID: PMC10011156 DOI: 10.3389/fmicb.2023.1127466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/09/2023] [Indexed: 03/08/2023] Open
Abstract
MUC5B is the predominant glycoprotein in saliva and is instrumental in the establishment and maintenance of multi-species eubiotic biofilms in the oral cavity. Investigations of the aciduric Lactobacillaceae family, and its role in biofilms emphasizes the diversity across different genera of the proteolytic systems involved in the nutritional utilization of mucins. We have characterized a protease from Limosilactobacillus fermentum, MdpL (Mucin degrading protease from Limosilactobacillus) with a high protein backbone similarity with commensals that exploit mucins for attachment and nutrition. MdpL was shown to be associated with the bacterial cell surface, in close proximity to MUC5B, which was sequentially degraded into low molecular weight fragments. Mapping the substrate preference revealed multiple hydrolytic sites of proteins with a high O-glycan occurrence, although hydrolysis was not dependent on the presence of O-glycans. However, since proteolysis of immunoglobulins was absent, and general protease activity was low, a preference for glycoproteins similar to MUC5B in terms of glycosylation and structure is suggested. MdpL preferentially hydrolyzed C-terminally located hydrophobic residues in peptides larger than 20 amino acids, which hinted at a limited sequence preference. To secure proper enzyme folding and optimal conditions for activity, L. fermentum incorporates a complex system that establishes a reducing environment. The importance of overall reducing conditions was confirmed by the activity boosting effect of the added reducing agents L-cysteine and DTT. High activity was retained in low to neutral pH 5.5-7.0, but the enzyme was completely inhibited in the presence of Zn2+. Here we have characterized a highly conserved mucin degrading protease from L. fermentum. MdpL, that together with the recently discovered O-glycanase and O-glycoprotease enzyme groups, increases our understanding of mucin degradation and complex biofilm dynamics.
Collapse
Affiliation(s)
- Fredrik Leo
- Department of Oral Biology and Pathology, Faculty of Odontology, Malmö University, Malmö, Sweden.,Genovis AB, Lund, Sweden
| | - Gunnel Svensäter
- Department of Oral Biology and Pathology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Rolf Lood
- Department of Clinical Sciences Lund, Division of Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Claes Wickström
- Department of Oral Biology and Pathology, Faculty of Odontology, Malmö University, Malmö, Sweden
| |
Collapse
|
12
|
Rostami N, Shields RC, Serrage HJ, Lawler C, Brittan JL, Yassin S, Ahmed H, Treumann A, Thompson P, Waldron KJ, Nobbs AH, Jakubovics NS. Interspecies competition in oral biofilms mediated by Streptococcus gordonii extracellular deoxyribonuclease SsnA. NPJ Biofilms Microbiomes 2022; 8:96. [PMID: 36509765 PMCID: PMC9744736 DOI: 10.1038/s41522-022-00359-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
Extracellular DNA (eDNA) is a key component of many microbial biofilms including dental plaque. However, the roles of extracellular deoxyribonuclease (DNase) enzymes within biofilms are poorly understood. Streptococcus gordonii is a pioneer colonizer of dental plaque. Here, we identified and characterised SsnA, a cell wall-associated protein responsible for extracellular DNase activity of S. gordonii. The SsnA-mediated extracellular DNase activity of S. gordonii was suppressed following growth in sugars. SsnA was purified as a recombinant protein and shown to be inactive below pH 6.5. SsnA inhibited biofilm formation by Streptococcus mutans in a pH-dependent manner. Further, SsnA inhibited the growth of oral microcosm biofilms in human saliva. However, inhibition was ameliorated by the addition of sucrose. Together, these data indicate that S. gordonii SsnA plays a key role in interspecies competition within oral biofilms. Acidification of the medium through sugar catabolism could be a strategy for cariogenic species such as S. mutans to prevent SsnA-mediated exclusion from biofilms.
Collapse
Affiliation(s)
- Nadia Rostami
- grid.1006.70000 0001 0462 7212School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Robert C. Shields
- grid.1006.70000 0001 0462 7212School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle, UK ,grid.252381.f0000 0001 2169 5989Department of Biological Sciences, Arkansas State University, Jonesboro, AR USA
| | - Hannah J. Serrage
- grid.5337.20000 0004 1936 7603Bristol Dental School, University of Bristol, Bristol, UK
| | - Catherine Lawler
- grid.5337.20000 0004 1936 7603Bristol Dental School, University of Bristol, Bristol, UK
| | - Jane L. Brittan
- grid.5337.20000 0004 1936 7603Bristol Dental School, University of Bristol, Bristol, UK
| | - Sufian Yassin
- grid.1006.70000 0001 0462 7212School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle, UK ,grid.265892.20000000106344187Department of Restorative Sciences, University of Alabama at Birmingham, Birmingham, AL USA
| | - Halah Ahmed
- grid.1006.70000 0001 0462 7212School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Achim Treumann
- grid.1006.70000 0001 0462 7212Protein and Proteome Analysis Facility, Faculty of Medical Sciences, Newcastle University, Newcastle, UK ,KBI Biopharma BV, Leuven, Belgium
| | - Paul Thompson
- grid.1006.70000 0001 0462 7212Protein and Proteome Analysis Facility, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Kevin J. Waldron
- grid.1006.70000 0001 0462 7212Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Angela H. Nobbs
- grid.5337.20000 0004 1936 7603Bristol Dental School, University of Bristol, Bristol, UK
| | - Nicholas S. Jakubovics
- grid.1006.70000 0001 0462 7212School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| |
Collapse
|
13
|
Akimbekov NS, Digel I, Yerezhepov AY, Shardarbek RS, Wu X, Zha J. Nutritional factors influencing microbiota-mediated colonization resistance of the oral cavity: A literature review. Front Nutr 2022; 9:1029324. [PMID: 36337619 PMCID: PMC9630914 DOI: 10.3389/fnut.2022.1029324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2023] Open
Abstract
The oral cavity is a key biocenosis for many distinct microbial communities that interact with both the external environment and internal body systems. The oral microbiota is a vital part of the human microbiome. It has been developed through mutual interactions among the environment, host physiological state, and microbial community composition. Indigenious microbiota of the oral cavity is one of the factors that prevent adhesion and invasion of pathogens on the mucous membrane, i.e., the development of the infectious process and thereby participating in the implementation of one of the mechanisms of local immunity-colonization resistance. The balance between bacterial symbiosis, microbial virulence, and host resistance ensures the integrity of the oral cavity. In this review we have tried to address how nutritional factors influence integrity of the oral indigenous microbiota and its involvement in colonization resistance.
Collapse
Affiliation(s)
- Nuraly S. Akimbekov
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Ilya Digel
- Institute for Bioengineering, FH Aachen University of Applied Sciences, Jülich, Germany
| | - Adil Y. Yerezhepov
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Raiymbek S. Shardarbek
- Department of Internal Diseases, Kazakh National Medical University Named After S.D. Asfendiyarov, Almaty, Kazakhstan
| | - Xia Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Jian Zha
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, China
| |
Collapse
|
14
|
The Role of Glycoside Hydrolases in S. gordonii and C. albicans Interactions. Appl Environ Microbiol 2022; 88:e0011622. [PMID: 35506689 DOI: 10.1128/aem.00116-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Candida albicans can coaggregate with Streptococcus gordonii and cocolonize in the oral cavity. Saliva provides a vital microenvironment for close interactions of oral microorganisms. However, the level of fermentable carbohydrates in saliva is not sufficient to support the growth of multiple species. Glycoside hydrolases (GHs) that hydrolyze glycoproteins are critical for S. gordonii growth in low-fermentable-carbohydrate environments such as saliva. However, whether GHs are involved in the cross-kingdom interactions between C. albicans and S. gordonii under such conditions remains unknown. In this study, C. albicans and S. gordonii were cocultured in heart infusion broth with a low level of fermentable carbohydrate. Planktonic growth, biofilm formation, cell aggregation, and GH activities of monocultures and cocultures were examined. The results revealed that the planktonic growth of cocultured S. gordonii in a low-carbohydrate environment was elevated, while that of cocultured C. albicans was reduced. The biomass of S. gordonii in dual-species biofilms was higher than that of monocultures, while that of cocultured C. albicans was decreased. GH activity was observed in S. gordonii, and elevated activity of GHs was detected in S. gordonii-C. albicans cocultures, with elevated expression of GH-related genes of S. gordonii. By screening a mutant library of C. albicans, we identified a tec1Δ/Δ mutant strain that showed reduced ability to promote the growth and GH activities of S. gordonii compared with the wild-type strain. Altogether, the findings of this study demonstrate the involvement of GHs in the cross-kingdom metabolic interactions between C. albicans and S. gordonii in an environment with low level of fermentable carbohydrates. IMPORTANCE Cross-kingdom interactions between Candida albicans and oral streptococci such as Streptococcus gordonii have been reported. However, their interactions in a low-fermentable-carbohydrate environment like saliva is not clear. The current study revealed glycoside hydrolase-related cross-kingdom communications between S. gordonii and C. albicans under the low-fermentable-carbohydrate condition. We demonstrate that C. albicans can promote the growth and metabolic activities of S. gordonii by elevating the activities of cell-wall-anchored glycoside hydrolases of S. gordonii. C. albicans gene TEC1 is critical for this cross-kingdom metabolic communication.
Collapse
|
15
|
Bacterial biofilms and their resistance mechanisms: a brief look at treatment with natural agents. Folia Microbiol (Praha) 2022; 67:535-554. [DOI: 10.1007/s12223-022-00955-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/29/2022] [Indexed: 12/14/2022]
|
16
|
Puccio T, An SS, Schultz AC, Lizarraga CA, Bryant AS, Culp DJ, Burne RA, Kitten T. Manganese transport by Streptococcus sanguinis in acidic conditions and its impact on growth in vitro and in vivo. Mol Microbiol 2021; 117:375-393. [PMID: 34862691 PMCID: PMC8844241 DOI: 10.1111/mmi.14854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023]
Abstract
Streptococcus sanguinis is an oral commensal and an etiological agent of infective endocarditis. Previous studies have identified the SsaACB manganese transporter as essential for endocarditis virulence; however, the significance of SsaACB in the oral environment has never been examined. Here we report that a ΔssaACB deletion mutant of strain SK36 exhibits reduced growth and manganese uptake under acidic conditions. Further studies revealed that these deficits resulted from the decreased activity of TmpA, shown in the accompanying paper to function as a ZIP‐family manganese transporter. Transcriptomic analysis of fermentor‐grown cultures of SK36 WT and ΔssaACB strains identified pH‐dependent changes related to carbon catabolite repression in both strains, though their magnitude was generally greater in the mutant. In strain VMC66, which possesses a MntH transporter, loss of SsaACB did not significantly alter growth or cellular manganese levels under the same conditions. Interestingly, there were only modest differences between SK36 and its ΔssaACB mutant in competition with Streptococcus mutans in vitro and in a murine oral colonization model. Our results suggest that the heterogeneity of the oral environment may provide a rationale for the variety of manganese transporters found in S. sanguinis.
Collapse
Affiliation(s)
- Tanya Puccio
- Philips Institute for Oral Health Research, Virginia Commonwealth University School of Dentistry, Richmond, Virginia, USA
| | - Seon-Sook An
- Philips Institute for Oral Health Research, Virginia Commonwealth University School of Dentistry, Richmond, Virginia, USA
| | - Alexander C Schultz
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Claudia A Lizarraga
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Ashley S Bryant
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - David J Culp
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Robert A Burne
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Todd Kitten
- Philips Institute for Oral Health Research, Virginia Commonwealth University School of Dentistry, Richmond, Virginia, USA
| |
Collapse
|
17
|
Charalambous EG, Mériaux SB, Guebels P, Muller CP, Leenen FAD, Elwenspoek MMC, Thiele I, Hertel J, Turner JD. Early-Life Adversity Leaves Its Imprint on the Oral Microbiome for More Than 20 Years and Is Associated with Long-Term Immune Changes. Int J Mol Sci 2021; 22:ijms222312682. [PMID: 34884490 PMCID: PMC8657988 DOI: 10.3390/ijms222312682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
The early-life microbiome (ELM) interacts with the psychosocial environment, in particular during early-life adversity (ELA), defining life-long health trajectories. The ELM also plays a significant role in the maturation of the immune system. We hypothesised that, in this context, the resilience of the oral microbiomes, despite being composed of diverse and distinct communities, allows them to retain an imprint of the early environment. Using 16S amplicon sequencing on the EpiPath cohort, we demonstrate that ELA leaves an imprint on both the salivary and buccal oral microbiome 24 years after exposure to adversity. Furthermore, the changes in both communities were associated with increased activation, maturation, and senescence of both innate and adaptive immune cells, although the interaction was partly dependent on prior herpesviridae exposure and current smoking. Our data suggest the presence of multiple links between ELA, Immunosenescence, and cytotoxicity that occur through long-term changes in the microbiome.
Collapse
Affiliation(s)
- Eleftheria G. Charalambous
- Immune Endocrine and Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg; (E.G.C.); (S.B.M.); (P.G.); (C.P.M.); (F.A.D.L.); (M.M.C.E.)
- Faculty of Science, Technology and Medicine, University of Luxembourg, 2 Avenue de Université, L-4365 Esch-sur-Alzette, Luxembourg
| | - Sophie B. Mériaux
- Immune Endocrine and Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg; (E.G.C.); (S.B.M.); (P.G.); (C.P.M.); (F.A.D.L.); (M.M.C.E.)
| | - Pauline Guebels
- Immune Endocrine and Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg; (E.G.C.); (S.B.M.); (P.G.); (C.P.M.); (F.A.D.L.); (M.M.C.E.)
| | - Claude P. Muller
- Immune Endocrine and Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg; (E.G.C.); (S.B.M.); (P.G.); (C.P.M.); (F.A.D.L.); (M.M.C.E.)
| | - Fleur A. D. Leenen
- Immune Endocrine and Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg; (E.G.C.); (S.B.M.); (P.G.); (C.P.M.); (F.A.D.L.); (M.M.C.E.)
| | - Martha M. C. Elwenspoek
- Immune Endocrine and Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg; (E.G.C.); (S.B.M.); (P.G.); (C.P.M.); (F.A.D.L.); (M.M.C.E.)
| | - Ines Thiele
- School of Medicine, National University of Ireland, H91 YR71 Galway, Ireland; (I.T.); (J.H.)
- Ryan Institute, National University of Galway, H91 TK33 Galway, Ireland
- Division of Microbiology, National University of Galway, H91 TK33 Galway, Ireland
- APC Microbiome Ireland, T12 HW58 Cork, Ireland
| | - Johannes Hertel
- School of Medicine, National University of Ireland, H91 YR71 Galway, Ireland; (I.T.); (J.H.)
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Jonathan D. Turner
- Immune Endocrine and Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg; (E.G.C.); (S.B.M.); (P.G.); (C.P.M.); (F.A.D.L.); (M.M.C.E.)
- Correspondence: ; Tel.: +352-26970-629
| |
Collapse
|
18
|
Złoch M, Rodzik A, Pauter K, Szultka-Młyńska M, Rogowska A, Kupczyk W, Pomastowski P, Buszewski B. Problems with identifying and distinguishing salivary streptococci: a multi-instrumental approach. Future Microbiol 2021; 15:1157-1171. [PMID: 32954849 DOI: 10.2217/fmb-2020-0036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Aim: The purpose of this study was to create an alternative protocol for the DNA-based identification of salivary microbiota focused on the distinguishing of Streptococcus species. Materials & methods: Salivary bacteria were identified using 16S rDNA sequencing and proteins and lipids profiling using MALDI-TOF/MS as well as FTIR analysis. Results: Most of the isolates belonged to streptococci - mostly the salivarious group indistinguishable by the molecular technique. In turn, MALDI analysis allowed for their fast and reliable classification. Although FTIR spectroscopy demonstrated the correct species classification, the spectra interpretation was time consuming and complicated. Conclusion: MALDI-TOF/MS demonstrated the biggest effectiveness in the identification and discrimination between the salivary streptococci, which could be easily incorporated in the workflow of routine microbiological laboratories.
Collapse
Affiliation(s)
- Michał Złoch
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wileńska 4, 87-100 Torun, Poland
| | - Agnieszka Rodzik
- Department of Environmental Chemistry & Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Katarzyna Pauter
- Department of Environmental Chemistry & Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Małgorzata Szultka-Młyńska
- Department of Environmental Chemistry & Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Agnieszka Rogowska
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wileńska 4, 87-100 Torun, Poland.,Department of Environmental Chemistry & Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Wojciech Kupczyk
- Department of General, Gastroenterological & Oncological Surgery, Faculty of Medicine, Collegium Medicum, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wileńska 4, 87-100 Torun, Poland
| | - Bogusław Buszewski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wileńska 4, 87-100 Torun, Poland.,Department of Environmental Chemistry & Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| |
Collapse
|
19
|
Friends with Benefits: An Inside Look of Periodontal Microbes' Interactions Using Fluorescence In Situ Hybridization-Scoping Review. Microorganisms 2021; 9:microorganisms9071504. [PMID: 34361938 PMCID: PMC8306857 DOI: 10.3390/microorganisms9071504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/30/2021] [Accepted: 07/12/2021] [Indexed: 11/19/2022] Open
Abstract
Fluorescence in situ hybridization (FISH) has proven to be particularly useful to describe the microbial composition and spatial organization of mixed microbial infections, as it happens in periodontitis. This scoping review aims to identify and map all the documented interactions between microbes in periodontal pockets by the FISH technique. Three electronic sources of evidence were consulted in search of suitable articles up to 7 November 2020: MEDLINE (via PubMed), Scopus (Elsevier: Amsterdam, The Netherlands), and Web of Science (Clarivate Analytics: Philadelphia, PA, USA) online databases. Studies that showed ex vivo and in situ interactions between, at least, two microorganisms were found eligible. Ten papers were included. Layered or radially ordered multiple-taxon structures are the most common form of consortium. Strict or facultative anaerobic microorganisms are mostly found in the interior and the deepest portions of the structures, while aerobic microorganisms are mostly found on the periphery. We present a model of the microbial spatial organization in sub- and supragingival biofilms, as well as how the documented interactions can shape the biofilm formation. Despite the already acquired knowledge, available evidence regarding the structural composition and interactions of microorganisms within dental biofilms is incomplete and large-scale studies are needed.
Collapse
|
20
|
Abstract
The mouth presents a multiplicity of local environments in communication with one another via saliva. The spatial organization of microbes within the mouth is shaped by opposing forces in dynamic equilibrium-salivary flow and adhesion, shedding and colonization-and by interactions among and between microbes and the host. Here we review recent evidence confirming that oral microbes are specialized for individual habitats within the mouth and that microbial habitats and niches are defined by micron-scale gradients in combination with short- and long-range interactions. Micron-scale structure illuminates the roles of individual taxa and provides insight into their community ecology and potential pathogenicity.
Collapse
|
21
|
Antibacterial Effects of MicroRepair®BIOMA-Based Toothpaste and Chewing Gum on Orthodontic Elastics Contaminated In Vitro with Saliva from Healthy Donors: A Pilot Study. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Several new products with innovative formulations are being proposed to facilitate oral care. Here, we evaluated the effects of a commercially available product, a toothpaste and chewing gum named Biorepair Peribioma, on oral microorganisms of healthy subjects. Saliva from six volunteers was collected during 20 min of mastication of a traditional gum (gum A) and the Biorepair Peribioma gum (gum P). Orthodontic elastics (OE) were in vitro contaminated with salivary samples, both A and P, and subsequently exposed or not to a Biorepair Peribioma toothpaste-conditioned supernatant (Tp-SUP). The salivary samples were tested for initial microbial load; hence, the contaminated OE were assessed for microbial growth, adhesion, biofilm formation and persistence; moreover, species identification was assessed. We found that the salivary samples A and P had similar microbial load; upon contamination, microbial adhesion onto the OE was detected to a lower extent when using saliva P with respect to saliva A. Microbial growth and biofilm formation, assessed at 24 h, remained at lower levels in OE exposed to saliva P, compared to saliva A. This difference between salivary samples A and P was confirmed when measuring biofilm persistence (48 h), while it was lost in terms of microbial re-growth (48 h). The Tp-SUP treatment drastically affected microbial load at 24 h and strongly impaired biofilm formation/persistence, in OE exposed to both salivary samples A and P. Finally, such treatment resulted in consistent overgrowth of Lactobacilli, bacterial species originally present both in the Biorepair Peribioma toothpaste and gum. In conclusion, by an in vitro pilot study, we show that the Biorepair Peribioma toothpaste and gum deeply affect oral microorganisms’ behavior, drastically impairing their ability to contaminate and produce plaque onto orthodontic devices.
Collapse
|
22
|
Kreth J, Merritt J, Pfeifer C, Khajotia S, Ferracane J. Interaction between the Oral Microbiome and Dental Composite Biomaterials: Where We Are and Where We Should Go. J Dent Res 2020; 99:1140-1149. [PMID: 32479134 PMCID: PMC7443996 DOI: 10.1177/0022034520927690] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Dental composites are routinely placed as part of tooth restoration procedures. The integrity of the restoration is constantly challenged by the metabolic activities of the oral microbiome. This activity directly contributes to a less-than-desirable half-life for the dental composite formulations currently in use. Therefore, many new antimicrobial dental composites are being developed to counteract the microbial challenge. To ensure that these materials will resist microbiome-derived degradation, the model systems used for testing antimicrobial activities should be relevant to the in vivo environment. Here, we summarize the key steps in oral microbial colonization that should be considered in clinically relevant model systems. Oral microbial colonization is a clearly defined developmental process that starts with the formation of the acquired salivary pellicle on the tooth surface, a conditioned film that provides the critical attachment sites for the initial colonizers. Further development includes the integration of additional species and the formation of a diverse, polymicrobial mature biofilm. Biofilm development is discussed in the context of dental composites, and recent research is highlighted regarding the effect of antimicrobial composites on the composition of the oral microbiome. Future challenges are addressed, including the potential of antimicrobial resistance development and how this could be counteracted by detailed studies of microbiome composition and gene expression on dental composites. Ultimately, progress in this area will require interdisciplinary approaches to effectively mitigate the inevitable challenges that arise as new experimental bioactive composites are evaluated for potential clinical efficacy. Success in this area could have the added benefit of inspiring other fields in medically relevant materials research, since microbial colonization of medical implants and devices is a ubiquitous problem in the field.
Collapse
Affiliation(s)
- J. Kreth
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - J. Merritt
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - C.S. Pfeifer
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - S. Khajotia
- Department of Restorative Sciences, College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - J.L. Ferracane
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
23
|
Singh M, Teles F, Uzel NG, Papas A. Characterizing Microbiota from Sjögren's Syndrome Patients. JDR Clin Trans Res 2020; 6:324-332. [PMID: 32689841 DOI: 10.1177/2380084420940623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To compare the oral microbiota of Sjögren's syndrome (SS) with that of healthy subjects (HS). METHODS Supragingival and subgingival biofilm samples were collected from the mesial-buccal tooth surfaces of SS patients (n = 57) and age- and sex-matched HS (n = 53). Unstimulated saliva and 8 oral tissue samples were taken using a buccal brush. Caries and periodontal measures were recorded. All supragingival samples and a subgroup of 24 SS and 28 HS subgingival samples, as well as 32 SS and 11 HS saliva and oral tissue samples, were analyzed for their content of 41 bacterial species using checkerboard DNA-DNA hybridization. Mean levels (×105 ± SEM) and percentage of DNA probe counts of each species were determined for each sample site and averaged within subjects in the 2 clinical groups. Kruskal-Wallis tests, adjusting for multiple comparisons and cluster analysis, were used for soft tissue and microbial analysis, and the Mann-Whitney test was used to compare caries and periodontal measures. RESULTS Mean (×105 ± SEM) total DNA probe counts in supragingival samples were significantly lower (P < 0.001) in the SS (13.3 ± .7) compared to the HS (44.1 ± 6.8) group. In supragingival samples, Veillonella parvula, Fusobacterium nucleatum ss vincenti, and Propionibacterium acnes were markedly elevated in the SS compared to the HS group in both mean (×105 ± SEM) and mean (± SEM) percentage DNA probe counts (P < 0.001). In subgingival samples of SS, V. parvula was significantly different compared to HS (P < 0.05). SS was characterized by high levels of purple and low levels of orange and red complexes. Cluster analysis of oral tissues and saliva demonstrated that the mean microbial profiles for SS patients and the HS group clustered separately. Active root caries (P < 0.003) and attachment loss were significantly higher (P < 0.029) in the SS group compared to the HS group. CONCLUSION These findings indicate that saliva is a major controlling factor of intraoral biofilm. V. parvula may be a unique microbial biomarker for Sjögren's syndrome. KNOWLEDGE TRANSFER STATEMENT The microbiome characterized for Sjögren's syndrome in salivary hypofunction is shown to be under stress and reduced. Veillonella parvula can be a possible identification of a biomarker for Sjögren's syndrome.
Collapse
Affiliation(s)
- M Singh
- Division of Oral Medicine, School of Dental Medicine, Tufts University, Boston, MA, USA
| | - F Teles
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, USA.,Center for Innovation & Precision Dentistry, School of Engineering and Applied Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pennsylvania, USA
| | - N G Uzel
- Department of Periodontology, School of Dental Medicine, Tufts University, Boston, MA, USA
| | - A Papas
- Division of Oral Medicine, School of Dental Medicine, Tufts University, Boston, MA, USA
| |
Collapse
|
24
|
Abstract
The oral microbiome is one of the most stable ecosystems in the body and yet the reasons for this are still unclear. As well as being stable, it is also highly diverse which can be ascribed to the variety of niches available in the mouth. Previous studies have focused on the microflora in disease-either caries or periodontitis-and only recently have they considered factors that maintain the normal microflora. This has led to the perception that the microflora proliferate in nutrient-rich periods during oral processing of foods and drinks and starves in between times. In this review, evidence is presented which shows that the normal flora are maintained on a diet of salivary factors including urea, lactate, and salivary protein degradation. These factors are actively secreted by salivary glands which suggests these factors are important in maintaining normal commensals in the mouth. In addition, the immobilization of SIgA in the mucosal pellicle indicates a mechanism to retain certain bacteria that does not rely on the bacterial-centric mechanisms such as adhesins. By examining the salivary metabolome, it is clear that protein degradation is a key nutrient and the availability of free amino acids increases resistance to environmental stresses.
Collapse
Affiliation(s)
- G H Carpenter
- Salivary Research, Centre for Host-microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
25
|
Belstrøm D. The salivary microbiota in health and disease. J Oral Microbiol 2020; 12:1723975. [PMID: 32128039 PMCID: PMC7034443 DOI: 10.1080/20002297.2020.1723975] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 12/19/2022] Open
Abstract
The salivary microbiota (SM), comprising bacteria shed from oral surfaces, has been shown to be individualized, temporally stable and influenced by diet and lifestyle. SM reflects local bacterial alterations of the supragingival and subgingival microbiota, and periodontitis and dental-caries associated characteristics of SM have been reported. Also, data suggest an impact of systemic diseases on SM as demonstrated in patients with a wide variety of systemic diseases including diabetes, cancer, HIV and rheumatoid arthritis. The presence of systemic diseases seems to influence salivary levels of specific bacterial species, as well as α- and β-diversity of SM. The composition of SM might thereby potentially mirror oral and general health status. The contentious development of advanced molecular techniques such as metagenomics, metatranscriptomics and metabolomics has enabled the possibility to address bacterial functions rather than presence in microbial samples. However, at present only a few studies have employed such techniques on SM to reveal functional and metabolic characteristics in oral health and disease. Future studies are therefore warranted to illuminate the possible impact of metabolic functions of SM on oral and general health status. Ultimately, such an approach has the possibility to reveal novel and personalized therapeutic avenues in oral and general medicine.
Collapse
Affiliation(s)
- Daniel Belstrøm
- Section for Periodontology and Microbiology, Department of Odontology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Frias-Lopez J, Duran-Pinedo AE. The Function of the Oral Microbiome in Health and Disease. EMERGING THERAPIES IN PERIODONTICS 2020:141-173. [DOI: 10.1007/978-3-030-42990-4_10] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
27
|
Abstract
Dental caries is closely related to a dysbiosis of the microbial consortia of supragingival oral biofilms driven by a sugar-frequent and acidic-pH environment. The pH is a key factor affecting the homeostasis of supragingival biofilms seen in health. There is increasing interest on the ecological dynamics of the oral microbiome and how a dysbiotic microbiota can be successfully replaced by health-beneficial flora. The concept of preventing the microbial dysbiosis related to caries through modulation of sugar intake and pH has fully emerged.
Collapse
Affiliation(s)
- Marcelle M Nascimento
- Department of Restorative Dental Sciences, Division of Operative Dentistry, College of Dentistry, University of Florida, 1395 Center Drive, Room D9-6, PO Box 100415, Gainesville, FL 32610-0415, USA.
| |
Collapse
|
28
|
An ion for an iron: streptococcal metal homeostasis under oxidative stress. Biochem J 2019; 476:699-703. [PMID: 30819932 DOI: 10.1042/bcj20190017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 11/17/2022]
Abstract
The ability of opportunistic pathogens such as Group A Streptococcus (GAS) to transition between mucosal colonisation and invasive disease requires complex systems for adapting to markedly different host environments. The battle to acquire essential trace metals such as manganese and iron from the host is central to pathogenesis. Using a molecular genetic approach, Turner et al. [Biochem. J. (2019) 476, 595-611] show that it is not just individual metal concentrations that are important, but the ratio of iron to manganese within cells. Increasing this ratio by knocking out pmtA, encoding the Fe(II) exporter PmtA, or by disrupting mtsA, encoding an MtsABC Mn(II)-import system component, led to reductions in superoxide dismutase (SodA) activity and increased sensitivity to oxidative stress. The authors show that SodA is at least 4-fold more active with Mn bound than with Fe and speculate that high intracellular Fe:Mn ratios reduce superoxide dismutase activity through the mismetalation of SodA. Challenging wild-type GAS with 1 mM H2O2 led to a decrease in Fe:Mn ratio and a 3-fold increase in SodA activity, indicating that modulation of the balance between intracellular Fe and Mn may play an important role in adaptation to oxidative stress. This work unravels some of the key mechanisms for maintaining appropriate Mn and Fe concentrations within bacterial cells and underscores the need for future studies that take an holistic view to metal ion homeostasis in bacteria. Strategies aimed at interfering with the balance of intracellular metal ions represent a promising approach for the control of invasive microbial infections.
Collapse
|
29
|
A Study on Changes in pH and Sodium Salivary Bicarbonate Among Patients with Acute Myeloid Leukemia Before and After Chemotherapy. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2019. [DOI: 10.5812/ijcm.83449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Anderson AC, Rothballer M, Altenburger MJ, Woelber JP, Karygianni L, Lagkouvardos I, Hellwig E, Al-Ahmad A. In-vivo shift of the microbiota in oral biofilm in response to frequent sucrose consumption. Sci Rep 2018; 8:14202. [PMID: 30242260 PMCID: PMC6155074 DOI: 10.1038/s41598-018-32544-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/10/2018] [Indexed: 01/29/2023] Open
Abstract
Caries is associated with shifts of microbiota in dental biofilms and primarily driven by frequent sucrose consumption. Data on environmentally induced in vivo microbiota shifts are scarce therefore we investigated the influence of frequent sucrose consumption on the oral biofilm. Splint systems containing enamel slabs were worn for 3 × 7 days with 7-day intervals to obtain oral biofilm samples. After a three-month dietary change of sucking 10 g of sucrose per day in addition to the regular diet, biofilm was obtained again at the end of the second phase. The microbiota was analysed using Illumina MiSeq amplicon sequencing (v1-v2 region). In addition, roughness of the enamel surface was measured with laser scanning microscopy. The sucrose phase resulted in significant differences in beta-diversity and significantly decreased species richness. It was marked by a significant increase in abundance of streptococci, specifically Streptococcus gordonii, Streptococcus parasanguinis and Streptococcus sanguinis. Enamel surface roughness began to increase, reflecting initial impairment of dental enamel surface. The results showed that frequent sucrose consumption provoked compositional changes in the microbiota, leading to an increase of non-mutans streptococci, hence supporting the extended ecological plaque hypothesis and emphasizing the synergy of multiple bacterial species in the development of caries.
Collapse
Affiliation(s)
- Annette Carola Anderson
- Department of Operative Dentistry and Periodontology, Faculty of Medicine, Albert-Ludwigs- University, Freiburg, Germany.
| | - Michael Rothballer
- Institute of Network Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Markus Jörg Altenburger
- Department of Operative Dentistry and Periodontology, Faculty of Medicine, Albert-Ludwigs- University, Freiburg, Germany
| | - Johan Peter Woelber
- Department of Operative Dentistry and Periodontology, Faculty of Medicine, Albert-Ludwigs- University, Freiburg, Germany
| | - Lamprini Karygianni
- Clinic of Preventive Dentistry, Periodontology and Cariology, Center of Dental medicine, University of Zürich, Zürich, Switzerland
| | - Ilias Lagkouvardos
- ZIEL - Institute for Food and Health, Core Facility Microbiome/NGS, Technical University of Munich, Freising, Germany
| | - Elmar Hellwig
- Department of Operative Dentistry and Periodontology, Faculty of Medicine, Albert-Ludwigs- University, Freiburg, Germany
| | - Ali Al-Ahmad
- Department of Operative Dentistry and Periodontology, Faculty of Medicine, Albert-Ludwigs- University, Freiburg, Germany
| |
Collapse
|
31
|
Marsh PD, Zaura E. Dental biofilm: ecological interactions in health and disease. J Clin Periodontol 2018; 44 Suppl 18:S12-S22. [PMID: 28266111 DOI: 10.1111/jcpe.12679] [Citation(s) in RCA: 261] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND The oral microbiome is diverse and exists as multispecies microbial communities on oral surfaces in structurally and functionally organized biofilms. AIM To describe the network of microbial interactions (both synergistic and antagonistic) occurring within these biofilms and assess their role in oral health and dental disease. METHODS PubMed database was searched for studies on microbial ecological interactions in dental biofilms. The search results did not lend themselves to systematic review and have been summarized in a narrative review instead. RESULTS Five hundred and forty-seven original research articles and 212 reviews were identified. The majority (86%) of research articles addressed bacterial-bacterial interactions, while inter-kingdom microbial interactions were the least studied. The interactions included physical and nutritional synergistic associations, antagonism, cell-to-cell communication and gene transfer. CONCLUSIONS Oral microbial communities display emergent properties that cannot be inferred from studies of single species. Individual organisms grow in environments they would not tolerate in pure culture. The networks of multiple synergistic and antagonistic interactions generate microbial inter-dependencies and give biofilms a resilience to minor environmental perturbations, and this contributes to oral health. If key environmental pressures exceed thresholds associated with health, then the competitiveness among oral microorganisms is altered and dysbiosis can occur, increasing the risk of dental disease.
Collapse
Affiliation(s)
- P D Marsh
- Department of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK
| | - Egija Zaura
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
32
|
de Lima PO, Nani BD, Almeida B, Marcondes FK, Groppo FC, de Moraes ABA, Franz-Montan M, Cogo-Müller K. Stress-related salivary proteins affect the production of volatile sulfur compounds by oral bacteria. Oral Dis 2018; 24:1358-1366. [PMID: 29761905 DOI: 10.1111/odi.12890] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/25/2018] [Accepted: 05/03/2018] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To determine whether stress-related substances and sex hormones influence the growth and in vitro production of volatile sulfur compounds (VSCs) by Solobacterium moorei and Fusobacterium nucleatum. MATERIALS AND METHODS Bacteria growth and VSCs production were evaluated in the presence of alpha-amylase, beta-defensin-2, mucin, estradiol, and progesterone. Growth was evaluated by colony counting, and the production of the VSCs hydrogen sulfide (H2 S) and methyl mercaptan (CH3 SH) was measured using the Oral Chroma™ instrument. RESULTS Mucin induced the production of H2 S by both bacteria, but had a slight inhibitory effect on CH3 SH production by F. nucleatum. It also increased the viability of F. nucleatum. Alpha-amylase increased H2 S production by S. moorei and CH3 SH production by F. nucleatum, but had no effect on H2 S production by F. nucleatum. No substance altered the viability of S. moorei. No effects of beta-defensin-2, estradiol, or progesterone were observed. CONCLUSION The salivary stress-related proteins mucin and alpha-amylase altered VSCs production by F. nucleatum and S. moorei, favoring H2 S production. These findings are a step toward understanding the relation between stress and increased amounts of H2 S.
Collapse
Affiliation(s)
- Patricia Oliveira de Lima
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, SP, Brazil
| | - Bruno Dias Nani
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, SP, Brazil
| | - Barbara Almeida
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, SP, Brazil
| | - Fernanda Klein Marcondes
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, SP, Brazil
| | - Francisco Carlos Groppo
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, SP, Brazil
| | - Antonio Bento Alves de Moraes
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, SP, Brazil
| | - Michelle Franz-Montan
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, SP, Brazil
| | - Karina Cogo-Müller
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, SP, Brazil.,Faculty of Pharmaceutical Sciences, University of Campinas - UNICAMP, Campinas, SP, Brazil
| |
Collapse
|
33
|
Hetrodt F, Lausch J, Meyer-Lueckel H, Apel C, Conrads G. Natural saliva as an adjuvant in a secondary caries model based on Streptococcus mutans. Arch Oral Biol 2018; 90:138-143. [PMID: 29614462 DOI: 10.1016/j.archoralbio.2018.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/21/2018] [Accepted: 03/23/2018] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Two factors for secondary caries formation were evaluated using an artificial biofilm model, saliva as additive in culture medium and bonding procedures of composite materials for artificial gap creation. DESIGN Standardized cavities were prepared in bovine tooth samples (n = 44), treated with two different bonding pretreatments, restored and after artificial ageing incubated with Streptococcus mutans in a Mueller-Hinton-Broth-Sugar medium with or without human saliva for seven days. Secondary caries formation was analyzed using confocal laser scanning microscopy and transversal microradiography. RESULTS Lesions were significantly pronounced in groups using saliva, but were not influenced by the bonding pretreatments. CONCLUSIONS The results indicate that the addition of saliva, but not the type of bonding procedure influences the outcome in the present biofilm-based secondary caries model.
Collapse
Affiliation(s)
- Franziska Hetrodt
- Department of Operative Dentistry, Periodontology and Preventive Dentistry, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Julian Lausch
- Department of Operative Dentistry, Periodontology and Preventive Dentistry, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Hendrik Meyer-Lueckel
- Department of Preventive, Restorative and Pediatric Dentistry, University of Bern, Freiburgstrasse 7, 3010, Bern, Switzerland.
| | - Christian Apel
- Department of Biohybrid & Medical Textiles, Institute of Applied Medical Engineering, Helmholtz Institute of RWTH Aachen University & Hospital, Pauwelsstraße 20, 52074, Aachen, Germany.
| | - Georg Conrads
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology and Preventive Dentistry, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| |
Collapse
|
34
|
Novel Two-Component System of Streptococcus sanguinis Affecting Functions Associated with Viability in Saliva and Biofilm Formation. Infect Immun 2018; 86:IAI.00942-17. [PMID: 29339459 DOI: 10.1128/iai.00942-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 01/08/2018] [Indexed: 02/07/2023] Open
Abstract
Streptococcus sanguinis is a pioneer species of teeth and a common opportunistic pathogen of infective endocarditis. In this study, we identified a two-component system, S. sanguinis SptRS (SptRS Ss ), affecting S. sanguinis survival in saliva and biofilm formation. Isogenic mutants of sptRSs (SKsptR) and sptSSs (SKsptS) showed reduced cell counts in ex vivo assays of viability in saliva compared to those of parent strain SK36 and complemented mutants. Reduced counts of the mutants in saliva were associated with reduced growth rates in nutrient-poor medium (RPMI) and increased susceptibility to the deposition of C3b and the membrane attach complex (MAC) of the complement system, a defense component of saliva and serum. Conversely, sptRSs and sptSSs mutants showed increased biofilm formation associated with higher levels of production of H2O2 and extracellular DNA. Reverse transcription-quantitative PCR (RT-qPCR) comparisons of strains indicated a global role of SptRS Ss in repressing genes for H2O2 production (2.5- to 15-fold upregulation of spxB, spxR, vicR, tpk, and ackA in sptRSs and sptSSs mutants), biofilm formation, and/or evasion of host immunity (2.1- to 11.4-fold upregulation of srtA, pcsB, cwdP, iga, and nt5e). Compatible with the homology of SptR Ss with AraC-type regulators, duplicate to multiple conserved repeats were identified in 1,000-bp regulatory regions of downstream genes, suggesting that SptR Ss regulates transcription by DNA looping. Significant transcriptional changes in the regulatory genes vicR, spxR, comE, comX, and mecA in the sptRSs and sptSSs mutants further indicated that SptRS Ss is part of a regulatory network that coordinates cell wall homeostasis, H2O2 production, and competence. This study reveals that SptRS Ss is involved in the regulation of crucial functions for S. sanguinis persistence in the oral cavity.
Collapse
|
35
|
A cytometric approach to follow variation and dynamics of the salivary microbiota. Methods 2017; 134-135:67-79. [PMID: 28842259 DOI: 10.1016/j.ymeth.2017.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/07/2017] [Accepted: 08/16/2017] [Indexed: 01/16/2023] Open
Abstract
Microbial flow cytometry is an established fast and economic technique for complex ecosystem studies and enables visualization of rapidly changing community structures by measuring characteristics of single microbial cells. Cytometric evaluation routines are available such as flowCyBar which are useful for automatic data processing. Here, a cytometric workflow was established which allows to routinely analyze salivary microbiomes on the example of ten oral healthy subjects. First, saliva was collected within a 3-month period, cytometrically analyzed and the evolution of the microbiomes followed as well as the calculation of their intra- and inter-subject similarity. Second, the respective microbiomes were stressed by exposition to high sugar or acid concentrations and immediate changes were recorded. Third, bactericide solutions were tested on their impact on the microbiomes. In all three set ups huge intra-individual variations in cytometric community structures were found to be largely absent, even under stress, while inter-individual diversity was obvious. The bacterial cell counts of saliva samples were found to vary between 3.0×107 and 6.2×108 cells per sample and subject in undisturbed environments. The application of the two bactericides did not cause noteworthy diversity changes but the loss in cell numbers by about 50% was high after treatment. Illumina® sequencing of whole microbiomes or sorted sub-microbiomes revealed typical phyla such as Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes and Fusobacteria. This approach is useful for fast monitoring of individual salivary microbiomes and automatic calculation of intra- and inter-individual dynamic changes and variability and opens insight into ecological principles leading to their sustainment in their individual environment.
Collapse
|
36
|
Differential Utilization of Basic Proline-Rich Glycoproteins during Growth of Oral Bacteria in Saliva. Appl Environ Microbiol 2016; 82:5249-58. [PMID: 27316966 DOI: 10.1128/aem.01111-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/13/2016] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED Although saliva is widely recognized as a primary source of carbon and nitrogen for growth of the dental plaque biofilm community, little is known about how different oral bacteria utilize specific salivary components. To address this question, 32 strains representing 16 genera commonly isolated from early plaque biofilms were compared for growth over two transfers in stimulated (by chewing Parafilm) whole saliva that was stabilized by heat treatment and dialysis. The cell densities, measured by quantitative PCR (qPCR), ranged from ∼1 × 10(6) to 1 × 10(7)/ml for strains of Streptococcus gordonii, Streptococcus oralis, and Streptococcus mitis and one strain of Streptococcus sanguinis Strains of Streptococcus mutans, Gemella haemolysans, and Granulicatella adiacens reached ∼1 × 10(5) to 1 × 10(6)/ml. In contrast, little or no growth was noted for three other strains of S. sanguinis, as well as for strains of Streptococcus parasanguinis, Streptococcus salivarius, Streptococcus vestibularis, Streptococcus sobrinus, Actinomyces spp., Abiotrophia defectiva, and Rothia dentocariosa SDS-PAGE, lectin blotting, and two-dimensional gel electrophoresis of saliva from cultures of S. gordonii, S. oralis, and S. mitis revealed species-specific differences in the degradation of basic proline-rich glycoproteins (PRG). In contrast, saliva from cultures of other bacteria was indistinguishable from control saliva. Species-dependent differences in the utilization of individual host sugars were minor. Thus, differences in salivary glycan foraging between oral species may be important to cross-feeding and cooperation between organisms in dental plaque biofilm development. IMPORTANCE Bacteria in the mouth use saliva for nutrition. How each of the many types of bacteria uses saliva is not clear. We show that a major protein in saliva, called PRG, is an important nutrition source for certain bacteria but not for others. PRG has many sugar molecules linked in chains, but the sugar is not available for bacteria until the chains are degraded. The bacteria that can grow by digesting this protein break the sugar chains into parts which not only support their own growth but could also be available to support the growth of those bacteria that cannot use the intact protein.
Collapse
|
37
|
Ribeiro SM, Felício MR, Boas EV, Gonçalves S, Costa FF, Samy RP, Santos NC, Franco OL. New frontiers for anti-biofilm drug development. Pharmacol Ther 2016; 160:133-44. [DOI: 10.1016/j.pharmthera.2016.02.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|