1
|
Du Q, Dickinson A, Nakuleswaran P, Maghami S, Alagoda S, Hook AL, Ghaemmaghami AM. Targeting Macrophage Polarization for Reinstating Homeostasis following Tissue Damage. Int J Mol Sci 2024; 25:7278. [PMID: 39000385 PMCID: PMC11242417 DOI: 10.3390/ijms25137278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Tissue regeneration and remodeling involve many complex stages. Macrophages are critical in maintaining micro-environmental homeostasis by regulating inflammation and orchestrating wound healing. They display high plasticity in response to various stimuli, showing a spectrum of functional phenotypes that vary from M1 (pro-inflammatory) to M2 (anti-inflammatory) macrophages. While transient inflammation is an essential trigger for tissue healing following an injury, sustained inflammation (e.g., in foreign body response to implants, diabetes or inflammatory diseases) can hinder tissue healing and cause tissue damage. Modulating macrophage polarization has emerged as an effective strategy for enhancing immune-mediated tissue regeneration and promoting better integration of implantable materials in the host. This article provides an overview of macrophages' functional properties followed by discussing different strategies for modulating macrophage polarization. Advances in the use of synthetic and natural biomaterials to fabricate immune-modulatory materials are highlighted. This reveals that the development and clinical application of more effective immunomodulatory systems targeting macrophage polarization under pathological conditions will be driven by a detailed understanding of the factors that regulate macrophage polarization and biological function in order to optimize existing methods and generate novel strategies to control cell phenotype.
Collapse
Affiliation(s)
- Qiran Du
- Immuno-Bioengineering Group, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Anna Dickinson
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Pruthvi Nakuleswaran
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Susan Maghami
- Hull York Medical School, University of York, York YO10 5DD, UK;
| | - Savindu Alagoda
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Andrew L. Hook
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Amir M. Ghaemmaghami
- Immuno-Bioengineering Group, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| |
Collapse
|
2
|
Sandmeier FC. Quantification of Thermal Acclimation in Immune Functions in Ectothermic Animals. BIOLOGY 2024; 13:179. [PMID: 38534449 DOI: 10.3390/biology13030179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024]
Abstract
This short review focuses on current experimental designs to quantify immune acclimation in animals. Especially in the face of rapidly changing thermal regimes, thermal acclimation of immune function has the potential to impact host-pathogen relationships and the fitness of hosts. While much of the field of ecoimmunology has focused on vertebrates and insects, broad interest in how animals can acclimate to temperatures spans taxa. The literature shows a recent increase in thermal acclimation studies in the past six years. I categorized studies as focusing on (1) natural thermal variation in the environment (e.g., seasonal), (2) in vivo manipulation of animals in captive conditions, and (3) in vitro assays using biological samples taken from wild or captive animals. I detail the strengths and weaknesses of these approaches, with an emphasis on mechanisms of acclimation at different levels of organization (organismal and cellular). These two mechanisms are not mutually exclusive, and a greater combination of the three techniques listed above will increase our knowledge of the diversity of mechanisms used by animals to acclimate to changing thermal regimes. Finally, I suggest that functional assays of immune system cells (such as quantification of phagocytosis) are an accessible and non-taxa-specific way to tease apart the effects of animals upregulating quantities of immune effectors (cells) and changes in the function of immune effectors (cellular performance) due to structural changes in cells such as those of membranes and enzymes.
Collapse
|
3
|
Abstract
The inflammaging concept was introduced in 2000 by Prof. Franceschi. This was an evolutionary or rather a revolutionary conceptualization of the immune changes in response to a lifelong stress. This conceptualization permitted to consider the lifelong proinflammatory process as an adaptation which could eventually lead to either beneficial or detrimental consequences. This dichotomy is influenced by both the genetics and the environment. Depending on which way prevails in an individual, the outcome may be healthy longevity or pathological aging burdened with aging-related diseases. The concept of inflammaging has also revealed the complex, systemic nature of aging. Thus, this conceptualization opens the way to consider age-related processes in their complexity, meaning that not only the process but also all counter-processes should be considered. It has also opened the way to add new concepts to the original one, leading to better understanding of the nature of inflammaging and of aging itself. Finally, it showed the way towards potential multimodal interventions involving a holistic approach to optimize the aging process towards a healthy longevity.
Collapse
|
4
|
Cheruku S, Rao V, Pandey R, Rao Chamallamudi M, Velayutham R, Kumar N. Tumor-associated macrophages employ immunoediting mechanisms in colorectal tumor progression: Current research in Macrophage repolarization immunotherapy. Int Immunopharmacol 2023; 116:109569. [PMID: 36773572 DOI: 10.1016/j.intimp.2022.109569] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 02/11/2023]
Abstract
Tumor-associated macrophages (TAMs) constitute the most prolific resident of the tumor microenvironment (TME) that regulate its TME into tumor suppressive or progressive milieu by utilizing immunoediting machinery. Here, the tumor cells construct an immunosuppressive microenvironment that educates TAMs to polarize from anti-tumor TAM-M1 to pro-tumor TAM-M2 phenotype consequently contributing to tumor progression. In colorectal cancer (CRC), the TME displays a prominent pro-tumorigenic immune profile with elevated expression of immune-checkpoint molecules notably PD-1, CTLA4, etc., in both MSI and ultra-mutated MSS tumors. This authenticated immune-checkpoint inhibition (ICI) immunotherapy as a pre-requisite for clinical benefit in CRC. However, in response to ICI, specifically, the MSIhi tumors evolved to produce novel immune escape variants thus undermining ICI. Lately, TAM-directed therapies extending from macrophage depletion to repolarization have enabled TME alteration. While TAM accrual implicates clinical benefit in CRC, sustained inflammatory insult may program TAMs to shift from M1 to M2 phenotype. Their ability to oscillate on both facets of the spectrum represents macrophage repolarization immunotherapy as an effective approach to treating CRC. In this review, we briefly discuss the differentiation heterogeneity of colonic macrophages that partake in macrophage-directed immunoediting mechanisms in CRC progression and its employment in macrophage re-polarization immunotherapy.
Collapse
Affiliation(s)
- SriPragnya Cheruku
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal- 576104, Karnataka, India
| | - Vanishree Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal- 576104, Karnataka, India
| | - Ruchi Pandey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, and Research, Hajipur, Export Promotions Industrial Park (EPIP), Industrial area, Hajipur, Vaishali, 844102, Bihar, India
| | - Mallikarjuna Rao Chamallamudi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal- 576104, Karnataka, India
| | - Ravichandiran Velayutham
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, and Research, Hajipur, Export Promotions Industrial Park (EPIP), Industrial area, Hajipur, Vaishali, 844102, Bihar, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, and Research, Hajipur, Export Promotions Industrial Park (EPIP), Industrial area, Hajipur, Vaishali, 844102, Bihar, India.
| |
Collapse
|
5
|
Huang Y, Wang Z, Gong J, Zhu D, Chen W, Li F, Liang XJ, Liu X. Macrophages as potential targets in gene therapy for cancer treatment. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:89-101. [PMID: 36937317 PMCID: PMC10017190 DOI: 10.37349/etat.2023.00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/30/2022] [Indexed: 03/04/2023] Open
Abstract
Macrophages, as ubiquitous and functionally diverse immune cells, play a central role in innate immunity and initiate adaptive immunity. Especially, tumor-associated macrophages (TAMs) are crucial contributors to the tumorigenesis and development of cancer. Thus, macrophages are emerging potential targets for cancer treatment. Among the numerous targeted therapeutic options, gene therapy is one of the most potential therapeutic strategies via directly and specifically regulating biological functions of macrophages at the gene level for cancer treatment. This short review briefly introduces the characteristics of macrophage populations, the functions of TAM in the occurrence, and the progress of cancer. It also summarized some representative examples to highlight the current progress in TAM-targeted gene therapy. The review hopes to provide new insights into macrophage-targeted gene therapy for precision cancer therapy.
Collapse
Affiliation(s)
- Yuanzheng Huang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Zhihui Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Junni Gong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Dandan Zhu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Wang Chen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Fangzhou Li
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- Nano Science and Technology Institute, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxuan Liu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| |
Collapse
|
6
|
|
7
|
Khan S, Masood M, Gaur H, Ahmad S, Syed MA. Long non-coding RNA: An immune cells perspective. Life Sci 2021; 271:119152. [PMID: 33548285 DOI: 10.1016/j.lfs.2021.119152] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/14/2021] [Accepted: 01/24/2021] [Indexed: 02/08/2023]
Abstract
Long non-coding RNAs (lncRNAs) were considered as accumulated genetic waste until they were found to be gene expression regulators by highly sensitive modern genomics platforms. It is a huge class of non-coding transcripts with an arbitrary length of >200 nucleotides, which has gained much attention in the past few years. Increasing evidence from several experimental studies unraveled the expression of lncRNA linked to immune response and disease progression. However, only a small number of lncRNAs have robust evidence of their function. Differential expression of lncRNAs in different immune cells is also evident. In this review, we focused on how lncRNAs expression assist in shaping immune cells (Macrophages, Dendritic cells, NK cells, T cells, B cells, eosinophils, neutrophils, and microglial cells) function and their response to the diseased conditions. Emerging evidence revealed lncRNAs may serve as key regulators in the innate and adaptive immune response system. So, the molecular mechanism insight into the function of lncRNAs in immune response may contribute to the development of potential therapeutic targets for various disease treatments. Therefore, it is imperative to explore the expression of lncRNAs and understand its relevance associated with the immune system.
Collapse
Affiliation(s)
- Salman Khan
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Masood
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Harshita Gaur
- Department of Life Sciences, University of Glasgow, United Kingdom
| | - Shaniya Ahmad
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| | - Mansoor Ali Syed
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| |
Collapse
|
8
|
Gordon S. Remembering Metchnikoff in the time of COVID-19. J Leukoc Biol 2021; 109:509-512. [PMID: 33630386 PMCID: PMC8014620 DOI: 10.1002/jlb.4ce0520-304rrr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/01/2020] [Accepted: 11/27/2020] [Indexed: 12/20/2022] Open
Affiliation(s)
- Siamon Gordon
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Yahara Y, Ma X, Gracia L, Alman BA. Monocyte/Macrophage Lineage Cells From Fetal Erythromyeloid Progenitors Orchestrate Bone Remodeling and Repair. Front Cell Dev Biol 2021; 9:622035. [PMID: 33614650 PMCID: PMC7889961 DOI: 10.3389/fcell.2021.622035] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/12/2021] [Indexed: 12/21/2022] Open
Abstract
A third of the population sustains a bone fracture, and the pace of fracture healing slows with age. The slower pace of repair is responsible for the increased morbidity in older individuals who sustain a fracture. Bone healing progresses through overlapping phases, initiated by cells of the monocyte/macrophage lineage. The repair process ends with remodeling. This last phase is controlled by osteoclasts, which are bone-specific multinucleated cells also of the monocyte/macrophage lineage. The slower rate of healing in aging can be rejuvenated by macrophages from young animals, and secreted proteins from macrophage regulate undifferentiated mesenchymal cells to become bone-forming osteoblasts. Macrophages can derive from fetal erythromyeloid progenitors or from adult hematopoietic progenitors. Recent studies show that fetal erythromyeloid progenitors are responsible for the osteoclasts that form the space in bone for hematopoiesis and the fetal osteoclast precursors reside in the spleen postnatally, traveling through the blood to participate in fracture repair. Differences in secreted proteins between macrophages from old and young animals regulate the efficiency of osteoblast differentiation from undifferentiated mesenchymal precursor cells. Interestingly, during the remodeling phase osteoclasts can form from the fusion between monocyte/macrophage lineage cells from the fetal and postnatal precursor populations. Data from single cell RNA sequencing identifies specific markers for populations derived from the different precursor populations, a finding that can be used in future studies. Here, we review the diversity of macrophages and osteoclasts, and discuss recent finding about their developmental origin and functions, which provides novel insights into their roles in bone homeostasis and repair.
Collapse
Affiliation(s)
- Yasuhito Yahara
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, United States.,Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama, Japan.,Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Xinyi Ma
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, United States.,Department of Cell Biology, Duke University School of Medicine, Durham, NC, United States
| | - Liam Gracia
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, United States.,Department of Cell Biology, Duke University School of Medicine, Durham, NC, United States
| | - Benjamin A Alman
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, United States.,Department of Cell Biology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
10
|
Var SR, Byrd-Jacobs CA. Role of Macrophages and Microglia in Zebrafish Regeneration. Int J Mol Sci 2020; 21:E4768. [PMID: 32635596 PMCID: PMC7369716 DOI: 10.3390/ijms21134768] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022] Open
Abstract
Currently, there is no treatment for recovery of human nerve function after damage to the central nervous system (CNS), and there are limited regenerative capabilities in the peripheral nervous system. Since fish are known for their regenerative abilities, understanding how these species modulate inflammatory processes following injury has potential translational importance for recovery from damage and disease. Many diseases and injuries involve the activation of innate immune cells to clear damaged cells. The resident immune cells of the CNS are microglia, the primary cells that respond to infection and injury, and their peripheral counterparts, macrophages. These cells serve as key modulators of development and plasticity and have been shown to be important in the repair and regeneration of structure and function after injury. Zebrafish are an emerging model for studying macrophages in regeneration after injury and microglia in neurodegenerative disorders such as Parkinson's disease and Alzheimer's disease. These fish possess a high degree of neuroanatomical, neurochemical, and emotional/social behavioral resemblance with humans, serving as an ideal simulator for many pathologies. This review explores literature on macrophage and microglial involvement in facilitating regeneration. Understanding innate immune cell behavior following damage may help to develop novel methods for treating toxic and chronic inflammatory processes that are seen in trauma and disease.
Collapse
|
11
|
Gordon S, Plüddemann A, Mukhopadhyay S. Plasma membrane receptors of tissue macrophages: functions and role in pathology. J Pathol 2020; 250:656-666. [PMID: 32086805 DOI: 10.1002/path.5404] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 02/18/2020] [Indexed: 12/11/2022]
Abstract
The cells of the mononuclear phagocyte system (MPS) constitute a dispersed organ, which is distributed throughout the body. Macrophages in different tissues display distinctive mosaic phenotypes as resident and recruited cells of embryonic and bone marrow origin, respectively. They help to maintain homeostasis during development and throughout adult life, yet contribute to the pathogenesis of many disease processes, including inflammation, innate and adaptive immunity, metabolic disorders, and cancer. Heterogeneous tissue macrophage populations display a wide variety of surface molecules to recognise and respond to host, microbial, and exogenous ligands in their environment; their receptors mediate the uptake and destruction of effete and dying host cells and pathogens, as well as contribute trophic and secretory functions within every organ in the body. Apart from local cellular interactions, macrophage surface molecules and products serve to mobilise and coordinate systemic humoral and cellular responses. Their use as antigen markers in pathogenesis and as potential drug targets has lagged in clinical pathology and human immunotherapy. In this review, we summarise the properties of selected surface molecules expressed on macrophages in different tissues and disease processes, to provide a functional basis for diagnosis, further research, and treatment. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Siamon Gordon
- College of Medicine, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan City, Taiwan.,Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Annette Plüddemann
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Subhankar Mukhopadhyay
- Peter Gorer Department of Immunobiology, Medical Research Council Centre for Transplantation, King's College London, London, UK
| |
Collapse
|
12
|
Gordon S, Plüddemann A. The Mononuclear Phagocytic System. Generation of Diversity. Front Immunol 2019; 10:1893. [PMID: 31447860 PMCID: PMC6696592 DOI: 10.3389/fimmu.2019.01893] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/26/2019] [Indexed: 01/08/2023] Open
Abstract
We are living through an unprecedented accumulation of data on gene expression by macrophages, reflecting their origin, distribution, and localization within all organs of the body. While the extensive heterogeneity of the cells of the mononuclear phagocyte system is evident, the functional significance of their diversity remains incomplete, nor is the mechanism of diversification understood. In this essay we review some of the implications of what we know, and draw attention to issues to be clarified in further research, taking advantage of the powerful genetic, cellular, and molecular tools now available. Our thesis is that macrophage specialization and functions go far beyond immunobiology, while remaining an essential contributor to innate as well as adaptive immunity.
Collapse
Affiliation(s)
- Siamon Gordon
- College of Medicine, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan City, Taiwan.,Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Annette Plüddemann
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Abstract
Macrophages are present in all vertebrate tissues, from mid-gestation throughout life, constituting a widely dispersed organ system. They promote homeostasis by responding to internal and external changes within the body, not only as phagocytes in defence against microbes and in clearance of dead and senescent cells, but also through trophic, regulatory and repair functions. In this review, we describe macrophage phenotypic heterogeneity in different tissue environments, drawing particular attention to organ-specific functions.
Collapse
Affiliation(s)
- Siamon Gordon
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, 33302, Taiwan. .,Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| | - Annette Plüddemann
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Woodstock Road, Oxford, OX2 6GG, UK
| |
Collapse
|
14
|
Abstract
Macrophages are present in mammals from midgestation, contributing to physiologic homeostasis throughout life. Macrophages arise from yolk sac and foetal liver progenitors during embryonic development in the mouse and persist in different organs as heterogeneous, self-renewing tissue-resident populations. Bone marrow-derived blood monocytes are recruited after birth to replenish tissue-resident populations and to meet further demands during inflammation, infection and metabolic perturbations. Macrophages of mixed origin and different locations vary in replication and turnover, but are all active in mRNA and protein synthesis, fulfilling organ-specific and systemic trophic functions, in addition to host defence. In this review, we emphasise selected properties and non-immune functions of tissue macrophages which contribute to physiologic homeostasis.
Collapse
|