1
|
Iduu NV, Raiford D, Conley A, Scaria J, Nelson J, Ruesch L, Price S, Yue M, Gong J, Wei L, Wang C. A Retrospective Analysis of Salmonella Isolates across 11 Animal Species (1982-1999) Led to the First Identification of Chromosomally Encoded blaSCO-1 in the USA. Microorganisms 2024; 12:528. [PMID: 38543579 PMCID: PMC10974302 DOI: 10.3390/microorganisms12030528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 04/01/2024] Open
Abstract
Antimicrobial resistance (AMR) in non-typhoidal Salmonella is a pressing public health concern in the United States, necessitating continuous surveillance. We conducted a retrospective analysis of 251 Salmonella isolates from 11 animal species recovered between 1982 and 1999, utilizing serotyping, antimicrobial susceptibility testing, and whole-genome sequencing (WGS). Phenotypic resistance was observed in 101 isolates, with S. Typhimurium, S. Dublin, S. Agona, and S. Muenster prevailing among 36 identified serovars. Notably, resistance to 12 of 17 antibiotics was detected, with ampicillin being most prevalent (79/251). We identified 38 resistance genes, primarily mediating aminoglycoside (n = 13) and β-lactamase (n = 6) resistance. Plasmid analysis unveiled nine distinct plasmids associated with AMR genes in these isolates. Chromosomally encoded blaSCO-1 was present in three S. Typhimurium and two S. Muenster isolates from equine samples, conferring resistance to amoxicillin/clavulanic acid. Phylogenetic analysis revealed three distinct clusters for these five isolates, indicating evolutionary divergence. This study represents the first report of blaSCO-1 in the USA, and our recovered isolates harboring this gene as early as 1989 precede those of all other reports. The enigmatic nature of blaSCO-1 prompts further research into its function. Our findings highlight the urgency of addressing antimicrobial resistance in Salmonella for effective public health interventions.
Collapse
Affiliation(s)
- Nneka Vivian Iduu
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (N.V.I.); (D.R.); (S.P.)
| | - Donna Raiford
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (N.V.I.); (D.R.); (S.P.)
| | - Austin Conley
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (N.V.I.); (D.R.); (S.P.)
| | - Joy Scaria
- Department of Veterinary Pathobiology, Stillwater, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Julie Nelson
- Department of Veterinary & Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; (J.N.); (L.R.)
| | - Laura Ruesch
- Department of Veterinary & Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; (J.N.); (L.R.)
| | - Stuart Price
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (N.V.I.); (D.R.); (S.P.)
| | - Min Yue
- Department of Veterinary Medicine, Zhejiang University, Hangzhou 310027, China
| | - Jiansen Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, China;
| | - Lanjing Wei
- Bioengineering Program, The University of Kansas, Lawrence, KS 66045, USA;
| | - Chengming Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (N.V.I.); (D.R.); (S.P.)
| |
Collapse
|
2
|
Lan F, Saba J, Qian Y, Ross T, Landick R, Venturelli OS. Single-cell analysis of multiple invertible promoters reveals differential inversion rates as a strong determinant of bacterial population heterogeneity. SCIENCE ADVANCES 2023; 9:eadg5476. [PMID: 37540747 PMCID: PMC10403206 DOI: 10.1126/sciadv.adg5476] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 07/05/2023] [Indexed: 08/06/2023]
Abstract
Population heterogeneity can promote bacterial fitness in response to unpredictable environmental conditions. A major mechanism of phenotypic variability in the human gut symbiont Bacteroides spp. involves the inversion of promoters that drive the expression of capsular polysaccharides, which determine the architecture of the cell surface. High-throughput single-cell sequencing reveals substantial population heterogeneity generated through combinatorial promoter inversion regulated by a broadly conserved serine recombinase. Exploiting control over population diversification, we show that populations with different initial compositions converge to a similar composition over time. Combining our data with stochastic computational modeling, we demonstrate that the differential rates of promoter inversion are a major mechanism shaping population dynamics. More broadly, our approach could be used to interrogate single-cell combinatorial phase variable states of diverse microbes including bacterial pathogens.
Collapse
Affiliation(s)
- Freeman Lan
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Jason Saba
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53726, USA
- Department of Bacteriology, University of Wisconsin-Madison, WI 53726, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yili Qian
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Tyler Ross
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53726, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53726, USA
- Department of Bacteriology, University of Wisconsin-Madison, WI 53726, USA
| | - Ophelia S. Venturelli
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53726, USA
- Department of Bacteriology, University of Wisconsin-Madison, WI 53726, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison 53706, WI, USA
| |
Collapse
|
3
|
Montaño SP, Rowland SJ, Fuller JR, Burke ME, MacDonald A, Boocock M, Stark W, Rice P. Structural basis for topological regulation of Tn3 resolvase. Nucleic Acids Res 2023; 51:1001-1018. [PMID: 36100255 PMCID: PMC9943657 DOI: 10.1093/nar/gkac733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/02/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Site-specific DNA recombinases play a variety of biological roles, often related to the dissemination of antibiotic resistance, and are also useful synthetic biology tools. The simplest site-specific recombination systems will recombine any two cognate sites regardless of context. Other systems have evolved elaborate mechanisms, often sensing DNA topology, to ensure that only one of multiple possible recombination products is produced. The closely related resolvases from the Tn3 and γδ transposons have historically served as paradigms for the regulation of recombinase activity by DNA topology. However, despite many proposals, models of the multi-subunit protein-DNA complex (termed the synaptosome) that enforces this regulation have been unsatisfying due to a lack of experimental constraints and incomplete concordance with experimental data. Here, we present new structural and biochemical data that lead to a new, detailed model of the Tn3 synaptosome, and discuss how it harnesses DNA topology to regulate the enzymatic activity of the recombinase.
Collapse
Affiliation(s)
- Sherwin P Montaño
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Sally-J Rowland
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Bower Building, University Avenue, Glasgow G12 8QQ, Scotland, UK
| | - James R Fuller
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Mary E Burke
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Bower Building, University Avenue, Glasgow G12 8QQ, Scotland, UK
| | - Alasdair I MacDonald
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Bower Building, University Avenue, Glasgow G12 8QQ, Scotland, UK
| | - Martin R Boocock
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Bower Building, University Avenue, Glasgow G12 8QQ, Scotland, UK
| | - W Marshall Stark
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Bower Building, University Avenue, Glasgow G12 8QQ, Scotland, UK
| | - Phoebe A Rice
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
4
|
Wang Y, Guo M, Yang N, Guan Z, Wu H, Ullah N, Asare E, Shi S, Gao B, Song C. Phylogenetic Relationships among TnpB-Containing Mobile Elements in Six Bacterial Species. Genes (Basel) 2023; 14:523. [PMID: 36833450 PMCID: PMC9956272 DOI: 10.3390/genes14020523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Some families of mobile elements in bacterial genomes encode not only a transposase but also an accessory TnpB gene. This gene has been shown to encode an RNA-guided DNA endonuclease, co-evolving with Y1 transposase and serine recombinase in mobile elements IS605 and IS607. In this paper, we reveal the evolutionary relationships among TnpB-containing mobile elements (TCMEs) in well-assembled genomes of six bacterial species: Bacillus cereus, Clostridioides difficile, Deinococcus radiodurans, Escherichia coli, Helicobacter pylori and Salmonella enterica. In total, 9996 TCMEs were identified in 4594 genomes. They belonged to 39 different insertion sequences (ISs). Based on their genetic structures and sequence identities, the 39 TCMEs were classified into three main groups and six subgroups. According to our phylogenetic analysis, TnpBs include two main branches (TnpB-A and TnpB-B) and two minor branches (TnpB-C and TnpB-D). The key TnpB motifs and the associated Y1 and serine recombinases were highly conserved across species, even though their overall sequence identities were low. Substantial variation was observed for the rate of invasion across bacterial species and strains. Over 80% of the genomes of B. cereus, C. difficile, D. radiodurans and E. coli contained TCMEs; however, only 64% of the genomes of H. pylori and 44% of S. enterica genomes contained TCMEs. IS605 showed the largest rate of invasion in these species, while IS607 and IS1341 had a relatively narrow distribution. Co-invasions of IS605, IS607 and IS1341 elements were observed in various genomes. The largest average copy number was observed for IS605b elements in C. difficile. The average copy numbers of most other TCMEs were smaller than four. Our findings have important implications for understanding the co-evolution of TnpB-containing mobile elements and their biological roles in host genome evolution.
Collapse
Affiliation(s)
- Yali Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Mengke Guo
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Naisu Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhongxia Guan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Han Wu
- Department of Immunology, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Numan Ullah
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Emmanuel Asare
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shasha Shi
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Bo Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Chengyi Song
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
West PT, Chanin RB, Bhatt AS. From genome structure to function: insights into structural variation in microbiology. Curr Opin Microbiol 2022; 69:102192. [PMID: 36030622 PMCID: PMC9783807 DOI: 10.1016/j.mib.2022.102192] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/07/2022] [Accepted: 07/19/2022] [Indexed: 12/27/2022]
Abstract
Structural variation in bacterial genomes is an important evolutionary driver. Genomic rearrangements, such as inversions, duplications, and insertions, can regulate gene expression and promote niche adaptation. Importantly, many of these variations are reversible and preprogrammed to generate heterogeneity. While many tools have been developed to detect structural variation in eukaryotic genomes, variation in bacterial genomes and metagenomes remains understudied. However, recent advances in genome sequencing technology and the development of new bioinformatic pipelines hold promise in further understanding microbial genomics.
Collapse
Affiliation(s)
- Patrick T West
- Department of Genetics, Stanford University, 269 Campus Dr, CCSR 1155b, Stanford, 94305 CA, USA; Department of Medicine (Hematology, Blood and Marrow Transplantation), 269 Campus Dr, CCSR 1155b, Stanford, CA 94305, USA
| | - Rachael B Chanin
- Department of Genetics, Stanford University, 269 Campus Dr, CCSR 1155b, Stanford, 94305 CA, USA; Department of Medicine (Hematology, Blood and Marrow Transplantation), 269 Campus Dr, CCSR 1155b, Stanford, CA 94305, USA
| | - Ami S Bhatt
- Department of Genetics, Stanford University, 269 Campus Dr, CCSR 1155b, Stanford, 94305 CA, USA; Department of Medicine (Hematology, Blood and Marrow Transplantation), 269 Campus Dr, CCSR 1155b, Stanford, CA 94305, USA.
| |
Collapse
|
6
|
Khedkar S, Smyshlyaev G, Letunic I, Maistrenko OM, Coelho LP, Orakov A, Forslund SK, Hildebrand F, Luetge M, Schmidt TSB, Barabas O, Bork P. Landscape of mobile genetic elements and their antibiotic resistance cargo in prokaryotic genomes. Nucleic Acids Res 2022; 50:3155-3168. [PMID: 35323968 PMCID: PMC8989519 DOI: 10.1093/nar/gkac163] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/30/2022] [Accepted: 03/11/2022] [Indexed: 12/02/2022] Open
Abstract
Prokaryotic Mobile Genetic Elements (MGEs) such as transposons, integrons, phages and plasmids, play important roles in prokaryotic evolution and in the dispersal of cargo functions like antibiotic resistance. However, each of these MGE types is usually annotated and analysed individually, hampering a global understanding of phylogenetic and environmental patterns of MGE dispersal. We thus developed a computational framework that captures diverse MGE types, their cargos and MGE-mediated horizontal transfer events, using recombinases as ubiquitous MGE marker genes and pangenome information for MGE boundary estimation. Applied to ∼84k genomes with habitat annotation, we mapped 2.8 million MGE-specific recombinases to six operational MGE types, which together contain on average 13% of all the genes in a genome. Transposable elements (TEs) dominated across all taxa (∼1.7 million occurrences), outnumbering phages and phage-like elements (<0.4 million). We recorded numerous MGE-mediated horizontal transfer events across diverse phyla and habitats involving all MGE types, disentangled and quantified the extent of hitchhiking of TEs (17%) and integrons (63%) with other MGE categories, and established TEs as dominant carriers of antibiotic resistance genes. We integrated all these findings into a resource (proMGE.embl.de), which should facilitate future studies on the large mobile part of genomes and its horizontal dispersal.
Collapse
Affiliation(s)
- Supriya Khedkar
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
| | - Georgy Smyshlyaev
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany.,Department of Molecular Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Ivica Letunic
- Biobyte solutions GmbH, Bothestr 142, 69117 Heidelberg, Germany
| | - Oleksandr M Maistrenko
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
| | - Luis Pedro Coelho
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Askarbek Orakov
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
| | - Sofia K Forslund
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany.,Max Delbrück Centre for Molecular Medicine, Berlin, Germany.,Experimental and Clinical Research Center, Charité-Universitätsmedizin and Max-Delbrück Center, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Falk Hildebrand
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
| | - Mechthild Luetge
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
| | - Thomas S B Schmidt
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
| | - Orsolya Barabas
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany.,Department of Molecular Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Peer Bork
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany.,Max Delbrück Centre for Molecular Medicine, Berlin, Germany.,Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany.,Yonsei Frontier Lab (YFL), Yonsei University, Seoul 03722, South Korea
| |
Collapse
|
7
|
Queffelec J, Postma A, Allison JD, Slippers B. Remnants of horizontal transfers of Wolbachia genes in a Wolbachia-free woodwasp. BMC Ecol Evol 2022; 22:36. [PMID: 35346038 PMCID: PMC8962096 DOI: 10.1186/s12862-022-01995-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/14/2022] [Indexed: 11/16/2022] Open
Abstract
Background Wolbachia is a bacterial endosymbiont of many arthropod and nematode species. Due to its capacity to alter host biology, Wolbachia plays an important role in arthropod and nematode ecology and evolution. Sirex noctilio is a woodwasp causing economic loss in pine plantations of the Southern Hemisphere. An investigation into the genome of this wasp revealed the presence of Wolbachia sequences. Due to the potential impact of Wolbachia on the populations of this wasp, as well as its potential use as a biological control agent against invasive insects, this discovery warranted investigation.
Results In this study we first investigated the presence of Wolbachia in S. noctilio and demonstrated that South African populations of the wasp are unlikely to be infected. We then screened the full genome of S. noctilio and found 12 Wolbachia pseudogenes. Most of these genes constitute building blocks of various transposable elements originating from the Wolbachia genome. Finally, we demonstrate that these genes are distributed in all South African populations of the wasp.
Conclusions Our results provide evidence that S. noctilio might be compatible with a Wolbachia infection and that the bacteria could potentially be used in the future to regulate invasive populations of the wasp. Understanding the mechanisms that led to a loss of Wolbachia infection in S. noctilio could indicate which host species or host population should be sampled to find a Wolbachia strain that could be used as a biological control against S. noctilio. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-01995-x.
Collapse
Affiliation(s)
- Joséphine Queffelec
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Lunnon Road, Pretoria, 0002, South Africa. .,Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.
| | - Alisa Postma
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Lunnon Road, Pretoria, 0002, South Africa.,Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Jeremy D Allison
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Lunnon Road, Pretoria, 0002, South Africa.,Great Lakes Forestry Center, Natural Resources Canada, Canadian Forest Service, Sault St Marie, Canada.,Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Bernard Slippers
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Lunnon Road, Pretoria, 0002, South Africa.,Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
8
|
Trzilova D, Warren MAH, Gadda NC, Williams CL, Tamayo R. Flagellum and toxin phase variation impacts intestinal colonization and disease development in a mouse model of Clostridioides difficile infection. Gut Microbes 2022; 14:2038854. [PMID: 35192433 PMCID: PMC8890394 DOI: 10.1080/19490976.2022.2038854] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/14/2022] [Indexed: 02/04/2023] Open
Abstract
Clostridioides difficile is a major nosocomial pathogen that can cause severe, toxin-mediated diarrhea and pseudomembranous colitis. Recent work has shown that C. difficile exhibits heterogeneity in swimming motility and toxin production in vitro through phase variation by site-specific DNA recombination. The recombinase RecV reversibly inverts the flagellar switch sequence upstream of the flgB operon, leading to the ON/OFF expression of flagellum and toxin genes. How this phenomenon impacts C. difficile virulence in vivo remains unknown. We identified mutations in the right inverted repeat that reduced or prevented flagellar switch inversion by RecV. We introduced these mutations into C. difficile R20291 to create strains with the flagellar switch "locked" in either the ON or OFF orientation. These mutants exhibited a loss of flagellum and toxin phase variation during growth in vitro, yielding precisely modified mutants suitable for assessing virulence in vivo. In a hamster model of acute C. difficile infection, the phase-locked ON mutant caused greater toxin accumulation than the phase-locked OFF mutant but did not differ significantly in the ability to cause acute disease symptoms. In contrast, in a mouse model, preventing flagellum and toxin phase variation affected the ability of C. difficile to colonize the intestinal tract and to elicit weight loss, which is attributable to differences in toxin production during infection. These results show that the ability of C. difficile to phase vary flagella and toxins influences colonization and disease development and suggest that the phenotypic variants generated by flagellar switch inversion have distinct capacities for causing disease.
Collapse
Affiliation(s)
- Dominika Trzilova
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Mercedes A. H. Warren
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Nicole C. Gadda
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Caitlin L. Williams
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Rita Tamayo
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
9
|
Genomic Analysis of a Hospital-Associated Outbreak of Mycobacterium abscessus: Implications on Transmission. J Clin Microbiol 2021; 60:e0154721. [PMID: 34705540 DOI: 10.1128/jcm.01547-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Whole genome sequencing (WGS) has recently been used to investigate acquisition of Mycobacterium abscessus (MABC). Investigators have reached conflicting conclusions about the meaning of genetic distances for interpretation of person-to-person transmission. Existing genomic studies were limited by a lack of WGS from environmental MABC isolates. In this study, we retrospectively analyzed the core and accessory genomes of 26 M. abscessus subsp. abscessus (MAA) isolates collected over seven years. Clinical isolates (n=22) were obtained from a large hospital-associated outbreak of MAA, the outbreak hospital before or after the outbreak, a neighboring hospital, and two outside laboratories. Environmental MAA isolates (n=4) were obtained from outbreak hospital water outlets. Phylogenomic analysis of study isolates revealed three clades with pairwise genetic distances ranging from 0-135 single nucleotide polymorphisms (SNPs). Compared to a reference environmental outbreak isolate, all seven clinical outbreak isolates and the remaining three environmental isolates had highly similar core and accessory genomes, differing by up to 7 SNPs and a median of 1.6% accessory genes, respectively. Although genomic comparisons of 15 non-outbreak clinical isolates revealed greater heterogeneity, five (33%) isolates had fewer than 20 SNPs compared to the reference environmental isolate, including two unrelated outside laboratory isolates with less than 4% accessory genome variation. Detailed genomic comparisons confirmed environmental acquisition of outbreak isolates of MAA. SNP distances alone, however, did not clearly differentiate the mechanism of acquisition of outbreak versus non-outbreak isolates. We conclude that successful investigation of MAA clusters requires molecular and epidemiologic components, ideally complemented by environmental sampling.
Collapse
|
10
|
Kamagata K, Itoh Y, Tan C, Mano E, Wu Y, Mandali S, Takada S, Johnson RC. Testing mechanisms of DNA sliding by architectural DNA-binding proteins: dynamics of single wild-type and mutant protein molecules in vitro and in vivo. Nucleic Acids Res 2021; 49:8642-8664. [PMID: 34352099 PMCID: PMC8421229 DOI: 10.1093/nar/gkab658] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/10/2021] [Accepted: 07/22/2021] [Indexed: 01/06/2023] Open
Abstract
Architectural DNA-binding proteins (ADBPs) are abundant constituents of eukaryotic or bacterial chromosomes that bind DNA promiscuously and function in diverse DNA reactions. They generate large conformational changes in DNA upon binding yet can slide along DNA when searching for functional binding sites. Here we investigate the mechanism by which ADBPs diffuse on DNA by single-molecule analyses of mutant proteins rationally chosen to distinguish between rotation-coupled diffusion and DNA surface sliding after transient unbinding from the groove(s). The properties of yeast Nhp6A mutant proteins, combined with molecular dynamics simulations, suggest Nhp6A switches between two binding modes: a static state, in which the HMGB domain is bound within the minor groove with the DNA highly bent, and a mobile state, where the protein is traveling along the DNA surface by means of its flexible N-terminal basic arm. The behaviors of Fis mutants, a bacterial nucleoid-associated helix-turn-helix dimer, are best explained by mobile proteins unbinding from the major groove and diffusing along the DNA surface. Nhp6A, Fis, and bacterial HU are all near exclusively associated with the chromosome, as packaged within the bacterial nucleoid, and can be modeled by three diffusion modes where HU exhibits the fastest and Fis the slowest diffusion.
Collapse
Affiliation(s)
- Kiyoto Kamagata
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Yuji Itoh
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Cheng Tan
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Eriko Mano
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Yining Wu
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Sridhar Mandali
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1737, USA
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Reid C Johnson
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1737, USA.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
11
|
Control of the Serine Integrase Reaction: Roles of the Coiled-Coil and Helix E Regions in DNA Site Synapsis and Recombination. J Bacteriol 2021; 203:e0070320. [PMID: 34060907 DOI: 10.1128/jb.00703-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bacteriophage serine integrases catalyze highly specific recombination reactions between defined DNA segments called att sites. These reactions are reversible depending upon the presence of a second phage-encoded directionality factor. The bipartite C-terminal DNA-binding region of integrases includes a recombinase domain (RD) connected to a zinc-binding domain (ZD), which contains a long flexible coiled-coil (CC) motif that extends away from the bound DNA. We directly show that the identities of the phage A118 integrase att sites are specified by the DNA spacing between the RD and ZD DNA recognition determinants, which in turn directs the relative trajectories of the CC motifs on each subunit of the att-bound integrase dimer. Recombination between compatible dimer-bound att sites requires minimal-length CC motifs and 14 residues surrounding the tip where the pairing of CC motifs between synapsing dimers occurs. Our alanine-scanning data suggest that molecular interactions between CC motif tips may differ in integrative (attP × attB) and excisive (attL × attR) recombination reactions. We identify mutations in 5 residues within the integrase oligomerization helix that control the remodeling of dimers into tetramers during synaptic complex formation. Whereas most of these gain-of-function mutants still require the CC motifs for synapsis, one mutant efficiently, but indiscriminately, forms synaptic complexes without the CC motifs. However, the CC motifs are still required for recombination, suggesting a function for the CC motifs after the initial assembly of the integrase synaptic tetramer. IMPORTANCE The robust and exquisitely regulated site-specific recombination reactions promoted by serine integrases are integral to the life cycle of temperate bacteriophage and, in the case of the A118 prophage, are an important virulence factor of Listeria monocytogenes. The properties of these recombinases have led to their repurposing into tools for genetic engineering and synthetic biology. In this report, we identify determinants regulating synaptic complex formation between correct DNA sites, including the DNA architecture responsible for specifying the identity of recombination sites, features of the unique coiled-coil structure on the integrase that are required to initiate synapsis, and amino acid residues on the integrase oligomerization helix that control the remodeling of synapsing dimers into a tetramer active for DNA strand exchange.
Collapse
|
12
|
Kamagata K, Ouchi K, Tan C, Mano E, Mandali S, Wu Y, Takada S, Takahashi S, Johnson RC. The HMGB chromatin protein Nhp6A can bypass obstacles when traveling on DNA. Nucleic Acids Res 2020; 48:10820-10831. [PMID: 32997109 PMCID: PMC7641734 DOI: 10.1093/nar/gkaa799] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/13/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022] Open
Abstract
DNA binding proteins rapidly locate their specific DNA targets through a combination of 3D and 1D diffusion mechanisms, with the 1D search involving bidirectional sliding along DNA. However, even in nucleosome-free regions, chromosomes are highly decorated with associated proteins that may block sliding. Here we investigate the ability of the abundant chromatin-associated HMGB protein Nhp6A from Saccharomyces cerevisiae to travel along DNA in the presence of other architectural DNA binding proteins using single-molecule fluorescence microscopy. We observed that 1D diffusion by Nhp6A molecules is retarded by increasing densities of the bacterial proteins Fis and HU and by Nhp6A, indicating these structurally diverse proteins impede Nhp6A mobility on DNA. However, the average travel distances were larger than the average distances between neighboring proteins, implying Nhp6A is able to bypass each of these obstacles. Together with molecular dynamics simulations, our analyses suggest two binding modes: mobile molecules that can bypass barriers as they seek out DNA targets, and near stationary molecules that are associated with neighboring proteins or preferred DNA structures. The ability of mobile Nhp6A molecules to bypass different obstacles on DNA suggests they do not block 1D searches by other DNA binding proteins.
Collapse
Affiliation(s)
- Kiyoto Kamagata
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan.,Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan.,Department of Chemistry, Faculty of Science, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Kana Ouchi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan.,Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Cheng Tan
- Computational Biophysics Research Team, RIKEN Center for Computational Science, 7-1-26 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Eriko Mano
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Sridhar Mandali
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1737 USA
| | - Yining Wu
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan.,Department of Chemistry, Faculty of Science, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Satoshi Takahashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan.,Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan.,Department of Chemistry, Faculty of Science, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Reid C Johnson
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1737 USA.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
13
|
Huang X, Wang J, Li J, Liu Y, Liu X, Li Z, Kurniyati K, Deng Y, Wang G, Ralph JD, De Ste Croix M, Escobar-Gonzalez S, Roberts RJ, Veening JW, Lan X, Oggioni MR, Li C, Zhang JR. Prevalence of phase variable epigenetic invertons among host-associated bacteria. Nucleic Acids Res 2020; 48:11468-11485. [PMID: 33119758 PMCID: PMC7672463 DOI: 10.1093/nar/gkaa907] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/28/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022] Open
Abstract
Type I restriction-modification (R-M) systems consist of a DNA endonuclease (HsdR, HsdM and HsdS subunits) and methyltransferase (HsdM and HsdS subunits). The hsdS sequences flanked by inverted repeats (referred to as epigenetic invertons) in certain Type I R-M systems undergo invertase-catalyzed inversions. Previous studies in Streptococcus pneumoniae have shown that hsdS inversions within clonal populations produce subpopulations with profound differences in the methylome, cellular physiology and virulence. In this study, we bioinformatically identified six major clades of the tyrosine and serine family invertases homologs from 16 bacterial phyla, which potentially catalyze hsdS inversions in the epigenetic invertons. In particular, the epigenetic invertons are highly enriched in host-associated bacteria. We further verified hsdS inversions in the Type I R-M systems of four representative host-associated bacteria and found that each of the resultant hsdS allelic variants specifies methylation of a unique DNA sequence. In addition, transcriptome analysis revealed that hsdS allelic variations in Enterococcus faecalis exert significant impact on gene expression. These findings indicate that epigenetic switches driven by invertases in the epigenetic invertons broadly operate in the host-associated bacteria, which may broadly contribute to bacterial host adaptation and virulence beyond the role of the Type I R-M systems against phage infection.
Collapse
Affiliation(s)
- Xueting Huang
- Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Juanjuan Wang
- Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jing Li
- Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yanni Liu
- Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xue Liu
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, CH 1015, Switzerland
| | - Zeyao Li
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kurni Kurniyati
- Department of Oral and Craniofacial Molecular Biology, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Yijie Deng
- Department of Oral and Craniofacial Molecular Biology, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Guilin Wang
- W. M. Keck Foundation Biotechnology Resource Laboratory, Yale University, New Haven, CT 06520, USA
| | - Joseph D Ralph
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
| | - Megan De Ste Croix
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
| | - Sara Escobar-Gonzalez
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
| | | | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, CH 1015, Switzerland
| | - Xun Lan
- Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Marco R Oggioni
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
| | - Chunhao Li
- Department of Oral and Craniofacial Molecular Biology, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jing-Ren Zhang
- Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
14
|
Tassinari E, Bawn M, Thilliez G, Charity O, Acton L, Kirkwood M, Petrovska L, Dallman T, Burgess CM, Hall N, Duffy G, Kingsley RA. Whole-genome epidemiology links phage-mediated acquisition of a virulence gene to the clonal expansion of a pandemic Salmonella enterica serovar Typhimurium clone. Microb Genom 2020; 6:mgen000456. [PMID: 33112226 PMCID: PMC7725340 DOI: 10.1099/mgen.0.000456] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/01/2020] [Indexed: 01/10/2023] Open
Abstract
Epidemic and pandemic clones of bacterial pathogens with distinct characteristics continually emerge, replacing those previously dominant through mechanisms that remain poorly characterized. Here, whole-genome-sequencing-powered epidemiology linked horizontal transfer of a virulence gene, sopE, to the emergence and clonal expansion of a new epidemic Salmonella enterica serovar Typhimurium (S. Typhimurium) clone. The sopE gene is sporadically distributed within the genus Salmonella and rare in S. enterica Typhimurium lineages, but was acquired multiple times during clonal expansion of the currently dominant pandemic monophasic S. Typhimurium sequence type (ST) 34 clone. Ancestral state reconstruction and time-scaled phylogenetic analysis indicated that sopE was not present in the common ancestor of the epidemic clade, but later acquisition resulted in increased clonal expansion of sopE-containing clones that was temporally associated with emergence of the epidemic, consistent with increased fitness. The sopE gene was mainly associated with a temperate bacteriophage mTmV, but recombination with other bacteriophage and apparent horizontal gene transfer of the sopE gene cassette resulted in distribution among at least four mobile genetic elements within the monophasic S. enterica Typhimurium ST34 epidemic clade. The mTmV prophage lysogenic transfer to other S. enterica serovars in vitro was limited, but included the common pig-associated S. enterica Derby (S. Derby). This may explain mTmV in S. Derby co-circulating on farms with monophasic S. Typhimurium ST34, highlighting the potential for further transfer of the sopE virulence gene in nature. We conclude that whole-genome epidemiology pinpoints potential drivers of evolutionary and epidemiological dynamics during pathogen emergence, and identifies targets for subsequent research in epidemiology and bacterial pathogenesis.
Collapse
Affiliation(s)
- Eleonora Tassinari
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| | - Matt Bawn
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Gaetan Thilliez
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Oliver Charity
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Luke Acton
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Mark Kirkwood
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | | | - Timothy Dallman
- Gastrointestinal Bacteria Reference Unit, National Infection Service, Public Health England, London, UK
| | | | - Neil Hall
- Earlham Institute, Norwich Research Park, Norwich, UK
| | | | - Robert A. Kingsley
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich, UK
| |
Collapse
|
15
|
A bacteriophage mimic of the bacterial nucleoid-associated protein Fis. Biochem J 2020; 477:1345-1362. [PMID: 32207815 PMCID: PMC7166090 DOI: 10.1042/bcj20200146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 11/17/2022]
Abstract
We report the identification and characterization of a bacteriophage λ-encoded protein, NinH. Sequence homology suggests similarity between NinH and Fis, a bacterial nucleoid-associated protein (NAP) involved in numerous DNA topology manipulations, including chromosome condensation, transcriptional regulation and phage site-specific recombination. We find that NinH functions as a homodimer and is able to bind and bend double-stranded DNA in vitro. Furthermore, NinH shows a preference for a 15 bp signature sequence related to the degenerate consensus favored by Fis. Structural studies reinforced the proposed similarity to Fis and supported the identification of residues involved in DNA binding which were demonstrated experimentally. Overexpression of NinH proved toxic and this correlated with its capacity to associate with DNA. NinH is the first example of a phage-encoded Fis-like NAP that likely influences phage excision-integration reactions or bacterial gene expression.
Collapse
|
16
|
Trzilova D, Anjuwon-Foster BR, Torres Rivera D, Tamayo R. Rho factor mediates flagellum and toxin phase variation and impacts virulence in Clostridioides difficile. PLoS Pathog 2020; 16:e1008708. [PMID: 32785266 PMCID: PMC7446863 DOI: 10.1371/journal.ppat.1008708] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/24/2020] [Accepted: 06/16/2020] [Indexed: 12/17/2022] Open
Abstract
The intestinal pathogen Clostridioides difficile exhibits heterogeneity in motility and toxin production. This phenotypic heterogeneity is achieved through phase variation by site-specific recombination via the DNA recombinase RecV, which reversibly inverts the "flagellar switch" upstream of the flgB operon. A recV mutation prevents flagellar switch inversion and results in phenotypically locked strains. The orientation of the flagellar switch influences expression of the flgB operon post-transcription initiation, but the specific molecular mechanism is unknown. Here, we report the isolation and characterization of spontaneous suppressor mutants in the non-motile, non-toxigenic recV flg OFF background that regained motility and toxin production. The restored phenotypes corresponded with increased expression of flagellum and toxin genes. The motile suppressor mutants contained single-nucleotide polymorphisms (SNPs) in rho, which encodes the bacterial transcription terminator Rho factor. Analyses using transcriptional reporters indicate that Rho contributes to heterogeneity in flagellar gene expression by preferentially terminating transcription of flg OFF mRNA within the 5' leader sequence. Additionally, Rho is important for initial colonization of the intestine in a mouse model of infection, which may in part be due to the sporulation and growth defects observed in the rho mutants. Together these data implicate Rho factor as a regulator of gene expression affecting phase variation of important virulence factors of C. difficile.
Collapse
Affiliation(s)
- Dominika Trzilova
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Brandon R. Anjuwon-Foster
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Dariana Torres Rivera
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Rita Tamayo
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
17
|
Wang J, Li JW, Li J, Huang Y, Wang S, Zhang JR. Regulation of pneumococcal epigenetic and colony phases by multiple two-component regulatory systems. PLoS Pathog 2020; 16:e1008417. [PMID: 32187228 PMCID: PMC7105139 DOI: 10.1371/journal.ppat.1008417] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/30/2020] [Accepted: 02/19/2020] [Indexed: 11/19/2022] Open
Abstract
Streptococcus pneumoniae is well known for phase variation between opaque (O) and transparent (T) colonies within clonal populations. While the O variant is specialized in invasive infection (with a thicker capsule and higher resistance to host clearance), the T counterpart possesses a relatively thinner capsule and thereby higher airway adherence and colonization. Our previous study found that phase variation is caused by reversible switches of the "opaque ON-or-OFF" methylomes or methylation patterns of pneumococcal genome, which is dominantly driven by the PsrA-catalyzed inversions of the DNA methyltransferase hsdS genes. This study revealed that switch frequency between the O and T variants is regulated by five transcriptional response regulators (rr) of the two-component systems (TCSs). The mutants of rr06, rr08, rr09, rr11 and rr14 produced significantly fewer O and more T colonies. Further mutagenesis revealed that RR06, RR08, RR09 and RR11 enrich the O variant by modulating the directions of the PsrA-catalyzed inversion reactions. In contrast, the impact of RR14 (RitR) on phase variation is independent of PsrA. Consistently, SMRT sequencing uncovered significantly diminished "opaque ON" methylome in the mutants of rr06, rr08, rr09 and rr11 but not that of rr14. Lastly, the phosphorylated form of RR11 was shown to activate the transcription of comW and two sugar utilization systems that are necessary for maintenance of the "opaque ON" genotype and phenotype. This work has thus uncovered multiple novel mechanisms that balance pneumococcal epigenetic status and physiology.
Collapse
Affiliation(s)
- Juanjuan Wang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Jing-Wen Li
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Jing Li
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Yijia Huang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Shaomeng Wang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Jing-Ren Zhang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
18
|
Trejo CS, Rock RS, Stark WM, Boocock MR, Rice PA. Snapshots of a molecular swivel in action. Nucleic Acids Res 2019; 46:5286-5296. [PMID: 29315406 PMCID: PMC6007550 DOI: 10.1093/nar/gkx1309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/20/2017] [Indexed: 12/22/2022] Open
Abstract
Members of the serine family of site-specific recombinases exchange DNA strands via 180° rotation about a central protein-protein interface. Modeling of this process has been hampered by the lack of structures in more than one rotational state for any individual serine recombinase. Here we report crystal structures of the catalytic domains of four constitutively active mutants of the serine recombinase Sin, providing snapshots of rotational states not previously visualized for Sin, including two seen in the same crystal. Normal mode analysis predicted that each tetramer's lowest frequency mode (i.e. most accessible large-scale motion) mimics rotation: two protomers rotate as a pair with respect to the other two. Our analyses also suggest that rotation is not a rigid body movement around a single symmetry axis but instead uses multiple pivot points and entails internal motions within each subunit.
Collapse
Affiliation(s)
- Caitlin S Trejo
- Department of Biochemistry and Molecular Biology, the University of Chicago, Chicago, IL 60637, USA
| | - Ronald S Rock
- Department of Biochemistry and Molecular Biology, the University of Chicago, Chicago, IL 60637, USA
| | - W Marshall Stark
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow G128QQ, UK
| | - Martin R Boocock
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow G128QQ, UK
| | - Phoebe A Rice
- Department of Biochemistry and Molecular Biology, the University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
19
|
Molecular Mechanisms of hsdS Inversions in the cod Locus of Streptococcus pneumoniae. J Bacteriol 2019; 201:JB.00581-18. [PMID: 30617241 DOI: 10.1128/jb.00581-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/02/2019] [Indexed: 12/24/2022] Open
Abstract
Streptococcus pneumoniae (pneumococcus), a major human pathogen, is well known for its adaptation to various host environments. Multiple DNA inversions in the three DNA methyltransferase hsdS genes (hsdS A, hsdS B, and hsdS C) of the colony opacity determinant (cod) locus generate extensive epigenetic and phenotypic diversity. However, it is unclear whether all three hsdS genes are functional and how the inversions mechanistically occur. In this work, our transcriptional analysis revealed active expression of hsdS A but not hsdS B and hsdS C, indicating that hsdS B and hsdS C do not produce functional proteins and instead act as sources for altering the sequence of hsdS A by DNA inversions. Consistent with our previous finding that the hsdS inversions are mediated by three pairs of inverted repeats (IR1, IR2, and IR3), this study showed that the 15-bp IR1 and its upstream sequence are strictly required for the inversion between hsdS A and hsdS B Furthermore, a single tyrosine recombinase PsrA catalyzes the inversions mediated by IR1, IR2, and IR3, based on the dramatic loss of these inversions in the psrA mutant. Surprisingly, PsrA-independent inversions were also detected in the hsdS sequences flanked by the IR2 (298 bp) and IR3 (85 bp) long inverted repeats, which appear to occur spontaneously in the absence of site-specific or RecA-mediated recombination. Because the HsdS subunit is responsible for the sequence specificity of type I restriction modification DNA methyltransferase, these results have revealed that S. pneumoniae varies the methylation patterns of the genome DNA (epigenetic status) by employing multiple mechanisms of DNA inversion in the cod locus.IMPORTANCE Streptococcus pneumoniae is a major pathogen of human infections with the capacity for adaptation to host environments, but the molecular mechanisms behind this phenomenon remain unclear. Previous studies reveal that pneumococcus extends epigenetic and phenotypic diversity by DNA inversions in three methyltransferase hsdS genes of the cod locus. This work revealed that only the hsdS gene that is in the same orientation as hsdM is actively transcribed, but the other two are silent, serving as DNA sources for inversions. While most of the hsdS inversions are catalyzed by PsrA recombinase, the sequences bound by long inverted repeats also undergo inversions via an unknown mechanism. Our results revealed that S. pneumoniae switches the methylation patterns of the genome (epigenetics) by employing multiple mechanisms of DNA inversion.
Collapse
|
20
|
Figueroa-Martinez F, Jackson C, Reyes-Prieto A. Plastid Genomes from Diverse Glaucophyte Genera Reveal a Largely Conserved Gene Content and Limited Architectural Diversity. Genome Biol Evol 2019; 11:174-188. [PMID: 30534986 PMCID: PMC6330054 DOI: 10.1093/gbe/evy268] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2018] [Indexed: 12/30/2022] Open
Abstract
Plastid genome (ptDNA) data of Glaucophyta have been limited for many years to the genus Cyanophora. Here, we sequenced the ptDNAs of Gloeochaete wittrockiana, Cyanoptyche gloeocystis, Glaucocystis incrassata, and Glaucocystis sp. BBH. The reported sequences are the first genome-scale plastid data available for these three poorly studied glaucophyte genera. Although the Glaucophyta plastids appear morphologically “ancestral,” they actually bear derived genomes not radically different from those of red algae or viridiplants. The glaucophyte plastid coding capacity is highly conserved (112 genes shared) and the architecture of the plastid chromosomes is relatively simple. Phylogenomic analyses recovered Glaucophyta as the earliest diverging Archaeplastida lineage, but the position of viridiplants as the first branching group was not rejected by the approximately unbiased test. Pairwise distances estimated from 19 different plastid genes revealed that the highest sequence divergence between glaucophyte genera is frequently higher than distances between species of different classes within red algae or viridiplants. Gene synteny and sequence similarity in the ptDNAs of the two Glaucocystis species analyzed is conserved. However, the ptDNA of Gla. incrassata contains a 7.9-kb insertion not detected in Glaucocystis sp. BBH. The insertion contains ten open reading frames that include four coding regions similar to bacterial serine recombinases (two open reading frames), DNA primases, and peptidoglycan aminohydrolases. These three enzymes, often encoded in bacterial plasmids and bacteriophage genomes, are known to participate in the mobilization and replication of DNA mobile elements. It is therefore plausible that the insertion in Gla. incrassata ptDNA is derived from a DNA mobile element.
Collapse
Affiliation(s)
- Francisco Figueroa-Martinez
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada.,CONACyT-Universidad Autónoma Metropolitana Iztapalapa, Biotechnology Department, Mexico City, Mexico
| | - Christopher Jackson
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada.,School of Biosciences, University of Melbourne, Melbourne, Australia
| | - Adrian Reyes-Prieto
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada
| |
Collapse
|
21
|
Chen W, Mandali S, Hancock SP, Kumar P, Collazo M, Cascio D, Johnson RC. Multiple serine transposase dimers assemble the transposon-end synaptic complex during IS 607-family transposition. eLife 2018; 7:e39611. [PMID: 30289389 PMCID: PMC6188088 DOI: 10.7554/elife.39611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/18/2018] [Indexed: 11/13/2022] Open
Abstract
IS607-family transposons are unusual because they do not have terminal inverted repeats or generate target site duplications. They encode two protein-coding genes, but only tnpA is required for transposition. Our X-ray structures confirm that TnpA is a member of the serine recombinase (SR) family, but the chemically-inactive quaternary structure of the dimer, along with the N-terminal location of the DNA binding domain, are different from other SRs. TnpA dimers from IS1535 cooperatively associate with multiple subterminal repeats, which together with additional nonspecific binding, form a nucleoprotein filament on one transposon end that efficiently captures a second unbound end to generate the paired-end complex (PEC). Formation of the PEC does not require a change in the dimeric structure of the catalytic domain, but remodeling of the C-terminal α-helical region is involved. We posit that the PEC recruits a chemically-active conformer of TnpA to the transposon end to initiate DNA chemistry.
Collapse
Affiliation(s)
- Wenyang Chen
- Department of Biological ChemistryDavid Geffen School of Medicine, University of California at Los AngelesLos AngelesUnited States
| | - Sridhar Mandali
- Department of Biological ChemistryDavid Geffen School of Medicine, University of California at Los AngelesLos AngelesUnited States
| | - Stephen P Hancock
- Department of Biological ChemistryDavid Geffen School of Medicine, University of California at Los AngelesLos AngelesUnited States
| | - Pramod Kumar
- Department of Biological ChemistryDavid Geffen School of Medicine, University of California at Los AngelesLos AngelesUnited States
| | - Michael Collazo
- Department of Energy Institute of Genomics and ProteomicsUniversity of California at Los AngelesLos AngelesUnited States
| | - Duilio Cascio
- Department of Energy Institute of Genomics and ProteomicsUniversity of California at Los AngelesLos AngelesUnited States
| | - Reid C Johnson
- Department of Biological ChemistryDavid Geffen School of Medicine, University of California at Los AngelesLos AngelesUnited States
- Molecular Biology InstituteUniversity of California at Los AngelesLos AngelesUnited States
| |
Collapse
|
22
|
Characterization and induction of prophages in human gut-associated Bifidobacterium hosts. Sci Rep 2018; 8:12772. [PMID: 30143740 PMCID: PMC6109161 DOI: 10.1038/s41598-018-31181-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/09/2018] [Indexed: 01/20/2023] Open
Abstract
In the current report, we describe the identification of three genetically distinct groups of prophages integrated into three different chromosomal sites of human gut-associated Bifidobacterium breve and Bifidobacterium longum strains. These bifidobacterial prophages are distantly related to temperate actinobacteriophages of several hosts. Some prophages, integrated within the dnaJ2 gene, are competent for induction, excision, replication, assembly and lysis, suggesting that they are fully functional and can generate infectious particles, even though permissive hosts have not yet been identified. Interestingly, several of these phages harbor a putative phase variation shufflon (the Rin system) that generates variation of the tail-associated receptor binding protein (RBP). Unlike the analogous coliphage-associated shufflon Min, or simpler Cin and Gin inversion systems, Rin is predicted to use a tyrosine recombinase to promote inversion, the first reported phage-encoded tyrosine-family DNA invertase. The identification of bifidobacterial prophages with RBP diversification systems that are competent for assembly and lysis, yet fail to propagate lytically under laboratory conditions, suggests dynamic evolution of bifidobacteria and their phages in the human gut.
Collapse
|
23
|
Fan HF, Ma CH, Jayaram M. Single-Molecule Tethered Particle Motion: Stepwise Analyses of Site-Specific DNA Recombination. MICROMACHINES 2018; 9:E216. [PMID: 30424148 PMCID: PMC6187709 DOI: 10.3390/mi9050216] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/25/2018] [Accepted: 04/28/2018] [Indexed: 12/17/2022]
Abstract
Tethered particle motion/microscopy (TPM) is a biophysical tool used to analyze changes in the effective length of a polymer, tethered at one end, under changing conditions. The tether length is measured indirectly by recording the Brownian motion amplitude of a bead attached to the other end. In the biological realm, DNA, whose interactions with proteins are often accompanied by apparent or real changes in length, has almost exclusively been the subject of TPM studies. TPM has been employed to study DNA bending, looping and wrapping, DNA compaction, high-order DNA⁻protein assembly, and protein translocation along DNA. Our TPM analyses have focused on tyrosine and serine site-specific recombinases. Their pre-chemical interactions with DNA cause reversible changes in DNA length, detectable by TPM. The chemical steps of recombination, depending on the substrate and the type of recombinase, may result in a permanent length change. Single molecule TPM time traces provide thermodynamic and kinetic information on each step of the recombination pathway. They reveal how mechanistically related recombinases may differ in their early commitment to recombination, reversibility of individual steps, and in the rate-limiting step of the reaction. They shed light on the pre-chemical roles of catalytic residues, and on the mechanisms by which accessory proteins regulate recombination directionality.
Collapse
Affiliation(s)
- Hsiu-Fang Fan
- Biophotonics and Molecular Imaging Center, Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan.
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan.
| | - Chien-Hui Ma
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| | - Makkuni Jayaram
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
24
|
Groß U, Brzuszkiewicz E, Gunka K, Starke J, Riedel T, Bunk B, Spröer C, Wetzel D, Poehlein A, Chibani C, Bohne W, Overmann J, Zimmermann O, Daniel R, Liesegang H. Comparative genome and phenotypic analysis of three Clostridioides difficile strains isolated from a single patient provide insight into multiple infection of C. difficile. BMC Genomics 2018; 19:1. [PMID: 29291715 PMCID: PMC5749029 DOI: 10.1186/s12864-017-4368-0] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 12/06/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Clostridioides difficile infections (CDI) have emerged over the past decade causing symptoms that
range from mild, antibiotic-associated diarrhea (AAD) to life-threatening toxic megacolon. In this study, we describe a multiple and isochronal (mixed) CDI caused by the isolates DSM 27638, DSM 27639 and DSM 27640 that already initially showed different morphotypes on solid media. RESULTS The three isolates belonging to the ribotypes (RT) 012 (DSM 27639) and 027 (DSM 27638 and DSM 27640)
were phenotypically characterized and high quality closed genome sequences were generated. The genomes were compared with seven reference strains including three strains of the RT 027, two of the RT 017, and one of the RT 078 as well as a multi-resistant RT 012 strain. The analysis of horizontal gene transfer events revealed gene acquisition incidents that sort the strains within the time line of the spread of their RTs within Germany. We could show as well that horizontal gene transfer between the members of different RTs occurred within this multiple infection. In addition, acquisition and exchange of virulence-related features including antibiotic resistance genes were observed. Analysis of the two genomes assigned to RT 027 revealed three single nucleotide polymorphisms (SNPs) and apparently a regional genome modification within the flagellar switch that regulates the fli operon. CONCLUSION Our findings show that (i) evolutionary events based on horizontal gene transfer occur within an ongoing
CDI and contribute to the adaptation of the species by the introduction of new genes into the genomes, (ii) within a multiple infection of a single patient the exchange of genetic material was responsible for a much higher genome variation than the observed SNPs.
Collapse
Affiliation(s)
- Uwe Groß
- Institute for Medical Microbiology, University Medical Center Göttingen, Göttingen, Germany
| | - Elzbieta Brzuszkiewicz
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University, Göttingen, Germany
| | - Katrin Gunka
- Institute for Medical Microbiology, University Medical Center Göttingen, Göttingen, Germany
| | - Jessica Starke
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University, Göttingen, Germany
| | - Thomas Riedel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Daniela Wetzel
- Institute for Medical Microbiology, University Medical Center Göttingen, Göttingen, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University, Göttingen, Germany
| | - Cynthia Chibani
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University, Göttingen, Germany
| | - Wolfgang Bohne
- Institute for Medical Microbiology, University Medical Center Göttingen, Göttingen, Germany
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Ortrud Zimmermann
- Institute for Medical Microbiology, University Medical Center Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University, Göttingen, Germany
| | - Heiko Liesegang
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University, Göttingen, Germany.
| |
Collapse
|
25
|
Greenfield DI, Gooch Moore J, Stewart JR, Hilborn ED, George BJ, Li Q, Dickerson J, Keppler CK, Sandifer PA. Temporal and Environmental Factors Driving Vibrio Vulnificus and V. Parahaemolyticus Populations and Their Associations With Harmful Algal Blooms in South Carolina Detention Ponds and Receiving Tidal Creeks. GEOHEALTH 2017; 1:306-317. [PMID: 32158995 PMCID: PMC7007149 DOI: 10.1002/2017gh000094] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/27/2017] [Accepted: 10/27/2017] [Indexed: 05/09/2023]
Abstract
Incidences of harmful algal blooms (HABs) and Vibrio infections have increased over recent decades. Numerous studies have tried to identify environmental factors driving HABs and pathogenic Vibrio populations separately. Few have considered the two simultaneously, though emerging evidence suggests that algal blooms enhance Vibrio growth and survival. This study examined various physical, nutrient, and temporal factors associated with incidences of HABs, V. vulnificus, and V. parahaemolyticus in South Carolina coastal stormwater detention ponds, managed systems where HABs often proliferate, and their receiving tidal creek waters. Five blooms occurred during the study (2008-2009): two during relatively warmer months (an August 2008 cyanobacteria bloom and a November 2008 dinoflagellate bloom) followed by increases in both Vibrio species and V. parahaemolyticus, respectively, and three during cooler months (December 2008 through February 2009) caused by dinoflagellates and euglenophytes that were not associated with marked changes in Vibrio abundances. Vibrio concentrations were positively and significantly associated with temperature and dissolved organic matter, dinoflagellate blooms, negatively and significantly associated with suspended solids, but not significantly correlated with chlorophyll or nitrogen. While more research involving longer time series is needed to increase robustness, findings herein suggest that certain HAB species may augment Vibrio occurrences during warmer months.
Collapse
Affiliation(s)
- D. I. Greenfield
- Now at Advanced Science Research CenterCity University of New YorkNew York CityNYUSA
- Belle W. Baruch Institute for Marine and Coastal SciencesUniversity of South CarolinaCharlestonSCUSA
- Marine Resources Research InstituteSouth Carolina Department of Natural ResourcesCharlestonSCUSA
| | | | - J. R. Stewart
- NOAA, National Ocean ServiceCharlestonSCUSA
- Department of Environmental Sciences and Engineering, Gillings School of Global Public HealthUniversity of North CarolinaChapel HillNCUSA
| | - E. D. Hilborn
- National Health and Environmental Effects LaboratoryOffice of Research and Development, United States Environmental Protection AgencyResearch Triangle ParkNCUSA
| | - B. J. George
- National Health and Environmental Effects LaboratoryOffice of Research and Development, United States Environmental Protection AgencyResearch Triangle ParkNCUSA
| | - Q. Li
- Biostatistics and Bioinformatics Research CenterSamuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical CenterLos AngelesCAUSA
| | | | - C. K. Keppler
- Marine Resources Research InstituteSouth Carolina Department of Natural ResourcesCharlestonSCUSA
| | - P. A. Sandifer
- NOAA, National Ocean ServiceCharlestonSCUSA
- Now at School of Sciences and MathematicsCollege of CharlestonCharlestonSCUSA
| |
Collapse
|
26
|
Bacterial pathogen gene regulation: a DNA-structure-centred view of a protein-dominated domain. Clin Sci (Lond) 2017; 130:1165-77. [PMID: 27252403 DOI: 10.1042/cs20160024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/15/2016] [Indexed: 02/03/2023]
Abstract
The mechanisms used by bacterial pathogens to regulate the expression of their genes, especially their virulence genes, have been the subject of intense investigation for several decades. Whole genome sequencing projects, together with more targeted studies, have identified hundreds of DNA-binding proteins that contribute to the patterns of gene expression observed during infection as well as providing important insights into the nature of the gene products whose expression is being controlled by these proteins. Themes that have emerged include the importance of horizontal gene transfer to the evolution of pathogens, the need to impose regulatory discipline upon these imported genes and the important roles played by factors normally associated with the organization of genome architecture as regulatory principles in the control of virulence gene expression. Among these architectural elements is the structure of DNA itself, its variable nature at a topological rather than just at a base-sequence level and its ability to play an active (as well as a passive) part in the gene regulation process.
Collapse
|
27
|
Muskhelishvili G, Travers A. The regulatory role of DNA supercoiling in nucleoprotein complex assembly and genetic activity. Biophys Rev 2016; 8:5-22. [PMID: 28510220 PMCID: PMC5425797 DOI: 10.1007/s12551-016-0237-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 10/21/2016] [Indexed: 01/06/2023] Open
Abstract
We argue that dynamic changes in DNA supercoiling in vivo determine both how DNA is packaged and how it is accessed for transcription and for other manipulations such as recombination. In both bacteria and eukaryotes, the principal generators of DNA superhelicity are DNA translocases, supplemented in bacteria by DNA gyrase. By generating gradients of superhelicity upstream and downstream of their site of activity, translocases enable the differential binding of proteins which preferentially interact with respectively more untwisted or more writhed DNA. Such preferences enable, in principle, the sequential binding of different classes of protein and so constitute an essential driver of chromatin organization.
Collapse
Affiliation(s)
| | - Andrew Travers
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK.
| |
Collapse
|
28
|
Tsai MY, Zhang B, Zheng W, Wolynes PG. Molecular Mechanism of Facilitated Dissociation of Fis Protein from DNA. J Am Chem Soc 2016; 138:13497-13500. [PMID: 27685351 DOI: 10.1021/jacs.6b08416] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Fis protein is a nucleoid-associated protein that plays many roles in transcriptional regulation and DNA site-specific recombination. In contrast to the naïve expectation based on stoichiometry, recent single-molecule studies have shown that the dissociation of Fis protein from DNA is accelerated by increasing the concentration of the Fis protein. Because the detailed molecular mechanism of facilitated dissociation is still not clear, in this study, we employ computational methods to explore the binding landscapes of Fis:DNA complexes with various stoichiometries. When two Fis molecules are present, simulations uncover a ternary complex, where the originally bound Fis protein is partially dissociated from DNA. The simulations support a three-state sequential kinetic model (N ⇄ I → D) for facilitated dissociation, thus explaining the concentration-dependent dissociation.
Collapse
Affiliation(s)
- Min-Yeh Tsai
- Department of Chemistry, and Center for Theoretical Biological Physics, Rice University , Houston, Texas 77005, United States
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Weihua Zheng
- Department of Chemistry, and Center for Theoretical Biological Physics, Rice University , Houston, Texas 77005, United States
| | - Peter G Wolynes
- Department of Chemistry, and Center for Theoretical Biological Physics, Rice University , Houston, Texas 77005, United States
| |
Collapse
|
29
|
Epigenetic Switch Driven by DNA Inversions Dictates Phase Variation in Streptococcus pneumoniae. PLoS Pathog 2016; 12:e1005762. [PMID: 27427949 PMCID: PMC4948785 DOI: 10.1371/journal.ppat.1005762] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 06/20/2016] [Indexed: 02/05/2023] Open
Abstract
DNA methylation is an important epigenetic mechanism for phenotypic diversification in all forms of life. We previously described remarkable cell-to-cell heterogeneity in epigenetic pattern within a clonal population of Streptococcus pneumoniae, a leading human pathogen. We here report that the epigenetic diversity is caused by extensive DNA inversions among hsdSA,hsdSB, and hsdSC, three methyltransferase hsdS genes in the Spn556II type-I restriction modification (R-M) locus. Because hsdSA encodes the sequence recognition subunit of this type-I R-M DNA methyltransferase, these site-specific recombinations generate pneumococcal cells with variable HsdSA alleles and thereby diverse genome methylation patterns. Most importantly, the DNA methylation pattern specified by the HsdSA1 allele leads to the formation of opaque colonies, whereas the pneumococci lacking HsdSA1 produce transparent colonies. Furthermore, this HsdSA1-dependent phase variation requires intact DNA methylase activity encoded by hsdM in the Spn556II (renamed colony opacity determinant or cod) locus. Thus, the DNA inversion-driven ON/OFF switch of the hsdSA1 allele in the cod locus and resulting epigenetic switch dictate the phase variation between the opaque and transparent phenotypes. Phase variation has been well documented for its importance in pneumococcal carriage and invasive infection, but its molecular basis remains unclear. Our work has discovered a novel epigenetic cause for this significant pathobiology phenomenon in S. pneumoniae. Lastly, our findings broadly represents a significant advancement in our understanding of bacterial R-M systems and their potential in shaping epigenetic and phenotypic diversity of the prokaryotic organisms because similar site-specific recombination systems widely exist in many archaeal and bacterial species. DNA methylation is a well-known epigenetic mechanism for phenotypic diversification in all forms of life. This study reports our discovery that the Spn556II type-I RM locus in human pathogen Streptococcus pneumoniae undergoes extensive DNA inversions among three homologous DNA methyltransferase genes. These site-specific recombinations generate subpopulations of progeny cells with dramatic epigenetic and phenotypic differences. This is exemplified by the striking differences in colony morphology among the pneumococcal variants that carried different allelic variants of the methyltransferase genes. Phase variation has been well documented for its importance in pneumococcal pathogenesis, but it is currently unknown how this phenotypic switch occurs at the molecular level. This work has thus discovered an epigenetic cause for pneumococcal phase variation. Our findings have a broad implication on the epigenetic and phenotypic diversification in prokaryotic organisms because similar DNA rearrangement systems also exist in many archaeal and bacterial species.
Collapse
|
30
|
Xiao B, McLean MM, Lei X, Marko JF, Johnson RC. Controlled rotation mechanism of DNA strand exchange by the Hin serine recombinase. Sci Rep 2016; 6:23697. [PMID: 27032966 PMCID: PMC4817059 DOI: 10.1038/srep23697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/14/2016] [Indexed: 11/30/2022] Open
Abstract
DNA strand exchange by serine recombinases has been proposed to occur by a large-scale rotation of halves of the recombinase tetramer. Here we provide the first direct physical evidence for the subunit rotation mechanism for the Hin serine invertase. Single-DNA looping assays using an activated mutant (Hin-H107Y) reveal specific synapses between two hix sites. Two-DNA “braiding” experiments, where separate DNA molecules carrying a single hix are interwound, show that Hin-H107Y cleaves both hix sites and mediates multi-step rotational relaxation of the interwinding. The variable numbers of rotations in the DNA braid experiments are in accord with data from bulk experiments that follow DNA topological changes accompanying recombination by the hyperactive enzyme. The relatively slow Hin rotation rates, combined with pauses, indicate considerable rotary friction between synapsed subunit pairs. A rotational pausing mechanism intrinsic to serine recombinases is likely to be crucial for DNA ligation and for preventing deleterious DNA rearrangements.
Collapse
Affiliation(s)
- Botao Xiao
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.,Department of Physics and Astronomy, Northwestern University, Evanston IL 60208.,Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Meghan M McLean
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles CA 90095-1737
| | - Xianbin Lei
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - John F Marko
- Department of Physics and Astronomy, Northwestern University, Evanston IL 60208.,Department of Molecular Biosciences, Northwestern University, Evanston IL 60208
| | - Reid C Johnson
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles CA 90095-1737
| |
Collapse
|
31
|
Hancock SP, Stella S, Cascio D, Johnson RC. DNA Sequence Determinants Controlling Affinity, Stability and Shape of DNA Complexes Bound by the Nucleoid Protein Fis. PLoS One 2016; 11:e0150189. [PMID: 26959646 PMCID: PMC4784862 DOI: 10.1371/journal.pone.0150189] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 01/28/2016] [Indexed: 11/18/2022] Open
Abstract
The abundant Fis nucleoid protein selectively binds poorly related DNA sequences with high affinities to regulate diverse DNA reactions. Fis binds DNA primarily through DNA backbone contacts and selects target sites by reading conformational properties of DNA sequences, most prominently intrinsic minor groove widths. High-affinity binding requires Fis-stabilized DNA conformational changes that vary depending on DNA sequence. In order to better understand the molecular basis for high affinity site recognition, we analyzed the effects of DNA sequence within and flanking the core Fis binding site on binding affinity and DNA structure. X-ray crystal structures of Fis-DNA complexes containing variable sequences in the noncontacted center of the binding site or variations within the major groove interfaces show that the DNA can adapt to the Fis dimer surface asymmetrically. We show that the presence and position of pyrimidine-purine base steps within the major groove interfaces affect both local DNA bending and minor groove compression to modulate affinities and lifetimes of Fis-DNA complexes. Sequences flanking the core binding site also modulate complex affinities, lifetimes, and the degree of local and global Fis-induced DNA bending. In particular, a G immediately upstream of the 15 bp core sequence inhibits binding and bending, and A-tracts within the flanking base pairs increase both complex lifetimes and global DNA curvatures. Taken together, our observations support a revised DNA motif specifying high-affinity Fis binding and highlight the range of conformations that Fis-bound DNA can adopt. The affinities and DNA conformations of individual Fis-DNA complexes are likely to be tailored to their context-specific biological functions.
Collapse
Affiliation(s)
- Stephen P. Hancock
- Department of Biological Chemistry, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, California, United States of America
| | - Stefano Stella
- Department of Biological Chemistry, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, California, United States of America
| | - Duilio Cascio
- Department of Biological Chemistry, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, California, United States of America
- Department of Energy Institute of Genomics and Proteomics, University of California at Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Reid C. Johnson
- Department of Biological Chemistry, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
32
|
Chang Y, Johnson RC. Controlling tetramer formation, subunit rotation and DNA ligation during Hin-catalyzed DNA inversion. Nucleic Acids Res 2015; 43:6459-72. [PMID: 26056171 PMCID: PMC4513852 DOI: 10.1093/nar/gkv565] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/30/2015] [Accepted: 05/16/2015] [Indexed: 11/17/2022] Open
Abstract
Two critical steps controlling serine recombinase activity are the remodeling of dimers into the chemically active synaptic tetramer and the regulation of subunit rotation during DNA exchange. We identify a set of hydrophobic residues within the oligomerization helix that controls these steps by the Hin DNA invertase. Phe105 and Met109 insert into hydrophobic pockets within the catalytic domain of the same subunit to stabilize the inactive dimer conformation. These rotate out of the catalytic domain in the dimer and into the subunit rotation interface of the tetramer. About half of residue 105 and 109 substitutions gain the ability to generate stable synaptic tetramers and/or promote DNA chemistry without activation by the Fis/enhancer element. Phe106 replaces Phe105 in the catalytic domain pocket to stabilize the tetramer conformation. Significantly, many of the residue 105 and 109 substitutions support subunit rotation but impair ligation, implying a defect in rotational pausing at the tetrameric conformer poised for ligation. We propose that a ratchet-like surface involving Phe105, Met109 and Leu112 within the rotation interface functions to gate the subunit rotation reaction. Hydrophobic residues are present in analogous positions in other serine recombinases and likely perform similar functions.
Collapse
Affiliation(s)
- Yong Chang
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1737, USA
| | - Reid C Johnson
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1737, USA Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|