1
|
Kokkinias K, Sabag-Daigle A, Kim Y, Leleiwi I, Shaffer M, Kevorkian R, Daly RA, Wysocki VH, Borton MA, Ahmer BMM, Wrighton KC. Time-resolved multi-omics reveals diverse metabolic strategies of Salmonella during diet-induced inflammation. mSphere 2024; 9:e0053424. [PMID: 39254340 PMCID: PMC11520297 DOI: 10.1128/msphere.00534-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/22/2024] [Indexed: 09/11/2024] Open
Abstract
With a rise in antibiotic resistance and chronic infection, the metabolic response of Salmonella enterica serovar Typhimurium to various dietary conditions over time remains an understudied avenue for novel, targeted therapeutics. Elucidating how enteric pathogens respond to dietary variation not only helps us decipher the metabolic strategies leveraged for expansion but also assists in proposing targets for therapeutic interventions. In this study, we use a multi-omics approach to identify the metabolic response of Salmonella enterica serovar Typhimurium in mice on both a fibrous diet and high-fat diet over time. When comparing Salmonella gene expression between diets, we found a preferential use of respiratory electron acceptors consistent with increased inflammation in high-fat diet mice. Looking at the high-fat diet over the course of infection, we noticed heterogeneity in samples based on Salmonella ribosomal activity, which is separated into three infection phases: early, peak, and late. We identified key respiratory, carbon, and pathogenesis gene expressions descriptive of each phase. Surprisingly, we identified genes associated with host cell entry expressed throughout infection, suggesting subpopulations of Salmonella or stress-induced dysregulation. Collectively, these results highlight not only the sensitivity of Salmonella to its environment but also identify phase-specific genes that may be used as therapeutic targets to reduce infection.IMPORTANCEIdentifying novel therapeutic strategies for Salmonella infection that occur in relevant diets and over time is needed with the rise of antibiotic resistance and global shifts toward Western diets that are high in fat and low in fiber. Mice on a high-fat diet are more inflamed compared to those on a fibrous diet, creating an environment that results in more favorable energy generation for Salmonella. We observed differential gene expression across infection phases in mice over time on a high-fat diet. Together, these findings reveal the metabolic tuning of Salmonella to dietary and temporal perturbations. Research like this, which explores the dimensions of pathogen metabolic plasticity, can pave the way for rationally designed strategies to control disease.
Collapse
Affiliation(s)
- Katherine Kokkinias
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Anice Sabag-Daigle
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Yongseok Kim
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Ikaia Leleiwi
- Department of Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Michael Shaffer
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Richard Kevorkian
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Rebecca A. Daly
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Vicki H. Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Mikayla A. Borton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Brian M. M. Ahmer
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Kelly C. Wrighton
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
- Department of Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
2
|
Benz F, Camara-Wilpert S, Russel J, Wandera KG, Čepaitė R, Ares-Arroyo M, Gomes-Filho JV, Englert F, Kuehn JA, Gloor S, Mestre MR, Cuénod A, Aguilà-Sans M, Maccario L, Egli A, Randau L, Pausch P, Rocha EPC, Beisel CL, Madsen JS, Bikard D, Hall AR, Sørensen SJ, Pinilla-Redondo R. Type IV-A3 CRISPR-Cas systems drive inter-plasmid conflicts by acquiring spacers in trans. Cell Host Microbe 2024; 32:875-886.e9. [PMID: 38754416 DOI: 10.1016/j.chom.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 03/05/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024]
Abstract
Plasmid-encoded type IV-A CRISPR-Cas systems lack an acquisition module, feature a DinG helicase instead of a nuclease, and form ribonucleoprotein complexes of unknown biological functions. Type IV-A3 systems are carried by conjugative plasmids that often harbor antibiotic-resistance genes and their CRISPR array contents suggest a role in mediating inter-plasmid conflicts, but this function remains unexplored. Here, we demonstrate that a plasmid-encoded type IV-A3 system co-opts the type I-E adaptation machinery from its host, Klebsiella pneumoniae (K. pneumoniae), to update its CRISPR array. Furthermore, we reveal that robust interference of conjugative plasmids and phages is elicited through CRISPR RNA-dependent transcriptional repression. By silencing plasmid core functions, type IV-A3 impacts the horizontal transfer and stability of targeted plasmids, supporting its role in plasmid competition. Our findings shed light on the mechanisms and ecological function of type IV-A3 systems and demonstrate their practical efficacy for countering antibiotic resistance in clinically relevant strains.
Collapse
Affiliation(s)
- Fabienne Benz
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Synthetic Biology, Paris 75015, France; Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris 75015, France; Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark; Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Sarah Camara-Wilpert
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Jakob Russel
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Katharina G Wandera
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Rimvydė Čepaitė
- Life Sciences Center - European Molecular Biology Laboratory (LSC-EMBL) Partnership for Genome Editing Technologies, Vilnius University - Life Sciences Center, Vilnius University, Vilnius 10257, Lithuania
| | - Manuel Ares-Arroyo
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris 75015, France
| | | | - Frank Englert
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Johannes A Kuehn
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Silvana Gloor
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Mario Rodríguez Mestre
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Aline Cuénod
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland; Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland; Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Mònica Aguilà-Sans
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Lorrie Maccario
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Adrian Egli
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland; Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland; Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Lennart Randau
- Department of Biology, Philipps Universität Marburg, Marburg, Germany; SYNMIKRO, Center for Synthetic Microbiology, Marburg, Germany
| | - Patrick Pausch
- Life Sciences Center - European Molecular Biology Laboratory (LSC-EMBL) Partnership for Genome Editing Technologies, Vilnius University - Life Sciences Center, Vilnius University, Vilnius 10257, Lithuania
| | - Eduardo P C Rocha
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris 75015, France
| | - Chase L Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany; Medical Faculty, University of Würzburg, Würzburg, Germany
| | - Jonas Stenløkke Madsen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - David Bikard
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Synthetic Biology, Paris 75015, France
| | - Alex R Hall
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Søren Johannes Sørensen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark.
| | - Rafael Pinilla-Redondo
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark.
| |
Collapse
|
3
|
Kokkinias K, Sabag-Daigle A, Kim Y, Leleiwi I, Shaffer M, Kevorkian R, Daly RA, Wysocki VH, Borton MA, Ahmer BMM, Wrighton KC. Time resolved multi-omics reveals diverse metabolic strategies of Salmonella during diet-induced inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.03.578763. [PMID: 38352409 PMCID: PMC10862859 DOI: 10.1101/2024.02.03.578763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
With a rise in antibiotic resistance and chronic infection, the metabolic response of Salmonella enterica serovar Typhimurium to various dietary conditions over time remains an understudied avenue for novel, targeted therapeutics. Elucidating how enteric pathogens respond to dietary variation not only helps us decipher the metabolic strategies leveraged for expansion but also assists in proposing targets for therapeutic interventions. Here, we use a multi-omics approach to identify the metabolic response of Salmonella enterica serovar Typhimurium in mice on both a fibrous diet and high-fat diet over time. When comparing Salmonella gene expression between diets, we found a preferential use of respiratory electron acceptors consistent with increased inflammation of the high-fat diet mice. Looking at the high-fat diet over the course of infection, we noticed heterogeneity of samples based on Salmonella ribosomal activity, which separated into three infection phases: early, peak, and late. We identified key respiratory, carbon, and pathogenesis gene expression descriptive of each phase. Surprisingly, we identified genes associated with host-cell entry expressed throughout infection, suggesting sub-populations of Salmonella or stress-induced dysregulation. Collectively, these results highlight not only the sensitivity of Salmonella to its environment but also identify phase-specific genes that may be used as therapeutic targets to reduce infection. Importance Identifying novel therapeutic strategies for Salmonella infection that occur in relevant diets and over time is needed with the rise of antibiotic resistance and global shifts towards Western diets that are high in fat and low in fiber. Mice on a high-fat diet are more inflamed compared to those on a fibrous diet, creating an environment that results in more favorable energy generation for Salmonella . Over time on a high-fat diet, we observed differential gene expression across infection phases. Together, these findings reveal the metabolic tuning of Salmonella to dietary and temporal perturbations. Research like this, exploring the dimensions of pathogen metabolic plasticity, can pave the way for rationally designed strategies to control disease.
Collapse
|
4
|
Xu B, Hou Z, Liu L, Wei J. Genomic and proteomic analysis of Salmonella Enteritidis isolated from a patient with foodborne diarrhea. World J Microbiol Biotechnol 2023; 40:48. [PMID: 38114804 DOI: 10.1007/s11274-023-03857-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/24/2023] [Indexed: 12/21/2023]
Abstract
Salmonella is a major cause of foodborne diseases and clinical infections worldwide. This study aimed to investigate the drug resistance, genomic characteristics, and protein expression of foodborne Salmonella in Shanxi Province. We isolated a strain of Salmonella Enteritidis from patient feces and designated it 31A. The drug resistance of 31A against 14 antibiotics was determined using an antimicrobial susceptibility test. Whole-genome sequencing and quantitative proteomic analysis were performed on the 31A strain. Functional annotation of drug resistance genes/proteins and virulence genes/proteins was conducted using various databases, such as VFDB, ARDB, CAZY, COG, KOG, CARD, GO, and KEGG. The focus of this study was understanding the mechanisms related to food poisoning, and the genetic evolution of 31A was analyzed through comparative genomics. The 31A strain belonged to ST11 Salmonella Enteritidis and showed resistance to β-lactam and quinolone antibiotics. The genome of 31A had 70 drug resistance genes, 321 virulence genes, 12 SPIs, and 3 plasmid replicons. Functional annotation of these drug resistance and virulence genes revealed that drug resistance genes were mainly involved in defense mechanisms to confer resistance to antibiotics, while virulence genes were mainly associated with cellular motility. There were extensive interactions among the virulence genes, which included SPI-1, SPI-2, flagella, fimbriae, capsules and so on. The 31A strain had a close relationship with ASM2413794v1 and ASM130523v1, which were also ST11 Salmonella Enteritidis strains from Asia and originated from clinical patients, animals, and food. These results suggested minimal genomic differences among strains from different sources and the potential for interhost transmission. Differential analysis of the virulence and drug resistance-related proteins revealed their involvement in pathways related to human diseases, indicating that these proteins mediated bacterial invasion and infection. The integration of genomic and proteomic information led to the discovery that Salmonella can survive in a strong acid environment through various acid resistance mechanisms after entering the intestine with food and then invade intestinal epithelial cells to exert its effects. In this study, we comprehensively analyzed the drug resistance and virulence characteristics of Salmonella Enteritidis 31A using a combination of genomic and proteomic approaches, focusing on the pathogenic mechanism of Salmonella Enteritidis in food poisoning. We found significant fluctuations in various virulence factors during the survival, invasion, and infection of Salmonella Enteritidis, which collectively contributed to its pathogenicity. These results provide important information for the source tracing, prevention, and treatment of clinical infections caused by Salmonella Enteritidis.
Collapse
Affiliation(s)
- Benjin Xu
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, 032200, Shanxi, China.
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China.
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, China.
| | - Zhuru Hou
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, 032200, Shanxi, China.
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China.
| | - Ling Liu
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, 032200, Shanxi, China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, China
| | - Jianhong Wei
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, 032200, Shanxi, China
| |
Collapse
|
5
|
Zhao M, Li Y, Wei W, Zhang Z, Zhou H. The distribution variation of pathogens and virulence factors in different geographical populations of giant pandas. Front Microbiol 2023; 14:1264786. [PMID: 37789855 PMCID: PMC10543425 DOI: 10.3389/fmicb.2023.1264786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/25/2023] [Indexed: 10/05/2023] Open
Abstract
Intestinal diseases caused by opportunistic pathogens seriously threaten the health and survival of giant pandas. However, our understanding of gut pathogens in different populations of giant pandas, especially in the wild populations, is still limited. Here, we conducted a study based on 52 giant panda metagenomes to investigate the composition and distribution of gut pathogens and virulence factors (VFs) in five geographic populations (captive: GPCD and GPYA; wild: GPQIN, GPQIO, and GPXXL). The results of the beta-diversity analyzes revealed a close relationship and high similarity in pathogen and VF compositions within the two captive groups. Among all groups, Proteobacteria, Firmicutes, and Bacteroidetes emerged as the top three abundant phyla. By using the linear discriminant analysis effect size method, we identified pathogenic bacteria unique to different populations, such as Klebsiella in GPCD, Salmonella in GPYA, Hafnia in GPQIO, Pedobacter in GPXXL, and Lactococcus in GPQIN. In addition, we identified 12 VFs that play a role in the intestinal diseases of giant pandas, including flagella, CsrA, enterobactin, type IV pili, alginate, AcrAB, capsule, T6SS, urease, type 1 fimbriae, polar flagella, allantoin utilization, and ClpP. These VFs influence pathogen motility, adhesion, iron uptake, acid resistance, and protein regulation, thereby contributing to pathogen infection and pathogenicity. Notably, we also found a difference in virulence of Pseudomonas aeruginosa between GPQIN and non-GPQIN wild populations, in which the relative abundance of VFs (0.42%) of P. aeruginosa was the lowest in GPQIN and the highest in non-GPQIN wild populations (GPXXL: 23.55% and GPQIO: 10.47%). In addition to enhancing our understanding of gut pathogens and VFs in different geographic populations of giant pandas, the results of this study provide a specific theoretical basis and data support for the development of effective conservation measures for giant pandas.
Collapse
Affiliation(s)
- Mengyu Zhao
- College of Life Sciences, China West Normal University, Nanchong, Sichuan, China
- Liziping Giant Panda’s Ecology and Conservation Observation and Research Station of Sichuan Province, Nanchong, Sichuan, China
| | - Yuxia Li
- Shimian Agricultural and Rural Bureau, Shimian, Sichuan, China
| | - Wei Wei
- College of Life Sciences, China West Normal University, Nanchong, Sichuan, China
- Liziping Giant Panda’s Ecology and Conservation Observation and Research Station of Sichuan Province, Nanchong, Sichuan, China
| | - Zejun Zhang
- College of Life Sciences, China West Normal University, Nanchong, Sichuan, China
- Liziping Giant Panda’s Ecology and Conservation Observation and Research Station of Sichuan Province, Nanchong, Sichuan, China
| | - Hong Zhou
- College of Life Sciences, China West Normal University, Nanchong, Sichuan, China
- Liziping Giant Panda’s Ecology and Conservation Observation and Research Station of Sichuan Province, Nanchong, Sichuan, China
| |
Collapse
|
6
|
Nava-Galeana J, Núñez C, Bustamante VH. Proteomic analysis reveals the global effect of the BarA/SirA-Csr regulatory cascade in Salmonella Typhimurium grown in conditions that favor the expression of invasion genes. J Proteomics 2023; 286:104960. [PMID: 37451358 DOI: 10.1016/j.jprot.2023.104960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
In many bacteria, the BarA/SirA and Csr regulatory systems control expression of genes encoding a wide variety of cellular functions. The BarA/SirA two-component system induces the expression of CsrB and CsrC, two small non-coding RNAs that sequester CsrA, a protein that binds to target mRNAs and thus negatively or positively regulates their expression. BarA/SirA and CsrB/C induce expression of the Salmonella Pathogenicity Island 1 (SPI-1) genes required for Salmonella invasion of host cells. To further investigate the regulatory role of the BarA/SirA and Csr systems in Salmonella, we performed LC-MS/MS proteomic analysis using the WT S. Typhimurium strain and its derived ΔsirA and ΔcsrB ΔcsrC mutants grown in SPI-1-inducing conditions. The expression of 164 proteins with a wide diversity, or unknown, functions was significantly affected positively or negatively by the absence of SirA and/or CsrB/C. Interestingly, 19 proteins were identified as new targets for SirA-CsrB/C. Our results support that SirA and CsrB/C act in a cascade fashion to regulate gene expression in S. Typhimurium in the conditions tested. Notably, our results show that SirA-CsrB/C-CsrA controls expression of proteins required for the replication of Salmonella in the intestinal lumen, in an opposite way to its control exerted on the SPI-1 proteins. SIGNIFICANCE: The BarA/SirA and Csr global regulatory systems control a wide range of cellular processes, including the expression of virulence genes. For instance, in Salmonella, BarA/SirA and CsrB/C positively regulate expression of the SPI-1 genes, which are required for Salmonella invasion to host cells. In this study, by performing a proteomic analysis, we identified 164 proteins whose expression was positively or negatively controlled by SirA and CsrB/C in SPI-1-inducing conditions, including 19 new possible targets of these systems. Our results support the action of SirA and CsrB/C in a cascade fashion to control different cellular processes in Salmonella. Interestingly, our data indicate that SirA-CsrB/C-CsrA controls inversely the expression of proteins required for invasion of the intestinal epithelium and for replication in the intestinal lumen, which suggests a role for this regulatory cascade as a molecular switch for Salmonella virulence. Thus, our study further expands the insight into the regulatory mechanisms governing the virulence and physiology of an important pathogen.
Collapse
Affiliation(s)
- Jessica Nava-Galeana
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Cinthia Núñez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Víctor H Bustamante
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico.
| |
Collapse
|
7
|
Nava-Galeana J, Yakhnin H, Babitzke P, Bustamante VH. CsrA Positively and Directly Regulates the Expression of the pdu, pocR, and eut Genes Required for the Luminal Replication of Salmonella Typhimurium. Microbiol Spectr 2023; 11:e0151623. [PMID: 37358421 PMCID: PMC10433801 DOI: 10.1128/spectrum.01516-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/26/2023] [Indexed: 06/27/2023] Open
Abstract
Enteric pathogens, such as Salmonella, have evolved to thrive in the inflamed gut. Genes located within the Salmonella pathogenicity island 1 (SPI-1) mediate the invasion of cells from the intestinal epithelium and the induction of an intestinal inflammatory response. Alternative electron acceptors become available in the inflamed gut and are utilized by Salmonella for luminal replication through the metabolism of propanediol and ethanolamine, using the enzymes encoded by the pdu and eut genes. The RNA-binding protein CsrA inhibits the expression of HilD, which is the central transcriptional regulator of the SPI-1 genes. Previous studies suggest that CsrA also regulates the expression of the pdu and eut genes, but the mechanism for this regulation is unknown. In this work, we show that CsrA positively regulates the pdu genes by binding to the pocR and pduA transcripts as well as the eut genes by binding to the eutS transcript. Furthermore, our results show that the SirA-CsrB/CsrC-CsrA regulatory cascade controls the expression of the pdu and eut genes mediated by PocR or EutR, which are the positive AraC-like transcriptional regulators for the pdu and eut genes, respectively. By oppositely regulating the expression of genes for invasion and for luminal replication, the SirA-CsrB/CsrC-CsrA regulatory cascade could be involved in the generation of two Salmonella populations that cooperate for intestinal colonization and transmission. Our study provides new insight into the regulatory mechanisms that govern Salmonella virulence. IMPORTANCE The regulatory mechanisms that control the expression of virulence genes are essential for bacteria to infect hosts. Salmonella has developed diverse regulatory mechanisms to colonize the host gut. For instance, the SirA-CsrB/CsrC-CsrA regulatory cascade controls the expression of the SPI-1 genes, which are required for this bacterium to invade intestinal epithelium cells and for the induction of an intestinal inflammatory response. In this study, we determine the mechanisms by which the SirA-CsrB/CsrC-CsrA regulatory cascade controls the expression of the pdu and eut genes, which are necessary for the replication of Salmonella in the intestinal lumen. Thus, our data, together with the results of previous reports, indicate that the SirA-CsrB/CsrC-CsrA regulatory cascade has an important role in the intestinal colonization by Salmonella.
Collapse
Affiliation(s)
- Jessica Nava-Galeana
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Helen Yakhnin
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Víctor H. Bustamante
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
8
|
Rodríguez‐Pastor R, Shafran Y, Knossow N, Gutiérrez R, Harrus S, Zaman L, Lenski RE, Barrick JE, Hawlena H. A road map for in vivo evolution experiments with blood-borne parasitic microbes. Mol Ecol Resour 2022; 22:2843-2859. [PMID: 35599628 PMCID: PMC9796859 DOI: 10.1111/1755-0998.13649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/14/2022] [Accepted: 05/13/2022] [Indexed: 01/07/2023]
Abstract
Laboratory experiments in which blood-borne parasitic microbes evolve in their animal hosts offer an opportunity to study parasite evolution and adaptation in real time and under natural settings. The main challenge of these experiments is to establish a protocol that is both practical over multiple passages and accurately reflects natural transmission scenarios and mechanisms. We provide a guide to the steps that should be considered when designing such a protocol, and we demonstrate its use via a case study. We highlight the importance of choosing suitable ancestral genotypes, treatments, number of replicates per treatment, types of negative controls, dependent variables, covariates, and the timing of checkpoints for the experimental design. We also recommend specific preliminary experiments to determine effective methods for parasite quantification, transmission, and preservation. Although these methodological considerations are technical, they also often have conceptual implications. To this end, we encourage other researchers to design and conduct in vivo evolution experiments with blood-borne parasitic microbes, despite the challenges that the work entails.
Collapse
Affiliation(s)
- Ruth Rodríguez‐Pastor
- Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert ResearchBen‐Gurion University of the NegevMidreshet Ben‐GurionIsrael
| | - Yarden Shafran
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, The Jacob Blaustein Institutes for Desert ResearchBen‐Gurion University of the NegevMidreshet Ben‐GurionIsrael
| | - Nadav Knossow
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, The Jacob Blaustein Institutes for Desert ResearchBen‐Gurion University of the NegevMidreshet Ben‐GurionIsrael
| | - Ricardo Gutiérrez
- Koret School of Veterinary Medicine, Faculty of Agricultural, Nutritional and Environmental SciencesThe Hebrew University of JerusalemRehovotIsrael
| | - Shimon Harrus
- Koret School of Veterinary Medicine, Faculty of Agricultural, Nutritional and Environmental SciencesThe Hebrew University of JerusalemRehovotIsrael
| | - Luis Zaman
- Department of Ecology and Evolutionary Biology, The Center for the Study of Complex Systems (CSCS)University of MichiganAnn ArborMichiganUSA
| | - Richard E. Lenski
- Department of Microbiology and Molecular GeneticsMichigan State UniversityEast LansingMichiganUSA
| | - Jeffrey E. Barrick
- Department of Molecular BiosciencesThe University of Texas AustinAustinTexasUSA
| | - Hadas Hawlena
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, The Jacob Blaustein Institutes for Desert ResearchBen‐Gurion University of the NegevMidreshet Ben‐GurionIsrael
| |
Collapse
|
9
|
Jiang Q, Ke BX, Wu DS, Wang D, Fang LX, Sun RY, Wang MG, Lei JE, Shao Z, Liao XP. Epidemiology of blaCTX-M-Positive Salmonella Typhimurium From Diarrhoeal Outpatients in Guangdong, China, 2010–2017. Front Microbiol 2022; 13:865254. [PMID: 35783425 PMCID: PMC9247517 DOI: 10.3389/fmicb.2022.865254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Salmonella enterica can lead to intestinal diarrhea, and the emergence and spread of cephalosporin-resistant Salmonella have brought great challenges to clinical treatment. Therefore, this study investigated the prevalence and transmission of blaCTX-M genes among S. Typhimurium from diarrhoeal outpatients in Guangdong, China, from 2010 to 2017. A total of 221 blaCTX-M-positive isolates were recovered from 1,263 S. Typhimurium isolates from the facal samples of diarrhoea patients in 45 general hospitals from 11 cities. The most popular CTX-M gene was blaCTX-M-55 (39.6%, 72/182) in the CTX-M-1 group, followed by blaCTX-M-14 (22.5%, 41/182) and blaCTX-M-65 (19.2%, 35/182) in the CTX-M-9 group. The isolates that carried blaCTX-M-9G had significantly higher resistance rates to multiple antibacterials compared with blaCTX-M-1G (p < 0.01). Meanwhile, PFGE analysis not only showed the clonal transmission of blaCTX-M-55/14/65-positve isolates of diarrhoeal outpatients’ origins from different hospitals in Guangdong province, but also the characteristic of blaCTX-M-55/14/65-positve isolates’ bacterial persistence. Multilocus sequence typing (MLST) analysis indicated that these S. Typhimurium isolates possessed ST34 and ST19. Furthermore, genomic Beast phylogenomic analysis provided the evidence of a close relationship of blaCTX-M-positive S. Typhimurium isolates between the outpatients and pork. Most blaCTX-M-55/14/65 genes were transmitted by non-typeable or IncI1/IncFII/IncHI2 plasmids with the size of ranging from ~80 to ~280 kb. Moreover, whole-genome sequencing (WGS) analysis further revealed that blaCTX-M-55/14/65 coexisted with other 25 types of ARGs, of which 11 ARGs were highly prevalent with the detection rates >50%, and it first reported the emergence of blaTEM-141 in S. Typhimurium. This study underscores the importance of surveillance for blaCTX-M-positive microbes in diarrhea patients.
Collapse
Affiliation(s)
- Qi Jiang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Bi-xia Ke
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - De-shu Wu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Dong Wang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Liang-xing Fang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ruan-yang Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Min-ge Wang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jing-er Lei
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zheng Shao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiao-ping Liao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- *Correspondence: Xiao-ping Liao,
| |
Collapse
|
10
|
A Primed Subpopulation of Bacteria Enables Rapid Expression of the Type 3 Secretion System in Pseudomonas aeruginosa. mBio 2021; 12:e0083121. [PMID: 34154400 PMCID: PMC8262847 DOI: 10.1128/mbio.00831-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Type 3 secretion systems (T3SS) are complex nanomachines that span the cell envelope and play a central role in the biology of Gram-negative pathogens and symbionts. In Pseudomonas aeruginosa, T3SS expression is strongly associated with human disease severity and with mortality in murine acute pneumonia models. Uniform exposure of isogenic cells to T3SS-activating signal results in heterogeneous expression of this critical virulence trait. To understand the function of such diversity, we measured the production of the T3SS master regulator ExsA and the expression of T3SS genes using fluorescent reporters. We found that heterogeneous expression of ExsA in the absence of activating signal generates a "primed" subpopulation of cells that can rapidly induce T3SS gene expression in response to signal. T3SS expression is accompanied by a reproductive trade-off as measured by increased division time of T3SS-expressing cells. Although T3SS-primed cells are a minority of the population, they compose the majority of T3SS-expressing cells for several hours following activation. The primed state therefore allows P. aeruginosa to maximize reproductive fitness while maintaining the capacity to quickly express the T3SS. As T3SS effectors can serve as shared public goods for nonproducing cells, this division of labor benefits the population as a whole. IMPORTANCE The expression of specific virulence traits is strongly associated with Pseudomonas aeruginosa's success in establishing acute infections but is thought to carry a cost for bacteria. Producing multiprotein secretion systems or motility organelles is metabolically expensive and can target a cell for recognition by innate immune system receptors that recognize structural components of the type 3 secretion system (T3SS) or flagellum. These acute virulence factors are also negatively selected when P. aeruginosa establishes chronic infections in the lung. We demonstrate a regulatory mechanism by which only a minority subpopulation of genetically identical P. aeruginosa cells is "primed" to respond to signals that turn on T3SS expression. This phenotypic heterogeneity allows the population to maximize the benefit of rapid T3SS effector production while maintaining a rapidly growing and nonexpressing reservoir of cells that perpetuates this genotype within the population.
Collapse
|
11
|
Luk CH, Valenzuela C, Gil M, Swistak L, Bomme P, Chang YY, Mallet A, Enninga J. Salmonella enters a dormant state within human epithelial cells for persistent infection. PLoS Pathog 2021; 17:e1009550. [PMID: 33930101 PMCID: PMC8115778 DOI: 10.1371/journal.ppat.1009550] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 05/12/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
Salmonella Typhimurium (S. Typhimurium) is an enteric bacterium capable of invading a wide range of hosts, including rodents and humans. It targets different host cell types showing different intracellular lifestyles. S. Typhimurium colonizes different intracellular niches and is able to either actively divide at various rates or remain dormant to persist. A comprehensive tool to determine these distinct S. Typhimurium lifestyles remains lacking. Here we developed a novel fluorescent reporter, Salmonella INtracellular Analyzer (SINA), compatible for fluorescence microscopy and flow cytometry in single-bacterium level quantification. This identified a S. Typhimurium subpopulation in infected epithelial cells that exhibits a unique phenotype in comparison to the previously documented vacuolar or cytosolic S. Typhimurium. This subpopulation entered a dormant state in a vesicular compartment distinct from the conventional Salmonella-containing vacuoles (SCV) as well as the previously reported niche of dormant S. Typhimurium in macrophages. The dormant S. Typhimurium inside enterocytes were viable and expressed Salmonella Pathogenicity Island 2 (SPI-2) virulence factors at later time points. We found that the formation of these dormant S. Typhimurium is not triggered by the loss of SPI-2 effector secretion but it is regulated by (p)ppGpp-mediated stringent response through RelA and SpoT. We predict that intraepithelial dormant S. Typhimurium represents an important pathogen niche and provides an alternative strategy for S. Typhimurium pathogenicity and its persistence. Salmonella Typhimurium is a clinically relevant bacterial pathogen that causes Salmonellosis. It can actively or passively invade various host cell types and reside in a Salmonella-containing vacuole (SCV) within host cells. The SCV can be remodeled into a replicative niche with the aid of Salmonella Type III Secretion System 2 (T3SS2) effectors or else, the SCV is ruptured for the access of the nutrient-rich host cytosol. Depending on the infected host cell type, S. Typhimurium undertake different lifestyles that are distinct by their subcellular localization, replication rate and metabolic rate. We present here a novel fluorescent reporter system that rapidly detects S. Typhimurium lifestyles using fluorescence microscopy and flow cytometry. We identified a dormant S. Typhimurium population within enterocyte that displays capacities in host cell persistence, dormancy exit and antibiotic tolerance. We deciphered the (p)ppGpp stringent response pathway that suppresses S. Typhimurium dormancy in enterocytes while promoting dormancy in macrophages, pinpointing a divergent physiological consequence regulated by the same set of S. Typhimurium molecular mediators. Altogether, our work demonstrated the potential of fluorescent reporters in facile bacterial characterization, and revealed a dormant S. Typhimurium population in human enterocytes that are phenotypically distinct from that observed in macrophages and fibroblasts.
Collapse
Affiliation(s)
- Chak Hon Luk
- Dynamics of Host-Pathogen Interactions Unit and UMR3691 CNRS, Institut Pasteur, Paris, France
- Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Camila Valenzuela
- Dynamics of Host-Pathogen Interactions Unit and UMR3691 CNRS, Institut Pasteur, Paris, France
| | - Magdalena Gil
- Dynamics of Host-Pathogen Interactions Unit and UMR3691 CNRS, Institut Pasteur, Paris, France
| | - Léa Swistak
- Dynamics of Host-Pathogen Interactions Unit and UMR3691 CNRS, Institut Pasteur, Paris, France
- Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Perrine Bomme
- Ultrastructural Bioimaging UTechS, C2RT, Institut Pasteur, Paris, France
| | - Yuen-Yan Chang
- Dynamics of Host-Pathogen Interactions Unit and UMR3691 CNRS, Institut Pasteur, Paris, France
| | - Adeline Mallet
- Ultrastructural Bioimaging UTechS, C2RT, Institut Pasteur, Paris, France
| | - Jost Enninga
- Dynamics of Host-Pathogen Interactions Unit and UMR3691 CNRS, Institut Pasteur, Paris, France
- Université de Paris, Sorbonne Paris Cité, Paris, France
- * E-mail:
| |
Collapse
|
12
|
Valguarnera E, Wardenburg JB. Good Gone Bad: One Toxin Away From Disease for Bacteroides fragilis. J Mol Biol 2019; 432:765-785. [PMID: 31857085 DOI: 10.1016/j.jmb.2019.12.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 11/27/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023]
Abstract
The human gut is colonized by hundreds of trillions of microorganisms whose acquisition begins during early infancy. Species from the Bacteroides genus are ubiquitous commensals, comprising about thirty percent of the human gut microbiota. Bacteroides fragilis is one of the least abundant Bacteroides species, yet is the most common anaerobe isolated from extraintestinal infections in humans. A subset of B. fragilis strains carry a genetic element that encodes a metalloprotease enterotoxin named Bacteroides fragilis toxin, or BFT. Toxin-bearing strains, or Enterotoxigenic B. fragilis (ETBF) cause acute and chronic intestinal disease in children and adults. Despite this association with disease, around twenty percent of the human population appear to be asymptomatic carriers of ETBF. BFT damages the colonic epithelial barrier by inducing cleavage of the zonula adherens protein E-cadherin and initiating a cell signaling response characterized by inflammation and c-Myc-dependent pro-oncogenic hyperproliferation. As a consequence, mice harboring genetic mutations that predispose to colonic inflammation or tumor formation are uniquely susceptible to toxin-mediated injury. The recent observation of ETBF-bearing biofilms in colon biopsies from humans with colon cancer susceptibility loci strongly suggests that ETBF is a driver of colorectal cancer. This article will address ETBF biology from a host-pathobiont perspective, including clinical data, analysis of molecular mechanisms of disease, and the complex ecological context of the human gut.
Collapse
Affiliation(s)
- Ezequiel Valguarnera
- Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid Ave. Box 8208, St. Louis, MO 63110
| | - Juliane Bubeck Wardenburg
- Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid Ave. Box 8208, St. Louis, MO 63110.
| |
Collapse
|
13
|
Stress-induced adaptations in Salmonella: A ground for shaping its pathogenesis. Microbiol Res 2019; 229:126311. [DOI: 10.1016/j.micres.2019.126311] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 08/01/2019] [Accepted: 08/06/2019] [Indexed: 12/12/2022]
|
14
|
Hausmann A, Hardt WD. The Interplay between Salmonella enterica Serovar Typhimurium and the Intestinal Mucosa during Oral Infection. Microbiol Spectr 2019; 7:10.1128/microbiolspec.bai-0004-2019. [PMID: 30953432 PMCID: PMC11588296 DOI: 10.1128/microbiolspec.bai-0004-2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Indexed: 12/28/2022] Open
Abstract
Bacterial infection results in a dynamic interplay between the pathogen and its host. The underlying interactions are multilayered, and the cellular responses are modulated by the local environment. The intestine is a particularly interesting tissue regarding host-pathogen interaction. It is densely colonized by commensal microbes and a portal of entry for ingested pathogens. This necessitates constant monitoring of microbial stimuli in order to maintain homeostasis during encounters with benign microbiota and to trigger immune defenses in response to bacterial pathogens. Homeostasis is maintained by physical barriers (the mucus layer and epithelium), chemical defenses (antimicrobial peptides), and innate immune responses (NLRC4 inflammasome), which keep the bacteria from reaching the sterile lamina propria. Intestinal pathogens represent potent experimental tools to probe these barriers and decipher how pathogens can circumvent them. The streptomycin mouse model of oral Salmonella enterica serovar Typhimurium infection provides a well-characterized, robust experimental system for such studies. Strikingly, each stage of the gut tissue infection poses a different set of challenges to the pathogen and requires tight control of virulence factor expression, host response modulation, and cooperation between phenotypic subpopulations. Therefore, successful infection of the intestinal tissue relies on a delicate and dynamic balance between responses of the pathogen and its host. These mechanisms can be deciphered to their full extent only in realistic in vivo infection models.
Collapse
Affiliation(s)
- Annika Hausmann
- Institute of Microbiology, D-BIOL ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
15
|
Why Is Eradicating Typhoid Fever So Challenging: Implications for Vaccine and Therapeutic Design. Vaccines (Basel) 2018; 6:vaccines6030045. [PMID: 30042307 PMCID: PMC6160957 DOI: 10.3390/vaccines6030045] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/19/2018] [Accepted: 07/23/2018] [Indexed: 01/22/2023] Open
Abstract
Salmonella enterica serovar Typhi (S. Typhi) and S. Paratyphi, namely typhoidal Salmonellae, are the cause of (para) typhoid fever, which is a devastating systemic infectious disease in humans. In addition, the spread of multidrug-resistant (MDR) and extensively drug-resistant (XDR) S. Typhi in many low and middle-income countries poses a significant risk to human health. While currently available typhoid vaccines and therapeutics are efficacious, they have some limitations. One important limitation is the lack of controlling individuals who chronically carry S. Typhi. However, due to the strict host specificity of S. Typhi to humans, S. Typhi research is hampered. As a result, our understanding of S. Typhi pathogenesis is incomplete, thereby delaying the development and improvement of prevention and treatment strategies. Nonetheless, to better combat and contain S. Typhi, it is vital to develop a vaccine and therapy for controlling both acutely and chronically infected individuals. This review discusses how scientists are trying to combat typhoid fever, why it is so challenging to do so, which approaches show promise, and what we know about the pathogenesis of S. Typhi chronic infection.
Collapse
|