1
|
Zaporojan N, Hodișan R, Zaha AA, Zaporojan C, Zaha DC. Performance of conventional laboratory tests and Xpert MTB/RIF in the diagnosis of tuberculosis. Monaldi Arch Chest Dis 2025. [PMID: 40341257 DOI: 10.4081/monaldi.2025.3394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 03/24/2025] [Indexed: 05/10/2025] Open
Abstract
The laboratory diagnosis of tuberculosis (TB) represents a continuous challenge due to the variability and complexity of the required clinical samples. Although molecular technologies have considerably improved diagnostic accuracy, their combined use with traditional methods like microscopy and bacterial culture remains a subject of debate. This study aims to compare the performance of microscopy, bacterial culture on Löwenstein-Jensen medium, and the molecular Xpert MTB/RIF test in diagnosing pulmonary and extrapulmonary TB. In this retrospective study, conducted over a period from January 2016 to January 2023, data were collected from pulmonary TB and extrapulmonary TB samples of patients hospitalized in the pneumonology departments of the Bihor County Emergency Hospital. The study included 1796 patients, of whom 85.2% had samples collected from the respiratory tract. The variability of sensitivity and specificity depending on the type of sample indicates the need for a differentiated approach in diagnosis. The results show that the Xpert MTB/RIF test detected a higher number of positive cases (16%) compared to microscopy (9%) and bacterial culture (15%). Statistical analysis revealed a high sensitivity and specificity of Xpert MTB/RIF, suggesting superior accuracy compared to traditional methods. Our conclusions underline the importance of the Xpert MTB/RIF as a valuable tool in the diagnosis of TB, but it is recommended to use it in combination with other methods to ensure a complete and efficient diagnosis.
Collapse
Affiliation(s)
| | - Ramona Hodișan
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea
| | | | | | - Dana Carmen Zaha
- Doctoral School of Biomedical Sciences, University of Oradea; Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea
| |
Collapse
|
2
|
Kurihara Y, Shimizu A, Ozuru R, Yoshimura M, Chou B, Itoh R, Ishii K, Hirota Y, Takagi S, Fujita M, Inoue M, Hiromatsu K. Mycobacterium abscessus resides within lipid droplets and acquires a dormancy-like phenotype in adipocytes. Biochem Biophys Res Commun 2025; 758:151645. [PMID: 40120350 DOI: 10.1016/j.bbrc.2025.151645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
Mycobacterium abscessus (M. abscessus) is an emerging, rapidly growing mycobacterium that causes chronic lung infection, particularly in patients with cystic fibrosis, as well as skin and soft tissue infections. Adipose tissue is recognized as an important niche that supports M. tuberculosis persistence. However, the dormancy, latency, and persistence mechanisms of M. abscessus in the host remain poorly understood. This study investigated how adipose tissue serves as a niche for M. abscessus using both a human adipose tissue ex vivo infection model and a murine adipose tissue in vivo infection model. M. abscessus infected not only the cytosol of adipocytes but also entered host lipid droplets, where it formed intracytoplasmic lipid inclusions in the bacterial cell. To our knowledge, this unique localization has never been reported for M. abscessus or any other mycobacterium. Within host lipid droplets, M. abscessus lost acid-fastness and gained Nile Red positivity. These results suggest that M. abscessus acquires a dormancy-like phenotype within host lipid droplets of adipocytes, potentially contributing to its persistence, virulence, and resistance to treatment. These findings provide valuable insights into mycobacterial persistence mechanisms and could offer a promising foundation for developing novel therapeutic approaches.
Collapse
Affiliation(s)
- Yusuke Kurihara
- Department of Microbiology & Immunology, Faculty of Medicine, Fukuoka University, Fukuoka, 814-0180, Japan; Department of Infectious Medicine Division of Eukaryotic Microbiology, Faculty of Medicine, Kurume University, Fukuoka, 830-0011, Japan.
| | - Akinori Shimizu
- Department of Microbiology & Immunology, Faculty of Medicine, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Ryo Ozuru
- Department of Microbiology & Immunology, Faculty of Medicine, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Michinobu Yoshimura
- Department of Microbiology & Immunology, Faculty of Medicine, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Bin Chou
- Department of Microbiology & Immunology, Faculty of Medicine, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Ryota Itoh
- Department of Microbiology & Immunology, Faculty of Medicine, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Kazunari Ishii
- Department of Microbiology & Immunology, Faculty of Medicine, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Yuko Hirota
- Department of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Satoshi Takagi
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Masaki Fujita
- Department of Respiratory Medicine, Faculty of Medicine, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Masahiro Inoue
- Department of Infectious Medicine Division of Eukaryotic Microbiology, Faculty of Medicine, Kurume University, Fukuoka, 830-0011, Japan
| | - Kenji Hiromatsu
- Department of Microbiology & Immunology, Faculty of Medicine, Fukuoka University, Fukuoka, 814-0180, Japan
| |
Collapse
|
3
|
Kanipe C, Putz EJ, Palmer MV. Differential expression of vascular endothelial growth factor A (VEGFA) and M1 macrophage marker nitric oxide synthase 2 (NOS2) in lymph node granulomas of BCG-vaccinated and non-vaccinated cattle infected with Mycobacterium bovis. Tuberculosis (Edinb) 2025; 151:102609. [PMID: 39862443 DOI: 10.1016/j.tube.2025.102609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/13/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Bovine tuberculosis is mainly caused by Mycobacterium bovis. Bacillus Calmette-Guérin (BCG) is an attenuated strain of M. bovis which provides variable disease protection. Lesions have been characterized in infected cattle, but little comparison has been done with lesions which form in BCG-vaccinates. Here, in situ hybridization examined differences in expression of M. bovis RNA, inducible nitric oxide synthase 2, and vascular endothelial growth factor A in relation to vaccination status and granuloma grade, using two different groups of cattle. Data found no differences between vaccination groups or granuloma grade in average copies of M. bovis mRNA per μm2 of total granuloma area or per μm2 of necrotic areas. Within a vaccination group high-grade granulomas had more NOS2 per cell, per μm2 and a higher percentage of cells expressing NOS2 than low-grade granulomas. Non-vaccinates had a higher percentage of cells producing NOS2 than vaccinates. Differences in NOS2 expression varied by group. Vaccination status and granuloma grade did not affect the average copies of VEGFA per cell or the percent of cells expressing RNA, however VEGFA copies per μm2 varied between groups. These findings suggest NOS2 and VEGFA are likely not mechanisms of BCG vaccination protection but may impact disease severity.
Collapse
Affiliation(s)
- C Kanipe
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, USA; Immunobiology Program, Iowa State University, Ames, IA, 50010, USA.
| | - E J Putz
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, USA
| | - M V Palmer
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, USA
| |
Collapse
|
4
|
Sarathy JP. Molecular and microbiological methods for the identification of nonreplicating Mycobacterium tuberculosis. PLoS Pathog 2024; 20:e1012595. [PMID: 39383167 PMCID: PMC11463790 DOI: 10.1371/journal.ppat.1012595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024] Open
Abstract
Chronic tuberculosis (TB) disease, which requires months-long chemotherapy with multiple antibiotics, is defined by diverse pathological manifestations and bacterial phenotypes. Targeting drug-tolerant bacteria in the host is critical to achieving a faster and durable cure for TB. In order to facilitate this field of research, we need to consider the physiology of persistent MTB during infection, which is often associated with the nonreplicating (NR) state. However, the traditional approach to quantifying bacterial burden through colony enumeration alone only informs on the abundance of live bacilli at the time of sampling, and provides an incomplete picture of the replicative state of the pathogen and the extent to which bacterial replication is balanced by ongoing cell death. Modern approaches to profiling bacterial replication status provide a better understanding of inter- and intra-population dynamics under different culture conditions and in distinct host microenvironments. While some methods use molecular markers of DNA replication and cell division, other approaches take advantage of advances in the field of microfluidics and live-cell microscopy. Considerable effort has been made over the past few decades to develop preclinical in vivo models of TB infection and some are recognized for more closely recapitulating clinical disease pathology than others. Unique lesion compartments presenting different environmental conditions produce significant heterogeneity between Mycobacterium tuberculosis populations within the host. While cellular lesion compartments appear to be more permissive of ongoing bacterial replication, caseous foci are associated with the maintenance of M. tuberculosis in a state of static equilibrium. The accurate identification of nonreplicators and where they hide within the host have significant implications for the way novel chemotherapeutic agents and regimens are designed for persistent infections.
Collapse
Affiliation(s)
- Jansy Passiflora Sarathy
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, United States of America
- Hackensack Meridian School of Medicine, Department of Medical Sciences, Nutley, New Jersey, United States of America
| |
Collapse
|
5
|
Biyang FI, Massi MN, Muslich LT, Sultan AR, Hatta M, Ramadhan AR, Madjid B. Identification of Nontuberculous Mycobacterium and Mycobacterium tuberculosis Complex in Sputum Patients with Suspected Tuberculosis. Int J Mycobacteriol 2024; 13:436-442. [PMID: 39700166 DOI: 10.4103/ijmy.ijmy_206_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Pulmonary tuberculosis (TB) is predominantly caused by Mycobacterium tuberculosis complex (MTBC) and can also involve nontuberculous mycobacteria (NTM). These pathogens pose significant global health challenges, particularly in developing countries. Differentiating between MTBC and NTM in clinical specimens is often difficult using conventional acid-fast staining methods, leading to an underestimation of NTM prevalence in TB-endemic regions. This study aims to identify mycobacterial species in sputum samples from patients suspected of having TB, utilizing polymerase chain reaction (PCR) assays and gene sequencing techniques. METHODS We collected 111 sputum samples from patients at Dr. Wahidin Sudirohusodo Central General Hospital, Hasanuddin University Hospital, and Makassar Community Lung Health Center. The samples were analyzed at the Clinical Microbiology Laboratory of Hasanuddin University using standard microscopy and molecular detection techniques. Descriptive statistics were employed to summarize patient demographics, infection characteristics, and outcomes. RESULTS We collected sputum from suspected TB patients with an average age of 50.86 years. We found 16.2% (n = 18) acid-fast bacteria in 111 patients with suspected pulmonary TB, and molecularly, we identified 17.1% (n = 19) Mycobacterium species by multiplex PCR. Three sputum samples tested positive for NTM. Phylogenetic analysis, based on 16S rRNA gene sequencing, revealed similarities between the samples and known mycobacterial species. CONCLUSIONS The study underscores the challenges in differentiating between MTBC and NTM, highlighting the necessity for molecular diagnostic approaches. Notably, we found NTM in sputum samples from patients previously treated for TB. These findings can serve as a reference for improving diagnostic accuracy and preventing misdiagnosis of mycobacterial infections.
Collapse
Affiliation(s)
- Fanny Indriyani Biyang
- Department of Microbiology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Muhammad Nasrum Massi
- Department of Microbiology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
- Clinical Microbiology Laboratory, Hasanuddin University Hospital, Makassar, Indonesia
| | - Lisa Tenriesa Muslich
- Department of Microbiology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
- Clinical Microbiology Laboratory, Hasanuddin University Hospital, Makassar, Indonesia
- Clinical Microbiology Laboratory, Dr. Wahidin Sudirohusodo Central General Hospital, Makassar, Indonesia
| | - Andi Rofian Sultan
- Department of Microbiology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
- Clinical Microbiology Laboratory, Hasanuddin University Hospital, Makassar, Indonesia
| | - Mochammad Hatta
- Department of Microbiology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
- Clinical Microbiology Laboratory, Hasanuddin University Hospital, Makassar, Indonesia
| | | | - Baedah Madjid
- Department of Microbiology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
- Clinical Microbiology Laboratory, Hasanuddin University Hospital, Makassar, Indonesia
| |
Collapse
|
6
|
Bartolomeu-Gonçalves G, Souza JMD, Fernandes BT, Spoladori LFA, Correia GF, Castro IMD, Borges PHG, Silva-Rodrigues G, Tavares ER, Yamauchi LM, Pelisson M, Perugini MRE, Yamada-Ogatta SF. Tuberculosis Diagnosis: Current, Ongoing, and Future Approaches. Diseases 2024; 12:202. [PMID: 39329871 PMCID: PMC11430992 DOI: 10.3390/diseases12090202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/31/2024] [Accepted: 08/31/2024] [Indexed: 09/28/2024] Open
Abstract
Tuberculosis (TB) remains an impactful infectious disease, leading to millions of deaths every year. Mycobacterium tuberculosis causes the formation of granulomas, which will determine, through the host-pathogen relationship, if the infection will remain latent or evolve into active disease. Early TB diagnosis is life-saving, especially among immunocompromised individuals, and leads to proper treatment, preventing transmission. This review addresses different approaches to diagnosing TB, from traditional methods such as sputum smear microscopy to more advanced molecular techniques. Integrating these techniques, such as polymerase chain reaction (PCR) and loop-mediated isothermal amplification (LAMP), has significantly improved the sensitivity and specificity of M. tuberculosis identification. Additionally, exploring novel biomarkers and applying artificial intelligence in radiological imaging contribute to more accurate and rapid diagnosis. Furthermore, we discuss the challenges of existing diagnostic methods, including limitations in resource-limited settings and the emergence of drug-resistant strains. While the primary focus of this review is on TB diagnosis, we also briefly explore the challenges and strategies for diagnosing non-tuberculous mycobacteria (NTM). In conclusion, this review provides an overview of the current landscape of TB diagnostics, emphasizing the need for ongoing research and innovation. As the field evolves, it is crucial to ensure that these advancements are accessible and applicable in diverse healthcare settings to effectively combat tuberculosis worldwide.
Collapse
Affiliation(s)
- Guilherme Bartolomeu-Gonçalves
- Programa de Pós-Graduação em Fisiopatologia Clínica e Laboratorial, Universidade Estadual de Londrina, Londrina CEP 86038-350, Paraná, Brazil
| | - Joyce Marinho de Souza
- Programa de Pós-Graduação em Microbiologia, Universidade Estadual de Londrina, Londrina CEP 86057-970, Paraná, Brazil
- Faculdade de Ciências da Saúde, Biomedicina, Universidade do Oeste Paulista, Presidente Prudente CEP 19050-920, São Paulo, Brazil
| | - Bruna Terci Fernandes
- Programa de Pós-Graduação em Microbiologia, Universidade Estadual de Londrina, Londrina CEP 86057-970, Paraná, Brazil
- Curso de Farmácia, Faculdade Dom Bosco, Cornélio Procópio CEP 86300-000, Paraná, Brazil
| | | | - Guilherme Ferreira Correia
- Programa de Pós-Graduação em Microbiologia, Universidade Estadual de Londrina, Londrina CEP 86057-970, Paraná, Brazil
| | - Isabela Madeira de Castro
- Programa de Pós-Graduação em Microbiologia, Universidade Estadual de Londrina, Londrina CEP 86057-970, Paraná, Brazil
| | | | - Gislaine Silva-Rodrigues
- Programa de Pós-Graduação em Microbiologia, Universidade Estadual de Londrina, Londrina CEP 86057-970, Paraná, Brazil
| | - Eliandro Reis Tavares
- Programa de Pós-Graduação em Microbiologia, Universidade Estadual de Londrina, Londrina CEP 86057-970, Paraná, Brazil
- Departamento de Medicina, Pontifícia Universidade Católica do Paraná, Campus Londrina CEP 86067-000, Paraná, Brazil
| | - Lucy Megumi Yamauchi
- Programa de Pós-Graduação em Microbiologia, Universidade Estadual de Londrina, Londrina CEP 86057-970, Paraná, Brazil
| | - Marsileni Pelisson
- Programa de Pós-Graduação em Fisiopatologia Clínica e Laboratorial, Universidade Estadual de Londrina, Londrina CEP 86038-350, Paraná, Brazil
| | - Marcia Regina Eches Perugini
- Programa de Pós-Graduação em Fisiopatologia Clínica e Laboratorial, Universidade Estadual de Londrina, Londrina CEP 86038-350, Paraná, Brazil
| | - Sueli Fumie Yamada-Ogatta
- Programa de Pós-Graduação em Fisiopatologia Clínica e Laboratorial, Universidade Estadual de Londrina, Londrina CEP 86038-350, Paraná, Brazil
- Programa de Pós-Graduação em Microbiologia, Universidade Estadual de Londrina, Londrina CEP 86057-970, Paraná, Brazil
| |
Collapse
|
7
|
Cooper SK, Ackart DF, Lanni F, Henao-Tamayo M, Anderson GB, Podell BK. Heterogeneity in immune cell composition is associated with Mycobacterium tuberculosis replication at the granuloma level. Front Immunol 2024; 15:1427472. [PMID: 39253081 PMCID: PMC11381408 DOI: 10.3389/fimmu.2024.1427472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/23/2024] [Indexed: 09/11/2024] Open
Abstract
The control of bacterial growth is key to the prevention and treatment of tuberculosis (TB). Granulomas represent independent foci of the host immune response that present heterogeneous capacity for control of bacterial growth. At the whole tissue level, B cells and CD4 or CD8 T cells have an established role in immune protection against TB. Immune cells interact within each granuloma response, but the impact of granuloma immune composition on bacterial replication remains unknown. Here we investigate the associations between immune cell composition, including B cell, CD4, and CD8 T cells, and the state of replicating Mycobacterium tuberculosis (Mtb) within the granuloma. A measure of ribosomal RNA synthesis, the RS ratio®, represents a proxy measure of Mtb replication at the whole tissue level. We adapted the RS ratio through use of in situ hybridization, to identify replicating and non-replicating Mtb within each designated granuloma. We applied a regression model to characterize the associations between immune cell populations and the state of Mtb replication within each respective granuloma. In the evaluation of nearly 200 granulomas, we identified heterogeneity in both immune cell composition and proportion of replicating bacteria. We found clear evidence of directional associations between immune cell composition and replicating Mtb. Controlling for vaccination status and endpoint post-infection, granulomas with lower CD4 or higher CD8 cell counts are associated with a higher percent of replicating Mtb. Conversely, changes in B cell proportions were associated with little change in Mtb replication. This study establishes heterogeneity across granulomas, demonstrating that certain immune cell types are differentially associated with control of Mtb replication. These data suggest that evaluation at the granuloma level may be imperative to identifying correlates of immune protection.
Collapse
Affiliation(s)
- Sarah K Cooper
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
- Phoenix Immune Mechanisms of Protection Against Tuberculosis Center, Seattle, WA, United States
| | - David Forrest Ackart
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
- Phoenix Immune Mechanisms of Protection Against Tuberculosis Center, Seattle, WA, United States
| | - Faye Lanni
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
- Phoenix Immune Mechanisms of Protection Against Tuberculosis Center, Seattle, WA, United States
| | - Marcela Henao-Tamayo
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
- Phoenix Immune Mechanisms of Protection Against Tuberculosis Center, Seattle, WA, United States
| | - G Brooke Anderson
- Phoenix Immune Mechanisms of Protection Against Tuberculosis Center, Seattle, WA, United States
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Brendan K Podell
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
- Phoenix Immune Mechanisms of Protection Against Tuberculosis Center, Seattle, WA, United States
- Consortium for Applied Microbial Metrics, Aurora, CO, United States
| |
Collapse
|
8
|
Nakiboneka RF, Sabiiti W. The role and implications of RNAscope and mRNA in the diagnosis of tuberculosis. EBioMedicine 2024; 105:105230. [PMID: 38959847 PMCID: PMC11261753 DOI: 10.1016/j.ebiom.2024.105230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024] Open
Affiliation(s)
- Ritah F Nakiboneka
- Division of Infection and Global Health, School of Medicine, University of St Andrews, UK; Department of Pathology, Kamuzu University of Health Sciences, Blantyre, Malawi; Helse Nord Tuberculosis Initiative (HNTI), Pathology Department, Kamuzu University of Health Sciences, Blantyre, Malawi; Uganda Virus Research Institute, Entebbe, Uganda
| | - Wilber Sabiiti
- Division of Infection and Global Health, School of Medicine, University of St Andrews, UK.
| |
Collapse
|
9
|
Nargan K, Glasgow JN, Nadeem S, Naidoo T, Wells G, Hunter RL, Hutton A, Lumamba K, Msimang M, Benson PV, Steyn AJC. Spatial distribution of Mycobacterium tuberculosis mRNA and secreted antigens in acid-fast negative human antemortem and resected tissue. EBioMedicine 2024; 105:105196. [PMID: 38880068 PMCID: PMC11233921 DOI: 10.1016/j.ebiom.2024.105196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND The ability to detect evidence of Mycobacterium tuberculosis (Mtb) infection within human tissues is critical to the study of Mtb physiology, tropism, and spatial distribution within TB lesions. The capacity of the widely-used Ziehl-Neelsen (ZN) staining method for identifying Mtb acid-fast bacilli (AFB) in tissue is highly variable, which can limit detection of Mtb bacilli for research and diagnostic purposes. Here, we sought to circumvent these limitations via detection of Mtb mRNA and secreted antigens in human tuberculous tissue. METHODS We adapted RNAscope, an RNA in situ hybridisation (RISH) technique, to detect Mtb mRNA in ante- and postmortem human TB tissues and developed a dual ZN/immunohistochemistry staining approach to identify AFB and bacilli producing antigen 85B (Ag85B). FINDINGS We identified Mtb mRNA within intact and disintegrating bacilli as well as extrabacillary mRNA. Mtb mRNA was distributed zonally within necrotic and non-necrotic granulomas. We also found Mtb mRNA within, and adjacent to, necrotic granulomas in ZN-negative lung tissue and in Ag85B-positive bronchiolar epithelium. Intriguingly, we observed accumulation of Mtb mRNA and Ag85B in the cytoplasm of host cells. Notably, many AFB were negative for Ag85B staining. Mtb mRNA was observed in ZN-negative antemortem lymph node biopsies. INTERPRETATION RNAscope and dual ZN/immunohistochemistry staining are well-suited for identifying subsets of intact Mtb and/or bacillary remnants in human tissue. RNAscope can identify Mtb mRNA in ZN-negative tissues from patients with TB and may have diagnostic potential in complex TB cases. FUNDING Wellcome Leap Delta Tissue Program, Wellcome Strategic Core Award, the National Institutes of Health (NIH, USA), the Mary Heersink Institute for Global Health at UAB, the UAB Heersink School of Medicine.
Collapse
Affiliation(s)
- Kievershen Nargan
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Joel N Glasgow
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sajid Nadeem
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Threnesan Naidoo
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa; Department of Forensic and Legal Medicine, Walter Sisulu University, Mthatha, South Africa
| | - Gordon Wells
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Robert L Hunter
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Anneka Hutton
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kapongo Lumamba
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Mpumelelo Msimang
- Department of Anatomical Pathology, National Health Laboratory Service, IALCH, Durban, South Africa
| | - Paul V Benson
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Adrie J C Steyn
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa; Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA; Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
10
|
Patterson B, Dinkele R, Gessner S, Koch A, Hoosen Z, January V, Leonard B, McKerry A, Seldon R, Vazi A, Hermans S, Cobelens F, Warner DF, Wood R. Aerosolization of viable Mycobacterium tuberculosis bacilli by tuberculosis clinic attendees independent of sputum-Xpert Ultra status. Proc Natl Acad Sci U S A 2024; 121:e2314813121. [PMID: 38470917 PMCID: PMC10962937 DOI: 10.1073/pnas.2314813121] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/01/2024] [Indexed: 03/14/2024] Open
Abstract
Potential Mycobacterium tuberculosis (Mtb) transmission during different pulmonary tuberculosis (TB) disease states is poorly understood. We quantified viable aerosolized Mtb from TB clinic attendees following diagnosis and through six months' follow-up thereafter. Presumptive TB patients (n=102) were classified by laboratory, radiological, and clinical features into Group A: Sputum-Xpert Ultra-positive TB (n=52), Group B: Sputum-Xpert Ultra-negative TB (n=20), or Group C: TB undiagnosed (n=30). All groups were assessed for Mtb bioaerosol release at baseline, and subsequently at 2 wk, 2 mo, and 6 mo. Groups A and B were notified to the national TB program and received standard anti-TB chemotherapy; Mtb was isolated from 92% and 90% at presentation, 87% and 74% at 2 wk, 54% and 44% at 2 mo and 32% and 20% at 6 mo, respectively. Surprisingly, similar numbers were detected in Group C not initiating TB treatment: 93%, 70%, 48% and 22% at the same timepoints. A temporal association was observed between Mtb bioaerosol release and TB symptoms in all three groups. Persistence of Mtb bioaerosol positivity was observed in ~30% of participants irrespective of TB chemotherapy. Captured Mtb bacilli were predominantly acid-fast stain-negative and poorly culturable; however, three bioaerosol samples yielded sufficient biomass following culture for whole-genome sequencing, revealing two different Mtb lineages. Detection of viable aerosolized Mtb in clinic attendees, independent of TB diagnosis, suggests that unidentified Mtb transmitters might contribute a significant attributable proportion of community exposure. Additional longitudinal studies with sputum culture-positive and -negative control participants are required to investigate this possibility.
Collapse
Affiliation(s)
- Benjamin Patterson
- Amsterdam Institute for Global Health and Development, University of Amsterdam, Amsterdam1105, The Netherlands
| | - Ryan Dinkele
- South African Medical Research Council, National Health Laboratory Service, University of Cape Town Molecular Mycobacteriology Research Unit & Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town7925, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town7925, South Africa
| | - Sophia Gessner
- South African Medical Research Council, National Health Laboratory Service, University of Cape Town Molecular Mycobacteriology Research Unit & Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town7925, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town7925, South Africa
| | - Anastasia Koch
- South African Medical Research Council, National Health Laboratory Service, University of Cape Town Molecular Mycobacteriology Research Unit & Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town7925, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town7925, South Africa
| | - Zeenat Hoosen
- Aerobiology and TB Research Unit, Desmond Tutu Health Foundation, Cape Town7975, South Africa
| | - Vanessa January
- Aerobiology and TB Research Unit, Desmond Tutu Health Foundation, Cape Town7975, South Africa
| | - Bryan Leonard
- Aerobiology and TB Research Unit, Desmond Tutu Health Foundation, Cape Town7975, South Africa
| | - Andrea McKerry
- Aerobiology and TB Research Unit, Desmond Tutu Health Foundation, Cape Town7975, South Africa
| | - Ronnett Seldon
- Aerobiology and TB Research Unit, Desmond Tutu Health Foundation, Cape Town7975, South Africa
| | - Andiswa Vazi
- Aerobiology and TB Research Unit, Desmond Tutu Health Foundation, Cape Town7975, South Africa
| | - Sabine Hermans
- Amsterdam Institute for Global Health and Development, University of Amsterdam, Amsterdam1105, The Netherlands
| | - Frank Cobelens
- Amsterdam Institute for Global Health and Development, University of Amsterdam, Amsterdam1105, The Netherlands
| | - Digby F. Warner
- South African Medical Research Council, National Health Laboratory Service, University of Cape Town Molecular Mycobacteriology Research Unit & Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town7925, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town7925, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, Faculty of Health Sciences, University of Cape Town, Cape Town7925, South Africa
| | - Robin Wood
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town7925, South Africa
- Aerobiology and TB Research Unit, Desmond Tutu Health Foundation, Cape Town7975, South Africa
| |
Collapse
|
11
|
Yadav S, Rawal G, Jeyaraman M, Jeyaraman N. Advancements in Tuberculosis Diagnostics: A Comprehensive Review of the Critical Role and Future Prospects of Xpert MTB/RIF Ultra Technology. Cureus 2024; 16:e57311. [PMID: 38690500 PMCID: PMC11059844 DOI: 10.7759/cureus.57311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2024] [Indexed: 05/02/2024] Open
Abstract
Tuberculosis remains a persistent global health challenge, demanding swift and accurate diagnostic methods for effective treatment. The emergence of the Xpert MTB/RIF Ultra system marks a significant milestone in combating tuberculosis, streamlining the identification of Mycobacterium tuberculosis, and advancing our pursuit of eradicating the disease. Delving into the therapeutic landscape of tuberculosis and rifampicin resistance, this scientific narrative review offers a comprehensive exploration. It begins by delving into the historical backdrop and the hurdles encountered with traditional tuberculosis diagnostics. From there, it traces the journey of the Xpert MTB/RIF technology, underscoring its molecular underpinnings. In this narrative review, the performance of the Xpert MTB/RIF Ultra system undergoes thorough scrutiny, encompassing investigations into sensitivity, specificity, and comparisons with alternative diagnostic methods. The spotlight shines on its clinical applications across diverse scenarios, from diagnosing pulmonary and extrapulmonary tuberculosis to its pivotal role in identifying rifampicin resistance. The study also evaluates its clinical efficacy in enhancing patient outcomes and supporting global tuberculosis control initiatives. However, the review does not shy away from discussing the challenges and limitations associated with the Xpert MTB/RIF Ultra system. It meticulously addresses concerns regarding cost, infrastructure requirements, and potential diagnostic inaccuracies. Offering a panoramic view, the review assesses the system's impact in resource-constrained settings and its potential to bolster tuberculosis elimination endeavors worldwide. Peering into the future, it explores ongoing research avenues and potential enhancements in Xpert MTB/RIF Ultra technology, envisioning a landscape of improved performance, broader applications, and emerging diagnostic innovations in the realm of tuberculosis diagnostics.
Collapse
Affiliation(s)
- Sankalp Yadav
- Medicine, Shri Madan Lal Khurana Chest Clinic, New Delhi, IND
| | - Gautam Rawal
- Respiratory Medical Critical Care, Max Super Speciality Hospital, New Delhi, IND
| | - Madhan Jeyaraman
- Clinical Research, Viriginia Tech India, Dr. MGR Educational and Research Institute, Chennai, IND
- Orthopaedics, ACS Medical College and Hospital, Dr. MGR Educational and Research Institute, Chennai, IND
| | - Naveen Jeyaraman
- Orthopaedics, ACS Medical College and Hospital, Dr. MGR Educational and Research Institute, Chennai, IND
| |
Collapse
|
12
|
Ghermi M, Messedi M, Adida C, Belarbi K, Djazouli MEA, Berrazeg ZI, Kallel Sellami M, Ghezini Y, Louati M. TubIAgnosis: A machine learning-based web application for active tuberculosis diagnosis using complete blood count data. Digit Health 2024; 10:20552076241278211. [PMID: 39224791 PMCID: PMC11367613 DOI: 10.1177/20552076241278211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Objective Tuberculosis remains a major global health challenge, with delayed diagnosis contributing to increased transmission and disease burden. While microbiological tests are the gold standard for confirming active tuberculosis, many cases lack microbiological evidence, necessitating additional clinical and laboratory data for diagnosis. The complete blood count (CBC), an inexpensive and widely available test, could provide a valuable tool for tuberculosis diagnosis by analyzing disturbances in blood parameters. This study aimed to develop and evaluate a machine learning (ML)-based web application, TubIAgnosis, for diagnosing active tuberculosis using CBC data. Methods We conducted a retrospective case-control study using data from 449 tuberculosis patients and 1200 healthy controls in Oran, Algeria, from January 2016 to April 2023. Eight ML algorithms were trained on 18 CBC parameters and demographic data. Model performance was evaluated using balanced accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and area under the receiver operating characteristic curve (AUC). Results The best-performing model, Extreme Gradient Boosting (XGB), achieved a balanced accuracy of 83.3%, AUC of 89.4%, sensitivity of 83.3%, and specificity of 83.3% on the testing dataset. Platelet-to-lymphocyte ratio was the most influential parameter in this ML predictive model. The best performing model (XGB) was made available online as a web application called TubIAgnosis, which is available free of charge at https://yh5f0z-ghermi-mohamed.shinyapps.io/TubIAgnosis/. Conclusions TubIAgnosis, a ML-based web application utilizing CBC data, demonstrated promising performance for diagnosing active tuberculosis. This accessible and cost-effective tool could complement existing diagnostic methods, particularly in resource-limited settings. Prospective studies are warranted to further validate and refine this approach.
Collapse
Affiliation(s)
- Mohamed Ghermi
- Biology of Microorganisms and Biotechnology Laboratory, University of Oran1 Ahmed Ben Bella, Oran, Algeria
- Biotechnology Department, University of Oran1 Ahmed Ben Bella, Oran, Algeria
| | - Meriam Messedi
- Molecular Bases of Human Diseases (LR19ES13), Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Chahira Adida
- Biotechnology Department, University of Oran1 Ahmed Ben Bella, Oran, Algeria
| | - Kada Belarbi
- Biotechnology Department, University of Oran1 Ahmed Ben Bella, Oran, Algeria
| | - Mohamed El Amine Djazouli
- Occupational Medicine Service, Oran University Hospital Center, Faculty of Medicine, University of Oran1 Ahmed Ben Bella, Oran, Algeria
| | - Zahia Ibtissem Berrazeg
- Occupational Medicine Service, Oran University Hospital Center, Faculty of Medicine, University of Oran1 Ahmed Ben Bella, Oran, Algeria
| | | | - Younes Ghezini
- Occupational Medicine Service, Oran University Hospital Center, Faculty of Medicine, University of Oran1 Ahmed Ben Bella, Oran, Algeria
| | - Mahdi Louati
- National School of Electronics and Telecommunications of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
13
|
Sheereen S, Manva MZ, Sheereen S, Patil NN. Exploring the Oral Manifestations of Tuberculosis: A Comprehensive Analysis of Prevalence and Clinicopathological Characteristics of Oral Lesions. Int J Mycobacteriol 2024; 13:53-57. [PMID: 38771280 DOI: 10.4103/ijmy.ijmy_224_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/01/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND The study aimed to report all cases of oral tuberculosis (TB), a rare manifestation of the fatal infectious disease primarily affecting the pulmonary system. The report also evaluated the clinicopathological characteristics of oral TB lesions. METHODS A total of 25 patients who presented with oral lesions between August 2013 and August 2023 were diagnosed with TB through surgical biopsy despite having no prior history of the disease. Their clinical symptoms, auxiliary examinations, treatments, and outcomes were recorded and analyzed for further study. RESULTS In a study of 25 patients with oral TB, all patients were found to have the disease, with 16 males and 9 females affected. The gender distribution was skewed toward males, with a 1.77 male-to-female ratio. Twelve cases of the affected sites were reported in the mandible, six cases in the buccal mucosa, four in the lips, two in the gingiva, and one in the tongue. The age range of affected patients was 0-70 years old, and all lesions were indicative of primary TB. The appearance of the affected mucosa varied, with ulceration and swelling being the most common manifestations. CONCLUSION Patients who present with oral ulcerations and swellings should be evaluated for the possibility of TB. To confirm and differentiate this condition from other diseases, obtaining a biopsy specimen for histological analysis and performing acid-fast stains and cultures is recommended. These tests will enable a precise diagnosis and guide appropriate treatment.
Collapse
Affiliation(s)
- Shazima Sheereen
- Department of Pathology, Kasturba Medical College, Manipal Academy of Higher Education, Mangalore, Karnataka, India
| | - Mohnish Zulfikar Manva
- Department of Conservative Dentistry and Endodontics, Cimai Medical Centre, Riyadh, Saudi Arabia
| | - Shamama Sheereen
- Department of Pedodontics and Preventive Dentistry, Maharaj Vinayak Global University, Jaipur, Rajasthan, India
| | - Namrata N Patil
- Department of Oral Pathology and Microbiology, Saraswati Dhanwantari Dental College and Hospital, Post Graduate Research Centre, Parbhani, Maharashtra, India
| |
Collapse
|
14
|
Maccio U, Gianolio A, Rets AV. Granulomas in bone marrow biopsies: clinicopathological significance and new perspectives. J Clin Pathol 2023; 77:8-15. [PMID: 37640519 DOI: 10.1136/jcp-2023-209104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
Bone marrow granulomas in trephine biopsies are a rare and usually incidental finding. Possible causes include infectious (especially tuberculous and rarer non-tuberculous mycobacteria, but also many other bacterial, viral, fungal and parasitic agents) and non-infectious causes (especially medications, autoimmune disease, sarcoidosis, haematological and non-haematological malignancy). Necrotising granulomas are generally suggestive of an infectious aetiology (tuberculosis being the most common), whereas fibrin ring granulomas are associated with Q-fever and Epstein Barr Virus, although exceptions are possible. Every case suspicious for infectious aetiology should undergo further analysis like special staining (Ziehl-Neelsen for acid-fast rods) or molecular studies. The histomorphology should always be clinically correlated. In cases in which no infectious cause can be identified, untargeted metagenomics may represent a valid diagnostic tool that may become standard in the near future for bone marrow diagnostics. In this review, we have analysed the published data from 1956 up to today, and we report aspects of epidemiology, aetiology, diagnostic algorithms, differential diagnosis and the role of metagenomics in bone marrow biopsies with granulomas.
Collapse
Affiliation(s)
- Umberto Maccio
- Pathology and Molecular Pathology, University Hospital Zurich, Zürich, Switzerland
| | - Alessandra Gianolio
- Department of Medical Sciences, University of Turin, Torino, Piemonte, Italy
| | - Anton V Rets
- Department of Hematopathology, ARUP Laboratories Inc, Salt Lake City, Utah, USA
- Pathology, The University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
15
|
Achhami E, Lamichhane S, Mahaju S, Kandel A, Poudel A, Kc R. Unregulated medication use and complications: a case study of prolonged self-treated tuberculosis in Nepal. BMC Infect Dis 2023; 23:659. [PMID: 37798711 PMCID: PMC10557175 DOI: 10.1186/s12879-023-08637-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/24/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Tuberculosis (TB) is a global public health issue, particularly in resource-constrained countries like Nepal. This case report highlights the consequences of prolonged self-treatment and non-compliance with TB management protocols, emphasizing the need for increased awareness and intervention. CASE PRESENTATION A 50-year-old male from Nepal self-medicated with anti-tubercular drugs for 13 years after completing the recommended course of treatment. He experienced worsening symptoms, including respiratory distress and visual impairment. Upon evaluation, he was diagnosed with chronic cavitary pulmonary aspergillosis. The patient received comprehensive treatment, including antifungal therapy, steroids, antibiotics, and respiratory support, resulting in significant improvement. CONCLUSIONS This case highlights the dangers of self-treatment and non-compliance with TB management protocols. It emphasizes the importance of patient education, awareness programs, and regular follow-up to ensure treatment adherence and detect complications. The case also reveals gaps in the DOTS (Directly Observed Treatment, Short Course) program, including the need for improved surveillance, and a multidisciplinary approach. The ease of over-the-counter purchase of anti-tubercular drugs in Nepal contributed to the patient's prolonged self-medication, highlighting a concerning. The complications arising from prolonged self-medication underscore the need for increased awareness, intervention, and patient education in TB management. Improving patient education, raising awareness about the risks of self-medication, and integrating ophthalmologic evaluations into standard management are essential for better TB control in Nepal.
Collapse
Affiliation(s)
- Eliz Achhami
- Sukraraj Tropical & Infectious Disease Hospital, Kathmandu, Nepal.
| | | | - Satyam Mahaju
- Sukraraj Tropical & Infectious Disease Hospital, Kathmandu, Nepal
| | - Ashim Kandel
- Sukraraj Tropical & Infectious Disease Hospital, Kathmandu, Nepal
| | - Anubhav Poudel
- Sukraraj Tropical & Infectious Disease Hospital, Kathmandu, Nepal
| | | |
Collapse
|
16
|
Nargan K, Naidoo T, Msimang M, Nadeem S, Wells G, Hunter RL, Hutton A, Lumamba K, Glasgow JN, Benson PV, Steyn AJ. Detection of Mycobacterium tuberculosis in human tissue via RNA in situ hybridization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.04.560963. [PMID: 37873458 PMCID: PMC10592959 DOI: 10.1101/2023.10.04.560963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Rationale Accurate TB diagnosis is hampered by the variable efficacy of the widely-used Ziehl-Neelsen (ZN) staining method to identify Mycobacterium tuberculosis ( Mtb ) acid-fast bacilli (AFB). Here, we sought to circumvent this current limitation through direct detection of Mtb mRNA. Objectives To employ RNAscope to determine the spatial distribution of Mtb mRNA within tuberculous human tissue, to appraise ZN-negative tissue from confirmed TB patients, and to provide proof-of-concept of RNAscope as a platform to inform TB diagnosis and Mtb biology. Methods We examined ante- and postmortem human TB tissue using RNAscope to detect Mtb mRNA and a dual ZN/immunohistochemistry staining approach to identify AFB and bacilli producing antigen 85B (Ag85B). Measurements and main results We adapted RNAscope for Mtb and identified intact and disintegrated Mtb bacilli and intra- and extracellular Mtb mRNA. Mtb mRNA was distributed zonally within necrotic and non-necrotic granulomas. We also found Mtb mRNA within, and adjacent to, necrotic granulomas in ZN-negative lung tissue and in Ag85B-positive bronchial epithelium. Intriguingly, we observed accumulation of Mtb mRNA and Ag85B in the cytoplasm of host cells. Notably, many AFB were negative for Ag85B staining. Mtb mRNA was observed in ZN-negative antemortem lymph node biopsies. Conclusions RNAscope has diagnostic potential and can guide therapeutic intervention as it detects Mtb mRNA and morphology in ZN-negative tissues from TB patients, and Mtb mRNA in ZN-negative antemortem biopsies, respectively. Lastly, our data provide evidence that at least two phenotypically distinct populations of Mtb bacilli exist in vivo .
Collapse
|
17
|
Alamri MA, Ahmad S, Alqahtani SM, Irfan M, Alabbas AB, Tahir Ul Qamar M. Screening of marine natural products for potential inhibitors targeting biotin biosynthesis pathway in Mycobacterium tuberculosis. J Biomol Struct Dyn 2023; 41:8535-8543. [PMID: 36264105 DOI: 10.1080/07391102.2022.2135596] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/08/2022] [Indexed: 10/24/2022]
Abstract
Tuberculosis (TB) remains as one of the major public health concerns worldwide. A successful TB control and treatment is very challenging, due to continuing emergence of Mycobacterium tuberculosis strains resistant to known drugs. Therefore, the development of new drugs with different chemical and biological approaches is necessary to obtain more efficient anti-tubercular therapeutics. Biotin is an essential cofactor for lipid biosynthesis and gluconeogenesis in M. tuberculosis. M. tuberculosis relies on de novo biotin biosynthesis to obtain this vital cofactor since it cannot scavenge sufficient biotin from a mammalian host. In this study, comprehensive in silico methods including structure-based virtual screening, molecular docking, and molecular dynamic simulation analysis for ∼8000 marine natural products were performed against two essential enzymes involved in biotin synthesis and ligation of M. tuberculosis namely, pyridoxal 5'-phosphate-dependent transaminase (BioA) and mycobacterial biotin protein ligase (MtBPL). Two compounds; CMNPD10112 and CMNPD10113 are unveiled to bind the enzymes consistently and with high affinities. The binding pattern of compounds is further noticed in very stable binding modes as analyzed by molecular dynamics simulation and the mean RMSD of the complexes is within 4 Å. The intermolecular binding free energies validated complexes are less than -40 kcal/mol, which demonstrates strong and stable complexes formation. The identified hit compounds could be seeds for design of effective anti-mycobacterium therapeutics by inhibition of bacterial growth through blocking the biotin biosynthesis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mubarak A Alamri
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Saudi Arabia
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Safar M Alqahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Saudi Arabia
| | - Muhammad Irfan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Alhumaidi B Alabbas
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Saudi Arabia
| | - Muhammad Tahir Ul Qamar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
18
|
Liu Q, Xu F, Liu Q, Liu X. Comparative analysis of five etiological detecting techniques for the positive rates in the diagnosis of tuberculous granuloma. J Clin Tuberc Other Mycobact Dis 2023; 32:100378. [PMID: 37293271 PMCID: PMC10245093 DOI: 10.1016/j.jctube.2023.100378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
Purpose To examine the relationship between the positive rate and types of necrosis in pathological examinations of tuberculosis granulomas with necrosis, to improve the detection rate of positive cases. Methods Specimens from 381 patients were collected in Wuhan Pulmonary Hospital from Jan 2022 to Feb 2023. The samples were examined using various methods such as AFB smear microscopy, mycobacterial culture, PCR, SAT-TB, and X-pert MTB/RIF rapid molecular detection. Result There were 3 types of necrosis. Including 270 cases of caseous necrosis, 30 cases of coagulation necrosis, and 76 cases of an abscess. Five cases were non-necrotizing granulomas.In the pathological specimen testing for tuberculosis, five detection techniques were used and their positive rates detected in descending order were X-pert, TBDNA, SAT-TB, tuberculosis culture, AFB. Comparison between different examinations in the group: X-pert had the highest positive rate in each group, and it was significantly higher than TBDNA (P < 0.01) in caseous necrosis specimens. Compared with the same examination between the groups, the detection rates of X-pert and TBDNA in abscess and caseous necrosis specimens were significantly higher than in coagulation necrosis specimens (P < 0.01). Conclusion The positive rates of the five etiological detection techniques in tuberculous granuloma with different types of necrosis were quite different. The specimens of caseous necrosis or abscess could be selected for detection, and X-pert had the highest positive rate.
Collapse
Affiliation(s)
- Qibin Liu
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, No. 28 Baofeng Road, Qiaokou District, Wuhan City, Hubei Province, China
| | - Feng Xu
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, No. 28 Baofeng, Road, Qiaokou District, Wuhan City, Hubei Province, China
| | - Qiliang Liu
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, No. 28 Baofeng, Road, Qiaokou District, Wuhan City, Hubei Province, China
| | - Xiaoyu Liu
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, No. 28 Baofeng Road, Qiaokou District, Wuhan City, Hubei Province, China
| |
Collapse
|
19
|
Lee HJ, Kim NH, Lee EH, Yoon YS, Jeong YJ, Lee BC, Koo B, Jang YO, Kim SH, Kang YA, Lee SW, Shin Y. Multicenter Testing of a Simple Molecular Diagnostic System for the Diagnosis of Mycobacterium Tuberculosis. BIOSENSORS 2023; 13:259. [PMID: 36832025 PMCID: PMC9954000 DOI: 10.3390/bios13020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/04/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Mycobacterium tuberculosis (MTB) is a communicable disease and still remains a threat to common health. Thus, early diagnosis and treatment are required to prevent the spread of infection. Despite the recent advances in molecular diagnostic systems, the commonly used MTB diagnostic tools are laboratory-based assays, such as mycobacterial culture, MTB PCR, and Xpert MTB/RIF. To address this limitation, point-of-care testing (POCT)-based molecular diagnostic technologies capable of sensitive and accurate detection even in environments with limited sources are needed. In this study, we propose simple tuberculosis (TB) molecular diagnostic assay by combining sample preparation and DNA-detection steps. The sample preparation is performed using a syringe filter with amine-functionalized diatomaceous earth and homobifunctional imidoester. Subsequently, the target DNA is detected by quantitative PCR (polymerase chain reaction). The results can be obtained within 2 h from samples with large volumes, without any additional instruments. The limit of detection of this system is 10 times higher than those of conventional PCR assays. We validated the clinical utility of the proposed method in 88 sputum samples obtained from four hospitals in the Republic of Korea. Overall, the sensitivity of this system was superior to those of other assays. Therefore, the proposed system can be useful for MTB diagnosis in limited-resource settings.
Collapse
Affiliation(s)
- Hyo Joo Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Nam Hun Kim
- INFUSIONTECH, 38 Heungan-daero, 427 Beon-gil, Dongan-gu, Anyang-si 14059, Republic of Korea
| | - Eun Hye Lee
- Division of Pulmonology, Allergy and Critical Care Medicine, Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si 06273, Republic of Korea
| | - Young Soon Yoon
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang-si 10326, Republic of Korea
| | - Yun Jeong Jeong
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang-si 10326, Republic of Korea
| | - Byung Chul Lee
- INFUSIONTECH, 38 Heungan-daero, 427 Beon-gil, Dongan-gu, Anyang-si 14059, Republic of Korea
| | - Bonhan Koo
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Yoon Ok Jang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sung-Han Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Songpa-gu, Seoul 05505, Republic of Korea
| | - Young Ae Kang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sei Won Lee
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Yong Shin
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
20
|
Wang L, Xiong Y, Fu B, Guo D, Zaky MY, Lin X, Wu H. MicroRNAs as immune regulators and biomarkers in tuberculosis. Front Immunol 2022; 13:1027472. [PMID: 36389769 PMCID: PMC9647078 DOI: 10.3389/fimmu.2022.1027472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/12/2022] [Indexed: 07/26/2023] Open
Abstract
Tuberculosis (TB), which is caused by Mycobacterium tuberculosis (Mtb), is one of the most lethal infectious disease worldwide, and it greatly affects human health. Some diagnostic and therapeutic methods are available to effectively prevent and treat TB; however, only a few systematic studies have described the roles of microRNAs (miRNAs) in TB. Combining multiple clinical datasets and previous studies on Mtb and miRNAs, we state that pathogens can exploit interactions between miRNAs and other biomolecules to avoid host mechanisms of immune-mediated clearance and survive in host cells for a long time. During the interaction between Mtb and host cells, miRNA expression levels are altered, resulting in the changes in the miRNA-mediated regulation of host cell metabolism, inflammatory responses, apoptosis, and autophagy. In addition, differential miRNA expression can be used to distinguish healthy individuals, patients with TB, and patients with latent TB. This review summarizes the roles of miRNAs in immune regulation and their application as biomarkers in TB. These findings could provide new opportunities for the diagnosis and treatment of TB.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| | - Yan Xiong
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| | - Beibei Fu
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| | - Dong Guo
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| | - Mohamed Y. Zaky
- Department of Zoology, Molecular Physiology Division, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Xiaoyuan Lin
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| | - Haibo Wu
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
21
|
Parbhoo T, Mouton JM, Sampson SL. Phenotypic adaptation of Mycobacterium tuberculosis to host-associated stressors that induce persister formation. Front Cell Infect Microbiol 2022; 12:956607. [PMID: 36237425 PMCID: PMC9551238 DOI: 10.3389/fcimb.2022.956607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Mycobacterium tuberculosis exhibits a remarkable ability to interfere with the host antimicrobial response. The pathogen exploits elaborate strategies to cope with diverse host-induced stressors by modulating its metabolism and physiological state to prolong survival and promote persistence in host tissues. Elucidating the adaptive strategies that M. tuberculosis employs during infection to enhance persistence is crucial to understanding how varying physiological states may differentially drive disease progression for effective management of these populations. To improve our understanding of the phenotypic adaptation of M. tuberculosis, we review the adaptive strategies employed by M. tuberculosis to sense and coordinate a physiological response following exposure to various host-associated stressors. We further highlight the use of animal models that can be exploited to replicate and investigate different aspects of the human response to infection, to elucidate the impact of the host environment and bacterial adaptive strategies contributing to the recalcitrance of infection.
Collapse
|
22
|
Asai M, Li Y, Spiropoulos J, Cooley W, Everest DJ, Kendall SL, Martín C, Robertson BD, Langford PR, Newton SM. Galleria mellonella as an infection model for the virulent Mycobacterium tuberculosis H37Rv. Virulence 2022; 13:1543-1557. [PMID: 36052440 PMCID: PMC9481108 DOI: 10.1080/21505594.2022.2119657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), is a leading cause of infectious disease mortality. Animal infection models have contributed substantially to our understanding of TB, yet their biological and non-biological limitations are a research bottleneck. There is a need for more ethically acceptable, economical, and reproducible TB infection models capable of mimicking key aspects of disease. Here, we demonstrate and present a basic description of how Galleria mellonella (the greater wax moth, Gm) larvae can be used as a low cost, rapid, and ethically more acceptable model for TB research. This is the first study to infect Gm with the fully virulent MTB H37Rv, the most widely used strain in research. Infection of Gm with MTB resulted in a symptomatic lethal infection, the virulence of which differed from both attenuated Mycobacterium bovis BCG and auxotrophic MTB strains. The Gm-MTB model can also be used for anti-TB drug screening, although CFU enumeration from Gm is necessary for confirmation of mycobacterial load reducing activity of the tested compound. Furthermore, comparative virulence of MTB isogenic mutants can be determined in Gm. However, comparison of mutant phenotypes in Gm against conventional models must consider the limitations of innate immunity. Our findings indicate that Gm will be a practical, valuable, and advantageous additional model to be used alongside existing models to advance tuberculosis research.
Collapse
Affiliation(s)
- Masanori Asai
- Section of Paediatric Infectious Diseases, Department of Infectious Disease, Imperial College London, London, UK
| | - Yanwen Li
- Section of Paediatric Infectious Diseases, Department of Infectious Disease, Imperial College London, London, UK
| | - John Spiropoulos
- Department of Pathology, Animal and Plant Health Agency, Addlestone, UK
| | - William Cooley
- Department of Pathology, Animal and Plant Health Agency, Addlestone, UK
| | - David J Everest
- Department of Pathology, Animal and Plant Health Agency, Addlestone, UK
| | - Sharon L Kendall
- Centre for Emerging, Endemic and Exotic Diseases, Pathobiology and Population Sciences, Royal Veterinary College, Hartfield, UK
| | - Carlos Martín
- Department of Microbiology, Facultad de Medicina Universidad de Zaragoza, CIBERES, (ISCIII), Spain
| | - Brian D Robertson
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, UK
| | - Paul R Langford
- Section of Paediatric Infectious Diseases, Department of Infectious Disease, Imperial College London, London, UK
| | - Sandra M Newton
- Section of Paediatric Infectious Diseases, Department of Infectious Disease, Imperial College London, London, UK
| |
Collapse
|
23
|
Häußler TC, Thom N, Prenger-Berninghoff E, Köhler K, Barth SA. Challenging diagnosis and successful treatment of localised Mycobacterium avium subsp. hominissuis glossitis in a dog on long-term immunomodulatory therapy. N Z Vet J 2022; 70:340-348. [PMID: 35968551 DOI: 10.1080/00480169.2022.2113166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
CASE HISTORY A 3-year-old, intact female mixed-breed dog, weighing 7 kg, was presented with generalised swelling of the tongue, leading to impaired deglutition and episodes of dyspnoea. From the age of 2 years the dog had been under immunosuppressive therapy due to atopic dermatitis. CLINICAL FINDINGS AND TREATMENT Multiple nodular lesions at the apex of the tongue were noted as well as mandibular and retropharyngeal lymph node enlargement. Serum biochemistry results showed inflammatory changes. The results of several biopsies taken over 7 months indicated persistent pyogranulomatous and necrotising glossitis despite ongoing antimicrobial treatment with first amoxicillin/clavulanic acid and then pradofloxacin. No foreign material, acid-fast bacteria or fungal hyphae were detected throughout. The final diagnosis of Mycobacterium avium subsp. hominissuis (Mah) was reached after PCR and bacterial culture were carried out on the third biopsy sample. Therapy was initiated with rifampicin, clarithromycin and doxycycline, leading to complete remission of the lesions. DIAGNOSIS Severe chronic pyogranulomatous and necrotising glossitis associated with infection by Mah. CLINICAL RELEVANCE This report describes challenges in the diagnosis and therapy of a localised Mah infection in an iatrogenically immunocompromised dog. Successful treatment was only achieved with a specific combination of antibiotics administered long-term.
Collapse
Affiliation(s)
- T C Häußler
- Clinic for Small Animals, Surgical Department, Justus Liebig University, Giessen, Germany
| | - N Thom
- Clinic for Small Animals, Department of Dermatology, Justus Liebig University, Giessen, Germany
| | - E Prenger-Berninghoff
- Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University, Giessen, Germany
| | - K Köhler
- Institute of Veterinary Pathology, Justus Liebig University, Giessen, Germany
| | - S A Barth
- Friedrich-Loeffler-Institute/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Jena, Germany
| |
Collapse
|
24
|
Yang Z, Feng Y, Li D, Pang Z, Wang S, Chen H, Jiang M, Yan H, Li T, Fu H, Xiong H, Shi D. 5-aminolevulinic acid-photodynamic therapy ameliorates cutaneous granuloma by killing drug-resistant Mycobacterium marinum. Photodiagnosis Photodyn Ther 2022; 38:102839. [PMID: 35367615 DOI: 10.1016/j.pdpdt.2022.102839] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/16/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Although 5-aminolevulinic acid photodynamic therapy (ALA-PDT) has been extensively used to treat various skin diseases, its application to the treatment of cutaneous infection caused by Mycobacterium marinum (M. marinum), especially by drug-resistant M. marinum, is still unclear. OBJECTIVES We evaluated the efficacy of ALA-PDT on M. marinum in a mouse infection model and tested its killing effect on M. marinum in vitro. We also investigated the clinical effect of ALA-PDT on cutaneous granuloma caused by drug-resistant M. marinum. MATERIALS AND METHODS A total of 9 M. marinum strains isolated from patients were tested for anti-mycobacterial susceptibility. The effects of ALA-PDT on M. marinum in vitro and in mice model were investigated. Therapeutic efficacy was further assessed in two patients with cutaneous granuloma caused by drug- resistant M. marinum. RESULTS We demonstrated that ALA-PDT directly killed M. marinum in vitro. The cutaneous lesions on mouse paws caused by M. marinum were fully recovered 4 weeks after the ALA-PDT treatment. ALA-PDT was also effective in two patients with cutaneous infection caused by drug-resistant M. marinum. The level of intracellular ROS in M. marinum treated with ALA-PDT was significantly higher than that of M. marinum alone. CONCLUSIONS The results suggest that ALA-PDT is effective in treating M. marinum cutaneous infections by releasing more reactive oxygen species to kill M. marinum directly, and these effects are independent of systemic immune responses. The data highlights that ALA-PDT is a promising therapeutic choice for treatment of M. marinum cutaneous infections, especially drug-resistant M. marinum infections.
Collapse
Affiliation(s)
- Zhiya Yang
- The Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining 272000, Shandong, China
| | - Yahui Feng
- College of Clinical Medicine, Jining Medical University, Jining 272067, Shandong, China
| | - Dongmei Li
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Zhiping Pang
- The Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining 272000, Shandong, China
| | - Sisi Wang
- The Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining 272000, Shandong, China
| | - Huiqi Chen
- College of Biomedical Engineering, Jining Medical University, Jining 272067, Shandong, China
| | - Mingze Jiang
- College of Biomedical Engineering, Jining Medical University, Jining 272067, Shandong, China
| | - Hongxia Yan
- Department of Dermatology, Jining No.1 People's Hospital, Jining 272001, Shandong, China
| | - Tianhang Li
- Department of Dermatology, Jining No.1 People's Hospital, Jining 272001, Shandong, China
| | - Hongjun Fu
- Department of Dermatology, Jining No.1 People's Hospital, Jining 272001, Shandong, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Basic Medical School, Jining Medical University, Jining 272067, China..
| | - Dongmei Shi
- The Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining 272000, Shandong, China.; Department of Dermatology, Jining No.1 People's Hospital, Jining 272001, Shandong, China.
| |
Collapse
|
25
|
Qi Y, Liu Z, Liu X, Fang Z, Liu Y, Li F. Tuberculosis-Specific Antigen/Phytohemagglutinin Ratio Combined With GeneXpert MTB/RIF for Early Diagnosis of Spinal Tuberculosis: A Prospective Cohort Study. Front Cell Infect Microbiol 2022; 12:781315. [PMID: 35174105 PMCID: PMC8842995 DOI: 10.3389/fcimb.2022.781315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/10/2022] [Indexed: 12/27/2022] Open
Abstract
Spinal tuberculosis (TB), the most common form of musculoskeletal tuberculosis, is an infection-related disease globally, with paraplegia occurring in severe cases. Therefore, identification of spinal TB at an early stage is important for early intervention and eventual therapy. In this study, we conducted a prospective cohort study in routine clinical practice to investigate the diagnosis of different TB tests. A total of 519 patients were recruited based on the radiology of spinal TB. The diagnostic model was computed by regression analysis and was determined by receiver operating characteristic (ROC) curve analysis. Specificity, sensitivity, predictive value, likelihood ratio, and accuracy were also computed and compared. GeneXpert MTB/RIF showed a higher positive rate compared to that in the acid-fast bacilli smear and Mycobacterium culture. The results also showed that the Mycobacterium tuberculosis-specific antigen/phytohemagglutinin ratio in the T-SPOT assay had a good performance in the preoperative diagnosis and prediction of spinal TB. The diagnostic model based on the ratio of tuberculosis-specific antigen/phytohemagglutinin combined with GeneXpert MTB/RIF showed better efficiency for spinal TB diagnosis. In summary, the tuberculosis-specific antigen/phytohemagglutinin ratio combined with GeneXpert MTB/RIF could provide an early diagnosis of spinal TB.
Collapse
Affiliation(s)
- Yiwei Qi
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Laboratory Sino-German Neuro-Oncology Molecular, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiwei Liu
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojin Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Laboratory Sino-German Neuro-Oncology Molecular, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhong Fang
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanchao Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Laboratory Sino-German Neuro-Oncology Molecular, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Feng Li, ; Yanchao Liu,
| | - Feng Li
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Feng Li, ; Yanchao Liu,
| |
Collapse
|
26
|
Octora M, Kawilarang AP, Endraswari PD. Challenge of Ziehl-Neelsen stain for Basidiobolomycosis diagnosis in Indonesia: A unique case report. Ann Med Surg (Lond) 2022; 74:103278. [PMID: 35145665 PMCID: PMC8818513 DOI: 10.1016/j.amsu.2022.103278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/08/2022] [Accepted: 01/23/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
- Metta Octora
- Study Program of Clinical Microbiology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Faculty of Medicine, Universitas Mataram, Mataram, Indonesia
- Corresponding author. Department of Clinical Microbiology, Faculty of Medicine, Universitas Airlangga, Jl. Mayjend Prof. Dr. Moestopo No. 6-8, Airlangga, Gubeng, Surabaya, East Java 60286, Indonesia.
| | - Arthur Pohan Kawilarang
- Department of Clinical Microbiology, Faculty of Medicine, Universitas Airlangga – Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Pepy Dwi Endraswari
- Department of Clinical Microbiology, Faculty of Medicine, Universitas Airlangga – Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| |
Collapse
|
27
|
Bendre AD, Peters PJ, Kumar J. Tuberculosis: Past, present and future of the treatment and drug discovery research. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100037. [PMID: 34909667 PMCID: PMC8663960 DOI: 10.1016/j.crphar.2021.100037] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 11/25/2022] Open
Abstract
Tuberculosis (TB) is an infectious disease caused by the bacterium Mycobacterium tuberculosis. Despite decades of research driving advancements in drug development and discovery against TB, it still leads among the causes of deaths due to infectious diseases. We are yet to develop an effective treatment course or a vaccine that could help us eradicate TB. Some key issues being prolonged treatment courses, inadequate drug intake, and the high dropout rate of patients during the treatment course. Hence, we require drugs that could accelerate the elimination of bacteria, shortening the treatment duration. It is high time we evaluate the probable lacunas in research holding us back in coming up with a treatment regime and/or a vaccine that would help control TB spread. Years of dedicated and focused research provide us with a lead molecule that goes through several tests, trials, and modifications to transform into a ‘drug’. The transformation from lead molecule to ‘drug’ is governed by several factors determining its success or failure. In the present review, we have discussed drugs that are part of the currently approved treatment regimen, their limitations, vaccine candidates under trials, and current issues in research that need to be addressed. While we are waiting for the path-breaking treatment for TB, these factors should be considered during the ongoing quest for novel yet effective anti-tubercular. If these issues are addressed, we could hope to develop a more effective treatment that would cure multi/extremely drug-resistant TB and help us meet the WHO's targets for controlling the global TB pandemic within the prescribed timeline. Despite numerous drugs and vaccines undergoing clinical trials, we have not been able to control TB. Majority of articles list the advancements in the TB drug-discovery; here we review the limitations of existing treatments. Brief description of aspects to be considered for the development of one but effective drug/preventive vaccine. A glance at pediatric tuberculosis: the most neglected area of TB research which requires dedicated research efforts. A concise narrative for research aspects to be re-evaluated by both academia and pharmaceutical R&D teams.
Collapse
Key Words
- BCG, Bacille Calmette-Guérin
- BDQ, Bedaquiline
- BSL, Biosafety level
- CDC, Center for Disease Control and Prevention
- Drug discovery
- Drug resistance
- EMB, Ethambutol
- ESX, ESAT-6 secretion system
- ETC, Electron transport chain
- ETH, Ethionamide
- FAS-1, Fatty acid synthase 1
- FDA, Food and Drug Administration
- INH, Isoniazid
- LPZ, Lansoprazole
- MDR, Multidrug-resistant
- Mtb, Mycobacterium tuberculosis
- POA, pyrazinoic acid
- PZA, Pyrazinamide
- RD, the region of differences
- RIF, Rifampicin
- T7SS, Type 7 secretion system
- TB treatment
- TB, Tuberculosis
- TST, Tuberculin skin test
- Tuberculosis
- WHO, World health organization
- XDR, Extremely drug-resistant
Collapse
Affiliation(s)
- Ameya D Bendre
- Laboratory of Membrane Protein Biology, National Centre for Cell Science, NCCS Complex, S. P. Pune University, Maharashtra, Pune, 411007, India
| | - Peter J Peters
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Nanoscopy, Maastricht University, Maastricht, the Netherlands
| | - Janesh Kumar
- Laboratory of Membrane Protein Biology, National Centre for Cell Science, NCCS Complex, S. P. Pune University, Maharashtra, Pune, 411007, India
| |
Collapse
|
28
|
Ishida E, Corrigan DT, Malonis RJ, Hofmann D, Chen T, Amin AG, Chatterjee D, Joe M, Lowary TL, Lai JR, Achkar JM. Monoclonal antibodies from humans with Mycobacterium tuberculosis exposure or latent infection recognize distinct arabinomannan epitopes. Commun Biol 2021; 4:1181. [PMID: 34642445 PMCID: PMC8511196 DOI: 10.1038/s42003-021-02714-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 09/23/2021] [Indexed: 12/16/2022] Open
Abstract
The surface polysacharide arabinomannan (AM) and related glycolipid lipoarabinomannan (LAM) play critical roles in tuberculosis pathogenesis. Human antibody responses to AM/LAM are heterogenous and knowledge of reactivity to specific glycan epitopes at the monoclonal level is limited, especially in individuals who can control M. tuberculosis infection. We generated human IgG mAbs to AM/LAM from B cells of two asymptomatic individuals exposed to or latently infected with M. tuberculosis. Here, we show that two of these mAbs have high affinity to AM/LAM, are non-competing, and recognize different glycan epitopes distinct from other anti-AM/LAM mAbs reported. Both mAbs recognize virulent M. tuberculosis and nontuberculous mycobacteria with marked differences, can be used for the detection of urinary LAM, and can detect M. tuberculosis and LAM in infected lungs. These mAbs enhance our understanding of the spectrum of antibodies to AM/LAM epitopes in humans and are valuable for tuberculosis diagnostic and research applications. Elise Ishida et al. generate human monoclonal antibodies that can selectively recognize specific oligosaccharide epitopes of the polysaccharides arabinomannan and lipoarabinomannan, which are critical for M. tuberculosis pathogenesis. The authors demonstrate the utility of these antibodies in both diagnostic and laboratory settings, making them important tools for M. tuberculosis research.
Collapse
Affiliation(s)
- Elise Ishida
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Devin T Corrigan
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ryan J Malonis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Daniel Hofmann
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Tingting Chen
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anita G Amin
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Delphi Chatterjee
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Maju Joe
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Todd L Lowary
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada.,Institute of Biological Chemistry, Academia Sinica, Nangang, Taipei, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Jonathan R Lai
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jacqueline M Achkar
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA. .,Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
29
|
Pigoli C, Tranquillo V, Gibelli LR, Gaffuri A, Alborali GL, Pacciarini M, Zanoni M, Boniotti MB, Sironi G, Caniatti M, Grieco V. Mycobacterium microti Infection in Wild Boar ( Sus scrofa): Histopathology Analysis Suggests Containment of the Infection. Front Vet Sci 2021; 8:734919. [PMID: 34589536 PMCID: PMC8473807 DOI: 10.3389/fvets.2021.734919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/20/2021] [Indexed: 11/13/2022] Open
Abstract
The European wild boar (WB) (Sus scrofa) population has rapidly expanded over the years, raising public health concerns over the species reservoir of several pathogens, including Mycobacterium microti (Mm), a Mycobacterium tuberculosis complex member. In this study, we aimed to investigate the Mm natural infection in WB in Lombardy and Emilia Romagna Italian regions by statistically evaluating the granulomatous lesions' histological features and Mm microbiological isolation. We analyzed 103 WB retropharyngeal and submandibular lymph nodes (LNs) for Mm identified by gyrB PCR-restriction fragment length polymorphism, and were retrospectively selected and histologically assessed. For each sample, Hematoxylin-eosin and Ziehl-Neelsen stained slides were evaluated. Considered histological variables were: the number of granulomas, size and maturational stage of granulomas, granulomas completeness within the section, number of multinucleated giant macrophages (MGMs), and acid-fast (AF) bacilli per granuloma. Furthermore, Mm microbiological results were also considered. Mm microbiological isolation was negatively influenced by granulomas maturation and positively affected by AF bacilli's presence within the section. Granuloma maturation was positively influenced by granuloma size and granuloma incompleteness and negatively affected by the number of granulomas in the section and the number of MGMs within the granuloma. The results indicate that granuloma maturation should ensures an efficient containment of Mm infection in the WB, suggesting that the intra-species transmission of the disease might be an unlikely event.
Collapse
Affiliation(s)
- Claudio Pigoli
- Laboratorio di Istologia, Sede Territoriale di Milano, Dipartimento Area Territoriale Lombardia, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Milan, Italy.,Department of Veterinary Medicine (DIMEVET), University of Milan, Lodi, Italy
| | - Vito Tranquillo
- Sede Territoriale di Bergamo, Dipartimento Area Territoriale Lombardia, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Bergamo, Italy
| | - Lucia Rita Gibelli
- Laboratorio di Istologia, Sede Territoriale di Milano, Dipartimento Area Territoriale Lombardia, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Milan, Italy
| | - Alessandra Gaffuri
- Sede Territoriale di Bergamo, Dipartimento Area Territoriale Lombardia, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Bergamo, Italy
| | - Giovanni Loris Alborali
- Sede Territoriale di Brescia, Dipartimento Area Territoriale Lombardia, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Brescia, Italy
| | - Maria Pacciarini
- Dipartimento Tutela e Salute Animale, Centro di Referenza Nazionale per la Tubercolosi da Mycobacterium bovis, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Brescia, Italy
| | - Mariagrazia Zanoni
- Sede Territoriale di Brescia, Dipartimento Area Territoriale Lombardia, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Brescia, Italy
| | - Maria Beatrice Boniotti
- Dipartimento Tutela e Salute Animale, Centro di Referenza Nazionale per la Tubercolosi da Mycobacterium bovis, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Brescia, Italy
| | - Giuseppe Sironi
- Department of Veterinary Medicine (DIMEVET), University of Milan, Lodi, Italy
| | - Mario Caniatti
- Department of Veterinary Medicine (DIMEVET), University of Milan, Lodi, Italy
| | - Valeria Grieco
- Department of Veterinary Medicine (DIMEVET), University of Milan, Lodi, Italy
| |
Collapse
|
30
|
Zhou K, Su Y, Jia C. Expression pattern of the autophagy related proteins Beclin1 and LC3B in tuberculous wound tissues. EUR J INFLAMM 2021. [DOI: 10.1177/20587392211024808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Tuberculous wound therapy is a major challenge in clinical practice, due to the protracted disease course, high recurrence rate, and an unclear pathogenesis. We explored the expression patterns of Beclin1 and LC3B in tuberculous wound tissues in human tuberculous chronic wound and normal tissues was assayed by immunohistochemistry. Rat models of tuberculous wounding were induced by the Bacillus Calmette-Guerin (BCG) method. Beclin1 and LC3B protein expression in human tuberculous wound tissues differed from that of normal skin and non-tuberculous chronic wound tissues.In rat tuberculous wound tissues, expression of Beclin1 and LC3B mRNA time-dependently changed post-infection. Abnormal fluctuation of autophagy protein in the development of tuberculosis wound could be one of the causes for the repeated occurrence and protracted disease course of the tuberculous wound.
Collapse
Affiliation(s)
- Keqiang Zhou
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Yingjun Su
- Plastic Surgery Hospital of Xi’an International Medical Center, Xi’an, China
| | - Chiyu Jia
- Department of Burns and Plastic Surgery, Xiang’an Hospital, Xiamen University, Xiamen University, Xiamen Medical College, China
| |
Collapse
|
31
|
Mallick I, Santucci P, Poncin I, Point V, Kremer L, Cavalier JF, Canaan S. Intrabacterial lipid inclusions in mycobacteria: unexpected key players in survival and pathogenesis? FEMS Microbiol Rev 2021; 45:6283747. [PMID: 34036305 DOI: 10.1093/femsre/fuab029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
Mycobacterial species, including Mycobacterium tuberculosis, rely on lipids to survive and chronically persist within their hosts. Upon infection, opportunistic and strict pathogenic mycobacteria exploit metabolic pathways to import and process host-derived free fatty acids, subsequently stored as triacylglycerols under the form of intrabacterial lipid inclusions (ILI). Under nutrient-limiting conditions, ILI constitute a critical source of energy that fuels the carbon requirements and maintain redox homeostasis, promoting bacterial survival for extensive periods of time. In addition to their basic metabolic functions, these organelles display multiple other biological properties, emphasizing their central role in the mycobacterial lifecycle. However, despite of their importance, the dynamics of ILI metabolism and their contribution to mycobacterial adaptation/survival in the context of infection has not been thoroughly documented. Herein, we provide an overview of the historical ILI discoveries, their characterization, and current knowledge regarding the micro-environmental stimuli conveying ILI formation, storage and degradation. We also review new biological systems to monitor the dynamics of ILI metabolism in extra- and intracellular mycobacteria and describe major molecular actors in triacylglycerol biosynthesis, maintenance and breakdown. Finally, emerging concepts regarding to the role of ILI in mycobacterial survival, persistence, reactivation, antibiotic susceptibility and inter-individual transmission are also discuss.
Collapse
Affiliation(s)
- Ivy Mallick
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France.,IHU Méditerranée Infection, Aix-Marseille Univ., Marseille, France
| | - Pierre Santucci
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France
| | - Isabelle Poncin
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France
| | - Vanessa Point
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France
| | - Laurent Kremer
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, Montpellier, France.,IRIM, INSERM, Montpellier, France
| | | | - Stéphane Canaan
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France
| |
Collapse
|
32
|
Exploratory development of PCR-fluorescent probes in rapid detection of mutations associated with extensively drug-resistant tuberculosis. Eur J Clin Microbiol Infect Dis 2021; 40:1851-1861. [PMID: 33792806 DOI: 10.1007/s10096-021-04236-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
This study aims to evaluate the clinical value of PCR-fluorescent probes for detecting the mutation gene associated with extensively drug-resistant tuberculosis (XDR-TB). The molecular species identification of 900 sputum specimens was performed using polymerase chain reaction (PCR)-fluorescent probe. The mutations of the drug resistance genes rpoB, katG, inhA, embB, rpsL, rrs, and gyrA were detected. The conventional drug susceptibility testing (DST) and PCR-directed sequencing (PCR-DS) were carried out as control. DST demonstrated that there were 501 strains of rifampicin resistance, 451 strains of isoniazid resistance, 293 strains of quinolone resistance, 425 strains of streptomycin resistance, 235 strains of ethambutol resistance, and 204 strains of amikacin resistance. Furthermore, 427 (47.44%) or 146 (16.22%) strains were MDR-TB or XDR-TB, respectively. The mutations of the rpoB, katG, inhA, embB, rpsL, rrs, and gyrA genes were detected in 751 of 900 TB patients by PCR-fluorescent probe method, and the rate of drug resistance was 751/900 (83.44%). No mutant genes were detected in the other 149 patients. Compared with DST, the mutant rates of rpoB, katG/inhA, rpsL, rrs, embB, and gyrA of six drugs were higher than 88%; five of six drugs were higher than 90% except for SM (88.11%). The MDR and XDR mutant gene types were found in 398 (42.22%) and 137 (15.22%) samples. PCR-DS was also employed and confirmed the PCR-fluorescent probe method with the accordance rate of 100%. The PCR-fluorescent probe method is rapid and straightforward in detecting XDR-TB genotypes and is worthy of being applied in hospitals.
Collapse
|
33
|
Abstract
The mycomembrane layer of the mycobacterial cell envelope is a barrier to environmental, immune, and antibiotic insults. There is considerable evidence of mycomembrane plasticity during infection and in response to host-mimicking stresses. The mycomembrane layer of the mycobacterial cell envelope is a barrier to environmental, immune, and antibiotic insults. There is considerable evidence of mycomembrane plasticity during infection and in response to host-mimicking stresses. Since mycobacteria are resource and energy limited under these conditions, it is likely that remodeling has distinct requirements from those of the well-characterized biosynthetic program that operates during unrestricted growth. Unexpectedly, we found that mycomembrane remodeling in nutrient-starved, nonreplicating mycobacteria includes synthesis in addition to turnover. Mycomembrane synthesis under these conditions occurs along the cell periphery, in contrast to the polar assembly of actively growing cells, and both liberates and relies on the nonmammalian disaccharide trehalose. In the absence of trehalose recycling, de novo trehalose synthesis fuels mycomembrane remodeling. However, mycobacteria experience ATP depletion, enhanced respiration, and redox stress, hallmarks of futile cycling and the collateral dysfunction elicited by some bactericidal antibiotics. Inefficient energy metabolism compromises the survival of trehalose recycling mutants in macrophages. Our data suggest that trehalose recycling alleviates the energetic burden of mycomembrane remodeling under stress. Cell envelope recycling pathways are emerging targets for sensitizing resource-limited bacterial pathogens to host and antibiotic pressure.
Collapse
|
34
|
Whole blood mRNA expression-based targets to discriminate active tuberculosis from latent infection and other pulmonary diseases. Sci Rep 2020; 10:22072. [PMID: 33328540 PMCID: PMC7745039 DOI: 10.1038/s41598-020-78793-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 11/30/2020] [Indexed: 01/22/2023] Open
Abstract
Current diagnostic tests for tuberculosis (TB) are not able to predict reactivation disease progression from latent TB infection (LTBI). The main barrier to predicting reactivation disease is the lack of our understanding of host biomarkers associated with progression from latent infection to active disease. Here, we applied an immune-based gene expression profile by NanoString platform to identify whole blood markers that can distinguish active TB from other lung diseases (OPD), and that could be further evaluated as a reactivation TB predictor. Among 23 candidate genes that differentiated patients with active TB from those with OPD, nine genes (CD274, CEACAM1, CR1, FCGR1A/B, IFITM1, IRAK3, LILRA6, MAPK14, PDCD1LG2) demonstrated sensitivity and specificity of 100%. Seven genes (C1QB, C2, CCR2, CCRL2, LILRB4, MAPK14, MSR1) distinguished TB from LTBI with sensitivity and specificity between 82 and 100%. This study identified single gene candidates that distinguished TB from OPD and LTBI with high sensitivity and specificity (both > 82%), which may be further evaluated as diagnostic for disease and as predictive markers for reactivation TB.
Collapse
|
35
|
Baranyai Z, Soria‐Carrera H, Alleva M, Millán‐Placer AC, Lucía A, Martín‐Rapún R, Aínsa JA, la Fuente JM. Nanotechnology‐Based Targeted Drug Delivery: An Emerging Tool to Overcome Tuberculosis. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000113] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zsuzsa Baranyai
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC–Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
| | - Héctor Soria‐Carrera
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC–Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
- Biomateriales y Nanomedicina (CIBER‐BBN), Instituto de Salud Carlos III CIBER de Bioingeniería Madrid 28029 Spain
| | - Maria Alleva
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC–Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
| | - Ana C. Millán‐Placer
- Departamento de Microbiología, Facultad de Medicina Universidad de Zaragoza C/ Domingo Miral s/n Zaragoza 50009 Spain
- Instituto de Investigación Sanitaria Aragón (IIS‐Aragón) Zaragoza 50009 Spain
| | - Ainhoa Lucía
- Departamento de Microbiología, Facultad de Medicina Universidad de Zaragoza C/ Domingo Miral s/n Zaragoza 50009 Spain
- Instituto de Investigación Sanitaria Aragón (IIS‐Aragón) Zaragoza 50009 Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
- CIBER de Enfermedades Respiratorias (CIBERES) Instituto de Salud Carlos III Madrid 28029 Spain
| | - Rafael Martín‐Rapún
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC–Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
- Departamento de Química Orgánica Facultad de Ciencias Universidad de Zaragoza Zaragoza 50009 Spain
- Biomateriales y Nanomedicina (CIBER‐BBN), Instituto de Salud Carlos III CIBER de Bioingeniería Madrid 28029 Spain
| | - José A. Aínsa
- Departamento de Microbiología, Facultad de Medicina Universidad de Zaragoza C/ Domingo Miral s/n Zaragoza 50009 Spain
- Instituto de Investigación Sanitaria Aragón (IIS‐Aragón) Zaragoza 50009 Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
- CIBER de Enfermedades Respiratorias (CIBERES) Instituto de Salud Carlos III Madrid 28029 Spain
| | - Jesús M. la Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC–Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
- Biomateriales y Nanomedicina (CIBER‐BBN), Instituto de Salud Carlos III CIBER de Bioingeniería Madrid 28029 Spain
| |
Collapse
|
36
|
Stokas H, Rhodes HL, Purdy GE. Modulation of the M. tuberculosis cell envelope between replicating and non-replicating persistent bacteria. Tuberculosis (Edinb) 2020; 125:102007. [PMID: 33035766 DOI: 10.1016/j.tube.2020.102007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/24/2020] [Accepted: 10/02/2020] [Indexed: 12/18/2022]
Abstract
The success of Mycobacterium tuberculosis as a human pathogen depends on the bacterium's ability to persist in a quiescent form in oxygen and nutrient-poor host environments. In vitro studies have demonstrated that these restricting environments induce a shift from bacterial replication to non-replicating persistence (NRP). Entry into NRP involves changes in bacterial metabolism and remodeling of the cell envelope. Findings consistent with the phenotypes observed in vitro have been observed in patient and animal model samples. This review focuses on the cell envelope differences seen between replicating and NRP M. tuberculosis and summarizes the ways in which serine/threonine protein kinases (STPKs) may mediate this process.
Collapse
Affiliation(s)
- Haley Stokas
- Oregon Health & Science University, Department of Molecular Microbiology & Immunology, Portland, OR, 97239, United States
| | - Heather L Rhodes
- Oregon Health & Science University, Department of Molecular Microbiology & Immunology, Portland, OR, 97239, United States
| | - Georgiana E Purdy
- Oregon Health & Science University, Department of Molecular Microbiology & Immunology, Portland, OR, 97239, United States.
| |
Collapse
|
37
|
Belcher Dufrisne M, Jorge CD, Timóteo CG, Petrou VI, Ashraf KU, Banerjee S, Clarke OB, Santos H, Mancia F. Structural and Functional Characterization of Phosphatidylinositol-Phosphate Biosynthesis in Mycobacteria. J Mol Biol 2020; 432:5137-5151. [PMID: 32389689 PMCID: PMC7483940 DOI: 10.1016/j.jmb.2020.04.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 01/05/2023]
Abstract
In mycobacteria, phosphatidylinositol (PI) acts as a common lipid anchor for key components of the cell wall, including the glycolipids phosphatidylinositol mannoside, lipomannan, and lipoarabinomannan. Glycolipids in Mycobacterium tuberculosis, the causative agent of tuberculosis, are important virulence factors that modulate the host immune response. The identity-defining step in PI biosynthesis in prokaryotes, unique to mycobacteria and few other bacterial species, is the reaction between cytidine diphosphate-diacylglycerol and inositol-phosphate to yield phosphatidylinositol-phosphate, the immediate precursor to PI. This reaction is catalyzed by the cytidine diphosphate-alcohol phosphotransferase phosphatidylinositol-phosphate synthase (PIPS), an essential enzyme for mycobacterial viability. Here we present structures of PIPS from Mycobacterium kansasii with and without evidence of donor and acceptor substrate binding obtained using a crystal engineering approach. PIPS from Mycobacterium kansasii is 86% identical to the ortholog from M. tuberculosis and catalytically active. Functional experiments guided by our structural results allowed us to further characterize the molecular determinants of substrate specificity and catalysis in a new mycobacterial species. This work provides a framework to strengthen our understanding of phosphatidylinositol-phosphate biosynthesis in the context of mycobacterial pathogens.
Collapse
Affiliation(s)
- Meagan Belcher Dufrisne
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Carla D Jorge
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República-EAN, 2780-157 Oeiras, Portugal
| | - Cristina G Timóteo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República-EAN, 2780-157 Oeiras, Portugal
| | - Vasileios I Petrou
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Khuram U Ashraf
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Surajit Banerjee
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Oliver B Clarke
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA; Department of Anesthesiology, Columbia University, New York, NY 10032, USA
| | - Helena Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República-EAN, 2780-157 Oeiras, Portugal
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
38
|
Sarathy JP, Dartois V. Caseum: a Niche for Mycobacterium tuberculosis Drug-Tolerant Persisters. Clin Microbiol Rev 2020; 33:e00159-19. [PMID: 32238365 PMCID: PMC7117546 DOI: 10.1128/cmr.00159-19] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Caseum, the central necrotic material of tuberculous lesions, is a reservoir of drug-recalcitrant persisting mycobacteria. Caseum is found in closed nodules and in open cavities connecting with an airway. Several commonly accepted characteristics of caseum were established during the preantibiotic era, when autopsies of deceased tuberculosis (TB) patients were common but methodologies were limited. These pioneering studies generated concepts such as acidic pH, low oxygen tension, and paucity of nutrients being the drivers of nonreplication and persistence in caseum. Here we review widely accepted beliefs about the caseum-specific stress factors thought to trigger the shift of Mycobacterium tuberculosis to drug tolerance. Our current state of knowledge reveals that M. tuberculosis is faced with a lipid-rich diet rather than nutrient deprivation in caseum. Variable caseum pH is seen across lesions, possibly transiently acidic in young lesions but overall near neutral in most mature lesions. Oxygen tension is low in the avascular caseum of closed nodules and high at the cavity surface, and a gradient of decreasing oxygen tension likely forms toward the cavity wall. Since caseum is largely made of infected and necrotized macrophages filled with lipid droplets, the microenvironmental conditions encountered by M. tuberculosis in foamy macrophages and in caseum bear many similarities. While there remain a few knowledge gaps, these findings constitute a solid starting point to develop high-throughput drug discovery assays that combine the right balance of oxygen tension, pH, lipid abundance, and lipid species to model the profound drug tolerance of M. tuberculosis in caseum.
Collapse
Affiliation(s)
- Jansy P Sarathy
- Center for Discovery and Innovation, Hackensack Meridian School of Medicine at Seton Hall University, Nutley, New Jersey, USA
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian School of Medicine at Seton Hall University, Nutley, New Jersey, USA
| |
Collapse
|
39
|
Biosynthesis of Galactan in Mycobacterium tuberculosis as a Viable TB Drug Target? Antibiotics (Basel) 2020; 9:antibiotics9010020. [PMID: 31935842 PMCID: PMC7168186 DOI: 10.3390/antibiotics9010020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 12/27/2019] [Accepted: 01/02/2020] [Indexed: 12/21/2022] Open
Abstract
While target-based drug design has proved successful in several therapeutic areas, this approach has not yet provided compelling outcomes in the field of antibacterial agents. This statement remains especially true for the development of novel therapeutic interventions against tuberculosis, an infectious disease that is among the top ten leading causes of death globally. Mycobacterial galactan is an important component of the protective cell wall core of the tuberculosis pathogen and it could provide a promising target for the design of new drugs. In this review, we summarize the current knowledge on galactan biosynthesis in Mycobacterium tuberculosis, including landmark findings that led to the discovery and understanding of three key enzymes in this pathway: UDP-galactose mutase, and galactofuranosyl transferases GlfT1 and GlfT2. Moreover, we recapitulate the efforts aimed at their inhibition. The predicted common transition states of the three enzymes provide the lucrative possibility of multitargeting in pharmaceutical development, a favourable property in the mitigation of drug resistance. We believe that a tight interplay between target-based computational approaches and experimental methods will result in the development of original inhibitors that could serve as the basis of a new generation of drugs against tuberculosis.
Collapse
|
40
|
Bento CM, Gomes MS, Silva T. Looking beyond Typical Treatments for Atypical Mycobacteria. Antibiotics (Basel) 2020; 9:antibiotics9010018. [PMID: 31947883 PMCID: PMC7168257 DOI: 10.3390/antibiotics9010018] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 12/30/2022] Open
Abstract
The genus Mycobacterium comprises not only the deadliest of bacterial pathogens, Mycobacterium tuberculosis, but several other pathogenic species, including M. avium and M. abscessus. The incidence of infections caused by atypical or nontuberculous mycobacteria (NTM) has been steadily increasing, and is associated with a panoply of diseases, including pulmonary, soft-tissue, or disseminated infections. The treatment for NTM disease is particularly challenging, due to its long duration, to variability in bacterial susceptibility profiles, and to the lack of evidence-based guidelines. Treatment usually consists of a combination of at least three drugs taken from months to years, often leading to severe secondary effects and a high chance of relapse. Therefore, new treatment approaches are clearly needed. In this review, we identify the main limitations of current treatments and discuss different alternatives that have been put forward in recent years, with an emphasis on less conventional therapeutics, such as antimicrobial peptides, bacteriophages, iron chelators, or host-directed therapies. We also review new forms of the use of old drugs, including the repurposing of non-antibacterial molecules and the incorporation of antimicrobials into ionic liquids. We aim to stimulate advancements in testing these therapies in relevant models, in order to provide clinicians and patients with useful new tools with which to treat these devastating diseases.
Collapse
Affiliation(s)
- Clara M. Bento
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.M.B.); (T.S.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Maria Salomé Gomes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.M.B.); (T.S.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- Correspondence:
| | - Tânia Silva
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.M.B.); (T.S.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
41
|
Zhou L, Ma C, Xiao T, Li M, Liu H, Zhao X, Wan K, Wang R. A New Single Gene Differential Biomarker for Mycobacterium tuberculosis Complex and Non-tuberculosis Mycobacteria. Front Microbiol 2019; 10:1887. [PMID: 31456790 PMCID: PMC6700215 DOI: 10.3389/fmicb.2019.01887] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/30/2019] [Indexed: 12/28/2022] Open
Abstract
Background Tuberculosis (TB) and non-tuberculous mycobacteriosis are serious threats to health worldwide. A simple non-sequencing method is needed for rapid diagnosis, especially in less experienced hospitals, but there is no specific biomarker commonly used for all mycobacteria. The ku gene of the prokaryotic error-prone non-homologous end joining system (NHEJ) has the potential to be a highly specific detection biomarker for mycobacteria. Methods A total of 7294 mycobacterial genomes and 14 complete genomes of other families belonging to Corynebacteriales with Mycobacteriaceae were downloaded and analyzed for the existence and variation of the ku gene. Mycobacterium tuberculosis complex (MTBC) and non-tuberculosis mycobacteria (NTM)- specific primers were designed and the actual amplification and identification efficiencies were tested with 150 strains of 40 Mycobacterium species and 10 kinds of common respiratory pathogenic bacteria. Results The ku gene of the NHEJ system was ubiquitous in all genome sequenced Mycobacterium species and absent in other families of Corynebacteriales. On the one hand, as a single gene non-sequencing biomarker, its specific primers could effectively distinguish mycobacteria from other bacteria, MTBC from NTM, which would make the clinical detection of mycobacteria easy and have great clinical practical value. On the other hand, the sequence of ku gene can effectively distinguish NTM to species level with high resolution. Conclusion The Ku protein existed before the differentiation of Mycobacterium species, which was an important protein involved in maintaining of the genome’s integrity and related to the special growth stage of mycobacteria. It was rare in prokaryotes. These features made it a highly special differential biomarker for Mycobacterium.
Collapse
Affiliation(s)
- Lei Zhou
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,College of Pharmacy, Guizhou University, Guiyang, China
| | - Cuidie Ma
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Tongyang Xiao
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Machao Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haican Liu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiuqin Zhao
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kanglin Wan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ruibai Wang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
42
|
Santucci P, Johansen MD, Point V, Poncin I, Viljoen A, Cavalier JF, Kremer L, Canaan S. Nitrogen deprivation induces triacylglycerol accumulation, drug tolerance and hypervirulence in mycobacteria. Sci Rep 2019; 9:8667. [PMID: 31209261 PMCID: PMC6572852 DOI: 10.1038/s41598-019-45164-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 05/29/2019] [Indexed: 11/09/2022] Open
Abstract
Mycobacteria share with other actinomycetes the ability to produce large quantities of triacylglycerol (TAG), which accumulate as intracytoplasmic lipid inclusions (ILI) also known as lipid droplets (LD). Mycobacterium tuberculosis (M. tb), the etiologic agent of tuberculosis, acquires fatty acids from the human host which are utilized to synthesize TAG, subsequently stored in the form of ILI to meet the carbon and nutrient requirements of the bacterium during long periods of persistence. However, environmental factors governing mycobacterial ILI formation and degradation remain poorly understood. Herein, we demonstrated that in the absence of host cells, carbon excess and nitrogen starvation promote TAG accumulation in the form of ILI in M. smegmatis and M. abscessus, used as surrogate species of M. tb. Based on these findings, we developed a simple and reversible in vitro model to regulate ILI biosynthesis and hydrolysis in mycobacteria. We also showed that TAG formation is tgs1 dependent and that lipolytic enzymes mediate TAG breakdown. Moreover, we confirmed that the nitrogen-deprived and ILI-rich phenotype was associated with an increased tolerance towards several drugs used for treating mycobacterial infections. Importantly, we showed that the presence of ILI substantially enhanced the bacterial burden and granuloma abundance in zebrafish embryos infected with lipid-rich M. abscessus as compared to embryos infected with lipid-poor M. abscessus, suggesting that ILI are actively contributing to mycobacterial virulence and pathogenesis.
Collapse
Affiliation(s)
- Pierre Santucci
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France
| | - Matt D Johansen
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, 34293, Montpellier, France
| | - Vanessa Point
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France
| | - Isabelle Poncin
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France
| | - Albertus Viljoen
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, 34293, Montpellier, France
| | | | - Laurent Kremer
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, 34293, Montpellier, France.,INSERM, IRIM, 34293, Montpellier, France
| | - Stéphane Canaan
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France.
| |
Collapse
|
43
|
Yang Z, Zeng X, Tsui SKW. Investigating function roles of hypothetical proteins encoded by the Mycobacterium tuberculosis H37Rv genome. BMC Genomics 2019; 20:394. [PMID: 31113361 PMCID: PMC6528289 DOI: 10.1186/s12864-019-5746-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 04/29/2019] [Indexed: 11/29/2022] Open
Abstract
Background Mycobacterium tuberculosis (MTB) is a common bacterium causing tuberculosis and remains a major pathogen for mortality. Although the MTB genome has been extensively explored for two decades, the functions of 27% (1051/3906) of encoded proteins have yet to be determined and these proteins are annotated as hypothetical proteins. Methods We assigned functions to these hypothetical proteins using SSEalign, a newly designed algorithm utilizing structural information. A set of rigorous criteria was applied to these annotations in order to examine whether they were supported by each parameter. Virulence factors and potential drug targets were also screened among the annotated proteins. Results For 78% (823/1051) of the hypothetical proteins, we could identify homologs in Escherichia coli and Salmonella typhimurium by using SSEalign. Functional classification analysis indicated that 62.2% (512/823) of these annotated proteins were enzymes with catalytic activities and most of these annotations were supported by at least two other independent parameters. A relatively high proportion of transporter was identified in MTB genome, indicating the potential frequent transportation of frequent absorbing essential metabolites and excreting toxic materials in MTB. Twelve virulence factors and ten vaccine candidates were identified within these MTB hypothetical proteins, including two genes (rpoS and pspA) related to stress response to the host immune system. Furthermore, we have identified six novel drug target candidates among our annotated proteins, including Rv0817 and Rv2927c, which could be used for treating MTB infection. Conclusions Our annotation of the MTB hypothetical proteins will probably serve as a useful dataset for future MTB studies. Electronic supplementary material The online version of this article (10.1186/s12864-019-5746-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhiyuan Yang
- College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong SAR.,Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong SAR
| | - Xi Zeng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong SAR.,Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong SAR.,Centre for Microbial Genomics and Proteomics, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong SAR
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong SAR. .,Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong SAR. .,Centre for Microbial Genomics and Proteomics, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong SAR.
| |
Collapse
|
44
|
[Respiratory isolation in suspected tuberculosis with negative direct sputum examination]. Rev Mal Respir 2019; 36:396-404. [PMID: 30902444 DOI: 10.1016/j.rmr.2018.08.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 08/09/2018] [Indexed: 11/23/2022]
Abstract
Airborne isolation is the main confinement measure used to limit human-to-human transmission of tuberculosis. If implemented early, precisely as soon as the patient is clinically diagnosed with tuberculosis, this measure will protect the population, particularly the health workers who are exposed. A patient suspected of being infected with tuberculosis can create a difficult situation if microbiological examination of his respiratory secretions is negative. This is a complex laboratory technique and sensitivity varies from one test to another. Thus, a false negative result is possible; meaning that a patient can have positive results on a microbiological culture performed later. This patient would still have low, but not no, contagiousness as long as a treatment has not been initiated. This situation can extend the period of respiratory isolation while further diagnostic investigations are carried out. This extended isolation can reduce the quality of health care delivered and patients can show signs of depression and anxiety. The use in routine clinical investigation of gene amplification tools should allow a rethinking of respiratory isolation rules. These tools, which are very sensitive and with a short reporting time, could drastically reduce the duration of respiratory isolation for patients suspected of being infected with tuberculosis.
Collapse
|
45
|
Nanoparticle-Based Biosensing of Tuberculosis, an Affordable and Practical Alternative to Current Methods. BIOSENSORS-BASEL 2018; 9:bios9010001. [PMID: 30586842 PMCID: PMC6468399 DOI: 10.3390/bios9010001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 12/03/2022]
Abstract
Access to community-based point-of-care, low-cost, and sensitive tuberculosis (TB) diagnostics remains an unmet need. Objective: The objective of this study was to combine principles in nanotechnology, TB biology, glycochemistry, and engineering, for the development of a nanoparticle-based colorimetric biosensing assay (NCBA) to quickly and inexpensively detect acid-fast bacilli (AFB) in sputum samples. Methods: In NCBA, the isolation of AFB from sputum samples was accomplished through glycan-coated magnetic nanoparticles (GMNP) interacting with AFB and then using a simple magnet to separate the GMNP-AFB complex. Acid-fastness and cording properties of mycobacteria were utilized to provide visually observable red-stained clumps of bacteria that were surrounded by brown nanoparticles under a light microscope on prepared smears. The NCBA technique was compared against sputum smear microscopy (SSM) and Xpert MTB/RIF in 500 samples from patients that were suspected to have TB. Results: Statistical analysis showed that NCBA had sensitivity and specificity performances in perfect agreement with Xpert MTB/RIF as gold standard for all 500 samples. SSM had a sensitivity of 40% for the same samples. Conclusion: NCBA technique yielded full agreement in terms of sensitivity and specificity with the Xpert MTB/RIF in 500 samples. The method is completed in 10–20 min through a simple process at an estimated cost of $0.10 per test. Implementation of NCBA in rural communities would help to increase case finding and case notification, and would support programs against drug-resistance. Its use at the first point-of-contact by patients in the healthcare system would facilitate quick treatment in a single clinical encounter, thus supporting the global “End TB Strategy” by 2035.
Collapse
|
46
|
Pulmonary Tuberculosis Conversion Documented by Microscopic Staining for Detection of Dynamic, Dormant, and Dead Mycobacteria (DDD Staining). J Clin Microbiol 2018; 56:JCM.01108-18. [PMID: 30045865 DOI: 10.1128/jcm.01108-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
47
|
Yamada H, Yamaguchi M, Igarashi Y, Chikamatsu K, Aono A, Murase Y, Morishige Y, Takaki A, Chibana H, Mitarai S. Mycolicibacterium smegmatis, Basonym Mycobacterium smegmatis, Expresses Morphological Phenotypes Much More Similar to Escherichia coli Than Mycobacterium tuberculosis in Quantitative Structome Analysis and CryoTEM Examination. Front Microbiol 2018; 9:1992. [PMID: 30258411 PMCID: PMC6145149 DOI: 10.3389/fmicb.2018.01992] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/07/2018] [Indexed: 01/05/2023] Open
Abstract
A series of structome analyses, that is, quantitative and three-dimensional structural analysis of a whole cell at the electron microscopic level, have already been achieved individually in Exophiala dermatitidis, Saccharomyces cerevisiae, Mycobacterium tuberculosis, Myojin spiral bacteria, and Escherichia coli. In these analyses, sample cells were processed through cryo-fixation and rapid freeze-substitution, resulting in the exquisite preservation of ultrastructures on the serial ultrathin sections examined by transmission electron microscopy. In this paper, structome analysis of non pathogenic Mycolicibacterium smegmatis, basonym Mycobacterium smegmatis, was performed. As M. smegmatis has often been used in molecular biological experiments and experimental tuberculosis as a substitute of highly pathogenic M. tuberculosis, it has been a task to compare two species in the same genus, Mycobacterium, by structome analysis. Seven M. smegmatis cells cut into serial ultrathin sections, and, totally, 220 serial ultrathin sections were examined by transmission electron microscopy. Cell profiles were measured, including cell length, diameter of cell and cytoplasm, surface area of outer membrane and plasma membrane, volume of whole cell, periplasm, and cytoplasm, and total ribosome number and density per 0.1 fl cytoplasm. These data are based on direct measurement and enumeration of exquisitely preserved single cell structures in the transmission electron microscopy images, and are not based on the calculation or assumptions from biochemical or molecular biological indirect data. All measurements in M. smegmatis, except cell length, are significantly higher than those of M. tuberculosis. In addition, these data may explain the more rapid growth of M. smegmatis than M. tuberculosis and contribute to the understanding of their structural properties, which are substantially different from M. tuberculosis, relating to the expression of antigenicity, acid-fastness, and the mechanism of drug resistance in relation to the ratio of the targets to the corresponding drugs. In addition, data obtained from cryo-transmission electron microscopy examination were used to support the validity of structome analysis. Finally, our data strongly support the most recent establishment of the novel genus Mycolicibacterium, into which basonym Mycobacterium smegmatis has been classified.
Collapse
Affiliation(s)
- Hiroyuki Yamada
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan
| | | | - Yuriko Igarashi
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan
| | - Kinuyo Chikamatsu
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan
| | - Akio Aono
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan
| | - Yoshiro Murase
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan
| | - Yuta Morishige
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan
| | - Akiko Takaki
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan
| | - Hiroji Chibana
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Satoshi Mitarai
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan
- Department of Basic Mycobacteriology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
48
|
Rational Design of Biosafety Level 2-Approved, Multidrug-Resistant Strains of Mycobacterium tuberculosis through Nutrient Auxotrophy. mBio 2018; 9:mBio.00938-18. [PMID: 29844114 PMCID: PMC5974470 DOI: 10.1128/mbio.00938-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Multidrug-resistant (MDR) tuberculosis, defined as tuberculosis resistant to the two first-line drugs isoniazid and rifampin, poses a serious problem for global tuberculosis control strategies. Lack of a safe and convenient model organism hampers progress in combating the spread of MDR strains of Mycobacterium tuberculosis. We reasoned that auxotrophic MDR mutants of M. tuberculosis would provide a safe means for studying MDR M. tuberculosis without the need for a biosafety level 3 (BSL3) laboratory. Two different sets of triple auxotrophic mutants of M. tuberculosis were generated, which were auxotrophic for the nutrients leucine, pantothenate, and arginine or for leucine, pantothenate, and methionine. These triple auxotrophic strains retained their acid-fastness, their ability to generate both a drug persistence phenotype and drug-resistant mutants, and their susceptibility to plaque-forming mycobacterial phages. MDR triple auxotrophic mutants were obtained in a two-step fashion, selecting first for solely isoniazid-resistant or rifampin-resistant mutants. Interestingly, selection for isoniazid-resistant mutants of the methionine auxotroph generated isolates with single point mutations in katG, which encodes an isoniazid-activating enzyme, whereas similar selection using the arginine auxotroph yielded isoniazid-resistant mutants with large deletions in the chromosomal region containing katG. These M. tuberculosis MDR strains were readily sterilized by second-line tuberculosis drugs and failed to kill immunocompromised mice. These strains provide attractive candidates for M. tuberculosis biology studies and drug screening outside the BSL3 facility. Elimination of Mycobacterium tuberculosis, the bacterium causing tuberculosis, requires enhanced understanding of its biology in order to identify new drugs against drug-susceptible and drug-resistant M. tuberculosis as well as uncovering novel pathways that lead to M. tuberculosis death. To circumvent the need for a biosafety level 3 (BSL3) laboratory when conducting research on M. tuberculosis, we have generated drug-susceptible and drug-resistant triple auxotrophic strains of M. tuberculosis suitable for use in a BSL2 laboratory. These strains originate from a double auxotrophic M. tuberculosis strain, H37Rv ΔpanCD ΔleuCD, which was reclassified as a BSL2 strain based on its lack of lethality in immunocompromised and immunocompetent mice. A third auxotrophy (methionine or arginine) was introduced via deletion of metA or argB, respectively, since M. tuberculosis ΔmetA and M. tuberculosis ΔargB are unable to survive amino acid auxotrophy and infect their host. The resulting triple auxotrophic M. tuberculosis strains retained characteristics of M. tuberculosis relevant for most types of investigations.
Collapse
|
49
|
Multifaceted remodeling by vitamin C boosts sensitivity of Mycobacterium tuberculosis subpopulations to combination treatment by anti-tubercular drugs. Redox Biol 2018; 15:452-466. [PMID: 29413958 PMCID: PMC5975079 DOI: 10.1016/j.redox.2017.12.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/28/2017] [Accepted: 12/30/2017] [Indexed: 12/03/2022] Open
Abstract
Bacterial dormancy is a major impediment to the eradication of tuberculosis (TB), because currently used drugs primarily target actively replicating bacteria. Therefore, decoding of the critical survival pathways in dormant tubercle bacilli is a research priority to formulate new approaches for killing these bacteria. Employing a network-based gene expression analysis approach, we demonstrate that redox active vitamin C (vit C) triggers a multifaceted and robust adaptation response in Mycobacterium tuberculosis (Mtb) involving ~ 67% of the genome. Vit C-adapted bacteria display well-described features of dormancy, including growth stasis and progression to a viable but non-culturable (VBNC) state, loss of acid-fastness and reduction in length, dissipation of reductive stress through triglyceride (TAG) accumulation, protective response to oxidative stress, and tolerance to first line TB drugs. VBNC bacteria are reactivatable upon removal of vit C and they recover drug susceptibility properties. Vit C synergizes with pyrazinamide, a unique TB drug with sterilizing activity, to kill dormant and replicating bacteria, negating any tolerance to rifampicin and isoniazid in combination treatment in both in-vitro and intracellular infection models. Finally, the vit C multi-stress redox models described here also offer a unique opportunity for concurrent screening of compounds/combinations active against heterogeneous subpopulations of Mtb. These findings suggest a novel strategy of vit C adjunctive therapy by modulating bacterial physiology for enhanced efficacy of combination chemotherapy with existing drugs, and also possible synergies to guide new therapeutic combinations towards accelerating TB treatment. Vitamin C induces dormancy and reversible VBNC state in M. tuberculosis. Dormancy is achieved through a well-coordinated multifaceted bacterial response. Vitamin C synergy with pyrazinamide negates bacterial tolerance to other TB drugs. Vitamin C adjunctive therapy is a potential strategy for shortening chemotherapy. Vitamin C-based models are novel screening platforms for new compounds/combinations.
Collapse
|
50
|
Abstract
Infection with Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), results in a range of clinical presentations in humans. Most infections manifest as a clinically asymptomatic, contained state that is termed latent TB infection (LTBI); a smaller subset of infected individuals present with symptomatic, active TB. Within these two seemingly binary states, there is a spectrum of host outcomes that have varying symptoms, microbiologies, immune responses and pathologies. Recently, it has become apparent that there is diversity of infection even within a single individual. A good understanding of the heterogeneity that is intrinsic to TB - at both the population level and the individual level - is crucial to inform the development of intervention strategies that account for and target the unique, complex and independent nature of the local host-pathogen interactions that occur in this infection. In this Review, we draw on model systems and human data to discuss multiple facets of TB biology and their relationship to the overall heterogeneity observed in the human disease.
Collapse
|