1
|
Dahlsson Leitao C, Ståhl S, Löfblom J. Surface-engineered bacteria in drug development. Microb Biotechnol 2024; 17:e70033. [PMID: 39403960 PMCID: PMC11474283 DOI: 10.1111/1751-7915.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Bacterial surface display in combination with fluorescence-activated cell sorting is a versatile and robust system and an interesting alternative approach to phage display for the generation of therapeutic affinity proteins. The system enables real-time monitoring and sorting of cell populations, which presents unique possibilities for drug development. It has been used to develop several affibody molecules currently being evaluated preclinically for the treatment and diagnosis of, for example, cancer and neurodegenerative diseases. Additionally, it can be implemented in other areas of drug design, such as for mapping epitopes and evolving enzyme specificities.
Collapse
Affiliation(s)
| | - Stefan Ståhl
- Department of Protein ScienceKTH Royal Institute of TechnologyStockholmSweden
| | - John Löfblom
- Department of Protein ScienceKTH Royal Institute of TechnologyStockholmSweden
| |
Collapse
|
2
|
Yoshimoto S, Aoki S, Ishikawa M, Suzuki A, Hori K. Size-dependent ability of AtaA to immobilize cells in Acinetobacter sp. Tol 5. Sci Rep 2024; 14:21039. [PMID: 39251675 PMCID: PMC11385948 DOI: 10.1038/s41598-024-71920-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/31/2024] [Indexed: 09/11/2024] Open
Abstract
Microbial cells serve as efficient and environmentally friendly biocatalysts, but their stability and reusability in practical applications must often be improved through immobilization. Acinetobacter sp. Tol 5 shows high adhesiveness to materials due to its large cell surface protein AtaA, which consists of 3630 amino acids (aa). Previously, we developed a method for immobilizing bacteria using AtaA. Herein, we investigated the cell immobilization ability of in-frame deletion (IFD) mutants of AtaA with different sizes in Tol 5. Mini-AtaA, which consists of 775 aa and is functional in Escherichia coli, was produced and present on the cell surface; however, mini-AtaA showed no immobilization ability in Tol 5. A cell immobilization assay was performed with cells expressing 16 IFD mutants of AtaA with different sizes, revealing that a length of at least 1417 aa was required for the sufficient immobilization of Tol 5 cells; thus, the minimum length needed to achieve the adhesive function of AtaA varies among bacterial species. The constructed mutant library of AtaA ranging from 3630 to 775 aa will allow researchers to quickly and easily explore the optimal size of AtaA, even for bacteria newly introduced to AtaA.
Collapse
Affiliation(s)
- Shogo Yoshimoto
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, 464-8603, Japan
| | - Sota Aoki
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, 464-8603, Japan
| | - Masahito Ishikawa
- Department of Frontier Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, 526-0829, Japan
| | - Atsuo Suzuki
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, 464-8603, Japan
| | - Katsutoshi Hori
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, 464-8603, Japan.
| |
Collapse
|
3
|
Yuan C, An T, Li X, Zou J, Lin Z, Gu J, Hu R, Fang Z. Genomic analysis of Ralstonia pickettii reveals the genetic features for potential pathogenicity and adaptive evolution in drinking water. Front Microbiol 2024; 14:1272636. [PMID: 38370577 PMCID: PMC10869594 DOI: 10.3389/fmicb.2023.1272636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/13/2023] [Indexed: 02/20/2024] Open
Abstract
Ralstonia pickettii, the most critical clinical pathogen of the genus Ralstonia, has been identified as a causative agent of numerous harmful infections. Additionally, Ralstonia pickettii demonstrates adaptability to extreme environmental conditions, such as those found in drinking water. In this study, we conducted a comprehensive genomic analysis to investigate the genomic characteristics related to potential pathogenicity and adaptive evolution in drinking water environments of Ralstonia pickettii. Through phylogenetic analysis and population genetic analysis, we divided Ralstonia pickettii into five Groups, two of which were associated with drinking water environments. The open pan-genome with a large and flexible gene repertoire indicated a high genetic plasticity. Significant differences in functional enrichment were observed between the core- and pan-genome of different groups. Diverse mobile genetic elements (MGEs), extensive genomic rearrangements, and horizontal gene transfer (HGT) events played a crucial role in generating genetic diversity. In drinking water environments, Ralstonia pickettii exhibited strong adaptability, and the acquisition of specific adaptive genes was potentially facilitated by genomic islands (GIs) and HGT. Furthermore, environmental pressures drove the adaptive evolution of Ralstonia pickettii, leading to the accumulation of unique mutations in key genes. These mutations may have a significant impact on various physiological functions, particularly carbon metabolism and energy metabolism. The presence of virulence-related elements associated with macromolecular secretion systems, virulence factors, and antimicrobial resistance indicated the potential pathogenicity of Ralstonia pickettii, making it capable of causing multiple nosocomial infections. This study provides comprehensive insights into the potential pathogenicity and adaptive evolution of Ralstonia pickettii in drinking water environments from a genomic perspective.
Collapse
Affiliation(s)
- Chao Yuan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, China
- Center for International Collaborative Research on Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
- School of Public Health, Tianjin Medical University, Tianjin, China
| | - Tianfeng An
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, China
- Center for International Collaborative Research on Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
- School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xinlong Li
- School of Public Health, Tianjin Medical University, Tianjin, China
| | - Jiao Zou
- School of Public Health, Tianjin Medical University, Tianjin, China
| | - Zhan Lin
- School of Public Health, Tianjin Medical University, Tianjin, China
| | - Jiale Gu
- School of Public Health, Tianjin Medical University, Tianjin, China
| | - Ruixia Hu
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, China
- Center for International Collaborative Research on Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
- School of Public Health, Tianjin Medical University, Tianjin, China
| | - Zhongze Fang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, China
- Center for International Collaborative Research on Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
- School of Public Health, Tianjin Medical University, Tianjin, China
| |
Collapse
|
4
|
Correa GB, Freire CA, Dibo M, Huerta-Cantillo J, Navarro-Garcia F, Barbosa AS, Elias WP, Moraes CTP. Plasmid-encoded toxin of Escherichia coli cleaves complement system proteins and inhibits complement-mediated lysis in vitro. Front Cell Infect Microbiol 2024; 14:1327241. [PMID: 38371299 PMCID: PMC10869522 DOI: 10.3389/fcimb.2024.1327241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/08/2024] [Indexed: 02/20/2024] Open
Abstract
Plasmid-encoded toxin (Pet) is an autotransporter protein of the serine protease autotransporters of Enterobacteriaceae (SPATE) family, important in the pathogenicity of Escherichia coli. The pet gene was initially found in the enteroaggregative E. coli (EAEC) virulence plasmid, pAA2. Although this virulence factor was initially described in EAEC, an intestinal E. coli pathotype, pet may also be present in other pathotypes, including extraintestinal pathogenic strains (ExPEC). The complement system is an important defense mechanism of the immune system that can be activated by invading pathogens. Proteases produced by pathogenic bacteria, such as SPATEs, have proteolytic activity and can cleave components of the complement system, promoting bacterial resistance to human serum. Considering these factors, the proteolytic activity of Pet and its role in evading the complement system were investigated. Proteolytic assays were performed by incubating purified components of the complement system with Pet and Pet S260I (a catalytic site mutant) proteins. Pet, but not Pet S260I, could cleave C3, C5 and C9 components, and also inhibited the natural formation of C9 polymers. Furthermore, a dose-dependent inhibition of ZnCl2-induced C9 polymerization in vitro was observed. E. coli DH5α survived incubation with human serum pre-treated with Pet. Therefore, Pet can potentially interfere with the alternative and the terminal pathways of the complement system. In addition, by cleaving C9, Pet may inhibit membrane attack complex (MAC) formation on the bacterial outer membrane. Thus, our data are suggestive of a role of Pet in resistance of E. coli to human serum.
Collapse
Affiliation(s)
| | | | - Miriam Dibo
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | - Jazmin Huerta-Cantillo
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Fernando Navarro-Garcia
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | | | - Waldir P. Elias
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | | |
Collapse
|
5
|
Abby SS, Denise R, Rocha EPC. Identification of Protein Secretion Systems in Bacterial Genomes Using MacSyFinder Version 2. Methods Mol Biol 2024; 2715:1-25. [PMID: 37930518 DOI: 10.1007/978-1-0716-3445-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Protein secretion systems are complex molecular machineries that translocate proteins through the outer membrane and sometimes through multiple other barriers. They have evolved by co-option of components from other envelope-associated cellular machineries, making them sometimes difficult to identify and discriminate. Here, we describe how to identify protein secretion systems in bacterial genomes using the MacSyFinder program. This flexible computational tool uses the knowledge gathered from experimental studies to identify homologous systems in genome data. It can be used with a set of predefined MacSyFinder models, "TXSScan," to identify all major secretion systems of diderm bacteria (i.e., with inner and LPS-containing outer membranes) as well as evolutionarily related cell appendages (pili and flagella). For this, it identifies and clusters co-localized genes encoding proteins of secretion systems using sequence similarity search with Hidden Markov Model (HMM) protein profiles. Finally, it checks if the clusters' genetic content and genomic organization satisfy the constraints of the model. TXSScan models can be altered in the command line or customized to search for variants of known secretion systems. Models can also be built from scratch to identify novel systems. In this chapter, we describe a complete pipeline of analysis, starting from (i) the integration of information from a reference set of experimentally studied systems, (ii) the identification of conserved proteins and the construction of their HMM protein profiles, (iii) the definition and optimization of "macsy-models," and (iv) their use and online distribution as tools to search genomic data for secretion systems of interest. MacSyFinder is available here: https://github.com/gem-pasteur/macsyfinder, and MacSyFinder models here: https://github.com/macsy-models .
Collapse
Affiliation(s)
- Sophie S Abby
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble, France.
| | - Rémi Denise
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland
| | - Eduardo P C Rocha
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, France
| |
Collapse
|
6
|
Szöllősi D, Hajdrik P, Tordai H, Horváth I, Veres DS, Gillich B, Shailaja KD, Smeller L, Bergmann R, Bachmann M, Mihály J, Gaál A, Jezsó B, Barátki B, Kövesdi D, Bősze S, Szabó I, Felföldi T, Oszwald E, Padmanabhan P, Gulyás BZ, Hamdani N, Máthé D, Varga Z, Szigeti K. Molecular imaging of bacterial outer membrane vesicles based on bacterial surface display. Sci Rep 2023; 13:18752. [PMID: 37907509 PMCID: PMC10618197 DOI: 10.1038/s41598-023-45628-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/21/2023] [Indexed: 11/02/2023] Open
Abstract
The important roles of bacterial outer membrane vesicles (OMVs) in various diseases and their emergence as a promising platform for vaccine development and targeted drug delivery necessitates the development of imaging techniques suitable for quantifying their biodistribution with high precision. To address this requirement, we aimed to develop an OMV specific radiolabeling technique for positron emission tomography (PET). A novel bacterial strain (E. coli BL21(DE3) ΔnlpI, ΔlpxM) was created for efficient OMV production, and OMVs were characterized using various methods. SpyCatcher was anchored to the OMV outer membrane using autotransporter-based surface display systems. Synthetic SpyTag-NODAGA conjugates were tested for OMV surface binding and 64Cu labeling efficiency. The final labeling protocol shows a radiochemical purity of 100% with a ~ 29% radiolabeling efficiency and excellent serum stability. The in vivo biodistribution of OMVs labeled with 64Cu was determined in mice using PET/MRI imaging which revealed that the biodistribution of radiolabeled OMVs in mice is characteristic of previously reported data with the highest organ uptakes corresponding to the liver and spleen 3, 6, and 12 h following intravenous administration. This novel method can serve as a basis for a general OMV radiolabeling scheme and could be used in vaccine- and drug-carrier development based on bioengineered OMVs.
Collapse
Affiliation(s)
- Dávid Szöllősi
- Department of Biophysics and Radiation Biology, Semmelweis University, 37-47 Tűzoltó Street, Budapest, 1094, Hungary
| | - Polett Hajdrik
- Department of Biophysics and Radiation Biology, Semmelweis University, 37-47 Tűzoltó Street, Budapest, 1094, Hungary
| | - Hedvig Tordai
- Department of Biophysics and Radiation Biology, Semmelweis University, 37-47 Tűzoltó Street, Budapest, 1094, Hungary
| | - Ildikó Horváth
- Department of Biophysics and Radiation Biology, Semmelweis University, 37-47 Tűzoltó Street, Budapest, 1094, Hungary
| | - Dániel S Veres
- Department of Biophysics and Radiation Biology, Semmelweis University, 37-47 Tűzoltó Street, Budapest, 1094, Hungary
| | - Bernadett Gillich
- Department of Biophysics and Radiation Biology, Semmelweis University, 37-47 Tűzoltó Street, Budapest, 1094, Hungary
| | - Kanni Das Shailaja
- Department of Biophysics and Radiation Biology, Semmelweis University, 37-47 Tűzoltó Street, Budapest, 1094, Hungary
| | - László Smeller
- Department of Biophysics and Radiation Biology, Semmelweis University, 37-47 Tűzoltó Street, Budapest, 1094, Hungary
| | - Ralf Bergmann
- Department of Biophysics and Radiation Biology, Semmelweis University, 37-47 Tűzoltó Street, Budapest, 1094, Hungary
- Institute for Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 400 Bautzner Landstraße, 01328, Dresden, Germany
| | - Michael Bachmann
- Institute for Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 400 Bautzner Landstraße, 01328, Dresden, Germany
| | - Judith Mihály
- Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, 2 Magyar Tudósok Körútja, Budapest, 1117, Hungary
| | - Anikó Gaál
- Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, 2 Magyar Tudósok Körútja, Budapest, 1117, Hungary
| | - Bálint Jezsó
- Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, 2 Magyar Tudósok Körútja, Budapest, 1117, Hungary
- Doctoral School of Biology and Institute of Biology, Eötvös Loránd University, 1/C Pázmány Péter Sétány, Budapest, 1117, Hungary
| | - Balázs Barátki
- Department of Immunology, ELTE Eötvös Loránd University, 1/C Pázmány Péter Sétány, Budapest, 1117, Hungary
| | - Dorottya Kövesdi
- Department of Immunology, ELTE Eötvös Loránd University, 1/C Pázmány Péter Sétány, Budapest, 1117, Hungary
- MTA-ELTE Complement Research Group, Eötvös Loránd Research Network (ELKH), 1/A Pázmány Péter Sétány, Budapest, 1117, Hungary
| | - Szilvia Bősze
- ELKH-ELTE Research Group of Peptide Chemistry, Eötvös L. Research Network, Eötvös L. University, 1/A Pázmány Péter Sétány, Budapest, 1117, Hungary
| | - Ildikó Szabó
- ELKH-ELTE Research Group of Peptide Chemistry, Eötvös L. Research Network, Eötvös L. University, 1/A Pázmány Péter Sétány, Budapest, 1117, Hungary
| | - Tamás Felföldi
- Department of Microbiology, ELTE Eötvös Loránd University, 1/C Pázmány Péter Sétány, Budapest, 1117, Hungary
- Centre for Ecological Research, Institute of Aquatic Ecology, 29 Karolina Road, Budapest, 1113, Hungary
| | - Erzsébet Oszwald
- Department of Anatomy, Histology, and Embryology, Semmelweis University, 58 Tűzoltó Street, Budapest, 1094, Hungary
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 30823, Singapore
- Cognitive Neuroimaging Centre, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Balázs Zoltán Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 30823, Singapore
- Cognitive Neuroimaging Centre, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Nazha Hamdani
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, 44801, Bochum, Germany
- HCEMM-Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, University of Budapest, Budapest, 1089, Hungary
| | - Domokos Máthé
- Department of Biophysics and Radiation Biology, Semmelweis University, 37-47 Tűzoltó Street, Budapest, 1094, Hungary
- CROmed Translational Research Centers, 37-47 Tűzoltó Street, Budapest, 1094, Hungary
- In Vivo Imaging Advanced Core Facility, Hungarian Center of Excellence for Molecular Medicine (HCEMM), 37-47 Tűzoltó Street, Budapest, 1094, Hungary
| | - Zoltán Varga
- Department of Biophysics and Radiation Biology, Semmelweis University, 37-47 Tűzoltó Street, Budapest, 1094, Hungary
- Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, 2 Magyar Tudósok Körútja, Budapest, 1117, Hungary
| | - Krisztián Szigeti
- Department of Biophysics and Radiation Biology, Semmelweis University, 37-47 Tűzoltó Street, Budapest, 1094, Hungary.
| |
Collapse
|
7
|
Oktem-Okullu S, Karaman T, Akcelik-Deveci S, Timucin E, Sezerman OU, Mansur-Ozen N, Buyukcolak Y, Tiftikci A. Effect of the switch status of Helicobacter pylori outer inflammatory protein A on gastric diseases. AMB Express 2023; 13:109. [PMID: 37817013 PMCID: PMC10564699 DOI: 10.1186/s13568-023-01621-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/03/2023] [Indexed: 10/12/2023] Open
Abstract
Helicobacter pylori OipA (Outer Inflammatory Protein A) is an outer membrane protein that takes role in the adherence and colonization to the stomach. oipA gene expression is regulated by the slipped-strand mispairing mechanism through a hypermutable CT dinucleotide repeat motif in the 5΄ region. Alterations in the CT number repeats cause frame-shift mutations to result in phase variation of oipA expression. While a functional "On" status has been recognized as a risk factor for peptic ulcer diseases and gastric cancer in many studies, some controversial findings still exist. To this end, this study compiled the sequence data of oipA from 10 different studies between 2000-2019 and 50 oipA DNA sequences from our own research that examined the relationship between the phase On/Off status of oipA and gastric diseases based on CT repeat number. Overall, we have reached 536 oipA DNA sequences from patients. This large collection of oipA sequences first clarified the absolute conservation of the peptide-pentamer of FWLHA for phase ''On'' status, suggesting this pentamer as a superior marker for the determination of oipA status than counting the number of CT repeats. Combining the sequence and patient data, we have re-analyzed the association between the ''On'' status of oipA and gastric diseases. Our results showed a strong association between oipA ''On'' status and gastric cancer supporting previous findings. We also investigated the AlphaFold2 computed structure of OipA that adopts a beta-barrel fold closely resembling to the autotransporter family of H. pylori. Altogether, this study confirms a strong association between oipA ''On'' statuses and severe gastrointestinal diseases like cancer and provides useful insights into the FWLHA pentamer as an indicator of "On" status of oipA putative autotransporter function rather than CT repeats number.
Collapse
Affiliation(s)
- Sinem Oktem-Okullu
- Department of Medical Microbiology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Atasehir, Istanbul, 34752, Turkey.
| | - Tayyip Karaman
- Department of Medical Biotechnology, Institute of Health and Science, Acibadem Mehmet Ali Aydinlar University, Atasehir, Istanbul, 34752, Turkey
| | - Sümeyye Akcelik-Deveci
- Department of Medical Biotechnology, Institute of Health and Science, Acibadem Mehmet Ali Aydinlar University, Atasehir, Istanbul, 34752, Turkey
| | - Emel Timucin
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Atasehir, Istanbul, 34752, Turkey
| | - Osman Ugur Sezerman
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Atasehir, Istanbul, 34752, Turkey
| | - Nesteren Mansur-Ozen
- Department of Medical Biotechnology, Institute of Health and Science, Acibadem Mehmet Ali Aydinlar University, Atasehir, Istanbul, 34752, Turkey
| | - Yaren Buyukcolak
- Department of Medical Biotechnology, Institute of Health and Science, Acibadem Mehmet Ali Aydinlar University, Atasehir, Istanbul, 34752, Turkey
| | - Arzu Tiftikci
- Department of Internal Medicine, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Atasehir, Istanbul, 34752, Turkey
| |
Collapse
|
8
|
Carman PJ, Rebowski G, Dominguez R, Alqassim SS. Single particle cryo-EM analysis of Rickettsia conorii Sca2 reveals a formin-like core. J Struct Biol 2023; 215:107960. [PMID: 37028467 PMCID: PMC10200769 DOI: 10.1016/j.jsb.2023.107960] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/16/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023]
Abstract
Spotted fever group Rickettsia undergo actin-based motility inside infected eukaryotic cells using Sca2 (surface cell antigen 2): an ∼ 1800 amino-acid monomeric autotransporter protein that is surface-attached to the bacterium and responsible for the assembly of long unbranched actin tails. Sca2 is the only known functional mimic of eukaryotic formins, yet it shares no sequence similarities to the latter. Using structural and biochemical approaches we have previously shown that Sca2 uses a novel actin assembly mechanism. The first ∼ 400 amino acids fold into helix-loop-helix repeats that form a crescent shape reminiscent of a formin FH2 monomer. Additionally, the N- and C- terminal halves of Sca2 display intramolecular interaction in an end-to-end manner and cooperate for actin assembly, mimicking a formin FH2 dimer. Towards a better structural understanding of this mechanism, we performed single-particle cryo-electron microscopy analysis of Sca2. While high-resolution structural details remain elusive, our model confirms the presence of a formin-like core: Sca2 indeed forms a doughnut shape, similar in diameter to a formin FH2 dimer and can accommodate two actin subunits. Extra electron density, thought to be contributed by the C-terminal repeat domain (CRD), covering one side is also observed. This structural analysis allows us to propose an updated model where nucleation proceeds by encircling two actin subunits, and elongation proceeds either by a formin-like mechanism that necessitates conformational changes in the observed Sca2 model, or via an insertional mechanism akin to that observed in the ParMRC system.
Collapse
Affiliation(s)
- Peter J Carman
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Grzegorz Rebowski
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Roberto Dominguez
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Saif S Alqassim
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.
| |
Collapse
|
9
|
Calder A, Snyder LAS. Diversity of the type VI secretion systems in the Neisseria spp. Microb Genom 2023; 9. [PMID: 37052605 DOI: 10.1099/mgen.0.000986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Complete Type VI Secretion Systems were identified in the genome sequence data of Neisseria subflava isolates sourced from throat swabs of human volunteers. The previous report was the first to describe two complete Type VI Secretion Systems in these isolates, both of which were distinct in terms of their gene organization and sequence homology. Since publication of the first report, Type VI Secretion System subtypes have been identified in Neisseria spp. The characteristics of each type in N. subflava are further investigated here and in the context of the other Neisseria spp., including identification of the lineages containing the different types and subtypes. Type VI Secretion Systems use VgrG for delivery of toxin effector proteins; several copies of vgrG and associated effector / immunity pairs are present in Neisseria spp. Based on sequence similarity between strains and species, these core Type VI Secretion System genes, vgrG, and effector / immunity genes may diversify via horizontal gene transfer, an instrument for gene acquisition and repair in Neisseria spp.
Collapse
Affiliation(s)
- Alan Calder
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| | - Lori A S Snyder
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| |
Collapse
|
10
|
Dahlsson Leitao C, Ståhl S, Löfblom J. Bacterial Cell Display for Selection of Affibody Molecules. Methods Mol Biol 2023; 2681:99-112. [PMID: 37405645 DOI: 10.1007/978-1-0716-3279-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
This review describes the principles for generation of affibody molecules using bacterial display on the Gram-negative Escherichia coli and the Gram-positive Staphylococcus carnosus, respectively. Affibody molecules are small and robust alternative scaffold proteins that have been explored for therapeutic, diagnostic, and biotechnological applications. They typically exhibit high-stability, affinity, and specificity with high modularity of functional domains. Due to the small size of the scaffold, affibody molecules are rapidly excreted through renal filtration and can efficiently extravasate from blood and penetrate tissues. Preclinical and clinical studies have demonstrated that affibody molecules are promising and safe complements to antibodies for in vivo diagnostic imaging and therapy. Sorting of affibody libraries displayed on bacteria using fluorescence-activated cell sorting is an effective and straightforward methodology and has been used successfully to generate novel affibody molecules with high affinity for a diverse range of molecular targets.
Collapse
Affiliation(s)
| | - Stefan Ståhl
- Department of Protein Science, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - John Löfblom
- Department of Protein Science, KTH - Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
11
|
Li M, Bao Y, Li Y, Akbar S, Wu G, Du J, Wen R, Chen B, Zhang M. Comparative genome analysis unravels pathogenicity of Xanthomonas albilineans causing sugarcane leaf scald disease. BMC Genomics 2022; 23:671. [PMID: 36162999 PMCID: PMC9513982 DOI: 10.1186/s12864-022-08900-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/19/2022] [Indexed: 11/28/2022] Open
Abstract
Background Xanthomonas is a genus of gram-negative bacterium containing more than 35 species. Among these pathogenic species, Xanthomonas albilineans (Xal) is of global interest, responsible for leaf scald disease in sugarcane. Another notable Xanthomonas species is Xanthomonas sachari (Xsa), a sugarcane-associated agent of chlorotic streak disease. Result The virulence of 24 Xanthomonas strains was evaluated by disease index (DI) and Area Under Disease Progress Curve (AUDPC) in the susceptible inoculated plants (GT 46) and clustered into three groups of five highly potent, seven mild virulent, and twelve weak virulent strains. The highly potent strain (X. albilineans, Xal JG43) and its weak virulent related strain (X. sacchari, Xsa DD13) were sequenced, assembled, and annotated in the circular genomes. The genomic size of JG43 was smaller than that of DD13. Both strains (JG43 and DD13) lacked a Type III secretory system (T3SS) and T6SS. However, JG43 possessed Salmonella pathogenicity island-1 (SPI-1). More pathogen-host interaction (PHI) genes and virulent factors in 17 genomic islands (GIs) were detected in JG43, among which six were related to pathogenicity. Albicidin and a two-component system associated with virulence were also detected in JG43. Furthermore, 23 Xanthomonas strains were sequenced and classified into three categories based on Single Nucleotide Polymorphism (SNP) mutation loci and pathogenicity, using JG43 as a reference genome. Transitions were dominant SNP mutations, while structural variation (SV) is frequent intrachromosomal rearrangement (ITX). Two essential genes (rpfC/rpfG) of the two-component system and another gene related to SNP were mutated to understand their virulence effect. The mutation of rpfG resulted in a decrease in pathogenicity. Conclusion These findings revealed virulence of 24 Xanthomonas strains and variations by 23 Xanthomonas strains. We sequenced, assembled, and annotated the circular genomes of Xal JG43 and Xsa DD13, identifying diversity detected by pathogenic factors and systems. Furthermore, complete genomic sequences and sequenced data will provide a theoretical basis for identifying pathogenic factors responsible for sugarcane leaf scald disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08900-2.
Collapse
Affiliation(s)
- MeiLin Li
- State Key Laboratory of Conservation and Utilization for Subtropical Agri-Biological Resources & Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530005, Guangxi, China
| | - YiXue Bao
- State Key Laboratory of Conservation and Utilization for Subtropical Agri-Biological Resources & Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530005, Guangxi, China
| | - YiSha Li
- State Key Laboratory of Conservation and Utilization for Subtropical Agri-Biological Resources & Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530005, Guangxi, China
| | - Sehrish Akbar
- State Key Laboratory of Conservation and Utilization for Subtropical Agri-Biological Resources & Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530005, Guangxi, China
| | - GuangYue Wu
- State Key Laboratory of Conservation and Utilization for Subtropical Agri-Biological Resources & Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530005, Guangxi, China
| | - JinXia Du
- State Key Laboratory of Conservation and Utilization for Subtropical Agri-Biological Resources & Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530005, Guangxi, China
| | - Ronghui Wen
- State Key Laboratory of Conservation and Utilization for Subtropical Agri-Biological Resources & Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530005, Guangxi, China
| | - Baoshan Chen
- State Key Laboratory of Conservation and Utilization for Subtropical Agri-Biological Resources & Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530005, Guangxi, China
| | - MuQing Zhang
- State Key Laboratory of Conservation and Utilization for Subtropical Agri-Biological Resources & Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530005, Guangxi, China.
| |
Collapse
|
12
|
Feitosa-Junior OR, Souza APS, Zaini PA, Baccari C, Ionescu M, Pierry PM, Uceda-Campos G, Labroussaa F, Almeida RPP, Lindow SE, da Silva AM. The XadA Trimeric Autotransporter Adhesins in Xylella fastidiosa Differentially Contribute to Cell Aggregation, Biofilm Formation, Insect Transmission and Virulence to Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:857-866. [PMID: 35704683 DOI: 10.1094/mpmi-05-22-0108-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Surface adhesion strategies are widely employed by bacterial pathogens during establishment and systemic spread in their host. A variety of cell-surface appendages such as pili, fimbriae, and afimbrial adhesins are involved in these processes. The phytopathogen Xylella fastidiosa employs several of these structures for efficient colonization of its insect and plant hosts. Among the adhesins encoded in the X. fastidiosa genome, three afimbrial adhesins, XadA1, Hsf/XadA2, and XadA3, are predicted to be trimeric autotransporters with a C-terminal YadA-anchor membrane domain. We analyzed the individual contributions of XadA1, XadA2, and XadA3 to various cellular behaviors both in vitro and in vivo. Using isogenic X. fastidiosa mutants, we found that cell-cell aggregation and biofilm formation were severely impaired in the absence of XadA3. No significant reduction of cell-surface attachment was found with any mutant under flow conditions. Acquisition by insect vectors and transmission to grapevines were reduced in the XadA3 deletion mutant. While the XadA3 mutant was hypervirulent in grapevines, XadA1 or XadA2 deletion mutants conferred lower disease severity than the wild-type strain. This insight of the importance of these adhesive proteins and their individual contributions to different aspects of X. fastidiosa biology should guide new approaches to reduce pathogen transmission and disease development. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Oseias R Feitosa-Junior
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Paula S Souza
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Paulo A Zaini
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- Department of Plant Sciences, University of California, Davis, CA, U.S.A
| | - Clelia Baccari
- Department of Plant and Microbial Biology, University of California, Berkeley, U.S.A
| | - Michael Ionescu
- Department of Plant and Microbial Biology, University of California, Berkeley, U.S.A
| | - Paulo M Pierry
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Guillermo Uceda-Campos
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Fabien Labroussaa
- Department of Environmental Science, Policy and Management, University of California, Berkeley, U.S.A
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Rodrigo P P Almeida
- Department of Environmental Science, Policy and Management, University of California, Berkeley, U.S.A
| | - Steven E Lindow
- Department of Plant and Microbial Biology, University of California, Berkeley, U.S.A
| | - Aline M da Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
InvL, an Invasin-Like Adhesin, Is a Type II Secretion System Substrate Required for Acinetobacter baumannii Uropathogenesis. mBio 2022; 13:e0025822. [PMID: 35638734 PMCID: PMC9245377 DOI: 10.1128/mbio.00258-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen of growing concern, as isolates are commonly multidrug resistant. While A. baumannii is most frequently associated with pulmonary infections, a significant proportion of clinical isolates come from urinary sources, highlighting its uropathogenic potential. The type II secretion system (T2SS) of commonly used model Acinetobacter strains is important for virulence in various animal models, but the potential role of the T2SS in urinary tract infection (UTI) remains unknown. Here, we used a catheter-associated UTI (CAUTI) model to demonstrate that a modern urinary isolate, UPAB1, requires the T2SS for full virulence. A proteomic screen to identify putative UPAB1 T2SS effectors revealed an uncharacterized lipoprotein with structural similarity to the intimin-invasin family, which serve as type V secretion system (T5SS) adhesins required for the pathogenesis of several bacteria. This protein, designated InvL, lacked the β-barrel domain associated with T5SSs but was confirmed to require the T2SS for both surface localization and secretion. This makes InvL the first identified T2SS effector belonging to the intimin-invasin family. InvL was confirmed to be an adhesin, as the protein bound to extracellular matrix components and mediated adhesion to urinary tract cell lines in vitro. Additionally, the invL mutant was attenuated in the CAUTI model, indicating a role in Acinetobacter uropathogenesis. Finally, bioinformatic analyses revealed that InvL is present in nearly all clinical isolates belonging to international clone 2, a lineage of significant clinical importance. In all, we conclude that the T2SS substrate InvL is an adhesin required for A. baumannii uropathogenesis. IMPORTANCE While pathogenic Acinetobacter can cause various infections, we recently found that 20% of clinical isolates come from urinary sources. Despite the clinical relevance of Acinetobacter as a uropathogen, few virulence factors involved in urinary tract colonization have been defined. Here, we identify a novel type II secretion system effector, InvL, which is required for full uropathogenesis by a modern urinary isolate. Although InvL has predicted structural similarity to the intimin-invasin family of autotransporter adhesins, InvL is predicted to be anchored to the membrane as a lipoprotein. Similar to other invasin homologs, however, we demonstrate that InvL is a bona fide adhesin capable of binding extracellular matrix components and mediating adhesion to urinary tract cell lines. In all, this work establishes InvL as an adhesin important for Acinetobacter's urinary tract virulence and represents the first report of a type II secretion system effector belonging to the intimin-invasin family.
Collapse
|
14
|
Trivedi A, Gosai J, Nakane D, Shrivastava A. Design Principles of the Rotary Type 9 Secretion System. Front Microbiol 2022; 13:845563. [PMID: 35620107 PMCID: PMC9127263 DOI: 10.3389/fmicb.2022.845563] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/17/2022] [Indexed: 01/05/2023] Open
Abstract
The Fo ATP synthase, the bacterial flagellar motor, and the bacterial type 9 secretion system (T9SS) are the three known proton motive force driven biological rotary motors. In this review, we summarize the current information on the nuts and bolts of T9SS. Torque generation by T9SS, its role in gliding motility of bacteria, and the mechanism via which a T9SS-driven swarm shapes the microbiota are discussed. The knowledge gaps in our current understanding of the T9SS machinery are outlined.
Collapse
Affiliation(s)
- Abhishek Trivedi
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
- Center for Biological Physics, Arizona State University, Tempe, AZ, United States
| | - Jitendrapuri Gosai
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
- Center for Biological Physics, Arizona State University, Tempe, AZ, United States
| | - Daisuke Nakane
- Department of Engineering Science, The University of Electro-Communications, Tokyo, Japan
| | - Abhishek Shrivastava
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
- Center for Biological Physics, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
15
|
Hermansen S, Linke D, Leo JC. Transmembrane β-barrel proteins of bacteria: From structure to function. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 128:113-161. [PMID: 35034717 DOI: 10.1016/bs.apcsb.2021.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The outer membrane of Gram-negative bacteria is a specialized organelle conferring protection to the cell against various environmental stresses and resistance to many harmful compounds. The outer membrane has a number of unique features, including an asymmetric lipid bilayer, the presence of lipopolysaccharides and an individual proteome. The vast majority of the integral transmembrane proteins in the outer membrane belongs to the family of β-barrel proteins. These evolutionarily related proteins share a cylindrical, anti-parallel β-sheet core fold spanning the outer membrane. The loops and accessory domains attached to the β-barrel allow for a remarkable versatility in function for these proteins, ranging from diffusion pores and transporters to enzymes and adhesins. We summarize the current knowledge on β-barrel structure and folding and give an overview of their functions, evolution, and potential as drug targets.
Collapse
Affiliation(s)
- Simen Hermansen
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Dirk Linke
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jack C Leo
- Antimicrobial resistance, Omics and Microbiota Group, Department of Biosciences, Nottingham Trent University, Nottingham, United Kingdom.
| |
Collapse
|
16
|
Antimicrobial Weapons of Pseudomonas aeruginosa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:223-256. [DOI: 10.1007/978-3-031-08491-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
Hatefi Oskuei R, Darvish Alipour Astaneh S, Rasooli I. A conserved region of Acinetobacter trimeric autotransporter adhesion, Ata, provokes suppression of Acinetobacter baumannii virulence. Arch Microbiol 2021; 203:3483-3493. [PMID: 33907866 DOI: 10.1007/s00203-021-02343-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 01/02/2023]
Abstract
The Acinetobacter trimeric autotransporter adhesin (Ata) is an important virulence factor. The conserved region from the genomic sequence of a 6777bp/2258 amino acid of Acinetobacter baumannii ATCC®19606™ ata was explored. A 263aa of the C-terminal of Ata (rcAta263) was expressed. The effect of rcAta263 on A. baumannii virulence was studied in a murine model. IgG and IgA were elicited and the mice groups challenged with A. baumannii showed significant survival rates from 66 to 100%. The bacterial loads were determined in the spleens, livers, and lungs of both control and test groups. The adhesion rate of A. baumannii to A549 cells in the presence of serum, cytotoxicity, mutagenicity, and biofilm disruption potential of rcAta263 were determined. Intraperitoneally challenged groups showed a significantly reduced bacterial load in the organs of the immunized mice. Intranasal challenge reduced 4 logs of bacterial CFU/g in the test group. The immunized mice sera reduced adherence of A. baumannii to A549 cells to 80%. No cytotoxic or mutagenic effect was detected. Biofilm disruption was significantly increased in the presence of immunized mice sera. Immunization with the conserved region of Ata significantly combats the virulence of A. baumannii which could be considered as a therapeutic strategy to control A. baumannii infections.
Collapse
Affiliation(s)
- Ramin Hatefi Oskuei
- Department of Biology, Shahed University, Tehran-Qom Express way, Tehran, 3319118651, Iran
| | - Shakiba Darvish Alipour Astaneh
- Department of Biotechnology, Semnan University, Central Administration of Semnan University, Campus 1, Semnan, 35131-19111, I. R. of Iran
| | - Iraj Rasooli
- Department of Biology, Shahed University, Tehran-Qom Express way, Tehran, 3319118651, Iran.
- Molecular Microbiology Research Center and Department of Biology, Shahed University, Tehran, Iran.
| |
Collapse
|
18
|
Acinetobacter baumannii: An Ancient Commensal with Weapons of a Pathogen. Pathogens 2021; 10:pathogens10040387. [PMID: 33804894 PMCID: PMC8063835 DOI: 10.3390/pathogens10040387] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/22/2022] Open
Abstract
Acinetobacter baumannii is regarded as a life-threatening pathogen associated with community-acquired and nosocomial infections, mainly pneumonia. The rise in the number of A. baumannii antibiotic-resistant strains reduces effective therapies and increases mortality. Bacterial comparative genomic studies have unraveled the innate and acquired virulence factors of A. baumannii. These virulence factors are involved in antibiotic resistance, environmental persistence, host-pathogen interactions, and immune evasion. Studies on host–pathogen interactions revealed that A. baumannii evolved different mechanisms to adhere to in order to invade host respiratory cells as well as evade the host immune system. In this review, we discuss current data on A. baumannii genetic features and virulence factors. An emphasis is given to the players in host–pathogen interaction in the respiratory tract. In addition, we report recent investigations into host defense systems using in vitro and in vivo models, providing new insights into the innate immune response to A. baumannii infections. Increasing our knowledge of A. baumannii pathogenesis may help the development of novel therapeutic strategies based on anti-adhesive, anti-virulence, and anti-cell to cell signaling pathways drugs.
Collapse
|
19
|
Computational prediction of secreted proteins in gram-negative bacteria. Comput Struct Biotechnol J 2021; 19:1806-1828. [PMID: 33897982 PMCID: PMC8047123 DOI: 10.1016/j.csbj.2021.03.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 12/29/2022] Open
Abstract
Gram-negative bacteria harness multiple protein secretion systems and secrete a large proportion of the proteome. Proteins can be exported to periplasmic space, integrated into membrane, transported into extracellular milieu, or translocated into cytoplasm of contacting cells. It is important for accurate, genome-wide annotation of the secreted proteins and their secretion pathways. In this review, we systematically classified the secreted proteins according to the types of secretion systems in Gram-negative bacteria, summarized the known features of these proteins, and reviewed the algorithms and tools for their prediction.
Collapse
|
20
|
Secrete or perish: The role of secretion systems in Xanthomonas biology. Comput Struct Biotechnol J 2020; 19:279-302. [PMID: 33425257 PMCID: PMC7777525 DOI: 10.1016/j.csbj.2020.12.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/13/2020] [Accepted: 12/13/2020] [Indexed: 12/22/2022] Open
Abstract
Bacteria of the Xanthomonas genus are mainly phytopathogens of a large variety of crops of economic importance worldwide. Xanthomonas spp. rely on an arsenal of protein effectors, toxins and adhesins to adapt to the environment, compete with other microorganisms and colonize plant hosts, often causing disease. These protein effectors are mainly delivered to their targets by the action of bacterial secretion systems, dedicated multiprotein complexes that translocate proteins to the extracellular environment or directly into eukaryotic and prokaryotic cells. Type I to type VI secretion systems have been identified in Xanthomonas genomes. Recent studies have unravelled the diverse roles played by the distinct types of secretion systems in adaptation and virulence in xanthomonads, unveiling new aspects of their biology. In addition, genome sequence information from a wide range of Xanthomonas species and pathovars have become available recently, uncovering a heterogeneous distribution of the distinct families of secretion systems within the genus. In this review, we describe the architecture and mode of action of bacterial type I to type VI secretion systems and the distribution and functions associated with these important nanoweapons within the Xanthomonas genus.
Collapse
|
21
|
Krasauskas R, Skerniškytė J, Martinkus J, Armalytė J, Sužiedėlienė E. Capsule Protects Acinetobacter baumannii From Inter-Bacterial Competition Mediated by CdiA Toxin. Front Microbiol 2020; 11:1493. [PMID: 32849318 PMCID: PMC7396552 DOI: 10.3389/fmicb.2020.01493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/08/2020] [Indexed: 12/22/2022] Open
Abstract
Currently, Acinetobacter baumannii is considered as one of the most important infectious agents causing hospital acquired infections worldwide. It has been observed that many clinically important pathogens express contact-dependent growth inhibition (CDI) phenomenon, which modulates cell–cell and cell–environment interactions, potentially allowing bacteria to adapt to ever-changing conditions. Mainly, these systems are used for the inhibition of the growth of genetically different individuals within the same species. In this work, by performing cell competition assays with three genotypically different (as determined by pulse-field gel electrophoresis) clinical A. baumannii isolates II-c, II-a, and II-a1, we show that A. baumannii capsule is the main feature protecting from CDI-mediated inhibition. We also observed that for one clinical isolate, the two-component BfmRS system, contributed to the resistance against CDI-mediated inhibition. Moreover, we were able to demonstrate, that the effector protein CdiA is released into the growth media and exhibits its inhibitory activity without the requirement of a cell–cell contact. Lastly, by evaluating the remaining number of the cells pre-mixed with the CdiA and performing live/dead assay, we demonstrate that purified CdiA protein causes a rapid cell growth arrest. Our results indicate, that capsule efficiently protects A. baumannii from a CDI-mediated inhibition by a clinical A. baumannii V15 strain, which is able to secrete CdiA effector into the growth media and cause target cell growth arrest without a cell–cell contact.
Collapse
Affiliation(s)
- Renatas Krasauskas
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Jūratė Skerniškytė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Julius Martinkus
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Julija Armalytė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Edita Sužiedėlienė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
22
|
Whelan R, McVicker G, Leo JC. Staying out or Going in? The Interplay between Type 3 and Type 5 Secretion Systems in Adhesion and Invasion of Enterobacterial Pathogens. Int J Mol Sci 2020; 21:E4102. [PMID: 32521829 PMCID: PMC7312957 DOI: 10.3390/ijms21114102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
Enteric pathogens rely on a variety of toxins, adhesins and other virulence factors to cause infections. Some of the best studied pathogens belong to the Enterobacterales order; these include enteropathogenic and enterohemorrhagic Escherichia coli, Shigella spp., and the enteropathogenic Yersiniae. The pathogenesis of these organisms involves two different secretion systems, a type 3 secretion system (T3SS) and type 5 secretion systems (T5SSs). The T3SS forms a syringe-like structure spanning both bacterial membranes and the host cell plasma membrane that translocates toxic effector proteins into the cytoplasm of the host cell. T5SSs are also known as autotransporters, and they export part of their own polypeptide to the bacterial cell surface where it exerts its function, such as adhesion to host cell receptors. During infection with these enteropathogens, the T3SS and T5SS act in concert to bring about rearrangements of the host cell cytoskeleton, either to invade the cell, confer intracellular motility, evade phagocytosis or produce novel structures to shelter the bacteria. Thus, in these bacteria, not only the T3SS effectors but also T5SS proteins could be considered "cytoskeletoxins" that bring about profound alterations in host cell cytoskeletal dynamics and lead to pathogenic outcomes.
Collapse
Affiliation(s)
| | | | - Jack C. Leo
- Antimicrobial Resistance, Omics and Microbiota Group, Department of Biosciences, Nottingham Trent University, Nottingham NG1 4FQ, UK; (R.W.); (G.M.)
| |
Collapse
|
23
|
Wrobel A, Saragliadis A, Pérez-Ortega J, Sittman C, Göttig S, Liskiewicz K, Spence MH, Schneider K, Leo JC, Arenas J, Linke D. The inverse autotransporters of Yersinia ruckeri, YrInv and YrIlm, contribute to biofilm formation and virulence. Environ Microbiol 2020; 22:2939-2955. [PMID: 32372498 DOI: 10.1111/1462-2920.15051] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 11/28/2022]
Abstract
Yersinia ruckeri causes enteric redmouth disease (ERM) that mainly affects salmonid fishes and leads to significant economic losses in the aquaculture industry. An increasing number of outbreaks and the lack of effective vaccines against some serotypes necessitates novel measures to control ERM. Importantly, Y. ruckeri survives in the environment for long periods, presumably by forming biofilms. How the pathogen forms biofilms and which molecular factors are involved in this process, remains unclear. Yersinia ruckeri produces two surface-exposed adhesins, belonging to the inverse autotransporters (IATs), called Y. ruckeri invasin (YrInv) and Y. ruckeri invasin-like molecule (YrIlm). Here, we investigated whether YrInv and YrIlm play a role in biofilm formation and virulence. Functional assays revealed that YrInv and YrIlm promote biofilm formation on different abiotic substrates. Confocal microscopy revealed that they are involved in microcolony interaction and formation, respectively. The effect of both IATs on biofilm formation correlated with the presence of different biopolymers in the biofilm matrix, including extracellular DNA, RNA and proteins. Moreover, YrInv and YrIlm contributed to virulence in the Galleria mellonella infection model. Taken together, we propose that both IATs are possible targets for the development of novel diagnostic and preventative strategies to control ERM.
Collapse
Affiliation(s)
- Agnieszka Wrobel
- Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | | | - Jesús Pérez-Ortega
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, Utrecht, The Netherlands
| | - Carolin Sittman
- Institute of Medical Microbiology and Infection Control, Hospital of Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Stephan Göttig
- Institute of Medical Microbiology and Infection Control, Hospital of Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | | | | | | | - Jack C Leo
- Department of Biosciences, University of Oslo, 0316, Oslo, Norway.,Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG1 4FQ, UK
| | - Jesús Arenas
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, Utrecht, The Netherlands.,Unit of Microbiology of the Department of Animal Pathology, University of Zaragoza, Zaragoza, Spain
| | - Dirk Linke
- Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| |
Collapse
|
24
|
Abstract
The translocation of proteins across membranes is a fundamental cellular function. Bacteria have evolved a striking array of pathways for delivering proteins into or across cytoplasmic membranes and, when present, outer membranes. Translocated proteins can form part of the membrane landscape, reside in the periplasmic space situated between the inner and outer membranes of Gram-negative bacteria, deposit on the cell surface, or be released to the extracellular milieu or injected directly into target cells. One protein translocation system, the general secretory pathway, is conserved in all domains of life. A second, the twin-arginine translocation pathway, is also phylogenetically distributed among most bacteria and plant chloroplasts. While all cell types have evolved additional systems dedicated to the translocation of protein cargoes, the number of such systems in bacteria is now known to exceed nine. These dedicated protein translocation systems, which include the types 1 through 9 secretion systems (T1SSs-T9SSs), the chaperone-usher pathway, and type IV pilus system, are the subject of this review. Most of these systems were originally identified and have been extensively characterized in Gram-negative or diderm (two-membrane) species. It is now known that several of these systems also have been adapted to function in Gram-positive or monoderm (single-membrane) species, and at least one pathway is found only in monoderms. This review briefly summarizes the distinctive mechanistic and structural features of each dedicated pathway, as well as the shared properties, that together account for the broad biological diversity of protein translocation in bacteria.
Collapse
Affiliation(s)
- Peter J Christie
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St., Houston, TX, USA.
| |
Collapse
|
25
|
Lomovatskaya LA, Romanenko AS. Secretion Systems of Bacterial Phytopathogens and Mutualists (Review). APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820020106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Han Y, Wei L, Xiao J, Zhang Y, Wang Q, Zhou M. Identification and study of InV as an inverse autotransporter family representative in Edwardsiella piscicida. Arch Microbiol 2020; 202:1107-1116. [PMID: 32052095 PMCID: PMC7223825 DOI: 10.1007/s00203-019-01804-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 12/17/2019] [Accepted: 12/26/2019] [Indexed: 12/15/2022]
Abstract
Invasins and intimins, members of virulence-related adhesin family which is involved in attachment and adherence to epithelial cells during infection, are found in various pathogens. These pathogens can attach to enterocytes and lead to the formation of a pedestal-like structure. Invasins and intimins belong to type Ve secretion systems, and the N-terminal β-barrel domain acts as a translocation pore to secrete the C-terminal passenger domain. However, the relationship between invasins/intimins and type III secretion system (T3SS) has been poorly studied. Based on the transposon insertion mutant library of Edwardsiella piscicida, we got a transposon insertion mutant with significant T3SS defect and identified the mutated gene ETAE_0323 (named inV later). This gene encoded a protein with 2359 amino acid residues and was predicted to be an invasin. To study the relationship between InV and T3SS, strains with N-terminus or C-terminus deleted InV fragments were made. However, none of them was able to copy the phenotype of the transposon insertion mutant previously identified. The localization of InV in ΔT3SS strain was not significantly different from WT, suggesting that the T3SS defect in the transposon insertion mutant was likely to be caused by polar effect. Nevertheless, depletion of inV still showed dramatic internalization and virulence defect in HeLa cell and zebrafish model, respectively, suggesting InV as a virulence related protein.
Collapse
Affiliation(s)
- Yu Han
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Lifan Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jingfan Xiao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.,Shanghai Collaborative Innovation Center for Biomanufacturing, 130 Meilong Road, Shanghai, 200237, China.,Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China. .,Shanghai Collaborative Innovation Center for Biomanufacturing, 130 Meilong Road, Shanghai, 200237, China. .,Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China.
| | - Mian Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
27
|
Sequential Translocation of Polypeptides across the Bacterial Outer Membrane through the Trimeric Autotransporter Pathway. mBio 2019; 10:mBio.01973-19. [PMID: 31641085 PMCID: PMC6805991 DOI: 10.1128/mbio.01973-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Trimeric autotransporter adhesins (TAAs) are a family of bacterial outer membrane (OM) proteins that are comprised of three identical subunits. Each subunit contains an N-terminal extracellular ("passenger") domain and a short C-terminal segment that contributes four β strands to a single 12-stranded β barrel. The mechanism by which the passenger domains are translocated across the OM and the energetics of the translocation reaction are poorly understood. To address these issues, we examined the secretion of modified versions of the passenger domain of UpaG, a TAA produced by Escherichia coli CFT073. Using the SpyTag-SpyCatcher system to probe passenger domain localization, we found that both intrinsically disordered polypeptides fused to the UpaG passenger domain and artificially disulfide-bonded polypeptides were secreted effectively but relatively slowly. Surprisingly, we also found that in some cases, the three nonnative passenger domain segments associated with a single trimer were secreted sequentially. Photo-cross-linking experiments indicated that incompletely assembled UpaG derivatives remained bound to the barrel assembly machinery (Bam) complex until all three passenger domains were fully secreted. Taken together, our results strongly suggest that the secretion of polypeptides through the TAA pathway is coordinated with the assembly of the β barrel domain and that the folding of passenger domains in the extracellular space maximizes the rate of secretion. Furthermore, our work provides evidence for an unprecedented sequential mode of protein translocation, at least under specific experimental conditions.IMPORTANCE Trimeric autotransporter adhesins (TAAs) are specialized bacterial outer membrane proteins consisting of three identical subunits. TAAs contain large extracellular domains that trimerize and promote virulence, but the mechanism by which they are secreted is poorly understood. We found that the extracellular domains of a native TAA were secreted rapidly but that disordered and artificially folded polypeptides fused to native passenger domains were secreted in a slow, sequential fashion. Our results strongly suggest that the efficient secretion of native extracellular domains is driven by their trimerization following export but that alternative energy sources can be harnessed to secrete nonnative polypeptides. Furthermore, we obtained evidence that TAA extracellular domains are secreted before the assembly of the linked membrane spanning domain is completed.
Collapse
|
28
|
Yan Z, Hussain S, Wang X, Bernstein HD, Bardwell JCA. Chaperone OsmY facilitates the biogenesis of a major family of autotransporters. Mol Microbiol 2019; 112:1373-1387. [PMID: 31369167 DOI: 10.1111/mmi.14358] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2019] [Indexed: 12/26/2022]
Abstract
OsmY is a widely conserved but poorly understood 20 kDa periplasmic protein. Using a folding biosensor, we previously obtained evidence that OsmY has molecular chaperone activity. To discover natural OsmY substrates, we screened for proteins that are destabilized and thus present at lower steady-state levels in an osmY-null strain. The abundance of an outer membrane protein called antigen 43 was substantially decreased and its β-barrel domain was undetectable in the outer membrane of an osmY-null strain. Antigen 43 is a member of the diffuse adherence family of autotransporters. Like strains that are defective in antigen 43 production, osmY-null mutants failed to undergo cellular autoaggregation. In vitro, OsmY assisted in the refolding of the antigen 43 β-barrel domain and protected it from added protease. Finally, an osmY-null strain that expressed two members of the diffuse adherence family of autotransporters that are distantly related to antigen 43, EhaA and TibA, contained reduced levels of the proteins and failed to undergo cellular autoaggregation. Taken together, our results indicate that OsmY is involved in the biogenesis of a major subset of autotransporters, a group of proteins that play key roles in bacterial pathogenesis.
Collapse
Affiliation(s)
- Zhen Yan
- Howard Hughes Medical Institute and Department of Molecular, Cellular & Development Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sunyia Hussain
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xu Wang
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Harris D Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - James C A Bardwell
- Howard Hughes Medical Institute and Department of Molecular, Cellular & Development Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
29
|
Comparison of type 5d autotransporter phospholipases demonstrates a correlation between high activity and intracellular pathogenic lifestyle. Biochem J 2019; 476:2657-2676. [PMID: 31492736 DOI: 10.1042/bcj20190136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 12/20/2022]
Abstract
Autotransporters, or type 5 secretion systems, are widespread surface proteins of Gram-negative bacteria often associated with virulence functions. Autotransporters consist of an outer membrane β-barrel domain and an exported passenger. In the poorly studied type 5d subclass, the passenger is a patatin-like lipase. The prototype of this secretion pathway is PlpD of Pseudomonas aeruginosa, an opportunistic human pathogen. The PlpD passenger is a homodimer with phospholipase A1 (PLA1) activity. Based on sequencing data, PlpD-like proteins are present in many bacterial species. We characterized the enzymatic activity, specific lipid binding and oligomeric status of PlpD homologs from Aeromonas hydrophila (a fish pathogen), Burkholderia pseudomallei (a human pathogen) and Ralstonia solanacearum (a plant pathogen) and compared these with PlpD. We demonstrate that recombinant type 5d-secreted patatin domains have lipase activity and form dimers or higher-order oligomers. However, dimerization is not necessary for lipase activity; in fact, by making monomeric variants of PlpD, we show that enzymatic activity slightly increases while protein stability decreases. The lipases from the intracellular pathogens A. hydrophila and B. pseudomallei display PLA2 activity in addition to PLA1 activity. Although the type 5d-secreted lipases from the animal pathogens bound to intracellular lipid targets, phosphatidylserine and phosphatidylinositol phosphates, hydrolysis of these lipids could only be observed for FplA of Fusobacterium nucleatum Yet, we noted a correlation between high lipase activity in type 5d autotransporters and intracellular lifestyle. We hypothesize that type 5d phospholipases are intracellularly active and function in modulation of host cell signaling events.
Collapse
|
30
|
Wang S, Yang D, Wu X, Wang Y, Wang D, Tian M, Li T, Qi J, Wang X, Ding C, Yu S. Autotransporter MisL of Salmonella enterica serotype Typhimurium facilitates bacterial aggregation and biofilm formation. FEMS Microbiol Lett 2019; 365:5036521. [PMID: 29901711 DOI: 10.1093/femsle/fny142] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 03/11/2018] [Indexed: 01/04/2023] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is an important food-borne zoonotic pathogen that causes increased morbidity and mortality worldwide. The autotransporter (AT) proteins are a large and diverse family of extracellular proteins, many of which contribute to the pathogenicity of Gram-negative bacteria. The S. Typhimurium AT protein MisL mediates intestinal colonization in mice. Bioinformatics analyses indicated that MisL clusters with ATs are involved in bacterial biofilm formation, aggregation and adherence. In this study, we found that the misL overexpression increased S. Typhimurium biofilm formation. In addition, the misL deletion reduced bacterial adherence and invasion abilities on HeLa cells, but did not affect the bacterial virulence. Similarly, MisL expression in Escherichia coli strain promoted bacterial biofilm formation as well as adhesion and invasion capacities. However, the misL overexpression had no influence on the bacterial aggregation except for AAEC189Δflu, a strain lacking type I fimbriae. Moreover, we demonstrated that immunization with recombinant MisL protein stimulated the production of high IgG antibody titers, which conferred modest protection against S. Typhimurium infection. This study illustrates the novel biological functions and immunoprotective effects of MisL in S. Typhimurium.
Collapse
Affiliation(s)
- Shaohui Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Denghui Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Xiaojun Wu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yang Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Dong Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Mingxing Tian
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Tao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jingjing Qi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Xiaolan Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Shengqing Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| |
Collapse
|
31
|
Wrobel A, Leo JC, Linke D. Overcoming Fish Defences: The Virulence Factors of Yersinia ruckeri. Genes (Basel) 2019; 10:E700. [PMID: 31514317 PMCID: PMC6770984 DOI: 10.3390/genes10090700] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/02/2019] [Accepted: 09/05/2019] [Indexed: 12/24/2022] Open
Abstract
Yersinia ruckeri is the causative agent of enteric redmouth disease, a bacterial infection of marine and freshwater fish. The disease mainly affects salmonids, and outbreaks have significant economic impact on fish farms all over the world. Vaccination routines are in place against the major serotypes of Y. ruckeri but are not effective in all cases. Despite the economic importance of enteric redmouth disease, a detailed molecular understanding of the disease is lacking. A considerable number of mostly omics-based studies have been performed in recent years to identify genes related to Y. ruckeri virulence. This review summarizes the knowledge on Y. ruckeri virulence factors. Understanding the molecular pathogenicity of Y. ruckeri will aid in developing more efficient vaccines and antimicrobial compounds directed against enteric redmouth disease.
Collapse
Affiliation(s)
- Agnieszka Wrobel
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
| | - Jack C Leo
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG1 4FQ, UK.
| | - Dirk Linke
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
| |
Collapse
|
32
|
Dias GM, de Sousa Pires A, Grilo VS, Castro MR, de Figueiredo Vilela L, Neves BC. Comparative genomics of Paraburkholderia kururiensis and its potential in bioremediation, biofertilization, and biocontrol of plant pathogens. Microbiologyopen 2019; 8:e00801. [PMID: 30811107 PMCID: PMC6692535 DOI: 10.1002/mbo3.801] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/19/2018] [Accepted: 12/29/2018] [Indexed: 12/23/2022] Open
Abstract
Burkholderia harbors versatile Gram-negative species and is β-Proteobacteria. Recently, it was proposed to split the genus in two main branches: one of animal and plant pathogens and another, Paraburkholderia, harboring environmental and plant-beneficial species. Currently, Paraburkholderia comprises more than 70 species with ability to occupy very diverse environmental niches. Herein, we sequenced and analyzed the genome of Paraburkholderia kururiensis type strain KP23T , and compared to P. kururiensis M130, isolated in Brazil, and P. kururiensis susbp. thiooxydans, from Korea. This study focused on the gene content of the three genomes with special emphasis on their potential of plant-association, biocontrol, and bioremediation. The comparative analyses revealed several genes related to plant benefits, including biosynthesis of IAA, ACC deaminase, multiple efflux pumps, dioxygenases, and degradation of aromatic compounds. Importantly, a range of genes for protein secretion systems (type III, IV, V, and VI) were characterized, potentially involved in P. kururiensis well documented ability to establish endophytic association with plants. These findings shed light onto bacteria-plant interaction mechanisms at molecular level, adding novel information that supports their potential application in bioremediation, biofertilization, and biocontrol of plant pathogens. P. kururiensis emerges as a promising model to investigate adaptation mechanisms in different ecological niches.
Collapse
Affiliation(s)
- Graciela M. Dias
- Department of BiochemistryChemistry InstituteFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - Araceli de Sousa Pires
- Department of BiochemistryChemistry InstituteFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - Vinicius S. Grilo
- Department of BiochemistryChemistry InstituteFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - Michele R. Castro
- Department of BiochemistryChemistry InstituteFederal University of Rio de JaneiroRio de JaneiroBrazil
- Department of BiologyFederal Institute of Rio de JaneiroRio de JaneiroBrazil
| | | | - Bianca C. Neves
- Department of BiochemistryChemistry InstituteFederal University of Rio de JaneiroRio de JaneiroBrazil
| |
Collapse
|
33
|
Muñoz González F, Sycz G, Alonso Paiva IM, Linke D, Zorreguieta A, Baldi PC, Ferrero MC. The BtaF Adhesin Is Necessary for Full Virulence During Respiratory Infection by Brucella suis and Is a Novel Immunogen for Nasal Vaccination Against Brucella Infection. Front Immunol 2019; 10:1775. [PMID: 31402921 PMCID: PMC6676368 DOI: 10.3389/fimmu.2019.01775] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/15/2019] [Indexed: 01/18/2023] Open
Abstract
Brucella enters their hosts mostly through mucosae from where it spreads systemically. Adhesion to extracellular matrix (ECM) components or to host cells is important for the infectious process, and is mediated by several adhesins, including the BtaF trimeric autotransporter. Although Th1 responses and gamma interferon (IFN-γ) are important for protection, antibodies able to block adhesions might also contribute to prevent Brucella infection. We evaluated the importance of BtaF for respiratory Brucella infection, and characterized the immune response and protection from mucosal challenge induced by nasal vaccination with recombinant BtaF. While lung CFU numbers did not differ at day 1 p.i. between mice intratracheally inoculated with B. suis M1330 (wild type) and those receiving a ΔbtaF mutant, they were reduced in the latter group at 7 and 30 days p.i. For vaccination studies the BtaF passenger domain was engineered and expressed as a soluble trimeric protein. Mice were immunized by the nasal route with BtaF or saline (control group) plus the mucosal adjuvant c-di-AMP. Specific anti-BtaF antibodies (IgG and IgA) were increased in serum, including a mixed IgG2a/IgG1 response. In vitro, these antibodies reduced bacterial adhesion to A549 alveolar epithelial cells. Specific IgA antibodies were also increased in several mucosae. Spleen cells from BtaF immunized mice significantly increased their IL-2, IL-5, IL-17, and IFN-γ secretion upon antigen stimulation. In cervical draining lymph nodes, antigen-experienced CD4+ T cells were maintained mainly as central memory cells. A BtaF-specific delayed-type hypersensitivity response was detected in BtaF immunized mice. Lung cells from the latter produced high levels of IFN-γ upon antigen stimulation. Although nasal immunization with BtaF did not protect mice against B. suis respiratory challenge, it conferred significant protection from intragastric challenge; the splenic load of B. suis was reduced by 3.28 log CFU in immunized mice. This study shows that nasal vaccination with BtaF+c-di-AMP protects against intragastric challenge with B. suis by inducing local and systemic antibody responses, central memory CD4+ T cells and strong Th1 responses. Therefore, although BtaF vaccination did not protect from B. suis respiratory infection, this adhesin constitutes a promising immunogen against mucosal B. suis infection.
Collapse
Affiliation(s)
- Florencia Muñoz González
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gabriela Sycz
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - Iván M Alonso Paiva
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Dirk Linke
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| | | | - Pablo C Baldi
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariana C Ferrero
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
34
|
Interactions between the Trimeric Autotransporter Adhesin EmaA and Collagen Revealed by Three-Dimensional Electron Tomography. J Bacteriol 2019; 201:JB.00297-19. [PMID: 31160398 DOI: 10.1128/jb.00297-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 05/24/2019] [Indexed: 11/20/2022] Open
Abstract
Bacterial adhesion to host tissues is considered the first and critical step of microbial infection. The extracellular matrix protein adhesin A (EmaA) is a collagen-binding adhesin of the periodontal pathogen Aggregatibacter actinomycetemcomitans Three 202-kDa EmaA monomers form antenna-like structures on the bacterial surface with the functional domain located at the apical end. The structure of the 30-nm functional domain has been determined by three-dimensional (3D) electron tomography and subvolume averaging. The region exhibits a complex architecture composed of three subdomains (SI to SIII) and a linker between subdomains SII and SIII. However, the molecular interaction between the adhesin receptor complexes has yet to be revealed. This study provides the first detailed 3D structure of reconstituted EmaA/collagen complexes obtained using 3D electron tomography and image processing techniques. The observed interactions of EmaA with collagen were not to whole, intact fibrils, but rather to individual collagen triple helices dissociated from the fibrils. The majority of the contacts with the EmaA functional domain encompassed subdomains SII and SIII and in some cases the tip of the apical domain, involving SI. These data suggest a multipronged mechanism for the interaction of Gram-negative bacteria with collagen.IMPORTANCE Bacterial adhesion is a crucial step for bacterial colonization and infection. In recent years, the number of antibiotic-resistant strains has dramatically increased; therefore, there is a need to search for novel antimicrobial agents. Thus, great efforts are being devoted to develop a clear understanding of the bacterial adhesion mechanism for preventing infections. In host/pathogen interactions, once repulsive forces are overcome, adhesins recognize and tightly bind to specific receptors on the host cell or tissue components. Here, we present the first 3D structure of the interaction between the collagen-binding adhesin EmaA and collagen, which is critical for the development of endocarditis in humans.
Collapse
|
35
|
Steenhuis M, Abdallah AM, de Munnik SM, Kuhne S, Sterk G, van den Berg van Saparoea B, Westerhausen S, Wagner S, van der Wel NN, Wijtmans M, van Ulsen P, Jong WSP, Luirink J. Inhibition of autotransporter biogenesis by small molecules. Mol Microbiol 2019; 112:81-98. [PMID: 30983025 PMCID: PMC6850105 DOI: 10.1111/mmi.14255] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2019] [Indexed: 12/16/2022]
Abstract
Disarming pathogens by targeting virulence factors is a promising alternative to classic antibiotics. Many virulence factors in Gram-negative bacteria are secreted via the autotransporter (AT) pathway, also known as Type 5 secretion. These factors are secreted with the assistance of two membrane-based protein complexes: Sec and Bam. To identify inhibitors of the AT pathway, we used transcriptomics analysis to develop a fluorescence-based high-throughput assay that reports on the stress induced by the model AT hemoglobin protease (Hbp) when its secretion across the outer membrane is inhibited. Screening a library of 1600 fragments yielded the compound VUF15259 that provokes cell envelope stress and secretion inhibition of the ATs Hbp and Antigen-43. VUF15259 also impairs β-barrel folding activity of various outer membrane proteins. Furthermore, we found that mutants that are compromised in outer membrane protein biogenesis are more susceptible to VUF15259. Finally, VUF15259 induces the release of vesicles that appear to assemble in short chains. Taken together, VUF15259 is the first reported compound that inhibits AT secretion and our data are mostly consistent with VUF15259 interfering with the Bam-complex as potential mode of action. The validation of the presented assay incites its use to screen larger compound libraries with drug-like compounds.
Collapse
Affiliation(s)
- Maurice Steenhuis
- Department of Molecular Microbiology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS)Vrije UniversiteitAmsterdamthe Netherlands
| | - Abdallah M. Abdallah
- Bioscience Core LaboratoryKing Abdullah University of Science and TechnologyThuwalJeddahKingdom of Saudi Arabia
| | - Sabrina M. de Munnik
- Department of Chemistry and Pharmaceutical SciencesAmsterdam Institute for Molecules Medicines and Systems (AIMMS), Vrije UniversiteitAmsterdamthe Netherlands
| | - Sebastiaan Kuhne
- Department of Chemistry and Pharmaceutical SciencesAmsterdam Institute for Molecules Medicines and Systems (AIMMS), Vrije UniversiteitAmsterdamthe Netherlands
| | - Geert‐Jan Sterk
- Department of Chemistry and Pharmaceutical SciencesAmsterdam Institute for Molecules Medicines and Systems (AIMMS), Vrije UniversiteitAmsterdamthe Netherlands
| | - Bart van den Berg van Saparoea
- Department of Molecular Microbiology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS)Vrije UniversiteitAmsterdamthe Netherlands
| | - Sibel Westerhausen
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT)University of TübingenTübingenGermany
| | - Samuel Wagner
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT)University of TübingenTübingenGermany
- German Center for Infection Research (DZIF)TübingenGermany
| | - Nicole N. van der Wel
- Department of Medical Biology, Electron Microscopy Center Amsterdam, Academic Medical CenterUniversity of AmsterdamAmsterdamthe Netherlands
| | - Maikel Wijtmans
- Department of Chemistry and Pharmaceutical SciencesAmsterdam Institute for Molecules Medicines and Systems (AIMMS), Vrije UniversiteitAmsterdamthe Netherlands
| | - Peter van Ulsen
- Department of Molecular Microbiology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS)Vrije UniversiteitAmsterdamthe Netherlands
| | - Wouter S. P. Jong
- Department of Molecular Microbiology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS)Vrije UniversiteitAmsterdamthe Netherlands
| | - Joen Luirink
- Department of Molecular Microbiology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS)Vrije UniversiteitAmsterdamthe Netherlands
| |
Collapse
|
36
|
Aoki E, Ikeguchi M. In vitro assembly of Haemophilus influenzae adhesin transmembrane domain and studies on the electrostatic repulsion at the interface. Biophys Rev 2019; 11:303-309. [PMID: 31073957 DOI: 10.1007/s12551-019-00535-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 04/25/2019] [Indexed: 11/24/2022] Open
Abstract
Haemophilus influenzae adhesin (Hia) belongs to the trimeric autotransporter family, and it mediates the adherence of these bacteria to the epithelial cells of host organisms. Hia is composed of the passenger domain, which is a virulence factor, and the translocator domain, which anchors the passenger domain into the outer membrane. The Hia transmembrane domain forms a transmembrane β-barrel of 12 β-strands, four of which are provided from each subunit. The β-barrel has a pore that is traversed by three α-helices, one of which is provided from each subunit. This domain has a unique arginine arrangement inside the β-barrel. The side chains of the arginine residues protrude from the β-strands of three subunits toward the center of the barrel and are close to each other. Mutation of this arginine residue revealed the importance of the electrostatic repulsion between the three arginines. Electrostatic repulsion is considered to prevent misfolding and/or misassembly. The arginine clusters at the interface were found in several proteins and might generally play an important role in the assembly of the oligomer.
Collapse
Affiliation(s)
- Eriko Aoki
- Department of Bioinformatics, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo, 192-8577, Japan.
| | - Masamichi Ikeguchi
- Department of Bioinformatics, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo, 192-8577, Japan
| |
Collapse
|
37
|
Hatlem D, Trunk T, Linke D, Leo JC. Catching a SPY: Using the SpyCatcher-SpyTag and Related Systems for Labeling and Localizing Bacterial Proteins. Int J Mol Sci 2019; 20:E2129. [PMID: 31052154 PMCID: PMC6539128 DOI: 10.3390/ijms20092129] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 01/05/2023] Open
Abstract
The SpyCatcher-SpyTag system was developed seven years ago as a method for protein ligation. It is based on a modified domain from a Streptococcus pyogenes surface protein (SpyCatcher), which recognizes a cognate 13-amino-acid peptide (SpyTag). Upon recognition, the two form a covalent isopeptide bond between the side chains of a lysine in SpyCatcher and an aspartate in SpyTag. This technology has been used, among other applications, to create covalently stabilized multi-protein complexes, for modular vaccine production, and to label proteins (e.g., for microscopy). The SpyTag system is versatile as the tag is a short, unfolded peptide that can be genetically fused to exposed positions in target proteins; similarly, SpyCatcher can be fused to reporter proteins such as GFP, and to epitope or purification tags. Additionally, an orthogonal system called SnoopTag-SnoopCatcher has been developed from an S. pneumoniae pilin that can be combined with SpyCatcher-SpyTag to produce protein fusions with multiple components. Furthermore, tripartite applications have been produced from both systems allowing the fusion of two peptides by a separate, catalytically active protein unit, SpyLigase or SnoopLigase. Here, we review the current state of the SpyCatcher-SpyTag and related technologies, with a particular emphasis on their use in vaccine development and in determining outer membrane protein localization and topology of surface proteins in bacteria.
Collapse
Affiliation(s)
- Daniel Hatlem
- Bacterial Cell Surface Group, Section for Evolution and Genetics, Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
| | - Thomas Trunk
- Bacterial Cell Surface Group, Section for Evolution and Genetics, Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
| | - Dirk Linke
- Bacterial Cell Surface Group, Section for Evolution and Genetics, Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
| | - Jack C Leo
- Bacterial Cell Surface Group, Section for Evolution and Genetics, Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
| |
Collapse
|
38
|
Chauhan N, Hatlem D, Orwick-Rydmark M, Schneider K, Floetenmeyer M, van Rossum B, Leo JC, Linke D. Insights into the autotransport process of a trimeric autotransporter, Yersinia Adhesin A (YadA). Mol Microbiol 2019; 111:844-862. [DOI: 10.1111/mmi.14195] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Nandini Chauhan
- Department of Biosciences; University of Oslo; Blindernveien 31 0371 Oslo Norway
- Max Planck Institute for Developmental Biology, Department 1; 72076 Tübingen Germany
| | - Daniel Hatlem
- Department of Biosciences; University of Oslo; Blindernveien 31 0371 Oslo Norway
| | | | - Kenneth Schneider
- Department of Biosciences; University of Oslo; Blindernveien 31 0371 Oslo Norway
| | - Matthias Floetenmeyer
- Max Planck Institute for Developmental Biology, Department 1; 72076 Tübingen Germany
- The Centre for Microscopy and Microanalysis, The University of Queensland; 4072 St. Lucia Queensland Australia
| | - Barth van Rossum
- Forschungsinstitut für Molekulare Pharmakologie; Department of NMR-Supported Structural Biology; Berlin Germany
| | - Jack C. Leo
- Department of Biosciences; University of Oslo; Blindernveien 31 0371 Oslo Norway
- Max Planck Institute for Developmental Biology, Department 1; 72076 Tübingen Germany
| | - Dirk Linke
- Department of Biosciences; University of Oslo; Blindernveien 31 0371 Oslo Norway
- Max Planck Institute for Developmental Biology, Department 1; 72076 Tübingen Germany
| |
Collapse
|
39
|
Peterson JH, Hussain S, Bernstein HD. Identification of a novel post-insertion step in the assembly of a bacterial outer membrane protein. Mol Microbiol 2018; 110:143-159. [PMID: 30107065 DOI: 10.1111/mmi.14102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2018] [Indexed: 01/09/2023]
Abstract
Although the barrel assembly machinery (Bam) complex has been shown to facilitate the insertion of β barrel proteins into the bacterial outer membrane (OM), the stage at which β barrels fold is unknown. Here, we describe insights into β barrel assembly that emerged from an analysis of a member of the autotransporter family of OM proteins (EspP) in Escherichia coli. EspP contains an extracellular 'passenger' domain that is translocated across the OM and then released from the covalently linked β barrel domain in an intra-barrel cleavage reaction. We found that the mutation of an unusual lipid-exposed lysine residue impairs a previously unidentified late folding step that follows both the membrane insertion of the β barrel domain and the secretion of the passenger domain but that precedes proteolytic maturation. Our results demonstrate that β barrel assembly can be completed at a post-insertion stage and raise the possibility that interactions with membrane lipids can promote folding in vivo. Furthermore, by showing that the passenger domain is secreted before the β barrel domain is fully assembled, our results also provide evidence against the long-standing hypothesis that autotransporters are autonomous protein secretion systems.
Collapse
Affiliation(s)
- Janine H Peterson
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0538, USA
| | - Sunyia Hussain
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0538, USA
| | - Harris D Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0538, USA
| |
Collapse
|
40
|
Di Martino P. Bacterial adherence: much more than a bond. AIMS Microbiol 2018; 4:563-566. [PMID: 31294233 PMCID: PMC6604948 DOI: 10.3934/microbiol.2018.3.563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 11/29/2022] Open
Affiliation(s)
- Patrick Di Martino
- Groupe Biofilm et Comportement Microbien aux Interfaces, Laboratoire ERRMECe-EA1391, Université de Cergy-Pontoise, rue Descartes site de Neuville-sur-Oise 95031 Cergy-Pontoise, cedex France
| |
Collapse
|
41
|
Abstract
Fusobacterium spp. are Gram-negative, oral bacteria that are increasingly associated with human pathologies as diverse as periodontitis, preterm birth, and colorectal cancer. While a recent surge in F. nucleatum research has increased our understanding of this human pathogen, a lack of complete genomes has hindered the identification and characterization of associated host-pathogen virulence factors. Here we report the first eight complete Fusobacterium genomes sequenced using an Oxford Nanopore MinION and Illumina sequencing pipeline and assembled using the open-source program Unicycler. These genomes are highly accurate, and seven of the genomes represent the first complete sequences for each strain. In summary, the FusoPortal resource provides a publicly available resource that will guide future genetic, bioinformatic, and biochemical experiments to characterize this genus of emerging human pathogens. Understanding the virulence mechanisms of human pathogens from the genus Fusobacterium has been hindered by a lack of properly assembled and annotated genomes. Here we report the first complete genomes for seven Fusobacterium strains, as well as resequencing of the reference strain Fusobacterium nucleatum subsp. nucleatum ATCC 25586 (total of seven species; total of eight genomes). A highly efficient and cost-effective sequencing pipeline was achieved using sample multiplexing for short-read Illumina (150 bp) and long-read Oxford Nanopore MinION (>80 kbp) platforms, coupled with genome assembly using the open-source software Unicycler. Compared to currently available draft assemblies (previously 24 to 67 contigs), these genomes are highly accurate and consist of only one complete chromosome. We present the complete genome sequence of F. nucleatum subsp. nucleatum ATCC 23726, a genetically tractable and biomedically important strain and, in addition, reveal that the previous F. nucleatum subsp. nucleatum ATCC 25586 genome assembly contains a 452-kb genomic inversion that has been corrected using our sequencing and assembly pipeline. To enable genomic analyses by the scientific community, we concurrently used these genomes to launch FusoPortal, a repository of interactive and downloadable genomic data, genome maps, gene annotations, and protein functional analyses and classifications. In summary, this report provides detailed methods for accurately sequencing, assembling, and annotating Fusobacterium genomes, while focusing on using open-source software to foster the availability of reproducible and open data. This resource will enhance efforts to properly identify virulence proteins that may contribute to a repertoire of diseases that includes periodontitis, preterm birth, and colorectal cancer. IMPORTANCEFusobacterium spp. are Gram-negative, oral bacteria that are increasingly associated with human pathologies as diverse as periodontitis, preterm birth, and colorectal cancer. While a recent surge in F. nucleatum research has increased our understanding of this human pathogen, a lack of complete genomes has hindered the identification and characterization of associated host-pathogen virulence factors. Here we report the first eight complete Fusobacterium genomes sequenced using an Oxford Nanopore MinION and Illumina sequencing pipeline and assembled using the open-source program Unicycler. These genomes are highly accurate, and seven of the genomes represent the first complete sequences for each strain. In summary, the FusoPortal resource provides a publicly available resource that will guide future genetic, bioinformatic, and biochemical experiments to characterize this genus of emerging human pathogens.
Collapse
|
42
|
Leo JC, Linke D. A unified model for BAM function that takes into account type Vc secretion and species differences in BAM composition. AIMS Microbiol 2018; 4:455-468. [PMID: 31294227 PMCID: PMC6604945 DOI: 10.3934/microbiol.2018.3.455] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/13/2018] [Indexed: 01/14/2023] Open
Abstract
Transmembrane proteins in the outer membrane of Gram-negative bacteria are almost exclusively β-barrels. They are inserted into the outer membrane by a conserved and essential protein complex called the BAM (for β-barrel assembly machinery). In this commentary, we summarize current research into the mechanism of this protein complex and how it relates to type V secretion. Type V secretion systems are autotransporters that all contain a β-barrel transmembrane domain inserted by BAM. In type Vc systems, this domain is a homotrimer. We argue that none of the current models are sufficient to explain BAM function particularly regarding type Vc secretion. We also find that current models based on the well-studied model system Escherichia coli mostly ignore the pronounced differences in BAM composition between different bacterial species. We propose a more holistic view on how all OMPs, including autotransporters, are incorporated into the lipid bilayer.
Collapse
Affiliation(s)
- Jack C Leo
- Department of Biosciences, University of Oslo, Blindernveien 31, 0316 Oslo, Norway
| | - Dirk Linke
- Department of Biosciences, University of Oslo, Blindernveien 31, 0316 Oslo, Norway
| |
Collapse
|
43
|
The Chlamydia trachomatis PmpD adhesin forms higher order structures through disulphide-mediated covalent interactions. PLoS One 2018; 13:e0198662. [PMID: 29912892 PMCID: PMC6005502 DOI: 10.1371/journal.pone.0198662] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/23/2018] [Indexed: 12/27/2022] Open
Abstract
Chlamydia trachomatis (Ct) is the most common sexually transmitted bacterial pathogen, and the leading cause of infectious blindness worldwide. We have recently shown that immunization with the highly conserved antigenic passenger domain of recombinant Ct polymorphic membrane protein D (rPmpD) is protective in the mouse model of Ct genital tract infection, and previously, that ocular anti-rPmpD antibodies are elicited following vaccination. However, the mechanisms governing the assembly and structure-function relationship of PmpD are unknown. Here, we provide a biophysical analysis of this immunogenic 65 kDa passenger domain fragment of PmpD. Using differential cysteine labeling coupled with LC-MS/MS analysis, we show that widespread intra- and intermolecular disulphide interactions play important roles in the preservation of native monomeric secondary structure and the formation of higher-order oligomers. While it has been proposed that FxxN and GGA(I, L,V) repeat motifs in the Pmp21 ortholog in Chlamydia pneumoniae mediate self-interaction, no such role has previously been identified for cysteine residues in chlamydial Pmps. Further characterisation reveals that oligomeric proteoforms and rPmpD monomers adopt β-sheet folds, consistent with previously described Gram-negative bacterial type V secretion systems (T5SSs). We also highlight adhesin-like properties of rPmpD, showing that both soluble rPmpD and anti-rPmpD serum from immunized mice abrogate binding of rPmpD-coated beads to mammalian cells in a dose-dependent fashion. Hence, our study provides further evidence that chlamydial Pmps may function as adhesins, while elucidating yet another important mechanism of self-association of bacterial T5SS virulence factors that may be unique to the Chlamydiaceae.
Collapse
|
44
|
Molecular basis for the folding of β-helical autotransporter passenger domains. Nat Commun 2018; 9:1395. [PMID: 29643377 PMCID: PMC5895577 DOI: 10.1038/s41467-018-03593-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 02/27/2018] [Indexed: 11/23/2022] Open
Abstract
Bacterial autotransporters comprise a C-terminal β-barrel domain, which must be correctly folded and inserted into the outer membrane to facilitate translocation of the N-terminal passenger domain to the cell exterior. Once at the surface, the passenger domains of most autotransporters are folded into an elongated β-helix. In a cellular context, key molecules catalyze the assembly of the autotransporter β-barrel domain. However, how the passenger domain folds into its functional form is poorly understood. Here we use mutational analysis on the autotransporter Pet to show that the β-hairpin structure of the fifth extracellular loop of the β-barrel domain has a crucial role for passenger domain folding into a β-helix. Bioinformatics and structural analyses, and mutagenesis of a homologous autotransporter, suggest that this function is conserved among autotransporter proteins with β-helical passenger domains. We propose that the autotransporter β-barrel domain is a folding vector that nucleates folding of the passenger domain. Autotransporter passenger domains are presented on or released from the bacterial surface upon translocation through an outer membrane β-barrel anchor. Here the authors study the two E. coli autotransporters Pet and EspP and propose that the β-barrel anchor acts as a vector to nucleate the folding of the passenger domain.
Collapse
|
45
|
Ranava D, Caumont-Sarcos A, Albenne C, Ieva R. Bacterial machineries for the assembly of membrane-embedded β-barrel proteins. FEMS Microbiol Lett 2018; 365:4961134. [DOI: 10.1093/femsle/fny087] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/03/2018] [Indexed: 12/11/2022] Open
Affiliation(s)
- David Ranava
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Anne Caumont-Sarcos
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Cécile Albenne
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Raffaele Ieva
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| |
Collapse
|
46
|
Sadana P, Geyer R, Pezoldt J, Helmsing S, Huehn J, Hust M, Dersch P, Scrima A. The invasin D protein from Yersinia pseudotuberculosis selectively binds the Fab region of host antibodies and affects colonization of the intestine. J Biol Chem 2018. [PMID: 29535184 DOI: 10.1074/jbc.ra117.001068] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Yersinia pseudotuberculosis is a Gram-negative bacterium and zoonotic pathogen responsible for a wide range of diseases, ranging from mild diarrhea, enterocolitis, lymphatic adenitis to persistent local inflammation. The Y. pseudotuberculosis invasin D (InvD) molecule belongs to the invasin (InvA)-type autotransporter proteins, but its structure and function remain unknown. In this study, we present the first crystal structure of InvD, analyzed its expression and function in a murine infection model, and identified its target molecule in the host. We found that InvD is induced at 37 °C and expressed in vivo 2-4 days after infection, indicating that InvD is a virulence factor. During infection, InvD was expressed in all parts of the intestinal tract, but not in deeper lymphoid tissues. The crystal structure of the C-terminal adhesion domain of InvD revealed a distinct Ig-related fold that, apart from the canonical β-sheets, comprises various modifications of and insertions into the Ig-core structure. We identified the Fab fragment of host-derived IgG/IgA antibodies as the target of the adhesion domain. Phage display panning and flow cytometry data further revealed that InvD exhibits a preferential binding specificity toward antibodies with VH3/VK1 variable domains and that it is specifically recruited to a subset of B cells. This finding suggests that InvD modulates Ig functions in the intestine and affects direct interactions with a subset of cell surface-exposed B-cell receptors. In summary, our results provide extensive insights into the structure of InvD and its specific interaction with the target molecule in the host.
Collapse
Affiliation(s)
- Pooja Sadana
- From the Young Investigator Group Structural Biology of Autophagy, Department of Structure and Function of Proteins
| | | | - Joern Pezoldt
- Experimental Immunology, Helmholtz-Centre for Infection Research, 38124 Braunschweig and
| | - Saskia Helmsing
- the Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität, 38106 Braunschweig, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz-Centre for Infection Research, 38124 Braunschweig and
| | - Michael Hust
- the Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität, 38106 Braunschweig, Germany
| | - Petra Dersch
- the Departments of Molecular Infection Biology and
| | - Andrea Scrima
- From the Young Investigator Group Structural Biology of Autophagy, Department of Structure and Function of Proteins,
| |
Collapse
|
47
|
Abstract
Many bacteria, both environmental and pathogenic, exhibit the property of autoaggregation. In autoaggregation (sometimes also called autoagglutination or flocculation), bacteria of the same type form multicellular clumps that eventually settle at the bottom of culture tubes. Autoaggregation is generally mediated by self-recognising surface structures, such as proteins and exopolysaccharides, which we term collectively as autoagglutinins. Although a widespread phenomenon, in most cases the function of autoaggregation is poorly understood, though there is evidence to show that aggregating bacteria are protected from environmental stresses or host responses. Autoaggregation is also often among the first steps in forming biofilms. Here, we review the current knowledge on autoaggregation, the role of autoaggregation in biofilm formation and pathogenesis, and molecular mechanisms leading to aggregation using specific examples.
Collapse
Affiliation(s)
- Thomas Trunk
- Bacterial Cell Surface Group, Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Hawzeen S Khalil
- Bacterial Cell Surface Group, Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jack C Leo
- Bacterial Cell Surface Group, Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
48
|
Gasperini G, Biagini M, Arato V, Gianfaldoni C, Vadi A, Norais N, Bensi G, Delany I, Pizza M, Aricò B, Leuzzi R. Outer Membrane Vesicles (OMV)-based and Proteomics-driven Antigen Selection Identifies Novel Factors Contributing to Bordetella pertussis Adhesion to Epithelial Cells. Mol Cell Proteomics 2018; 17:205-215. [PMID: 29203497 PMCID: PMC5795387 DOI: 10.1074/mcp.ra117.000045] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 11/14/2017] [Indexed: 11/18/2022] Open
Abstract
Despite high vaccination coverage world-wide, whooping cough, a highly contagious disease caused by Bordetella pertussis, is recently increasing in occurrence suggesting that novel vaccine formulations targeted at the prevention of colonization and transmission should be investigated. To identify new candidates for inclusion in the acellular formulation, we used spontaneously released outer membrane vesicles (OMV)1 as a potential source of key adhesins. The enrichment of Bvg+ OMV with adhesins and the ability of anti-OMV serum to inhibit the adhesion of B. pertussis to lung epithelial cells in vitro were demonstrated. We employed a proteomic approach to identify the differentially expressed proteins in OMV purified from bacteria in the Bvg+ and Bvg- virulence phases, thus comparing the outer membrane protein pattern of this pathogen in its virulent or avirulent state. Six of the most abundant outer membrane proteins were selected as candidates to be evaluated for their adhesive properties and vaccine potential. We generated E. coli strains singularly expressing the selected proteins and assessed their ability to adhere to lung epithelial cells in vitro Four out of the selected proteins conferred adhesive ability to E. coli Three of the candidates were specifically detected by anti-OMV mouse serum suggesting that these proteins are immunogenic antigens able to elicit an antibody response when displayed on the OMV. Anti-OMV serum was able to inhibit only BrkA-expressing E. coli adhesion to lung epithelial cells. Finally, stand-alone immunization of mice with recombinant BrkA resulted in significant protection against infection of the lower respiratory tract after challenge with B. pertussis Taken together, these data support the inclusion of BrkA and possibly further adhesins to the current acellular pertussis vaccines to improve the impact of vaccination on the bacterial clearance.
Collapse
|
49
|
Aoki E, Fujiwara K, Shimizu A, Takase-Yoden S, Ikeguchi M. Optimization of Haemophilus influenzae adhesin transmembrane domain expression in Escherichia coli. Protein Expr Purif 2017; 145:19-24. [PMID: 29284141 DOI: 10.1016/j.pep.2017.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 11/20/2022]
Abstract
To obtain a high yield of the transmembrane domain of Haemophilus influenzae adhesin (HiaTD) in Escherichia coli, we attempted to express the HiaTD with and without a signal sequence using a T7 expression system. The expression level of HiaTD after induction was followed by quantification of the purified HiaTD, flow cytometric analysis of the outer membrane integrated HiaTD, and immunoblotting assay of fractionated cell lysate. In the expression system with a signal sequence, although the amount of cell-surface-expressed HiaTD increased over time, the number of HiaTD-expressing cells decreased, probably because of plasmid instability. As a result, the amount of purified HiaTD reached a plateau at 2 h postinduction. Although expression without the signal sequence provides a large amount of proteins as inclusion bodies in some membrane proteins, HiaTD expressed without a signal sequence was not observed as inclusion bodies and seemed to be assembled into the outer membrane during or after cell lysis.
Collapse
Affiliation(s)
- Eriko Aoki
- Department of Bioinformatics, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Kazuo Fujiwara
- Department of Bioinformatics, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Akio Shimizu
- Department of Environmental Engineering for Symbiosis, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Sayaka Takase-Yoden
- Department of Bioinformatics, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Masamichi Ikeguchi
- Department of Bioinformatics, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan.
| |
Collapse
|
50
|
Webb CT, Chandrapala D, Oslan SN, Bamert RS, Grinter RD, Dunstan RA, Gorrell RJ, Song J, Strugnell RA, Lithgow T, Kwok T. Reductive evolution in outer membrane protein biogenesis has not compromised cell surface complexity in Helicobacter pylori. Microbiologyopen 2017; 6. [PMID: 29055967 PMCID: PMC5727368 DOI: 10.1002/mbo3.513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/19/2017] [Accepted: 05/25/2017] [Indexed: 12/18/2022] Open
Abstract
Helicobacter pylori is a gram‐negative bacterial pathogen that chronically inhabits the human stomach. To survive and maintain advantage, it has evolved unique host–pathogen interactions mediated by Helicobacter‐specific proteins in the bacterial outer membrane. These outer membrane proteins (OMPs) are anchored to the cell surface via a C‐terminal β‐barrel domain, which requires their assembly by the β‐barrel assembly machinery (BAM). Here we have assessed the complexity of the OMP C‐terminal β‐barrel domains employed by H. pylori, and characterized the H. pyloriBAM complex. Around 50 Helicobacter‐specific OMPs were assessed with predictive structural algorithms. The data suggest that H. pylori utilizes a unique β‐barrel architecture that might constitute H. pylori‐specific Type V secretions system. The structural and functional diversity in these proteins is encompassed by their extramembrane domains. Bioinformatic and biochemical characterization suggests that the low β‐barrel‐complexity requires only minimalist assembly machinery. The H. pylori proteins BamA and BamD associate to form a BAM complex, with features of BamA enabling an oligomerization that might represent a mechanism by which a minimalist BAM complex forms a larger, sophisticated machinery capable of servicing the outer membrane proteome of H. pylori.
Collapse
Affiliation(s)
- Chaille T. Webb
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
| | - Dilini Chandrapala
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia
| | - Siti Nurbaya Oslan
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
- Department of BiochemistryFaculty of Biotechnology and Biomolecular SciencesUniversiti Putra MalaysiaSerdangSelangorMalaysia
- Enzyme and Microbial Technology Research CenterUniversiti Putra MalaysiaSerdangSelangorMalaysia
| | - Rebecca S. Bamert
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
| | - Rhys D. Grinter
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
| | - Rhys A. Dunstan
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
| | - Rebecca J. Gorrell
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia
| | - Jiangning Song
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia
- Monash Centre for Data ScienceFaculty of Information TechnologyMonash UniversityMelbourneAustralia
| | - Richard A. Strugnell
- Department of Microbiology & ImmunologyUniversity of MelbourneParkvilleAustralia
| | - Trevor Lithgow
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
| | - Terry Kwok
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia
| |
Collapse
|