1
|
Maiga M, Dembele L, Courlet P, Khandelwal A, Dara A, Sogore F, Diakité O, Maiga FO, Dao F, Sissoko S, Barre Y, Goita S, Diakite M, Diakite SAS, Djimde AA, Oeuvray C, Spangenberg T, Wicha SG, Demarta-Gatsi C. Towards clinically relevant dose ratios for Cabamiquine and Pyronaridine combination using P. falciparum field isolate data. Nat Commun 2024; 15:7659. [PMID: 39227370 PMCID: PMC11372057 DOI: 10.1038/s41467-024-51994-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024] Open
Abstract
The selection and combination of dose regimens for antimalarials involve complex considerations including pharmacokinetic and pharmacodynamic interactions. In this study, we use immediate ex vivo P. falciparum field isolates to evaluate the effect of cabamiquine and pyronaridine as standalone treatments and in combination therapy. We feed the data into a pharmacometrics model to generate an interaction map and simulate meaningful clinical dose ratios. We demonstrate that the pharmacometrics model of parasite growth and killing provides a detailed description of parasite kinetics against cabamiquine-susceptible and resistant parasites. Pyronaridine monotherapy provides suboptimal killing rates at doses as high as 720 mg. In contrast, the combination of a single dose of 330 mg cabamiquine and 360 mg pyronaridine provides over 90% parasite killing in most of the simulated patients. The described methodology that combines a rapid, 3R-compliant in vitro method and modelling to set meaningful doses for new antimalarials could contribute to clinical drug development.
Collapse
Affiliation(s)
- Mohamed Maiga
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Malaria Research and Training Centre (MRTC), Faculty of Pharmacy, Bamako, Mali
| | - Laurent Dembele
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Malaria Research and Training Centre (MRTC), Faculty of Pharmacy, Bamako, Mali.
| | - Perrine Courlet
- Merck Institute of Pharmacometrics (an affiliate of Merck KGaA), Lausanne, Switzerland
| | - Akash Khandelwal
- The Healthcare Business of Merck KGaA, Darmstadt, Germany
- UCB Biosciences GmbH, Rolf-Schwarz-Schütte-Platz 1, Monheim am Rhein, Germany
| | - Antoine Dara
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Malaria Research and Training Centre (MRTC), Faculty of Pharmacy, Bamako, Mali
| | - Fanta Sogore
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Malaria Research and Training Centre (MRTC), Faculty of Pharmacy, Bamako, Mali
| | - Ousmaila Diakité
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Malaria Research and Training Centre (MRTC), Faculty of Pharmacy, Bamako, Mali
| | - Fatoumata O Maiga
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Malaria Research and Training Centre (MRTC), Faculty of Pharmacy, Bamako, Mali
| | - François Dao
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Malaria Research and Training Centre (MRTC), Faculty of Pharmacy, Bamako, Mali
| | - Sekou Sissoko
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Malaria Research and Training Centre (MRTC), Faculty of Pharmacy, Bamako, Mali
| | - Yacouba Barre
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Malaria Research and Training Centre (MRTC), Faculty of Pharmacy, Bamako, Mali
| | - Siaka Goita
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Malaria Research and Training Centre (MRTC), Faculty of Pharmacy, Bamako, Mali
| | - Mahamadou Diakite
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Malaria Research and Training Centre (MRTC), Faculty of Pharmacy, Bamako, Mali
| | - Seidina A S Diakite
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Malaria Research and Training Centre (MRTC), Faculty of Pharmacy, Bamako, Mali
| | - Abdoulaye A Djimde
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Malaria Research and Training Centre (MRTC), Faculty of Pharmacy, Bamako, Mali
- Pathogens genomic Diversity Network Africa, Sotuba, Bamako, Mali
| | - Claude Oeuvray
- Global Health R&D of the healthcare business of Merck KGaA, Darmstadt, Germany, Ares Trading S.A. (an affiliate of Merck KGaA, Darmstadt, Germany), Eysins, Switzerland
| | - Thomas Spangenberg
- Global Health R&D of the healthcare business of Merck KGaA, Darmstadt, Germany, Ares Trading S.A. (an affiliate of Merck KGaA, Darmstadt, Germany), Eysins, Switzerland
| | - Sebastian G Wicha
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Bundesstr. 45, Hamburg, Germany.
| | - Claudia Demarta-Gatsi
- Pathogens genomic Diversity Network Africa, Sotuba, Bamako, Mali.
- Global Health R&D of the healthcare business of Merck KGaA, Darmstadt, Germany, Ares Trading S.A. (an affiliate of Merck KGaA, Darmstadt, Germany), Eysins, Switzerland.
| |
Collapse
|
2
|
Mousavi Shafi ZS, Firouz ZM, Pirahmadi S. Gene expression analysis of Anopheles Meigen, 1818 (Diptera: Culicidae) innate immunity after Plasmodium Marchiafava & Celli, 1885 (Apicomplexa) infection: Toward developing new malaria control strategies. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105650. [PMID: 39089500 DOI: 10.1016/j.meegid.2024.105650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Despite the critical role of the Anopheles innate immune system in defending against Plasmodium infection, there is still limited information about the key immune mechanisms in Anopheles. This review assesses recent findings on the expression characteristics of immune-related genes in Anopheles following exposure to Plasmodium. A literature review, unrestricted by publication date, was conducted to evaluate immune-related gene expression in different organs of Anopheles after Plasmodium infection. Mosquito immune responses in the midgut are essential for reducing parasite populations. Additionally, innate immune responses in the salivary glands and hemocytes circulating in the hemocoel play key roles in defense against the parasite. Transcriptomic analysis of the mosquito's innate immune response to Plasmodium infection provides valuable insights into key immune mechanisms in mosquito defense. A deeper understanding of immune mechanisms in different organs of Anopheles following Plasmodium infection will aid in discovering critical targets for designing novel control strategies.
Collapse
Affiliation(s)
- Zahra Sadat Mousavi Shafi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Zeinab Mohammadi Firouz
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Sakineh Pirahmadi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
3
|
Silva NI, Souza PFL, Silva BF, Fonseca SG, Gardinassi LG. Host Transcriptional Meta-signatures Reveal Diagnostic Biomarkers for Plasmodium falciparum Malaria. J Infect Dis 2024; 230:e474-e485. [PMID: 38271704 PMCID: PMC11326815 DOI: 10.1093/infdis/jiae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/28/2023] [Accepted: 01/24/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Transcriptomics has been used to evaluate immune responses during malaria in diverse cohorts worldwide. However, the high heterogeneity of cohorts and poor generalization of transcriptional signatures reported in each study limit their potential clinical applications. METHODS We compiled 28 public data sets containing 1556 whole-blood or peripheral blood mononuclear cell transcriptome samples. We estimated effect sizes with Hedge's g value and the DerSimonian-Laird random-effects model for meta-analyses of uncomplicated malaria. Random forest models identified gene signatures that discriminate malaria from bacterial infections or malaria severity. Parasitological, hematological, immunological, and metabolomics data were used for validation. RESULTS We identified 3 gene signatures: the uncomplicated Malaria Meta-Signature, which discriminates Plasmodium falciparum malaria from uninfected controls; the Malaria or Bacteria Signature, which distinguishes malaria from sepsis and enteric fever; and the cerebral Malaria Meta-Signature, which characterizes individuals with cerebral malaria. These signatures correlate with clinical hallmark features of malaria. Blood transcription modules indicate immune regulation by glucocorticoids, whereas cell development and adhesion are associated with cerebral malaria. CONCLUSIONS Transcriptional meta-signatures reflecting immune cell responses provide potential biomarkers for translational innovation and suggest critical roles for metabolic regulators of inflammation during malaria.
Collapse
Affiliation(s)
- Nágila Isleide Silva
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | - Pedro Felipe Loyola Souza
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | - Bárbara Fernandes Silva
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | - Simone Gonçalves Fonseca
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | - Luiz Gustavo Gardinassi
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
- Departamento de Enfermagem Materno-Infantil e Saúde Pública, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
4
|
Dunican C, Andradi-Brown C, Ebmeier S, Georgiadou A, Cunnington AJ. The malarial blood transcriptome: translational applications. Biochem Soc Trans 2024; 52:651-660. [PMID: 38421063 PMCID: PMC11088907 DOI: 10.1042/bst20230497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
The blood transcriptome of malaria patients has been used extensively to elucidate the pathophysiological mechanisms and host immune responses to disease, identify candidate diagnostic and prognostic biomarkers, and reveal new therapeutic targets for drug discovery. This review gives a high-level overview of the three main translational applications of these studies (diagnostics, prognostics, and therapeutics) by summarising recent literature and outlining the main limitations and future directions of each application. It highlights the need for consistent and accurate definitions of disease states and subject groups and discusses how prognostic studies must distinguish clearly between analyses that attempt to predict future disease states and those which attempt to discriminate between current disease states (classification). Lastly it examines how many promising therapeutics fail due to the choice of imperfect animal models for pre-clinical testing and lack of appropriate validation studies in humans, and how future transcriptional studies may be utilised to overcome some of these limitations.
Collapse
Affiliation(s)
- Claire Dunican
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, U.K
- Centre for Paediatrics and Child Health, Imperial College London, London, U.K
| | - Clare Andradi-Brown
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, U.K
- Centre for Paediatrics and Child Health, Imperial College London, London, U.K
| | - Stefan Ebmeier
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, U.K
- Centre for Paediatrics and Child Health, Imperial College London, London, U.K
| | - Athina Georgiadou
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, U.K
- Centre for Paediatrics and Child Health, Imperial College London, London, U.K
| | - Aubrey J. Cunnington
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, U.K
- Centre for Paediatrics and Child Health, Imperial College London, London, U.K
| |
Collapse
|
5
|
Akossi RF, Delbac F, El Alaoui H, Wawrzyniak I, Peyretaillade E. The intracellular parasite Anncaliia algerae induces a massive miRNA down-regulation in human cells. Noncoding RNA Res 2023; 8:363-375. [PMID: 37275245 PMCID: PMC10238475 DOI: 10.1016/j.ncrna.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/27/2023] [Accepted: 05/07/2023] [Indexed: 06/07/2023] Open
Abstract
Anncaliia algerae belongs to microsporidia, a group of obligate intracellular parasites related to fungi. These parasites are largely spread in water and food-webs and can infect a wide variety of hosts ranging from invertebrates to vertebrates including humans. In humans, microsporidian infections are mainly opportunistic as immunocompetent hosts can clear parasites naturally. Recent studies however have reported persistent microsporidian infections and have highlighted them as a risk factor in colon cancer. This may be a direct result of cell infection or may be an indirect effect of the infectious microenvironment and the host's response. In both cases, this raises the question of the effects of microsporidian infection at the host and host-cell levels. We aimed to address the question of human host intracellular response to microsporidian infection through a transcriptomic kinetic study of human foreskin fibroblasts (HFF) infected with A.algerae, a human infecting microsporidia with an exceptionally wide host range. We focused solely on host response studying both coding and small non-coding miRNA expression. Our study revealed a generalized down-regulation of cell miRNAs throughout infection with up to 547 different miRNAs downregulated at some timepoints and also transcriptomic dysregulations that could facilitate parasite development with immune and lipid metabolism genes modulation. We also hypothesize possible small nucleic acid expropriation explaining the miRNA downregulation. This work contributes to a better understanding of the dialogue that can occur between an intracellular parasite and its host at the cellular level, and can guide future studies on microsporidian infection biology to unravel the mode of action of these minimalist parasites at the tissue or host levels.We have also generated a kinetic and comprehensive transcriptomic data set of an infectious process that can help support comparative studies in the broader field of parasitology. Lastly, these results may warrant for caution regarding microsporidian exposure and persistent infections.
Collapse
Affiliation(s)
- Reginald Florian Akossi
- Laboratoire “Microorganismes: Génome et Environnement” (LMGE), UMR 6023, Université Clermont Auvergne and CNRS, F-63000, Clermont-Ferrand, France
| | - Fréderic Delbac
- Laboratoire “Microorganismes: Génome et Environnement” (LMGE), UMR 6023, Université Clermont Auvergne and CNRS, F-63000, Clermont-Ferrand, France
| | - Hicham El Alaoui
- Laboratoire “Microorganismes: Génome et Environnement” (LMGE), UMR 6023, Université Clermont Auvergne and CNRS, F-63000, Clermont-Ferrand, France
| | - Ivan Wawrzyniak
- Laboratoire “Microorganismes: Génome et Environnement” (LMGE), UMR 6023, Université Clermont Auvergne and CNRS, F-63000, Clermont-Ferrand, France
| | - Eric Peyretaillade
- Laboratoire “Microorganismes: Génome et Environnement” (LMGE), UMR 6023, Université Clermont Auvergne and CNRS, F-63000, Clermont-Ferrand, France
| |
Collapse
|
6
|
Prah DA, Dunican C, Amoah LE, Marjaneh MM, Kaforou M, Nordgren A, Jones-Warner W, Aniweh Y, Awandare GA, Cunnington AJ, Hafalla JC. Asymptomatic Plasmodium falciparum infection evades triggering a host transcriptomic response. J Infect 2023; 87:259-262. [PMID: 37356628 DOI: 10.1016/j.jinf.2023.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/17/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023]
Affiliation(s)
- Diana Ahu Prah
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana; Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana; Department of Infection Biology, Faculty of Infectious and Tropical Medicine, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Claire Dunican
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, United Kingdom
| | - Linda Eva Amoah
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana; Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Mahdi Moradi Marjaneh
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, United Kingdom
| | - Myrsini Kaforou
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, United Kingdom; Centre for Paediatrics and Child Health, Imperial College London, United Kingdom
| | - Asa Nordgren
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, United Kingdom
| | - William Jones-Warner
- Department of Infection Biology, Faculty of Infectious and Tropical Medicine, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Yaw Aniweh
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana; Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana; Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Aubrey J Cunnington
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, United Kingdom; Centre for Paediatrics and Child Health, Imperial College London, United Kingdom.
| | - Julius Clemence Hafalla
- Department of Infection Biology, Faculty of Infectious and Tropical Medicine, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| |
Collapse
|
7
|
Ouologuem DT, Dara A, Kone A, Ouattara A, Djimde AA. Plasmodium falciparum Development from Gametocyte to Oocyst: Insight from Functional Studies. Microorganisms 2023; 11:1966. [PMID: 37630530 PMCID: PMC10460021 DOI: 10.3390/microorganisms11081966] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 08/27/2023] Open
Abstract
Malaria elimination may never succeed without the implementation of transmission-blocking strategies. The transmission of Plasmodium spp. parasites from the human host to the mosquito vector depends on circulating gametocytes in the peripheral blood of the vertebrate host. Once ingested by the mosquito during blood meals, these sexual forms undergo a series of radical morphological and metabolic changes to survive and progress from the gut to the salivary glands, where they will be waiting to be injected into the vertebrate host. The design of effective transmission-blocking strategies requires a thorough understanding of all the mechanisms that drive the development of gametocytes, gametes, sexual reproduction, and subsequent differentiation within the mosquito. The drastic changes in Plasmodium falciparum shape and function throughout its life cycle rely on the tight regulation of stage-specific gene expression. This review outlines the mechanisms involved in Plasmodium falciparum sexual stage development in both the human and mosquito vector, and zygote to oocyst differentiation. Functional studies unravel mechanisms employed by P. falciparum to orchestrate the expression of stage-specific functional products required to succeed in its complex life cycle, thus providing us with potential targets for developing new therapeutics. These mechanisms are based on studies conducted with various Plasmodium species, including predominantly P. falciparum and the rodent malaria parasites P. berghei. However, the great potential of epigenetics, genomics, transcriptomics, proteomics, and functional genetic studies to improve the understanding of malaria as a disease remains partly untapped because of limitations in studies using human malaria parasites and field isolates.
Collapse
Affiliation(s)
- Dinkorma T. Ouologuem
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali
| | - Antoine Dara
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali
| | - Aminatou Kone
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali
| | - Amed Ouattara
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Abdoulaye A. Djimde
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali
| |
Collapse
|
8
|
Paxton KL, Cassin-Sackett L, Atkinson CT, Videvall E, Campana MG, Fleischer RC. Gene expression reveals immune response strategies of naïve Hawaiian honeycreepers experimentally infected with introduced avian malaria. J Hered 2023; 114:326-340. [PMID: 36869776 DOI: 10.1093/jhered/esad017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 03/01/2023] [Indexed: 03/05/2023] Open
Abstract
The unprecedented rise in the number of new and emerging infectious diseases in the last quarter century poses direct threats to human and wildlife health. The introduction to the Hawaiian archipelago of Plasmodium relictum and the mosquito vector that transmits the parasite has led to dramatic losses in endemic Hawaiian forest bird species. Understanding how mechanisms of disease immunity to avian malaria may evolve is critical as climate change facilitates increased disease transmission to high elevation habitats where malaria transmission has historically been low and the majority of the remaining extant Hawaiian forest bird species now reside. Here, we compare the transcriptomic profiles of highly susceptible Hawai'i 'amakihi (Chlorodrepanis virens) experimentally infected with P. relictum to those of uninfected control birds from a naïve high elevation population. We examined changes in gene expression profiles at different stages of infection to provide an in-depth characterization of the molecular pathways contributing to survival or mortality in these birds. We show that the timing and magnitude of the innate and adaptive immune response differed substantially between individuals that survived and those that succumbed to infection, and likely contributed to the observed variation in survival. These results lay the foundation for developing gene-based conservation strategies for Hawaiian honeycreepers by identifying candidate genes and cellular pathways involved in the pathogen response that correlate with a bird's ability to recover from malaria infection.
Collapse
Affiliation(s)
- Kristina L Paxton
- Center for Conservation Genomics, National Zoological Park and Conservation Biology Institute, Smithsonian Institution, Washington, DC 20008, USA
- Hawai'i Cooperative Studies Unit, University of Hawai'i Hilo, PO Box 44, Hawai'i National Park, HI 96718, USA
| | - Loren Cassin-Sackett
- Center for Conservation Genomics, National Zoological Park and Conservation Biology Institute, Smithsonian Institution, Washington, DC 20008, USA
- Department of Biology, University of Louisiana, Lafayette, LA 70503, USA
| | - Carter T Atkinson
- U.S. Geological Survey Pacific Island Ecosystems Research Center, PO Box 44, Hawai'i National Park, HI 96718, USA
| | - Elin Videvall
- Center for Conservation Genomics, National Zoological Park and Conservation Biology Institute, Smithsonian Institution, Washington, DC 20008, USA
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, RI 02912, USA
| | - Michael G Campana
- Center for Conservation Genomics, National Zoological Park and Conservation Biology Institute, Smithsonian Institution, Washington, DC 20008, USA
| | - Robert C Fleischer
- Center for Conservation Genomics, National Zoological Park and Conservation Biology Institute, Smithsonian Institution, Washington, DC 20008, USA
| |
Collapse
|
9
|
Muppidi P, Wright E, Wassmer SC, Gupta H. Diagnosis of cerebral malaria: Tools to reduce Plasmodium falciparum associated mortality. Front Cell Infect Microbiol 2023; 13:1090013. [PMID: 36844403 PMCID: PMC9947298 DOI: 10.3389/fcimb.2023.1090013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
Cerebral malaria (CM) is a major cause of mortality in Plasmodium falciparum (Pf) infection and is associated with the sequestration of parasitised erythrocytes in the microvasculature of the host's vital organs. Prompt diagnosis and treatment are key to a positive outcome in CM. However, current diagnostic tools remain inadequate to assess the degree of brain dysfunction associated with CM before the window for effective treatment closes. Several host and parasite factor-based biomarkers have been suggested as rapid diagnostic tools with potential for early CM diagnosis, however, no specific biomarker signature has been validated. Here, we provide an updated review on promising CM biomarker candidates and evaluate their applicability as point-of-care tools in malaria-endemic areas.
Collapse
Affiliation(s)
- Pranavi Muppidi
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Emily Wright
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Samuel C. Wassmer
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Himanshu Gupta
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, UP, India
| |
Collapse
|
10
|
Foko LPK, Narang G, Tamang S, Hawadak J, Jakhan J, Sharma A, Singh V. The spectrum of clinical biomarkers in severe malaria and new avenues for exploration. Virulence 2022; 13:634-653. [PMID: 36036460 PMCID: PMC9427047 DOI: 10.1080/21505594.2022.2056966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 11/28/2022] Open
Abstract
Globally, malaria is a public health concern, with severe malaria (SM) contributing a major share of the disease burden in malaria endemic countries. In this context, identification and validation of SM biomarkers are essential in clinical practice. Some biomarkers (C-reactive protein, angiopoietin 2, angiopoietin-2/1 ratio, platelet count, histidine-rich protein 2) have yielded interesting results in the prognosis of Plasmodium falciparum severe malaria, but for severe P. vivax and P. knowlesi malaria, similar evidence is missing. The validation of these biomarkers is hindered by several factors such as low sample size, paucity of evidence-evaluating studies, suboptimal values of sensitivity/specificity, poor clinical practicality of measurement methods, mixed Plasmodium infections, and good clinical value of the biomarkers for concurrent infections (pneumonia and current COVID-19 pandemic). Most of these biomarkers are non-specific to pathogens as they are related to host response and hence should be regarded as prognostic/predictive biomarkers that complement but do not replace pathogen biomarkers for clinical evaluation of SM patients. This review highlights the importance of research on diagnostic/predictive/therapeutic biomarkers, neglected malaria species, and clinical practicality of measurement methods in future studies. Finally, the importance of omics technologies for faster identification/validation of SM biomarkers is also included.
Collapse
Affiliation(s)
- Loick Pradel Kojom Foko
- Parasite and Host Biology Group, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Geetika Narang
- Parasite and Host Biology Group, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Suman Tamang
- Parasite and Host Biology Group, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Joseph Hawadak
- Parasite and Host Biology Group, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Jahnvi Jakhan
- Parasite and Host Biology Group, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Amit Sharma
- Parasite and Host Biology Group, ICMR-National Institute of Malaria Research, New Delhi, India
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Vineeta Singh
- Parasite and Host Biology Group, ICMR-National Institute of Malaria Research, New Delhi, India
| |
Collapse
|
11
|
Gonçalves LO, Pulido AFV, Mathias FAS, Enes AES, Carvalho MGR, de Melo Resende D, Polak ME, Ruiz JC. Expression Profile of Genes Related to the Th17 Pathway in Macrophages Infected by Leishmania major and Leishmania amazonensis: The Use of Gene Regulatory Networks in Modeling This Pathway. Front Cell Infect Microbiol 2022; 12:826523. [PMID: 35774406 PMCID: PMC9239034 DOI: 10.3389/fcimb.2022.826523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Leishmania amazonensis and Leishmania major are the causative agents of cutaneous and mucocutaneous diseases. The infections‘ outcome depends on host–parasite interactions and Th1/Th2 response, and in cutaneous form, regulation of Th17 cytokines has been reported to maintain inflammation in lesions. Despite that, the Th17 regulatory scenario remains unclear. With the aim to gain a better understanding of the transcription factors (TFs) and genes involved in Th17 induction, in this study, the role of inducing factors of the Th17 pathway in Leishmania–macrophage infection was addressed through computational modeling of gene regulatory networks (GRNs). The Th17 GRN modeling integrated experimentally validated data available in the literature and gene expression data from a time-series RNA-seq experiment (4, 24, 48, and 72 h post-infection). The generated model comprises a total of 10 TFs, 22 coding genes, and 16 cytokines related to the Th17 immune modulation. Addressing the Th17 induction in infected and uninfected macrophages, an increase of 2- to 3-fold in 4–24 h was observed in the former. However, there was a decrease in basal levels at 48–72 h for both groups. In order to evaluate the possible outcomes triggered by GRN component modulation in the Th17 pathway. The generated GRN models promoted an integrative and dynamic view of Leishmania–macrophage interaction over time that extends beyond the analysis of single-gene expression.
Collapse
Affiliation(s)
- Leilane Oliveira Gonçalves
- Programa de Pós-graduação em Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Brazil
| | - Andrés F. Vallejo Pulido
- Systems Immunology Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | | - Alexandre Estevão Silvério Enes
- Programa de Pós-graduação em Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Brazil
| | | | - Daniela de Melo Resende
- Grupo Genômica Funcional de Parasitos, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Brazil
| | - Marta E. Polak
- Systems Immunology Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- *Correspondence: Jeronimo C. Ruiz, ; Marta E. Polak,
| | - Jeronimo C. Ruiz
- Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Brazil
- *Correspondence: Jeronimo C. Ruiz, ; Marta E. Polak,
| |
Collapse
|
12
|
Abstract
"The Primate Malarias" book has been a uniquely important resource for multiple generations of scientists, since its debut in 1971, and remains pertinent to the present day. Indeed, nonhuman primates (NHPs) have been instrumental for major breakthroughs in basic and pre-clinical research on malaria for over 50 years. Research involving NHPs have provided critical insights and data that have been essential for malaria research on many parasite species, drugs, vaccines, pathogenesis, and transmission, leading to improved clinical care and advancing research goals for malaria control, elimination, and eradication. Whilst most malaria scientists over the decades have been studying Plasmodium falciparum, with NHP infections, in clinical studies with humans, or using in vitro culture or rodent model systems, others have been dedicated to advancing research on Plasmodium vivax, as well as on phylogenetically related simian species, including Plasmodium cynomolgi, Plasmodium coatneyi, and Plasmodium knowlesi. In-depth study of these four phylogenetically related species over the years has spawned the design of NHP longitudinal infection strategies for gathering information about ongoing infections, which can be related to human infections. These Plasmodium-NHP infection model systems are reviewed here, with emphasis on modern systems biological approaches to studying longitudinal infections, pathogenesis, immunity, and vaccines. Recent discoveries capitalizing on NHP longitudinal infections include an advanced understanding of chronic infections, relapses, anaemia, and immune memory. With quickly emerging new technological advances, more in-depth research and mechanistic discoveries can be anticipated on these and additional critical topics, including hypnozoite biology, antigenic variation, gametocyte transmission, bone marrow dysfunction, and loss of uninfected RBCs. New strategies and insights published by the Malaria Host-Pathogen Interaction Center (MaHPIC) are recapped here along with a vision that stresses the importance of educating future experts well trained in utilizing NHP infection model systems for the pursuit of innovative, effective interventions against malaria.
Collapse
Affiliation(s)
- Mary R Galinski
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
- Emory Vaccine Center, Emory University, Atlanta, GA, USA.
- Emory National Primate Research Center (Yerkes National Primate Research Center), Emory University, Atlanta, GA, USA.
| |
Collapse
|
13
|
Kent RS, Briggs EM, Colon BL, Alvarez C, Silva Pereira S, De Niz M. Paving the Way: Contributions of Big Data to Apicomplexan and Kinetoplastid Research. Front Cell Infect Microbiol 2022; 12:900878. [PMID: 35734575 PMCID: PMC9207352 DOI: 10.3389/fcimb.2022.900878] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
In the age of big data an important question is how to ensure we make the most out of the resources we generate. In this review, we discuss the major methods used in Apicomplexan and Kinetoplastid research to produce big datasets and advance our understanding of Plasmodium, Toxoplasma, Cryptosporidium, Trypanosoma and Leishmania biology. We debate the benefits and limitations of the current technologies, and propose future advancements that may be key to improving our use of these techniques. Finally, we consider the difficulties the field faces when trying to make the most of the abundance of data that has already been, and will continue to be, generated.
Collapse
Affiliation(s)
- Robyn S. Kent
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, United States
| | - Emma M. Briggs
- Institute for Immunology and Infection Research, School of Biological Sciences, University Edinburgh, Edinburgh, United Kingdom
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Beatrice L. Colon
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Catalina Alvarez
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Sara Silva Pereira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Mariana De Niz
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
- Institut Pasteur, Paris, France
| |
Collapse
|
14
|
Pollenus E, Gouwy M, Van den Steen PE. Neutrophils in malaria: the good, the bad or the ugly? Parasite Immunol 2022; 44:e12912. [PMID: 35175636 DOI: 10.1111/pim.12912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 11/30/2022]
Abstract
Neutrophils are the most abundant circulating leukocytes in human peripheral blood. They are often the first cells to respond to an invading pathogen and might therefore play an important role in malaria. Malaria is a globally important disease caused by Plasmodium parasites, responsible for more than 400 000 deaths each year. Most of these deaths are caused by complications, including cerebral malaria, severe malarial anemia, placental malaria, renal injury, metabolic problems and malaria-associated acute respiratory distress syndrome. Neutrophils contribute in the immune defense against malaria, through clearance of parasites via phagocytosis, production of reactive oxygen species and release of neutrophil extracellular traps (NETs). However, Plasmodium parasites diminish antibacterial functions of neutrophils, making patients more susceptible to other infections. Neutrophils might also be involved in the development of malaria complications, for example via the release of toxic granules and NETs. However, technical pitfalls in the determination of the roles of neutrophils have caused contradicting results. Further investigations need to consider these pitfalls, in order to elucidate the role of neutrophils in malaria complications.
Collapse
Affiliation(s)
- Emilie Pollenus
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, University of Leuven, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, University of Leuven, Leuven, Belgium
| | - Philippe E Van den Steen
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, University of Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Georgiadou A, Dunican C, Soro-Barrio P, Lee HJ, Kaforou M, Cunnington AJ. Comparative transcriptomic analysis reveals translationally relevant processes in mouse models of malaria. eLife 2022; 11:e70763. [PMID: 35006075 PMCID: PMC8747512 DOI: 10.7554/elife.70763] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023] Open
Abstract
Recent initiatives to improve translation of findings from animal models to human disease have focussed on reproducibility but quantifying the relevance of animal models remains a challenge. Here, we use comparative transcriptomics of blood to evaluate the systemic host response and its concordance between humans with different clinical manifestations of malaria and five commonly used mouse models. Plasmodium yoelii 17XL infection of mice most closely reproduces the profile of gene expression changes seen in the major human severe malaria syndromes, accompanied by high parasite biomass, severe anemia, hyperlactatemia, and cerebral microvascular pathology. However, there is also considerable discordance of changes in gene expression between the different host species and across all models, indicating that the relevance of biological mechanisms of interest in each model should be assessed before conducting experiments. These data will aid the selection of appropriate models for translational malaria research, and the approach is generalizable to other disease models.
Collapse
Affiliation(s)
- Athina Georgiadou
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College LondonLondonUnited Kingdom
- Centre for Paediatrics and Child Health, Imperial College LondonLondonUnited Kingdom
| | - Claire Dunican
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College LondonLondonUnited Kingdom
- Centre for Paediatrics and Child Health, Imperial College LondonLondonUnited Kingdom
| | - Pablo Soro-Barrio
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College LondonLondonUnited Kingdom
| | - Hyun Jae Lee
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| | - Myrsini Kaforou
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College LondonLondonUnited Kingdom
- Centre for Paediatrics and Child Health, Imperial College LondonLondonUnited Kingdom
| | - Aubrey J Cunnington
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College LondonLondonUnited Kingdom
- Centre for Paediatrics and Child Health, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
16
|
Buonsenso D, Sodero G, Valentini P. Transcript host-RNA signatures to discriminate bacterial and viral infections in febrile children. Pediatr Res 2022; 91:454-463. [PMID: 34912024 DOI: 10.1038/s41390-021-01890-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 11/08/2021] [Accepted: 11/30/2021] [Indexed: 12/29/2022]
Abstract
Traditional laboratory markers, such as white blood cell count, C-reactive protein, and procalcitonin, failed to discriminate viral and bacterial infections in children. The lack of an accurate diagnostic test has a negative impact on child's care, limiting the ability of early diagnosis and appropriate management of children. This, on the one hand, may lead to delayed recognition of sepsis and severe bacterial infections, which still represent the leading causes of child morbidity and mortality. On the other hand, this may lead to overuse of empiric antibiotic therapies, particularly for specific subgroups of patients, such as infants younger than 90 days of life or neutropenic patients. This approach has an adverse effect on costs, antibiotic resistance, and pediatric microbiota. Transcript host-RNA signatures are a new tool used to differentiate viral from bacterial infections by analyzing the transcriptional biosignatures of RNA in host leukocytes. In this systematic review, we evaluate the efficacy and the possible application of this new diagnostic method in febrile children, along with challenges in its implementation. Our review support the growing evidence that the application of these new tools can improve the characterization of the spectrum of bacterial and viral infections and optimize the use of antibiotics in children. IMPACT: Transcript host RNA signatures may allow to better characterize the spectrum of viral, bacterial, and inflammatory illnesses in febrile children and can be used with traditional diagnostic methods to determine if and when to start antibiotic therapy. This is the first review on the use of transcript RNA signatures in febrile children to distinguish viral from bacterial infections. Our review identified a wide variability of target populations and gold standards used to define sepsis and SBIs, limiting the generalization of our findings.
Collapse
Affiliation(s)
- Danilo Buonsenso
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy. .,Global Health Research Institute, Istituto di Igiene, Università Cattolica del Sacro Cuore, 00168, Rome, Italy. .,Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168, Rome, Italy. .,Danilo Buonsenso, Largo A. Gemelli 8, 00168, Rome, Italy.
| | - Giorgio Sodero
- Istituto di Pediatria, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Piero Valentini
- Global Health Research Institute, Istituto di Igiene, Università Cattolica del Sacro Cuore, 00168, Rome, Italy.,Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168, Rome, Italy.,Istituto di Pediatria, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| |
Collapse
|
17
|
Chahine Z, Le Roch KG. Decrypting the complexity of the human malaria parasite biology through systems biology approaches. FRONTIERS IN SYSTEMS BIOLOGY 2022; 2:940321. [PMID: 37200864 PMCID: PMC10191146 DOI: 10.3389/fsysb.2022.940321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The human malaria parasite, Plasmodium falciparum, is a unicellular protozoan responsible for over half a million deaths annually. With a complex life cycle alternating between human and invertebrate hosts, this apicomplexan is notoriously adept at evading host immune responses and developing resistance to all clinically administered treatments. Advances in omics-based technologies, increased sensitivity of sequencing platforms and enhanced CRISPR based gene editing tools, have given researchers access to more in-depth and untapped information about this enigmatic micro-organism, a feat thought to be infeasible in the past decade. Here we discuss some of the most important scientific achievements made over the past few years with a focus on novel technologies and platforms that set the stage for subsequent discoveries. We also describe some of the systems-based methods applied to uncover gaps of knowledge left through single-omics applications with the hope that we will soon be able to overcome the spread of this life-threatening disease.
Collapse
|
18
|
Smith RL, Goddard A, Boddapati A, Brooks S, Schoeman JP, Lack J, Leisewitz A, Ackerman H. Experimental Babesia rossi infection induces hemolytic, metabolic, and viral response pathways in the canine host. BMC Genomics 2021; 22:619. [PMID: 34399690 PMCID: PMC8369750 DOI: 10.1186/s12864-021-07889-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/13/2021] [Indexed: 12/02/2022] Open
Abstract
Background Babesia rossi is a leading cause of morbidity and mortality among the canine population of sub-Saharan Africa, but pathogenesis remains poorly understood. Previous studies of B. rossi infection were derived from clinical cases, in which neither the onset of infection nor the infectious inoculum was known. Here, we performed controlled B. rossi inoculations in canines and evaluated disease progression through clinical tests and whole blood transcriptomic profiling. Results Two subjects were administered a low inoculum (104 parasites) while three received a high (108 parasites). Subjects were monitored for 8 consecutive days; anti-parasite treatment with diminazene aceturate was administered on day 4. Blood was drawn prior to inoculation as well as every experimental day for assessment of clinical parameters and transcriptomic profiles. The model recapitulated natural disease manifestations including anemia, acidosis, inflammation and behavioral changes. Rate of disease onset and clinical severity were proportional to the inoculum. To analyze the temporal dynamics of the transcriptomic host response, we sequenced mRNA extracted from whole blood drawn on days 0, 1, 3, 4, 6, and 8. Differential gene expression, hierarchical clustering, and pathway enrichment analyses identified genes and pathways involved in response to hemolysis, metabolic changes, and several arms of the immune response including innate immunity, adaptive immunity, and response to viral infection. Conclusions This work comprehensively characterizes the clinical and transcriptomic progression of B. rossi infection in canines, thus establishing a large mammalian model of severe hemoprotozoal disease to facilitate the study of host-parasite biology and in which to test novel anti-disease therapeutics. The knowledge gained from the study of B. rossi in canines will not only improve our understanding of this emerging infectious disease threat in domestic dogs, but also provide insight into the pathobiology of human diseases caused by Babesia and Plasmodium species. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07889-4.
Collapse
Affiliation(s)
- Rachel L Smith
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, 20852, USA
| | - Amelia Goddard
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa
| | - Arun Boddapati
- NIAID Collaborative Bioinformatics Resource (NCBR), National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20894, USA.,Advanced Biomedical Computational Science (ABCS), Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Steven Brooks
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, 20852, USA
| | - Johan P Schoeman
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa
| | - Justin Lack
- NIAID Collaborative Bioinformatics Resource (NCBR), National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20894, USA.,Advanced Biomedical Computational Science (ABCS), Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Andrew Leisewitz
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa.
| | - Hans Ackerman
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, 20852, USA.
| |
Collapse
|
19
|
Abstract
Almost 20 years have passed since the first reference genome assemblies were published for Plasmodium falciparum, the deadliest malaria parasite, and Anopheles gambiae, the most important mosquito vector of malaria in sub-Saharan Africa. Reference genomes now exist for all human malaria parasites and nearly half of the ~40 important vectors around the world. As a foundation for genetic diversity studies, these reference genomes have helped advance our understanding of basic disease biology and drug and insecticide resistance, and have informed vaccine development efforts. Population genomic data are increasingly being used to guide our understanding of malaria epidemiology, for example by assessing connectivity between populations and the efficacy of parasite and vector interventions. The potential value of these applications to malaria control strategies, together with the increasing diversity of genomic data types and contexts in which data are being generated, raise both opportunities and challenges in the field. This Review discusses advances in malaria genomics and explores how population genomic data could be harnessed to further support global disease control efforts.
Collapse
Affiliation(s)
- Daniel E Neafsey
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA, USA.
| | - Aimee R Taylor
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Bronwyn L MacInnis
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
20
|
Gnangnon B, Duraisingh MT, Buckee CO. Deconstructing the parasite multiplication rate of Plasmodium falciparum. Trends Parasitol 2021; 37:922-932. [PMID: 34119440 DOI: 10.1016/j.pt.2021.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 01/22/2023]
Abstract
Epidemiological indicators describing population-level malaria transmission dynamics are widely used to guide policy recommendations. However, the determinants of malaria outcomes within individuals are still poorly understood. This conceptual gap partly reflects the fact that there are few indicators that robustly predict the trajectory of individual infections or clinical outcomes. The parasite multiplication rate (PMR) is a widely used indicator for the Plasmodium intraerythrocytic development cycle (IDC), for example, but its relationship to clinical outcomes is complex. Here, we review its calculation and use in P. falciparum malaria research, as well as the parasite and host factors that impact it. We also provide examples of metrics that can help to link within-host dynamics to malaria clinical outcomes when used alongside the PMR.
Collapse
Affiliation(s)
- Bénédicte Gnangnon
- Center for Communicable Diseases Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Immunology & Infectious Diseases Department, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Manoj T Duraisingh
- Immunology & Infectious Diseases Department, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Caroline O Buckee
- Center for Communicable Diseases Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
21
|
Videvall E, Paxton KL, Campana MG, Cassin‐Sackett L, Atkinson CT, Fleischer RC. Transcriptome assembly and differential gene expression of the invasive avian malaria parasite Plasmodium relictum in Hawai'i. Ecol Evol 2021; 11:4935-4944. [PMID: 33976860 PMCID: PMC8093664 DOI: 10.1002/ece3.7401] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 12/15/2022] Open
Abstract
The malaria parasite Plasmodium relictum (lineage GRW4) was introduced less than a century ago to the native avifauna of Hawai'i, where it has since caused major declines of endemic bird populations. One of the native bird species that is frequently infected with GRW4 is the Hawai'i 'amakihi (Chlorodrepanis virens). To achieve a better understanding of the transcriptional activities of this virulent parasite, we performed a controlled challenge experiment of 15 'amakihi that were infected with GRW4. Blood samples containing malaria parasites were collected at two time points (intermediate and peak infection stages) from host individuals that were either experimentally infected by mosquitoes or inoculated with infected blood. We then used RNA sequencing to assemble a high-quality blood transcriptome of P. relictum GRW4, allowing us to quantify parasite expression levels inside individual birds. We found few significant differences (one to two transcripts) in GRW4 expression levels between host infection stages and between inoculation methods. However, 36 transcripts showed differential expression levels among all host individuals, indicating a potential presence of host-specific gene regulation across hosts. To reduce the extinction risk of the remaining native bird species in Hawai'i, genetic resources of the local Plasmodium lineage are needed to enable further molecular characterization of this parasite. Our newly built Hawaiian GRW4 transcriptome assembly, together with analyses of the parasite's transcriptional activities inside the blood of Hawai'i 'amakihi, can provide us with important knowledge on how to combat this deadly avian disease in the future.
Collapse
Affiliation(s)
- Elin Videvall
- Center for Conservation GenomicsSmithsonian Conservation Biology InstituteNational Zoological ParkWashingtonDCUSA
| | - Kristina L. Paxton
- Center for Conservation GenomicsSmithsonian Conservation Biology InstituteNational Zoological ParkWashingtonDCUSA
- Present address:
Hawai‘i Cooperative Studies UnitUniversity of Hawai'i at HiloHawai‘i National ParkHIUSA
| | - Michael G. Campana
- Center for Conservation GenomicsSmithsonian Conservation Biology InstituteNational Zoological ParkWashingtonDCUSA
| | - Loren Cassin‐Sackett
- Center for Conservation GenomicsSmithsonian Conservation Biology InstituteNational Zoological ParkWashingtonDCUSA
- Department of BiologyUniversity of LouisianaLafayetteLAUSA
| | - Carter T. Atkinson
- U.S. Geological Survey Pacific Island Ecosystems Research CenterKilauea Field StationHawai‘i National ParkHIUSA
| | - Robert C. Fleischer
- Center for Conservation GenomicsSmithsonian Conservation Biology InstituteNational Zoological ParkWashingtonDCUSA
| |
Collapse
|
22
|
Farias Amorim C, O. Novais F, Nguyen BT, Nascimento MT, Lago J, Lago AS, Carvalho LP, Beiting DP, Scott P. Localized skin inflammation during cutaneous leishmaniasis drives a chronic, systemic IFN-γ signature. PLoS Negl Trop Dis 2021; 15:e0009321. [PMID: 33793565 PMCID: PMC8043375 DOI: 10.1371/journal.pntd.0009321] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/13/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
Cutaneous leishmaniasis is a localized infection controlled by CD4+ T cells that produce IFN-γ within lesions. Phagocytic cells recruited to lesions, such as monocytes, are then exposed to IFN-γ which triggers their ability to kill the intracellular parasites. Consistent with this, transcriptional analysis of patient lesions identified an interferon stimulated gene (ISG) signature. To determine whether localized L. braziliensis infection triggers a systemic immune response that may influence the disease, we performed RNA sequencing (RNA-seq) on the blood of L. braziliensis-infected patients and healthy controls. Functional enrichment analysis identified an ISG signature as the dominant transcriptional response in the blood of patients. This ISG signature was associated with an increase in monocyte- and macrophage-specific marker genes in the blood and elevated serum levels IFN-γ. A cytotoxicity signature, which is a dominant feature in the lesions, was also observed in the blood and correlated with an increased abundance of cytolytic cells. Thus, two transcriptional signatures present in lesions were found systemically, although with a substantially reduced number of differentially expressed genes (DEGs). Finally, we found that the number of DEGs and ISGs in leishmaniasis was similar to tuberculosis-another localized infection-but significantly less than observed in malaria. In contrast, the cytolytic signature and increased cytolytic cell abundance was not found in tuberculosis or malaria. Our results indicate that systemic signatures can reflect what is occurring in leishmanial lesions. Furthermore, the presence of an ISG signature in blood monocytes and macrophages suggests a mechanism to limit systemic spread of the parasite, as well as enhance parasite control by pre-activating cells prior to lesion entry.
Collapse
Affiliation(s)
- Camila Farias Amorim
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Fernanda O. Novais
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Ba T. Nguyen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Mauricio T. Nascimento
- Serviço de Imunologia, Complexo Hospitalar Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
- Laboratório de Pesquisas Clínicas do Instituto de Pesquisas Gonçalo Moniz–Fiocruz, Salvador, Brazil
| | - Jamile Lago
- Serviço de Imunologia, Complexo Hospitalar Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
- Laboratório de Pesquisas Clínicas do Instituto de Pesquisas Gonçalo Moniz–Fiocruz, Salvador, Brazil
| | - Alexsandro S. Lago
- Serviço de Imunologia, Complexo Hospitalar Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
- Laboratório de Pesquisas Clínicas do Instituto de Pesquisas Gonçalo Moniz–Fiocruz, Salvador, Brazil
| | - Lucas P. Carvalho
- Serviço de Imunologia, Complexo Hospitalar Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
- Laboratório de Pesquisas Clínicas do Instituto de Pesquisas Gonçalo Moniz–Fiocruz, Salvador, Brazil
| | - Daniel P. Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States of America
| |
Collapse
|
23
|
Zhou M, Varol A, Efferth T. Multi-omics approaches to improve malaria therapy. Pharmacol Res 2021; 167:105570. [PMID: 33766628 DOI: 10.1016/j.phrs.2021.105570] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/02/2021] [Accepted: 03/16/2021] [Indexed: 01/07/2023]
Abstract
Malaria contributes to the most widespread infectious diseases worldwide. Even though current drugs are commercially available, the ever-increasing drug resistance problem by malaria parasites poses new challenges in malaria therapy. Hence, searching for efficient therapeutic strategies is of high priority in malaria control. In recent years, multi-omics technologies have been extensively applied to provide a more holistic view of functional principles and dynamics of biological mechanisms. We briefly review multi-omics technologies and focus on recent malaria progress conducted with the help of various omics methods. Then, we present up-to-date advances for multi-omics approaches in malaria. Next, we describe resistance phenomena to established antimalarial drugs and underlying mechanisms. Finally, we provide insight into novel multi-omics approaches, new drugs and vaccine developments and analyze current gaps in multi-omics research. Although multi-omics approaches have been successfully used in malaria studies, they are still limited. Many gaps need to be filled to bridge the gap between basic research and treatment of malaria patients. Multi-omics approaches will foster a better understanding of the molecular mechanisms of Plasmodium that are essential for the development of novel drugs and vaccines to fight this disastrous disease.
Collapse
Affiliation(s)
- Min Zhou
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Ayşegül Varol
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
24
|
Brown AC, Guler JL. From Circulation to Cultivation: Plasmodium In Vivo versus In Vitro. Trends Parasitol 2020; 36:914-926. [DOI: 10.1016/j.pt.2020.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/17/2022]
|
25
|
Kucharski M, Tripathi J, Nayak S, Zhu L, Wirjanata G, van der Pluijm RW, Dhorda M, Dondorp A, Bozdech Z. A comprehensive RNA handling and transcriptomics guide for high-throughput processing of Plasmodium blood-stage samples. Malar J 2020; 19:363. [PMID: 33036628 PMCID: PMC7547485 DOI: 10.1186/s12936-020-03436-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023] Open
Abstract
Background Sequencing technology advancements opened new opportunities to use transcriptomics for studying malaria pathology and epidemiology. Even though in recent years the study of whole parasite transcriptome proved to be essential in understanding parasite biology there is no compiled up-to-date reference protocol for the efficient generation of transcriptome data from growing number of samples. Here, a comprehensive methodology on how to preserve, extract, amplify, and sequence full-length mRNA transcripts from Plasmodium-infected blood samples is presented that can be fully streamlined for high-throughput studies. Results The utility of various commercially available RNA-preserving reagents in a range of storage conditions was evaluated. Similarly, several RNA extraction protocols were compared and the one most suitable method for the extraction of high-quality total RNA from low-parasitaemia and low-volume blood samples was established. Furthermore, the criteria needed to evaluate the quality and integrity of Plasmodium RNA in the presence of human RNA was updated. Optimization of SMART-seq2 amplification method to better suit AT-rich Plasmodium falciparum RNA samples allowed us to generate high-quality transcriptomes from as little as 10 ng of total RNA and a lower parasitaemia limit of 0.05%. Finally, a modified method for depletion of unwanted human haemoglobin transcripts using in vitro CRISPR-Cas9 treatment was designed, thus improving parasite transcriptome coverage in low parasitaemia samples. To prove the functionality of the pipeline for both laboratory and field strains, the highest 2-hour resolution RNA-seq transcriptome for P. falciparum 3D7 intraerythrocytic life cycle available to date was generated, and the entire protocol was applied to create the largest transcriptome data from Southeast Asian field isolates. Conclusions Overall, the presented methodology is an inclusive pipeline for generation of good quality transcriptomic data from a diverse range of Plasmodium-infected blood samples with varying parasitaemia and RNA inputs. The flexibility of this pipeline to be adapted to robotic handling will facilitate both small and large-scale future transcriptomic studies in the field of malaria.
Collapse
Affiliation(s)
- Michal Kucharski
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
| | - Jaishree Tripathi
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
| | - Sourav Nayak
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Lei Zhu
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Grennady Wirjanata
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Rob W van der Pluijm
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mehul Dhorda
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,WorldWide Antimalarial Resistance Network-Asia Regional Centre, Bangkok, Thailand
| | - Arjen Dondorp
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
| |
Collapse
|
26
|
Song Y, Song L, Wan X, Shen B, Fang R, Hu M, Zhao J, Zhou Y. A Comparison of Transcriptional Diversity of Swine Macrophages Infected With TgHB1 Strain of Toxoplasma gondii Isolated in China. Front Cell Infect Microbiol 2020; 10:526876. [PMID: 33102248 PMCID: PMC7546811 DOI: 10.3389/fcimb.2020.526876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 08/25/2020] [Indexed: 01/08/2023] Open
Abstract
Toxoplasma gondii is an apicomplexan parasite infecting human and animals, causing huge public health concerns and economic losses. Swine alveolar macrophage plays an important role in controlling T. gondii infection. However, the mechanism by which macrophages infected with T. gondii function in the immunity to the infection is unclear, especially for local isolates such as TgHB1 isolated in China. RNA-seq as a valuable tool was applied to simultaneously analyze transcriptional changes of pig alveolar macrophages infected with TgRH (typeI), TgME49 (typeII) or TgHB1 at different time points post infection (6, 12, and 24 h). Paired-end clean reads were aligned to the Sscrofa10.2 pig genome and T. gondii ME49 genome. The differentially expressed genes of macrophages and T. gondii were enriched through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes, respectively. Compared to the TgRH and TgME49 infection groups, 307 down-regulated macrophage genes (mainly enriched for development and metabolism) and 419 up-regulated genes (mainly enriched for immune pathways) were uniquely expressed in the TgHB1 infection group. Additionally, 557 down-regulated and 674 up-regulated T. gondii genes (mainly enriched in metabolism and biosynthesis) were uniquely expressed in the TgHB1 infection group. For validation purposes, some of the differentially expressed genes of macrophages involved in immune-related signaling pathways were used for further analysis via real time quantitative reverse-transcription polymerase-chain reaction (qRT-PCR). This work provides important insights into the temporal immune responses of swine alveolar macrophages to infection by the strain TgHB1 isolated from China, and is helpful for better understanding of the T. gondii genotype-associated activation of macrophages during early phase of the infection.
Collapse
Affiliation(s)
- Yongle Song
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Lindong Song
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Xiaoting Wan
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Bang Shen
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Rui Fang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Min Hu
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Junlong Zhao
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Yanqin Zhou
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
27
|
Zhao Y, Hosking C, Cunningham D, Langhorne J, Lin JW. Transcriptome analysis of blood and spleen in virulent and avirulent mouse malaria infection. Sci Data 2020; 7:253. [PMID: 32753619 PMCID: PMC7403358 DOI: 10.1038/s41597-020-00592-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/03/2020] [Indexed: 01/21/2023] Open
Abstract
Malaria is a devastating infectious disease and the immune response is complex and dynamic during a course of a malarial infection. Rodent malaria models allow detailed time-series studies of the host response in multiple organs. Here, we describe two comprehensive datasets containing host transcriptomic data from both the blood and spleen throughout an acute blood stage infection of virulent or avirulent Plasmodium chabaudi infection in C57BL/6 mice. The mRNA expression profiles were generated using Illumina BeadChip microarray. These datasets provide a groundwork for comprehensive and comparative studies on host gene expression in early, acute and recovering phases of a blood stage infection in both the blood and spleen, to explore the interaction between the two, and importantly to investigate whether these responses differ in virulent and avirulent infections. Measurement(s) | transcriptome • gene expression • malaria | Technology Type(s) | Microarray | Factor Type(s) | blood versus spleen • virulent versus avirulent malaria infection | Sample Characteristic - Organism | Mus musculus |
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.12619232
Collapse
Affiliation(s)
- Yuancun Zhao
- Division of Pediatric Infectious Diseases and Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Caroline Hosking
- Malaria Immunology laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Deirdre Cunningham
- Malaria Immunology laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Jean Langhorne
- Malaria Immunology laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom.
| | - Jing-Wen Lin
- Division of Pediatric Infectious Diseases and Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| |
Collapse
|
28
|
Host and Parasite Transcriptomic Changes upon Successive Plasmodium falciparum Infections in Early Childhood. mSystems 2020; 5:5/4/e00116-20. [PMID: 32636334 PMCID: PMC7343306 DOI: 10.1128/msystems.00116-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We show that dual RNA-seq from patient blood samples allows characterization of host/parasite interactions during malaria infections and can provide a solid framework to study the acquisition of antimalarial immunity, as well as the adaptations of P. falciparum to malaria-experienced hosts. Children are highly susceptible to clinical malaria, and in regions where malaria is endemic, their immune systems must face successive encounters with Plasmodium falciparum parasites before they develop immunity, first against severe disease and later against uncomplicated malaria. Understanding cellular and molecular interactions between host and parasites during an infection could provide insights into the processes underlying this gradual acquisition of immunity, as well as to how parasites adapt to infect hosts that are successively more malaria experienced. Here, we describe methods to analyze the host and parasite gene expression profiles generated simultaneously from blood samples collected from five consecutive symptomatic P. falciparum infections in three Malian children. We show that the data generated enable statistical assessment of the proportions of (i) each white blood cell subset and (ii) the parasite developmental stages, as well as investigations of host-parasite gene coexpression. We also use the sequences generated to analyze allelic variations in transcribed regions and determine the complexity of each infection. While limited by the modest sample size, our analyses suggest that host gene expression profiles primarily clustered by individual, while the parasite gene expression profiles seemed to differentiate early from late infections. Overall, this study provides a solid framework to examine the mechanisms underlying acquisition of immunity to malaria infections using whole-blood transcriptome sequencing (RNA-seq). IMPORTANCE We show that dual RNA-seq from patient blood samples allows characterization of host/parasite interactions during malaria infections and can provide a solid framework to study the acquisition of antimalarial immunity, as well as the adaptations of P. falciparum to malaria-experienced hosts.
Collapse
|
29
|
Dash M, Pande V, Sinha A. Putative circumsporozoite protein (CSP) of Plasmodium vivax is considerably distinct from the well-known CSP and plays a role in the protein ubiquitination pathway. Gene 2020; 721S:100024. [PMID: 32550551 PMCID: PMC7285988 DOI: 10.1016/j.gene.2019.100024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/21/2019] [Accepted: 11/07/2019] [Indexed: 11/29/2022]
Abstract
Amidst technical challenges which limit successful culture and genetic manipulation of P. vivax parasites, we used a computational approach to identify a critical target with evolutionary significance. The putative circumsporozoite protein on chromosome 13 of P. vivax (PvpuCSP)is distinct from the well-known vaccine candidate PfCSP. The aim of this study was to understand the role of PvpuCSP and its relatedness to the well-known CSP. The study revealed PvpuCSP as a membrane bound E3 ubiquitin ligase involved in ubiquitination. It has a species-specific tetra-peptide unit which is differentially repeated in various P. vivax strains. The PvpuCSP is different from CSP in terms of stage-specific expression and function. Since E3 ubiquitin ligases are known antimalarial drug targets targeting the proteasome pathway, PvpuCSP, with evolutionary connotation and a key role in orchestrating protein degradation in P. vivax, can be explored as a potential drug target. PvpuCSP is predicted as E3 ubiquitin ligase, a part of ubiquitination pathway. Tetra-peptide tandem repeat at C terminal of PvpuCSP is exclusive to P. vivax. Moderately expressed during all parasitic stages in host and vector Partially disordered protein with both structured domains and two distinct IDRs A transmembrane protein with highly conserved functional domain across Apicomplexa
Collapse
Affiliation(s)
- Manoswini Dash
- Division of Epidemiology and Clinical Research, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Veena Pande
- Department of Biotechnology, Bhimtal Campus, Kumaun University, Nainital, Uttarakhand, India
| | - Abhinav Sinha
- Division of Epidemiology and Clinical Research, ICMR-National Institute of Malaria Research, New Delhi, India
| |
Collapse
|
30
|
Videvall E, Palinauskas V, Valkiūnas G, Hellgren O. Host Transcriptional Responses to High- and Low-Virulent Avian Malaria Parasites. Am Nat 2020; 195:1070-1084. [DOI: 10.1086/708530] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
31
|
Galinski MR. Functional genomics of simian malaria parasites and host-parasite interactions. Brief Funct Genomics 2020; 18:270-280. [PMID: 31241151 PMCID: PMC6859816 DOI: 10.1093/bfgp/elz013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/21/2019] [Accepted: 05/20/2019] [Indexed: 12/15/2022] Open
Abstract
Two simian malaria parasite species, Plasmodium knowlesi and Plasmodium cynomolgi, cause zoonotic infections in Southeast Asia, and they have therefore gained recognition among scientists and public health officials. Notwithstanding, these species and others including Plasmodium coatneyi have served for decades as sources of knowledge on the biology, genetics and evolution of Plasmodium, and the diverse ramifications and outcomes of malaria in their monkey hosts. Experimental analysis of these species can help to fill gaps in knowledge beyond what may be possible studying the human malaria parasites or rodent parasite species. The genome sequences for these simian malaria parasite species were reported during the last decade, and functional genomics research has since been pursued. Here research on the functional genomics analysis involving these species is summarized and their importance is stressed, particularly for understanding host–parasite interactions, and potentially testing novel interventions. Importantly, while Plasmodium falciparum and Plasmodium vivax can be studied in small New World monkeys, the simian malaria parasites can be studied more effectively in the larger Old World monkey macaque hosts, which are more closely related to humans. In addition to ex vivo analyses, experimental scenarios can include passage through Anopheline mosquito hosts and longitudinal infections in monkeys to study acute and chronic infections, as well as relapses, all in the context of the in vivo host environment. Such experiments provide opportunities for understanding functional genomic elements that govern host–parasite interactions, immunity and pathogenesis in-depth, addressing hypotheses not possible from in vitro cultures or cross-sectional clinical studies with humans.
Collapse
Affiliation(s)
- Mary R Galinski
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.,Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
32
|
Tran TM, Crompton PD. Decoding the complexities of human malaria through systems immunology. Immunol Rev 2019; 293:144-162. [PMID: 31680289 DOI: 10.1111/imr.12817] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 12/18/2022]
Abstract
The complexity of the Plasmodium parasite and its life cycle poses a challenge to our understanding of the host immune response against malaria. Studying human immune responses during natural and experimental Plasmodium infections can enhance our understanding of malaria-protective immunity and inform the design of disease-modifying adjunctive therapies and next-generation malaria vaccines. Systems immunology can complement conventional approaches to facilitate our understanding of the complex immune response to the highly dynamic malaria parasite. In this review, recent studies that used systems-based approaches to evaluate human immune responses during natural and experimental Plasmodium falciparum and Plasmodium vivax infections as well as during immunization with candidate malaria vaccines are summarized and related to each other. The potential for next-generation technologies to address the current limitations of systems-based studies of human malaria are discussed.
Collapse
Affiliation(s)
- Tuan M Tran
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.,Ryan White Center for Pediatric Infectious Disease and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Peter D Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
33
|
Loiseau C, Cooper MM, Doolan DL. Deciphering host immunity to malaria using systems immunology. Immunol Rev 2019; 293:115-143. [PMID: 31608461 DOI: 10.1111/imr.12814] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022]
Abstract
A century of conceptual and technological advances in infectious disease research has changed the face of medicine. However, there remains a lack of effective interventions and a poor understanding of host immunity to the most significant and complex pathogens, including malaria. The development of successful interventions against such intractable diseases requires a comprehensive understanding of host-pathogen immune responses. A major advance of the past decade has been a paradigm switch in thinking from the contemporary reductionist (gene-by-gene or protein-by-protein) view to a more holistic (whole organism) view. Also, a recognition that host-pathogen immunity is composed of complex, dynamic interactions of cellular and molecular components and networks that cannot be represented by any individual component in isolation. Systems immunology integrates the field of immunology with omics technologies and computational sciences to comprehensively interrogate the immune response at a systems level. Herein, we describe the system immunology toolkit and report recent studies deploying systems-level approaches in the context of natural exposure to malaria or controlled human malaria infection. We contribute our perspective on the potential of systems immunity for the rational design and development of effective interventions to improve global public health.
Collapse
Affiliation(s)
- Claire Loiseau
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Qld, Australia
| | - Martha M Cooper
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Qld, Australia
| | - Denise L Doolan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Qld, Australia
| |
Collapse
|
34
|
Gallardo-Escárate C, Valenzuela-Muñoz V, Núñez-Acuña G, Carrera C, Gonçalves AT, Valenzuela-Miranda D, Benavente BP, Roberts S. Catching the complexity of salmon-louse interactions. FISH & SHELLFISH IMMUNOLOGY 2019; 90:199-209. [PMID: 31048036 DOI: 10.1016/j.fsi.2019.04.065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The study of host-parasite relationships is an integral part of the immunology of aquatic species, where the complexity of both organisms has to be overlayed with the lifecycle stages of the parasite and immunological status of the host. A deep understanding of how the parasite survives in its host and how they display molecular mechanisms to face the immune system can be applied for novel parasite control strategies. This review highlights current knowledge about salmon and sea louse, two key aquatic animals for aquaculture research worldwide. With the aim to catch the complexity of the salmon-louse interactions, molecular information gleaned through genomic studies are presented. The host recognition system and the chemosensory receptors found in sea lice reveal complex molecular components, that in turn, can be disrupted through specific molecules such as non-coding RNAs.
Collapse
Affiliation(s)
- Cristian Gallardo-Escárate
- Interdisciplinary Center for Aquaculture Research, Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, Universidad de Concepción, Concepción, Chile.
| | - Valentina Valenzuela-Muñoz
- Interdisciplinary Center for Aquaculture Research, Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, Universidad de Concepción, Concepción, Chile
| | - Gustavo Núñez-Acuña
- Interdisciplinary Center for Aquaculture Research, Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, Universidad de Concepción, Concepción, Chile
| | - Crisleri Carrera
- Interdisciplinary Center for Aquaculture Research, Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, Universidad de Concepción, Concepción, Chile
| | - Ana Teresa Gonçalves
- Interdisciplinary Center for Aquaculture Research, Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, Universidad de Concepción, Concepción, Chile
| | - Diego Valenzuela-Miranda
- Interdisciplinary Center for Aquaculture Research, Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, Universidad de Concepción, Concepción, Chile
| | - Bárbara P Benavente
- Interdisciplinary Center for Aquaculture Research, Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, Universidad de Concepción, Concepción, Chile
| | - Steven Roberts
- School of Aquatic and Fishery Sciences (SAFS), University of Washington, Seattle, USA
| |
Collapse
|
35
|
Tarr SJ, Díaz-Ingelmo O, Stewart LB, Hocking SE, Murray L, Duffy CW, Otto TD, Chappell L, Rayner JC, Awandare GA, Conway DJ. Schizont transcriptome variation among clinical isolates and laboratory-adapted clones of the malaria parasite Plasmodium falciparum. BMC Genomics 2018; 19:894. [PMID: 30526479 PMCID: PMC6288915 DOI: 10.1186/s12864-018-5257-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/16/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria parasites are genetically polymorphic and phenotypically plastic. In studying transcriptome variation among parasites from different infections, it is challenging to overcome potentially confounding technical and biological variation between samples. We investigate variation in the major human parasite Plasmodium falciparum, generating RNA-seq data on multiple independent replicate sample preparations of merozoite-containing intra-erythrocytic schizonts from a panel of clinical isolates and from long-term laboratory-adapted clones, with a goal of robustly identifying differentially expressed genes. RESULTS Analysis of biological sample replicates shows that increased numbers improve the true discovery rate of differentially expressed genes, and that six independent replicates of each parasite line allowed identification of most differences that could be detected with larger numbers. For highly expressed genes, focusing on the top quartile at schizont stages, there was more power to detect differences. Comparing cultured clinical isolates and laboratory-adapted clones, genes more highly expressed in the laboratory-adapted clones include those encoding an AP2 transcription factor (PF3D7_0420300), a ubiquitin-binding protein and two putative methyl transferases. In contrast, higher expression in clinical isolates was seen for the merozoite surface protein gene dblmsp2, proposed to be a marker of schizonts forming merozoites committed to sexual differentiation. Variable expression was extremely strongly, but not exclusively, associated with genes known to be targeted by Heterochromatin Protein 1. Clinical isolates show variable expression of several known merozoite invasion ligands, as well as other genes for which new RT-qPCR assays validate the quantitation and allow characterisation in samples with more limited material. Expression levels of these genes vary among schizont preparations of different clinical isolates in the first ex vivo cycle in patient erythrocytes, but mean levels are similar to those in continuously cultured clinical isolates. CONCLUSIONS Analysis of multiple biological sample replicates greatly improves identification of genes variably expressed between different cultured parasite lines. Clinical isolates recently established in culture show differences from long-term adapted clones in transcript levels of particular genes, and are suitable for analyses requiring biological replicates to understand parasite phenotypes and variable expression likely to be relevant in nature.
Collapse
Affiliation(s)
- Sarah J Tarr
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, London, UK.
| | - Ofelia Díaz-Ingelmo
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Lindsay B Stewart
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Suzanne E Hocking
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Lee Murray
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Craig W Duffy
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Thomas D Otto
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Scotland, UK.,Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Lia Chappell
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | | | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Ghana
| | - David J Conway
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|