1
|
Borthwick N, Fernandez N, Hayes PJ, Wee EGT, Akis Yildirim BM, Baines A, Baker M, Byard N, Conway O, Glaze M, Jenkin D, Larkworthy C, Luciw M, Platt A, Poulton I, Thomas M, Quaddy J, Watson M, Crook A, Cicconi P, Hanke T. Safety and immunogenicity of the ChAdOx1-MVA-vectored conserved mosaic HIVconsvX candidate T-cell vaccines in HIV-CORE 005.2, an open-label, dose-escalation, first-in-human, phase 1 trial in adults living without HIV-1 in the UK. THE LANCET. MICROBE 2024:100956. [PMID: 39612921 DOI: 10.1016/j.lanmic.2024.100956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 05/29/2024] [Accepted: 07/18/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND An HIV-1 vaccine is long overdue. Although vaccine research focuses on the induction of broadly neutralising antibodies, challenging infections such as HIV-1 could require parallel induction of protective T cells. It is important to recognise that not all T cells contribute to protection equally. Previously, we developed a T-cell immunogen-based bivalent mosaic vaccine, HIVconsvX, delivered by vaccine vectors ChAdOx1 and modified vaccinia Ankara. In this study, we tested the HIVconsvX vaccine regimen for the first time in humans. Other ongoing trials will assess the contribution of the vaccine-induced killer T cells to the control of HIV-1. METHODS HIV-CORE 005.2 was an open-label, dose-escalation, first-in-human, phase 1 trial done at the Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, UK. Eligible participants were healthy volunteers aged 18-65 years living without HIV-1 and at a low likelihood of acquiring it. Because it was the first administration of ChAdOx1.tHIVconsv1 (C1) to humans, participants were assigned stepwise to two groups. Volunteer group 1 received a low dose of C1 on enrolment. Following a satisfactory safety review 7 days after vaccination, volunteer group 2 received a full dose of C1 boosted by vaccines MVA.tHIVconsv3 (M3) and MVA.tHIVconsv4 (M4) 4 weeks later in regimen C1-M3M4 and were followed up until day 140. Focusing on the full vaccine doses in group 2, the primary outcome was the local and systemic safety of the vaccine. The secondary outcome was the frequency and breadth of epitope recognition by vaccine-induced T cells determined by IFN-γ ELISPOT assay using peripheral blood mononuclear cells (PBMC) at peak (1 and 2 weeks after the M3M4 boost) and at the end of the study, assessed against volunteer's pre-vaccination levels. The HIV-CORE 005.2 trial is registered at ClinicalTrials.gov (NCT04586673) and is closed. FINDINGS Between July 3, 2021, and Aug 3, 2022, 13 participants were recruited and assigned to group 1 (n=3) and group 2 (n=10). Low-dose C1 was safe and well tolerated in group 1, and all three vaccine components were well tolerated in volunteer group 2. There were no serious adverse events. Local and systemic reactogenicities were consistent with intramuscular needle administration of immunogenic substances. All volunteers responded, and their vaccine-elicited T-cell frequencies peaked at a median of 4433 (IQR 2750-5820) IFN-γ spot-forming units per 106 PBMC and recognised a median of 9 (IQR 9-10) peptide pools out of 10, indicating that the responses were broadly specific and each vaccine recipient targeted at least nine epitopes on HIV-1. These frequencies were 7·4 times lower by day 140 (ie, 3 months later). T cells proliferated upon antigen re-exposure and displayed multiple effector functions, recognised variant epitopes, and inhibited HIV-1 from the four major global clades A, B, C, and D. INTERPRETATION These results inform and support a programme of clinical evaluations of the HIVconsvX T-cell vaccines together with other cutting-edge tools for HIV-1 cure and prevention such as latency reactivating agents, passively infused combinations of broadly neutralising antibodies, and active Env-based vaccines or immunomodulators. FUNDING EU Horizon 2020 Research and Innovation programme, Medical Research Council and Foreign Commonwealth and Development Office Concordat agreement, European and Developing Countries Clinical Trials Partnership, National Institute for Health Research Oxford Biomedical Research Centre, and IAVI.
Collapse
Affiliation(s)
- Nicola Borthwick
- The Jenner Institute, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | | | - Peter J Hayes
- IAVI Human Immunology Laboratory, Imperial College, London, UK
| | - Edmund G-T Wee
- The Jenner Institute, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | | | - Andrea Baines
- The Jenner Institute, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Megan Baker
- The Jenner Institute, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Nicholas Byard
- The Jenner Institute, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Oliver Conway
- The Jenner Institute, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Molly Glaze
- The Jenner Institute, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Daniel Jenkin
- The Jenner Institute, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Colin Larkworthy
- The Jenner Institute, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Michael Luciw
- The Jenner Institute, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Abigail Platt
- The Jenner Institute, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Ian Poulton
- The Jenner Institute, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Merin Thomas
- The Jenner Institute, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Jack Quaddy
- The Jenner Institute, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Marion Watson
- The Jenner Institute, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Alison Crook
- The Jenner Institute, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Paola Cicconi
- The Jenner Institute, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Tomáš Hanke
- The Jenner Institute, Nuffield Department of Medicine, Oxford University, Oxford, UK; Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
2
|
Petrovsky N. Post-Hoc Analysis of Potential Correlates of Protection of a Recombinant SARS-CoV-2 Spike Protein Extracellular Domain Vaccine Formulated with Advax-CpG55.2-Adjuvant. Int J Mol Sci 2024; 25:9459. [PMID: 39273405 PMCID: PMC11395249 DOI: 10.3390/ijms25179459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
SpikoGen® vaccine is a subunit COVID-19 vaccine composed of an insect cell expressed recombinant spike protein extracellular domain formulated with Advax-CpG55.2™ adjuvant. A randomized double-blind, placebo-controlled Phase II clinical trial was conducted in 400 adult subjects who were randomized 3:1 to receive two intramuscular doses three weeks apart of either SpikoGen® vaccine 25 μg or saline placebo, as previously reported. This study reports a post hoc analysis of the trial data to explore potential immune correlates of SpikoGen® vaccine protection. A range of humoral markers collected pre- and post-vaccination, including spike- and RBD-binding IgG and IgA, surrogate (sVNT), and conventional (cVNT) virus neutralization tests were compared between participants who remained infection-free or got infected over three months of follow-up. From 2 weeks after the second vaccine dose, 21 participants were diagnosed with SARS-CoV-2 infection, 13 (4.2%) in the SpikoGen® group and 8 (9%) in the placebo group. Those in the vaccinated group who experienced breakthrough infections had significantly lower sVNT titers (GMT 5.75 μg/mL, 95% CI; 3.72-8.91) two weeks after the second dose (day 35) than those who did not get infected (GMT 21.06 μg/mL, 95% CI; 16.57-26.76). Conversely, those who did not develop SARS-CoV-2 infection during follow-up had significantly higher baseline sVNT, cVNT, spike-binding IgG and IgA, and RBD-binding IgG, consistent with a past SARS-CoV-2 infection. SpikoGen® further reduced the risk of re-infection (OR 0.29) in baseline seropositive (previously infected) as well as baseline seronegative participants. This indicates that while SpikoGen vaccine is protective in seronegative individuals, those with hybrid immunity have the most robust protection.
Collapse
Affiliation(s)
- Nikolai Petrovsky
- Vaxine Pty Ltd., Warradale, Adelaide 5046, Australia
- Australian Respiratory and Sleep Medicine Institute, Adelaide 5042, Australia
| |
Collapse
|
3
|
Su H, Mueller A, Goldstein H. Recent advances on anti-HIV chimeric antigen receptor-T-cell treatment to provide sustained HIV remission. Curr Opin HIV AIDS 2024; 19:169-178. [PMID: 38695148 DOI: 10.1097/coh.0000000000000858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
PURPOSE OF REVIEW Successful sustained remission of HIV infection has been achieved after CCR5Δ32/Δ32 allogeneic hematopoietic stem cell transplantation for treatment of leukemia in a small cohort of people living with HIV (PLWH). This breakthrough demonstrated that the goal of curing HIV was achievable. However, the high morbidity and mortality associated with bone marrow transplantation limits the routine application of this approach and provides a strong rationale for pursuing alternative strategies for sustained long-term antiretroviral therapy (ART)-free HIV remission. Notably, long-term immune-mediated control of HIV replication observed in elite controllers and posttreatment controllers suggests that potent HIV-specific immune responses could provide sustained ART-free remission in PLWH. The capacity of chimeric antigen receptor (CAR)-T cells engineered to target malignant cells to induce remission and cure in cancer patients made this an attractive approach to provide PLWH with a potent HIV-specific immune response. Here, we review the recent advances in the design and application of anti-HIV CAR-T-cell therapy to provide a functional HIV cure. RECENT FINDINGS HIV reservoirs are established days after infection and persist through clonal expansion of infected cells. The continuous interaction between latently infected cells and the immune system shapes the landscape of HIV latency and likely contributes to ART-free viral control in elite controllers. CAR-T cells can exhibit superior antiviral activity as compared with native HIV-specific T cells, particularly because they can be engineered to have multiple HIV specificities, resistance to HIV infection, dual costimulatory signaling, immune checkpoint inhibitors, stem cell derivation, CMV TCR coexpression, and tissue homing ligands. These modifications can significantly improve the capacities of anti-HIV CAR-T cells to prevent viral escape, resist HIV infection, and enhance cytotoxicity, persistence, and tissue penetration. Collectively, these novel modifications of anti-HIV CAR-T cell design have increased their capacity to control HIV infection. SUMMARY Anti-HIV CAR-T cells can be engineered to provide potent and sustained in-vitro and in-vivo antiviral function. The combination of anti-HIV CAR-T cells with other immunotherapeutics may contribute to long-term HIV remission in PLWH.
Collapse
Affiliation(s)
- Hang Su
- Department of Microbiology & Immunology
| | | | - Harris Goldstein
- Department of Microbiology & Immunology
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
4
|
Acchioni C, Sandini S, Acchioni M, Sgarbanti M. Co-Infections and Superinfections between HIV-1 and Other Human Viruses at the Cellular Level. Pathogens 2024; 13:349. [PMID: 38787201 PMCID: PMC11124504 DOI: 10.3390/pathogens13050349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Co-infection or superinfection of the host by two or more virus species is a common event, potentially leading to viral interference, viral synergy, or neutral interaction. The simultaneous presence of two or more viruses, even distantly related, within the same cell depends upon viral tropism, i.e., the entry of viruses via receptors present on the same cell type. Subsequently, productive infection depends on the ability of these viruses to replicate efficiently in the same cellular environment. HIV-1 initially targets CCR5-expressing tissue memory CD4+ T cells, and in the absence of early cART initiation, a co-receptor switch may occur, leading to the infection of naïve and memory CXCR4-expressing CD4+ T cells. HIV-1 infection of macrophages at the G1 stage of their cell cycle also occurs in vivo, broadening the possible occurrence of co-infections between HIV-1 and other viruses at the cellular level. Moreover, HIV-1-infected DCs can transfer the virus to CD4+ T cells via trans-infection. This review focuses on the description of reported co-infections within the same cell between HIV-1 and other human pathogenic, non-pathogenic, or low-pathogenic viruses, including HIV-2, HTLV, HSV, HHV-6/-7, GBV-C, Dengue, and Ebola viruses, also discussing the possible reciprocal interactions in terms of virus replication and virus pseudotyping.
Collapse
Affiliation(s)
| | | | | | - Marco Sgarbanti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.A.); (S.S.); (M.A.)
| |
Collapse
|
5
|
Šimičić P, Batović M, Stojanović Marković A, Židovec-Lepej S. Deciphering the Role of Epstein-Barr Virus Latent Membrane Protein 1 in Immune Modulation: A Multifaced Signalling Perspective. Viruses 2024; 16:564. [PMID: 38675906 PMCID: PMC11054855 DOI: 10.3390/v16040564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
The disruption of antiviral sensors and the evasion of immune defences by various tactics are hallmarks of EBV infection. One of the EBV latent gene products, LMP1, was shown to induce the activation of signalling pathways, such as NF-κB, MAPK (JNK, ERK1/2, p38), JAK/STAT and PI3K/Akt, via three subdomains of its C-terminal domain, regulating the expression of several cytokines responsible for modulation of the immune response and therefore promoting viral persistence. The aim of this review is to summarise the current knowledge on the EBV-mediated induction of immunomodulatory molecules by the activation of signal transduction pathways with a particular focus on LMP1-mediated mechanisms. A more detailed understanding of the cytokine biology molecular landscape in EBV infections could contribute to the more complete understanding of diseases associated with this virus.
Collapse
Affiliation(s)
- Petra Šimičić
- Department of Oncology and Nuclear Medicine, Sestre Milosrdnice University Hospital Center, Vinogradska cesta 29, 10 000 Zagreb, Croatia;
| | - Margarita Batović
- Department of Clinical Microbiology and Hospital Infections, Dubrava University Hospital, Avenija Gojka Šuška 6, 10 000 Zagreb, Croatia;
| | - Anita Stojanović Marković
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, Mirogojska 8, 10 000 Zagreb, Croatia
| | - Snjezana Židovec-Lepej
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, Mirogojska 8, 10 000 Zagreb, Croatia
| |
Collapse
|
6
|
Teque F, Wegehaupt A, Roufs E, Killian MS. CD8+ Lymphocytes from Healthy Blood Donors Secrete Antiviral Levels of Interferon-Alpha. Viruses 2023; 15:v15040894. [PMID: 37112874 PMCID: PMC10144965 DOI: 10.3390/v15040894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
The adaptive immune response to viral infections features the antigen-driven expansion of CD8+ T cells. These cells are widely recognized for their cytolytic activity that is mediated through the secretion of cytokines such as perforin and granzymes. Less appreciated is their ability to secrete soluble factors that restrict virus replication without killing the infected cells. In this study we measured the ability of primary anti-CD3/28-stimulated CD8+ T cells from healthy blood donors to secrete interferon-alpha. Supernatants collected from CD8+ T cell cultures were screened for their ability to suppress HIV-1 replication in vitro and their interferon-alpha concentrations were measured by ELISA. Interferon-alpha concentrations in the CD8+ T cell culture supernatants ranged from undetectable to 28.6 pg/mL. The anti-HIV-1 activity of the cell culture supernatants was observed to be dependent on the presence of interferon-alpha. Appreciable increases in the expression levels of type 1 interferon transcripts were observed following T cell receptor stimulation, suggesting that the secretion of interferon-alpha by CD8+ T cells is an antigen-driven response. In 42-plex cytokine assays, the cultures containing interferon-alpha were also found to contain elevated levels of GM-CSF, IL-10, IL-13, and TNF-alpha. Together, these results demonstrate that the secretion of anti-viral levels of interferon-alpha is a common function of CD8+ T cells. Furthermore, this CD8+ T cell function likely plays broader roles in health and disease.
Collapse
|
7
|
Wang X, Su D, Wei Y, Liu S, Gao S, Tian H, Wei W. Identification of m6A-related lncRNAs for thyroid cancer recurrence. Gland Surg 2023; 12:39-53. [PMID: 36761480 PMCID: PMC9906100 DOI: 10.21037/gs-22-678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023]
Abstract
Background Although the prognosis of thyroid cancer (THCA) is generally good, many patients have a high risk of recurrence after treatment. N6-methyladenosine (m6A)-related long noncoding RNAs (lncRNAs) have been extensively studied in recent years. However, the potential of m6A-related lncRNAs to predict recurrence in THCA is unknown. Methods RNA sequencing (RNA-seq) data and clinical information for THCA were downloaded from The Cancer Genome Atlas (TCGA). Differentially expressed lncRNAs (DELs) were identified using the R package DESeq2. A coexpression network based on m6A-related genes and lncRNAs was constructed. The CIBERSORT algorithm and gene set enrichment analysis (GSEA) were used for immune-infiltrating cell estimation and clustering functional enrichment analysis, respectively. A Kaplan-Meier plot was used for prognostic analysis based on m6A-associated lncRNA risk patterns. The expression of lncRNAs in recurrent and nonrecurrent THCA tissues was analyzed by real-time quantitative polymerase chain reaction (RT-qPCR). Results A network of m6A-related lncRNAs containing 8 lncRNAs was constructed with good predictive power for recurrence in THCA. A total of 3 clusters were obtained, and cluster 1 was most associated with THCA recurrence. We found significantly lower levels of CD8 T cells and follicular helper T cells, and significantly higher levels of dendritic cells (DCs), M2 macrophages, resting DCs, regulatory T cells, and mast cells in cluster 1 patients. Pathway analysis revealed significant enrichment in natural killer cell-mediated cytotoxicity, butyrate metabolism, and cell adhesion molecules in cluster 1. The m6A-related lncRNA risk model was effective in predicting progression-free survival (PFS) in patients with THCA recurrence. RT-qPCR analysis based on 40 THCA clinical samples from our center found the risk model to be a good predictor of recurrence in THCA patients. Conclusions In summary, m6A-related lncRNAs may provide a novel predictive method for prognostic relapse in THCA patients.
Collapse
Affiliation(s)
- Xingquan Wang
- Department of General Surgery, First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Dewang Su
- Department of General Surgery, First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Yaqing Wei
- Department of Infectious Diseases, City Center Hospital of Jiamusi City, Jiamusi, China
| | - Shilin Liu
- Department of Rheumatology, First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Shengyu Gao
- Department of General Surgery, First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Hao Tian
- Department of General Surgery, First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Weiwei Wei
- Department of General Surgery, First Affiliated Hospital of Jiamusi University, Jiamusi, China
| |
Collapse
|
8
|
Fernandez N, Hayes P, Makinde J, Hare J, King D, Xu R, Rehawi O, Mezzell AT, Kato L, Mugaba S, Serwanga J, Chemweno J, Nduati E, Price MA, Osier F, Ochsenbauer C, Yue L, Hunter E, Gilmour J. Assessment of a diverse panel of transmitted/founder HIV-1 infectious molecular clones in a luciferase based CD8 T-cell mediated viral inhibition assay. Front Immunol 2022; 13:1029029. [PMID: 36532063 PMCID: PMC9751811 DOI: 10.3389/fimmu.2022.1029029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022] Open
Abstract
Introduction Immunological protection against human immunodeficiency virus-1 (HIV-1) infection is likely to require both humoral and cell-mediated immune responses, the latter involving cytotoxic CD8 T-cells. Characterisation of CD8 T-cell mediated direct anti-viral activity would provide understanding of potential correlates of immune protection and identification of critical epitopes associated with HIV-1 control. Methods The present report describes a functional viral inhibition assay (VIA) to assess CD8 T-cell-mediated inhibition of replication of a large and diverse panel of 45 HIV-1 infectious molecular clones (IMC) engineered with a Renilla reniformis luciferase reporter gene (LucR), referred to as IMC-LucR. HIV-1 IMC replication in CD4 T-cells and CD8 T-cell mediated inhibition was characterised in both ART naive subjects living with HIV-1 covering a broad human leukocyte antigen (HLA) distribution and compared with uninfected subjects. Results & discussion CD4 and CD8 T-cell lines were established from subjects vaccinated with a candidate HIV-1 vaccine and provided standard positive controls for both assay quality control and facilitating training and technology transfer. The assay was successfully established across 3 clinical research centres in Kenya, Uganda and the United Kingdom and shown to be reproducible. This IMC-LucR VIA enables characterisation of functional CD8 T-cell responses providing a tool for rational T-cell immunogen design of HIV-1 vaccine candidates and evaluation of vaccine-induced T-cell responses in HIV-1 clinical trials.
Collapse
Affiliation(s)
- Natalia Fernandez
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom,*Correspondence: Natalia Fernandez, ; Peter Hayes,
| | - Peter Hayes
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom,*Correspondence: Natalia Fernandez, ; Peter Hayes,
| | - Julia Makinde
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Jonathan Hare
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom,IAVI, New York, NY, United States
| | - Deborah King
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Rui Xu
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Ola Rehawi
- University of Alabama at Birmingham, Birmingham, AL, United States
| | | | - Laban Kato
- Uganda Virus Research Institute, Entebbe, Uganda,Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Susan Mugaba
- Uganda Virus Research Institute, Entebbe, Uganda,Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Jennifer Serwanga
- Uganda Virus Research Institute, Entebbe, Uganda,Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - James Chemweno
- Kenya Medical Research Institute (KEMRI) Wellcome Trust Research Programme, Kilifi, Kenya
| | - Eunice Nduati
- Kenya Medical Research Institute (KEMRI) Wellcome Trust Research Programme, Kilifi, Kenya
| | - Matt A. Price
- IAVI, New York, NY, United States,Department of Epidemiology and Biostatistics, University of California at San Francisco, San Francisco, CA, United States
| | - Faith Osier
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | | | - Ling Yue
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Eric Hunter
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Jill Gilmour
- Department of Infectious Diseases, Imperial College, London, United Kingdom
| | | |
Collapse
|
9
|
Li S, Moog C, Zhang T, Su B. HIV reservoir: antiviral immune responses and immune interventions for curing HIV infection. Chin Med J (Engl) 2022; 135:2667-2676. [PMID: 36719355 PMCID: PMC9943973 DOI: 10.1097/cm9.0000000000002479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Indexed: 02/01/2023] Open
Abstract
ABSTRACT Antiretroviral therapy against human immunodeficiency virus (HIV) is effective in controlling viral replication but cannot completely eliminate HIV due to the persistence of the HIV reservoir. Innate and adaptive immune responses have been proposed to contribute to preventing HIV acquisition, controlling HIV replication and eliminating HIV-infected cells. However, the immune responses naturally induced in HIV-infected individuals rarely eradicate HIV infection, which may be caused by immune escape, an inadequate magnitude and breadth of immune responses, and immune exhaustion. Optimizing these immune responses may solve the problems of epitope escape and insufficient sustained memory responses. Moreover, immune interventions aimed at improving host immune response can reduce HIV reservoirs, which have become one focus in the development of innovative strategies to eliminate HIV reservoirs. In this review, we focus on the immune response against HIV and how antiviral immune responses affect HIV reservoirs. We also discuss the development of innovative strategies aiming to eliminate HIV reservoirs and promoting functional cure of HIV infection.
Collapse
Affiliation(s)
- Shuang Li
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Christiane Moog
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg 67000, France
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
10
|
Zhang Z, Jiang Z, Deng T, Zhang J, Liu B, Liu J, Qiu R, Zhang Q, Li X, Nian X, Hong Y, Li F, Peng F, Zhao W, Xia Z, Huang S, Liang S, Chen J, Li C, Yang X. Preclinical immunogenicity assessment of a cell-based inactivated whole-virion H5N1 influenza vaccine. Open Life Sci 2022; 17:1282-1295. [PMID: 36249527 PMCID: PMC9518664 DOI: 10.1515/biol-2022-0478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/06/2022] [Accepted: 07/17/2022] [Indexed: 11/15/2022] Open
Abstract
In influenza vaccine development, Madin–Darby canine kidney (MDCK) cells provide multiple advantages, including large-scale production and egg independence. Several cell-based influenza vaccines have been approved worldwide. We cultured H5N1 virus in a serum-free MDCK cell suspension. The harvested virus was manufactured into vaccines after inactivation and purification. The vaccine effectiveness was assessed in the Wuhan Institute of Biological Products BSL2 facility. The pre- and postvaccination mouse serum titers were determined using the microneutralization and hemagglutination inhibition tests. The immunological responses induced by vaccine were investigated using immunological cell classification, cytokine expression quantification, and immunoglobulin G (IgG) subtype classification. The protective effect of the vaccine in mice was evaluated using challenge test. Antibodies against H5N1 in rats lasted up to 8 months after the first dose. Compared with those of the placebo group, the serum titer of vaccinated mice increased significantly, Th1 and Th2 cells were activated, and CD8+ T cells were activated in two dose groups. Furthermore, the challenge test showed that vaccination reduced the clinical symptoms and virus titer in the lungs of mice after challenge, indicating a superior immunological response. Notably, early after vaccination, considerably increased interferon-inducible protein-10 (IP-10) levels were found, indicating improved vaccine-induced innate immunity. However, IP-10 is an adverse event marker, which is a cause for concern. Overall, in the case of an outbreak, the whole-virion H5N1 vaccine should provide protection.
Collapse
Affiliation(s)
- Zhegang Zhang
- Viral Vaccines Research and Development Department 2, Wuhan Institute of Biological Products Co., LTD , Wuhan , 430207 , China
- National Engineering Technology Research Center of Combination Vaccines, China National Biotec Group , Wuhan , 430207 , China
| | - Zheng Jiang
- National Institute of Food and Drug Control , Beijing , 100050 , China
| | - Tao Deng
- Viral Vaccines Research and Development Department 2, Wuhan Institute of Biological Products Co., LTD , Wuhan , 430207 , China
- National Engineering Technology Research Center of Combination Vaccines, China National Biotec Group , Wuhan , 430207 , China
| | - Jiayou Zhang
- Viral Vaccines Research and Development Department 2, Wuhan Institute of Biological Products Co., LTD , Wuhan , 430207 , China
- National Engineering Technology Research Center of Combination Vaccines, China National Biotec Group , Wuhan , 430207 , China
| | - Bo Liu
- Viral Vaccines Research and Development Department 2, Wuhan Institute of Biological Products Co., LTD , Wuhan , 430207 , China
- National Engineering Technology Research Center of Combination Vaccines, China National Biotec Group , Wuhan , 430207 , China
| | - Jing Liu
- Viral Vaccines Research and Development Department 2, Wuhan Institute of Biological Products Co., LTD , Wuhan , 430207 , China
- National Engineering Technology Research Center of Combination Vaccines, China National Biotec Group , Wuhan , 430207 , China
| | - Ran Qiu
- Viral Vaccines Research and Development Department 2, Wuhan Institute of Biological Products Co., LTD , Wuhan , 430207 , China
- National Engineering Technology Research Center of Combination Vaccines, China National Biotec Group , Wuhan , 430207 , China
| | - Qingmei Zhang
- Viral Vaccines Research and Development Department 2, Wuhan Institute of Biological Products Co., LTD , Wuhan , 430207 , China
- National Engineering Technology Research Center of Combination Vaccines, China National Biotec Group , Wuhan , 430207 , China
| | - Xuedan Li
- Viral Vaccines Research and Development Department 2, Wuhan Institute of Biological Products Co., LTD , Wuhan , 430207 , China
- National Engineering Technology Research Center of Combination Vaccines, China National Biotec Group , Wuhan , 430207 , China
| | - Xuanxuan Nian
- Viral Vaccines Research and Development Department 2, Wuhan Institute of Biological Products Co., LTD , Wuhan , 430207 , China
- National Engineering Technology Research Center of Combination Vaccines, China National Biotec Group , Wuhan , 430207 , China
| | - Yue Hong
- Viral Vaccines Research and Development Department 2, Wuhan Institute of Biological Products Co., LTD , Wuhan , 430207 , China
- National Engineering Technology Research Center of Combination Vaccines, China National Biotec Group , Wuhan , 430207 , China
| | - Fang Li
- Viral Vaccines Research and Development Department 2, Wuhan Institute of Biological Products Co., LTD , Wuhan , 430207 , China
- National Engineering Technology Research Center of Combination Vaccines, China National Biotec Group , Wuhan , 430207 , China
| | - Feixia Peng
- Viral Vaccines Research and Development Department 2, Wuhan Institute of Biological Products Co., LTD , Wuhan , 430207 , China
- National Engineering Technology Research Center of Combination Vaccines, China National Biotec Group , Wuhan , 430207 , China
| | - Wei Zhao
- Viral Vaccines Research and Development Department 2, Wuhan Institute of Biological Products Co., LTD , Wuhan , 430207 , China
| | - Zhiwu Xia
- Viral Vaccines Research and Development Department 2, Wuhan Institute of Biological Products Co., LTD , Wuhan , 430207 , China
| | - Shihe Huang
- Viral Vaccines Research and Development Department 2, Wuhan Institute of Biological Products Co., LTD , Wuhan , 430207 , China
| | | | - Jinhua Chen
- Viral Vaccines Research and Development Department 2, Wuhan Institute of Biological Products Co., LTD , Wuhan , 430207 , China
- National Engineering Technology Research Center of Combination Vaccines, China National Biotec Group , Wuhan , 430207 , China
| | - Changgui Li
- National Institute of Food and Drug Control , Beijing , 100050 , China
| | - Xiaoming Yang
- National Engineering Technology Research Center of Combination Vaccines, China National Biotec Group , Wuhan , 430207 , China
- China National Biotec Group , Beijing , 100029 , China
| |
Collapse
|
11
|
Al Moussawy M, Abdelsamed HA. Non-cytotoxic functions of CD8 T cells: “repentance of a serial killer”. Front Immunol 2022; 13:1001129. [PMID: 36172358 PMCID: PMC9511018 DOI: 10.3389/fimmu.2022.1001129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/25/2022] [Indexed: 12/01/2022] Open
Abstract
Cytotoxic CD8 T cells (CTLs) are classically described as the “serial killers” of the immune system, where they play a pivotal role in protective immunity against a wide spectrum of pathogens and tumors. Ironically, they are critical drivers of transplant rejection and autoimmune diseases, a scenario very similar to the famous novel “The strange case of Dr. Jekyll and Mr. Hyde”. Until recently, it has not been well-appreciated whether CTLs can also acquire non-cytotoxic functions in health and disease. Several investigations into this question revealed their non-cytotoxic functions through interactions with various immune and non-immune cells. In this review, we will establish a new classification for CD8 T cell functions including cytotoxic and non-cytotoxic. Further, we will discuss this novel concept and speculate on how these functions could contribute to homeostasis of the immune system as well as immunological responses in transplantation, cancer, and autoimmune diseases.
Collapse
Affiliation(s)
- Mouhamad Al Moussawy
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Starzl Transplantation Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hossam A. Abdelsamed
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Starzl Transplantation Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh Liver Research Center, School of Medicine, Pittsburgh, PA, United States
- *Correspondence: Hossam A. Abdelsamed,
| |
Collapse
|
12
|
Hu W, Li YJ, Zhen C, Wang YY, Huang HH, Zou J, Zheng YQ, Huang GC, Meng SR, Jin JH, Li J, Zhou MJ, Fu YL, Zhang P, Li XY, Yang T, Wang XW, Yang XH, Song JW, Fan X, Jiao YM, Xu RN, Zhang JY, Zhou CB, Yuan JH, Huang L, Qin YQ, Wu FY, Shi M, Wang FS, Zhang C. CCL5-Secreting Virtual Memory CD8+ T Cells Inversely Associate With Viral Reservoir Size in HIV-1-Infected Individuals on Antiretroviral Therapy. Front Immunol 2022; 13:897569. [PMID: 35720272 PMCID: PMC9204588 DOI: 10.3389/fimmu.2022.897569] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/21/2022] [Indexed: 12/25/2022] Open
Abstract
Recent studies highlighted that CD8+ T cells are necessary for restraining reservoir in HIV-1-infected individuals who undergo antiretroviral therapy (ART), whereas the underlying cellular and molecular mechanisms remain largely unknown. Here, we enrolled 60 virologically suppressed HIV-1-infected individuals, to assess the correlations of the effector molecules and phenotypic subsets of CD8+ T cells with HIV-1 DNA and cell-associated unspliced RNA (CA usRNA). We found that the levels of HIV-1 DNA and usRNA correlated positively with the percentage of CCL4+CCL5- CD8+ central memory cells (TCM) while negatively with CCL4-CCL5+ CD8+ terminally differentiated effector memory cells (TEMRA). Moreover, a virtual memory CD8+ T cell (TVM) subset was enriched in CCL4-CCL5+ TEMRA cells and phenotypically distinctive from CCL4+ TCM subset, supported by single-cell RNA-Seq data. Specifically, TVM cells showed superior cytotoxicity potentially driven by T-bet and RUNX3, while CCL4+ TCM subset displayed a suppressive phenotype dominated by JUNB and CREM. In viral inhibition assays, TVM cells inhibited HIV-1 reactivation more effectively than non-TVM CD8+ T cells, which was dependent on CCL5 secretion. Our study highlights CCL5-secreting TVM cells subset as a potential determinant of HIV-1 reservoir size. This might be helpful to design CD8+ T cell-based therapeutic strategies for cure of the disease.
Collapse
Affiliation(s)
- Wei Hu
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China.,Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Yan-Jun Li
- Guangxi Acquired Immune Deficiency Syndrome (AIDS) Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China
| | - Cheng Zhen
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - You-Yuan Wang
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China.,Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Hui-Huang Huang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jun Zou
- Guangxi Acquired Immune Deficiency Syndrome (AIDS) Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China
| | - Yan-Qing Zheng
- Guangxi Acquired Immune Deficiency Syndrome (AIDS) Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China
| | - Gui-Chan Huang
- Guangxi Acquired Immune Deficiency Syndrome (AIDS) Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China
| | - Si-Run Meng
- Guangxi Acquired Immune Deficiency Syndrome (AIDS) Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China
| | - Jie-Hua Jin
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jing Li
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ming-Ju Zhou
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Yu-Long Fu
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Peng Zhang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xiao-Yu Li
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Tao Yang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xiu-Wen Wang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xiu-Han Yang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jin-Wen Song
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xing Fan
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Yan-Mei Jiao
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ruo-Nan Xu
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ji-Yuan Zhang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Chun-Bao Zhou
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jin-Hong Yuan
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Lei Huang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ya-Qin Qin
- Guangxi Acquired Immune Deficiency Syndrome (AIDS) Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China
| | - Feng-Yao Wu
- Guangxi Acquired Immune Deficiency Syndrome (AIDS) Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China
| | - Ming Shi
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Fu-Sheng Wang
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China.,Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China.,Guangxi Acquired Immune Deficiency Syndrome (AIDS) Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China
| | - Chao Zhang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China.,Guangxi Acquired Immune Deficiency Syndrome (AIDS) Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China
| |
Collapse
|
13
|
Calvet-Mirabent M, Sánchez-Cerrillo I, Martín-Cófreces N, Martínez-Fleta P, de la Fuente H, Tsukalov I, Delgado-Arévalo C, Calzada MJ, de Los Santos I, Sanz J, García-Fraile L, Sánchez-Madrid F, Alfranca A, Muñoz-Fernández MÁ, Buzón MJ, Martín-Gayo E. Antiretroviral therapy duration and immunometabolic state determine efficacy of ex vivo dendritic cell-based treatment restoring functional HIV-specific CD8+ T cells in people living with HIV. EBioMedicine 2022; 81:104090. [PMID: 35665682 PMCID: PMC9301875 DOI: 10.1016/j.ebiom.2022.104090] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/11/2022] [Accepted: 05/18/2022] [Indexed: 12/12/2022] Open
Abstract
Background Dysfunction of CD8+ T cells in people living with HIV-1 (PLWH) receiving anti-retroviral therapy (ART) has restricted the efficacy of dendritic cell (DC)-based immunotherapies against HIV-1. Heterogeneous immune exhaustion and metabolic states of CD8+ T cells might differentially associate with dysfunction. However, specific parameters associated to functional restoration of CD8+ T cells after DC treatment have not been investigated. Methods We studied association of restoration of functional HIV-1-specific CD8+ T cell responses after stimulation with Gag-adjuvant-primed DC with ART duration, exhaustion, metabolic and memory cell subsets profiles. Findings HIV-1-specific CD8+ T cell responses from a larger proportion of PLWH on long-term ART (more than 10 years; LT-ARTp) improved polyfunctionality and capacity to eliminate autologous p24+ infected CD4+ T cells in vitro. In contrast, functional improvement of CD8+ T cells from PLWH on short-term ART (less than a decade; ST-ARTp) after DC treatment was limited. This was associated with lower frequencies of central memory CD8+ T cells, increased co-expression of PD1 and TIGIT and reduced mitochondrial respiration and glycolysis induction upon TCR activation. In contrast, CD8+ T cells from LT-ARTp showed increased frequencies of TIM3+ PD1− cells and preserved induction of glycolysis. Treatment of dysfunctional CD8+ T cells from ST-ARTp with combined anti-PD1 and anti-TIGIT antibodies plus a glycolysis promoting drug restored their ability to eliminate infected CD4+ T cells. Interpretation Together, our study identifies specific immunometabolic parameters for different PLWH subgroups potentially useful for future personalized DC-based HIV-1 vaccines. Funding NIH (R21AI140930), MINECO/FEDER RETOS (RTI2018-097485-A-I00) and CIBERINF grants.
Collapse
Affiliation(s)
- Marta Calvet-Mirabent
- Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain; Universidad Autónoma de Madrid, Madrid, Spain
| | - Ildefonso Sánchez-Cerrillo
- Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain; Universidad Autónoma de Madrid, Madrid, Spain
| | - Noa Martín-Cófreces
- Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain; Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red Cardiovascular, CIBERCV, 28029 Madrid, Spain
| | - Pedro Martínez-Fleta
- Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Hortensia de la Fuente
- Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain; Centro de Investigación Biomédica en Red Cardiovascular, CIBERCV, 28029 Madrid, Spain
| | | | - Cristina Delgado-Arévalo
- Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain; Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Ignacio de Los Santos
- Infectious Diseases Unit from Hospital Universitario de La Princesa, Madrid, Spain; Centro de Investigación Biomédica en Red Infecciosas, CIBERINF, 28029 Madrid, Spain
| | - Jesús Sanz
- Infectious Diseases Unit from Hospital Universitario de La Princesa, Madrid, Spain; Centro de Investigación Biomédica en Red Infecciosas, CIBERINF, 28029 Madrid, Spain
| | - Lucio García-Fraile
- Infectious Diseases Unit from Hospital Universitario de La Princesa, Madrid, Spain; Centro de Investigación Biomédica en Red Infecciosas, CIBERINF, 28029 Madrid, Spain
| | - Francisco Sánchez-Madrid
- Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain; Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red Cardiovascular, CIBERCV, 28029 Madrid, Spain
| | - Arantzazu Alfranca
- Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - María Ángeles Muñoz-Fernández
- Immunology Section, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Maria J Buzón
- Infectious Diseases Department, Institut de Recerca Hospital Univesritari Vall d'Hebrón (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Enrique Martín-Gayo
- Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain; Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red Infecciosas, CIBERINF, 28029 Madrid, Spain.
| |
Collapse
|
14
|
Kumar Singh A, Padwal V, Palav H, Velhal S, Nagar V, Patil P, Patel V. Highly dampened HIV-specific cytolytic effector T cell responses define viremic non-progression. Immunobiology 2022; 227:152234. [PMID: 35671626 DOI: 10.1016/j.imbio.2022.152234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/30/2022] [Indexed: 11/05/2022]
Abstract
This study reports on HIV-specific T cell responses in HIV-1 infected Viremic Non-Progressors (VNPs), a rare group of people living with HIV that exhibit asymptomatic infection over several years accompanied by stable CD4+ T cell counts in spite of ongoing viral replication. We attempted to identify key virus-specific functional attributes that could underlie the apparently paradoxical virus-host equilibrium observed in VNPs. Our results revealed modulation of HIV-specific CD4+ and CD8+ effector T cell responses in VNPs towards a dominant non-cytolytic profile with concomitantly diminished degranulation (CD107a+) ability. Further, the HIV specific CD8+ effector T cell response was primarily enriched for MIP-1β producing cells. As expected, concordant with better viral suppression, VCs exhibit a robust cytolytic T cell response. Interestingly, PuPs shared features common to both these responses but did not exhibit a CD4+ central memory IFN-γ producing Gag-specific response that was shared by both non-progressor (VC and VNP) groups, suggesting CD4 helper response is critical for non-progression. Our study also revealed that cytolytic response in VNPs is primarily limited to polyfunctional cells while both monofunctional and polyfunctional cells significantly contribute to cytolytic responses in VCs. To further understand mechanisms underlying the unique HIV-specific effector T cell response described here in VNPs we also evaluated and demonstrated a possible role for altered gut homing in these individuals. Our findings inform immunotherapeutic interventions to achieve functional cures in the context of ART resistance and serious non AIDS events.
Collapse
Affiliation(s)
- Amit Kumar Singh
- Viral Immunopathogenesis Laboratory, ICMR-National Institute for Research in Reproductive Health, Mumbai, Maharashtra, India
| | - Varsha Padwal
- Viral Immunopathogenesis Laboratory, ICMR-National Institute for Research in Reproductive Health, Mumbai, Maharashtra, India
| | - Harsha Palav
- Viral Immunopathogenesis Laboratory, ICMR-National Institute for Research in Reproductive Health, Mumbai, Maharashtra, India
| | - Shilpa Velhal
- Viral Immunopathogenesis Laboratory, ICMR-National Institute for Research in Reproductive Health, Mumbai, Maharashtra, India
| | - Vidya Nagar
- Department of Medicine, Grant Medical College & Sir J. J. Group of Hospitals, Mumbai, Maharashtra, India
| | - Priya Patil
- Department of Medicine, Grant Medical College & Sir J. J. Group of Hospitals, Mumbai, Maharashtra, India
| | - Vainav Patel
- Viral Immunopathogenesis Laboratory, ICMR-National Institute for Research in Reproductive Health, Mumbai, Maharashtra, India.
| |
Collapse
|
15
|
Zaongo SD, Ouyang J, Chen Y, Jiao YM, Wu H, Chen Y. HIV Infection Predisposes to Increased Chances of HBV Infection: Current Understanding of the Mechanisms Favoring HBV Infection at Each Clinical Stage of HIV Infection. Front Immunol 2022; 13:853346. [PMID: 35432307 PMCID: PMC9010668 DOI: 10.3389/fimmu.2022.853346] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/14/2022] [Indexed: 11/25/2022] Open
Abstract
Human immunodeficiency virus (HIV) selectively targets and destroys the infection-fighting CD4+ T-lymphocytes of the human immune system, and has a life cycle that encompasses binding to certain cells, fusion to that cell, reverse transcription of its genome, integration of its genome into the host cell DNA, replication of the HIV genome, assembly of the HIV virion, and budding and subsequent release of free HIV virions. Once a host is infected with HIV, the host’s ability to competently orchestrate effective and efficient immune responses against various microorganisms, such as viral infections, is significantly disrupted. Without modern antiretroviral therapy (ART), HIV is likely to gradually destroy the cellular immune system, and thus the initial HIV infection will inexorably evolve into acquired immunodeficiency syndrome (AIDS). Generally, HIV infection in a patient has an acute phase, a chronic phase, and an AIDS phase. During these three clinical stages, patients are found with relatively specific levels of viral RNA, develop rather distinctive immune conditions, and display unique clinical manifestations. Convergent research evidence has shown that hepatitis B virus (HBV) co-infection, a common cause of chronic liver disease, is fairly common in HIV-infected individuals. HBV invasion of the liver can be facilitated by HIV infection at each clinical stage of the infection due to a number of contributing factors, including having identical transmission routes, immunological suppression, gut microbiota dysbiosis, poor vaccination immune response to hepatitis B immunization, and drug hepatotoxicity. However, there remains a paucity of research investigation which critically describes the influence of the different HIV clinical stages and their consequences which tend to favor HBV entrenchment in the liver. Herein, we review advances in the understanding of the mechanisms favoring HBV infection at each clinical stage of HIV infection, thus paving the way toward development of potential strategies to reduce the prevalence of HBV co-infection in the HIV-infected population.
Collapse
Affiliation(s)
- Silvere D. Zaongo
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Jing Ouyang
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Yaling Chen
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Yan-Mei Jiao
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hao Wu
- Department of Infectious Diseases, You’an Hospital, Capital Medical University, Beijing, China
| | - Yaokai Chen
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
- *Correspondence: Yaokai Chen,
| |
Collapse
|
16
|
Li F, Lu X, Ma Y, Gu Y, Ye T, Huang C. Monophosphoryl Lipid A Tolerance Against Chronic Stress-Induced Depression-Like Behaviors in Mice. Int J Neuropsychopharmacol 2022; 25:399-411. [PMID: 35015863 PMCID: PMC9154281 DOI: 10.1093/ijnp/pyab097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/29/2021] [Accepted: 01/06/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUNDS Our recent studies reported that a single injection with lipopolysaccharide (LPS) before stress exposure prevents depression-like behaviors in stressed mice. Monophosphoryl lipid A (MPL) is a derivative of LPS that lacks the undesirable properties of LPS. We hypothesize that MPL can exert a prophylactic effect on depression. METHODS The experimental mice were pre-injected with MPL before stress exposure. Depression in mice was induced through chronic social defeat stress (CSDS). Behavioral tests were conducted to identify depression-like behaviors. Real-time polymerase chain reaction and biochemical assays were performed to examine the gene and protein expression levels of pro-inflammatory cytokines. RESULTS A single MPL injection 1 day before stress exposure at the dosages of 400, 800, and 1600 μg/kg but not 200 μg/kg prevented CSDS-induced depression-like behaviors in mice. This effect of MPL, however, vanished with the extension of the interval time between drug injection and stress exposure from 1 day or 5 days to 10 days, which was rescued by a second MPL injection 10 days after the first MPL injection or by a 4× MPL injection 10 days before stress exposure. A single MPL injection (800 μg/kg) before stress exposure prevented CSDS-induced increases in the gene expression levels of pro-inflammatory cytokines in the hippocampus and prefrontal cortex. Pre-inhibiting the innate immune stimulation by minocycline pretreatment (40 mg/kg) abrogated the preventive effect of MPL on CSDS-induced depression-like behaviors and neuroinflammatory responses in animal brains. CONCLUSIONS MPL, through innate immune stimulation, prevents stress-induced depression-like behaviors in mice by preventing neuroinflammatory responses.
Collapse
Affiliation(s)
| | | | | | | | - Ting Ye
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Chao Huang
- Correspondence: Chao Huang, Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China ()
| |
Collapse
|
17
|
Denner J. Vaccination against the Koala Retrovirus (KoRV): Problems and Strategies. Animals (Basel) 2021; 11:ani11123555. [PMID: 34944329 PMCID: PMC8697897 DOI: 10.3390/ani11123555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 02/07/2023] Open
Abstract
The koala retrovirus (KoRV) is spreading in the koala population from the north to the south of Australia and is also in the process of endogenization into the koala genome. Virus infection is associated with tumorigenesis and immunodeficiency and is contributing to the decline of the animal population. Antibody production is an excellent marker of retrovirus infection; however, animals carrying endogenous KoRV are tolerant. Therefore, the therapeutic immunization of animals carrying endogenous KoRV seems to be ineffective. Using the recombinant transmembrane (TM) envelope protein of the KoRV, we immunized goats, rats and mice, obtaining in all cases neutralizing antibodies which recognize epitopes in the fusion peptide proximal region (FPPR), and in the membrane-proximal external region (MPER). Immunizing several animal species with the corresponding TM envelope protein of the closely related porcine endogenous retrovirus (PERV), as well as the feline leukemia virus (FeLV), we also induced neutralizing antibodies with similar epitopes. Immunizing with the TM envelope protein in addition to the surface envelope proteins of all three viruses resulted in higher titers of neutralizing antibodies. Immunizing KoRV-negative koalas with our vaccine (which is composed of both envelope proteins) may protect these animals from infection, and these may be the starting points of a virus-free population.
Collapse
Affiliation(s)
- Joachim Denner
- Institute of Virology, Free University Berlin, Robert von Ostertag-Str. 7-13, 14163 Berlin, Germany
| |
Collapse
|