1
|
Grönroos M, Jumpponen A, Roslund MI, Nurminen N, Oikarinen S, Parajuli A, Laitinen OH, Cinek O, Kramna L, Rajaniemi J, Hyöty H, Puhakka R, Sinkkonen A. Using patterns of shared taxa to infer bacterial dispersal in human living environment in urban and rural areas. Appl Environ Microbiol 2024; 90:e0090324. [PMID: 39230286 PMCID: PMC11498140 DOI: 10.1128/aem.00903-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/26/2024] [Indexed: 09/05/2024] Open
Abstract
Contact with environmental microbial communities primes the human immune system. Factors determining the distribution of microorganisms, such as dispersal, are thus important for human health. Here, we used the relative number of bacteria shared between environmental and human samples as a measure of bacterial dispersal and studied these associations with living environment and lifestyles. We analyzed amplicon sequence variants (ASVs) of the V4 region of 16S rDNA gene from 347 samples of doormat dust as well as samples of saliva, skin swabs, and feces from 53 elderly people in urban and rural areas in Finland at three timepoints. We first enumerated the ASVs shared between doormat and one of the human sample types (i.e., saliva, skin swab, or feces) of each individual subject and calculated the shared ASVs as a proportion of all ASVs in the given sample type of that individual. We observed that the patterns for the proportions of shared ASVs differed among seasons and human sample type. In skin samples, there was a negative association between the proportion of shared ASVs and the coverage of built environment (a proxy for degree of urbanization), whereas in saliva data, this association was positive. We discuss these findings in the context of differing species pools in urban and rural environments. IMPORTANCE Understanding how environmental microorganisms reach and interact with humans is a key question when aiming to increase human contacts with natural microbiota. Few methods are suitable for studying microbial dispersal at relatively large spatial scales. Thus, we tested an indirect method and studied patterns of bacterial taxa that are shared between humans and their living environment.
Collapse
Affiliation(s)
- M. Grönroos
- Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - A. Jumpponen
- Division of Biology and Ecological Genomics Institute, Kansas State University, Manhattan, Kansas, USA
| | - M. I. Roslund
- Natural Resources Institute Finland, Helsinki, Finland
| | - N. Nurminen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - S. Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - A. Parajuli
- Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
- Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - O. H. Laitinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - O. Cinek
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - L. Kramna
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - J. Rajaniemi
- Faculty of Built Environment, Tampere University, Tampere, Finland
| | - H. Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | - R. Puhakka
- Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - A. Sinkkonen
- Natural Resources Institute Finland, Helsinki, Finland
| |
Collapse
|
2
|
Bruno A, Arnoldi I, Barzaghi B, Boffi M, Casiraghi M, Colombo B, Di Gennaro P, Epis S, Facciotti F, Ferrari N, Fesce E, Ficetola GF, Fumagalli S, Galimberti A, Ghisleni G, Nissim WG, Mainardi L, Manenti R, Messina V, Negri A, Palm E, Piga BEA, Rainisio N, Tommasi N, Labra M. The One Health approach in urban ecosystem rehabilitation: An evidence-based framework for designing sustainable cities. iScience 2024; 27:110959. [PMID: 39391715 PMCID: PMC11466616 DOI: 10.1016/j.isci.2024.110959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
Rapid urbanization has led to negative, and sometimes unintended, consequences on biodiversity and human health. While cities offer numerous advantages in meeting the basic needs of a growing population, they also pose less apparent and longer-term health costs. To address the multifaceted impacts of urbanization, an evidence-based design framework for establishing mitigation and regeneration actions is essential. Via a "One Health" approach, this perspective provides recommendations and strategies for the urban ecosystem rehabilitation of future cities, placing biodiversity and ecosystem services at the core of designing healthy and sustainable urban spaces. The framework we propose is based on a Hub and Spoke model to integrate diverse perspectives from public and private sectors and declined in a six-building-blocks structure. This will ensure that efforts are sustainable, health-centered, socially inclusive, and grounded in high-quality data, reinforcing the essential connection between healthy environments and thriving communities.
Collapse
Affiliation(s)
- Antonia Bruno
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, piazza della Scienza, 2, 20126 Milan, Italy
| | - Irene Arnoldi
- Department of Biosciences, University of Milan, via Celoria, 26, 20133 Milan, Italy
| | - Benedetta Barzaghi
- Department of Environmental Science and Policy, University of Milan, via Celoria, 2, 20133 Milan, Italy
| | - Marco Boffi
- Department of Cultural Heritage and Environment, University of Milan, via Noto, 6, 20142 Milan, Italy
| | - Maurizio Casiraghi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, piazza della Scienza, 2, 20126 Milan, Italy
| | - Beatrice Colombo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, piazza della Scienza, 2, 20126 Milan, Italy
| | - Patrizia Di Gennaro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, piazza della Scienza, 2, 20126 Milan, Italy
| | - Sara Epis
- Department of Biosciences, University of Milan, via Celoria, 26, 20133 Milan, Italy
| | - Federica Facciotti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, piazza della Scienza, 2, 20126 Milan, Italy
| | - Nicola Ferrari
- Department of Veterinary Medicine and Animal Sciences (DiVAS), University of Milan, via dell’Università, 6, 26900 Lodi, Italy
| | - Elisa Fesce
- Department of Veterinary Medicine and Animal Sciences (DiVAS), University of Milan, via dell’Università, 6, 26900 Lodi, Italy
| | | | - Sara Fumagalli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, piazza della Scienza, 2, 20126 Milan, Italy
| | - Andrea Galimberti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, piazza della Scienza, 2, 20126 Milan, Italy
| | - Giulia Ghisleni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, piazza della Scienza, 2, 20126 Milan, Italy
| | - Werther Guidi Nissim
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, piazza della Scienza, 2, 20126 Milan, Italy
| | - Luca Mainardi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, via Ponzio, 34, 20133 Milan, Italy
| | - Raoul Manenti
- Department of Environmental Science and Policy, University of Milan, via Celoria, 2, 20133 Milan, Italy
| | - Valeria Messina
- Department of Environmental Science and Policy, University of Milan, via Celoria, 2, 20133 Milan, Italy
| | - Agata Negri
- Department of Biosciences, University of Milan, via Celoria, 26, 20133 Milan, Italy
| | - Emily Palm
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, piazza della Scienza, 2, 20126 Milan, Italy
| | - Barbara Ester Adele Piga
- Department of Architecture and Urban Studies, Laboratorio di Simulazione Urbana Fausto Curti, Politecnico di Milano, piazza da Vinci, 26, 20133 Milan, Italy
| | - Nicola Rainisio
- Department of Cultural Heritage and Environment, University of Milan, via Noto, 6, 20142 Milan, Italy
| | - Nicola Tommasi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, piazza della Scienza, 2, 20126 Milan, Italy
| | - Massimo Labra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, piazza della Scienza, 2, 20126 Milan, Italy
| |
Collapse
|
3
|
Chen WY, Lee CP, Pavlović J, Pangallo D, Wu JH. Characterization of microbiome, resistome, mobilome, and virulome in anoxic and oxic wastewater treatment processes in Slovakia and Taiwan. Heliyon 2024; 10:e38723. [PMID: 39397942 PMCID: PMC11471163 DOI: 10.1016/j.heliyon.2024.e38723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/15/2024] Open
Abstract
This study presents a comprehensive analysis of samples from urban wastewater treatment plants using anoxic/oxic processes in Slovakia and Taiwan, focusing on microbiome, resistome, mobilome, and virulome, which were analyzed using a shotgun metagenomic approach. Distinct characteristics were observed; in Taiwan, a higher abundance and diversity of antibiotic resistance genes were found in both influent and effluent samples, while there was a higher prevalence of mobile genetic elements and virulence factor genes in Slovakia. Variations were noted in microbial community structures; influent samples in Taiwan were reflected from fecal and hospital sources, and those in Slovakia were derived from environmental elements. At the genus level, the samples from Taiwan's sewage treatment plants were dominated by Cloacibacterium and Bacteroides, while Acinetobacter was predominant in samples from Slovakia. Despite similar antibiotic usage patterns, distinct wastewater characteristics and operational disparities influenced microbiome, resistome, mobilome, and virulome compositions, with limited reduction of most resistance genes by the studied anoxic/oxic processes. These findings underscore the importance of region-specific insights into microbial communities for understanding the dynamics of antimicrobial resistance and pathogenicity in urban wastewater treatment systems. Such insights may lay the groundwork for optimizing treatment processes and reducing the dissemination of antibiotic resistance and pathogenicity genes for safeguarding public health.
Collapse
Affiliation(s)
- Wei-Yu Chen
- Department of Environmental Engineering, National Cheng Kung University, Taiwan
| | - Chun-Pao Lee
- Department of Environmental Engineering, National Cheng Kung University, Taiwan
| | - Jelena Pavlović
- Institute of Molecular Biology, Slovak Academy of Sciences, Slovakia
| | - Domenico Pangallo
- Institute of Molecular Biology, Slovak Academy of Sciences, Slovakia
| | - Jer-Horng Wu
- Department of Environmental Engineering, National Cheng Kung University, Taiwan
| |
Collapse
|
4
|
Kostic T, Schloter M, Arruda P, Berg G, Charles TC, Cotter PD, Kiran GS, Lange L, Maguin E, Meisner A, van Overbeek L, Sanz Y, Sarand I, Selvin J, Tsakalidou E, Smidt H, Wagner M, Sessitsch A. Concepts and criteria defining emerging microbiome applications. Microb Biotechnol 2024; 17:e14550. [PMID: 39236296 PMCID: PMC11376781 DOI: 10.1111/1751-7915.14550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/29/2024] [Indexed: 09/07/2024] Open
Abstract
In recent years, microbiomes and their potential applications for human, animal or plant health, food production and environmental management came into the spotlight of major national and international policies and strategies. This has been accompanied by substantial R&D investments in both public and private sectors, with an increasing number of products entering the market. Despite widespread agreement on the potential of microbiomes and their uses across disciplines, stakeholders and countries, there is no consensus on what defines a microbiome application. This often results in non-comprehensive communication or insufficient documentation making commercialisation and acceptance of the novel products challenging. To showcase the complexity of this issue we discuss two selected, well-established applications and propose criteria defining a microbiome application and their conditions of use for clear communication, facilitating suitable regulatory frameworks and building trust among stakeholders.
Collapse
Affiliation(s)
- Tanja Kostic
- AIT Austrian Institute of Technology GmbHViennaAustria
| | | | | | | | | | - Paul D. Cotter
- Teagasc Food Research Centre, MooreparkAPC Microbiome Ireland and VistaMilkCorkIreland
| | | | - Lene Lange
- LL‐BioEconomy, Research and AdvisoryCopenhagenDenmark
| | - Emmanuelle Maguin
- Université Paris‐Saclay, INRAE, AgroParisTech, MICALIS UMR1319Jouy‐en‐JosasFrance
| | - Annelein Meisner
- Wageningen University & Research, Wageningen ResearchWageningenThe Netherlands
| | - Leo van Overbeek
- Wageningen University & Research, Wageningen ResearchWageningenThe Netherlands
| | - Yolanda Sanz
- Institute of Agrochemistry and Food Technology – Spanish National Research Council (IATA‐CSIC)PaternaValenciaSpain
| | - Inga Sarand
- Tallinn University of TechnologyTallinnEstonia
| | | | | | - Hauke Smidt
- Laboratory of MicrobiologyWageningen University & ResearchWageningenThe Netherlands
| | - Martin Wagner
- FFoQSI GmbH – Austrian Competence Centre for Feed and Food Quality, Safety and InnovationTullnAustria
| | | |
Collapse
|
5
|
Light SH, Nagler CR. Regulation of immune responses to food by commensal microbes. Immunol Rev 2024; 326:203-218. [PMID: 39285525 PMCID: PMC11472335 DOI: 10.1111/imr.13396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The increasing prevalence of immune-mediated non-communicable chronic diseases, such as food allergies, has prompted a deeper investigation into the role of the gut microbiome in modulating immune responses. Here, we explore the complex interactions between commensal microbes and the host immune system, highlighting the critical role of gut bacteria in maintaining immune homeostasis. We examine how modern lifestyle practices and environmental factors have disrupted co-evolved host-microbe interactions and discuss how changes in microbiome composition impact epithelial barrier function, responses to food allergens, and susceptibility to allergic diseases. Finally, we examine the potential of bioengineered microbiome-based therapies, and live biotherapeutic products, for reestablishing immune homeostasis to prevent or treat food allergies.
Collapse
Affiliation(s)
- Samuel H. Light
- Department of Microbiology, University of Chicago, Chicago IL, 60637
| | - Cathryn R. Nagler
- Department of Pathology, University of Chicago, Chicago IL, 60637
- Department of Biological Sciences Division, Pritzker School of Molecular Engineering, University of Chicago, Chicago IL, 60637
| |
Collapse
|
6
|
Schweitzer M, Kögl I, Wassermann B, Abdelfattah A, Wicaksono WA, Berg G. Urban air quality affects the apple microbiome assembly. ENVIRONMENTAL RESEARCH 2024; 262:119858. [PMID: 39197489 DOI: 10.1016/j.envres.2024.119858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/01/2024]
Abstract
Exposure to air pollution affects health of all organisms on earth but the impact on the plant microbiome is less understood. Here, we link the Air Quality Index with the dust and apple epiphytic and endophytic microbiome across the city of Graz (Austria). The microbiome of the apple episphere, peel endosphere and pulp endosphere, and surrounding dust was analyzed. Our results show that the fungal communities were more influenced by air quality than bacterial communities. Bacterial communities, instead, were more specific for the individual sample types, especially noticeable in the pulp endosphere. The microbiome of each sample type was comprised of distinct microbial communities. Overall, the bacterial communities were highly dominated by Proteobacteria followed by Bacteroidota and Actinobacteriota, and the fungal communities were dominated by Ascomycota followed by Basidiomycota. With lower air quality, the relative abundance of the fungal orders Hypocreales and Pleosporales decreased in the apple episphere and the peel endosphere, respectively. Interestingly, an unexpectedly high level of similarity was observed between the bacterial communities of dust and peel endosphere, while the epiphytic bacterial community was significantly different compared to the other samples. We suggested that dust served as a potential microbial colonization route for the fruit microbiome as most bacteria (55%) colonizing the peel endosphere originated from dust. In conclusion, air quality affects the microbiome of edible plants, which can cause health consequences in humans. Therefore, this knowledge should be considered in urban and horticultural farming strategies.
Collapse
Affiliation(s)
- Matthias Schweitzer
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria
| | - Isabella Kögl
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria; Austrian Centre of Industrial Biotechnology (ACIB GmbH), Krenngasse 37, 8010, Graz, Austria
| | - Birgit Wassermann
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria
| | - Ahmed Abdelfattah
- Leibniz-Institute for Agricultural Engineering and Bioeconomy Potsdam (ATB), Max-Eyth-Allee 100, 14469, Potsdam, Germany; Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
| | - Wisnu Adi Wicaksono
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria.
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria; Leibniz-Institute for Agricultural Engineering and Bioeconomy Potsdam (ATB), Max-Eyth-Allee 100, 14469, Potsdam, Germany; Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany.
| |
Collapse
|
7
|
Compant S, Cassan F, Kostić T, Johnson L, Brader G, Trognitz F, Sessitsch A. Harnessing the plant microbiome for sustainable crop production. Nat Rev Microbiol 2024:10.1038/s41579-024-01079-1. [PMID: 39147829 DOI: 10.1038/s41579-024-01079-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2024] [Indexed: 08/17/2024]
Abstract
Global research on the plant microbiome has enhanced our understanding of the complex interactions between plants and microorganisms. The structure and functions of plant-associated microorganisms, as well as the genetic, biochemical, physical and metabolic factors that influence the beneficial traits of plant microbiota have also been intensively studied. Harnessing the plant microbiome has led to the development of various microbial applications to improve crop productivity in the face of a range of challenges, for example, climate change, abiotic and biotic stresses, and declining soil properties. Microorganisms, particularly nitrogen-fixing rhizobia as well as mycorrhizae and biocontrol agents, have been applied for decades to improve plant nutrition and health. Still, there are limitations regarding efficacy and consistency under field conditions. Also, the wealth of expanding knowledge on microbiome diversity, functions and interactions represents a huge source of information to exploit for new types of application. In this Review, we explore plant microbiome functions, mechanisms, assembly and types of interaction, and discuss current applications and their pitfalls. Furthermore, we elaborate on how the latest findings in plant microbiome research may lead to the development of new or more advanced applications. Finally, we discuss research gaps to fully leverage microbiome functions for sustainable plant production.
Collapse
Affiliation(s)
| | | | - Tanja Kostić
- AIT Austrian Institute of Technology, Vienna, Austria
| | | | - Günter Brader
- AIT Austrian Institute of Technology, Vienna, Austria
| | | | | |
Collapse
|
8
|
Maier L, Stein-Thoeringer C, Ley RE, Brötz-Oesterhelt H, Link H, Ziemert N, Wagner S, Peschel A. Integrating research on bacterial pathogens and commensals to fight infections-an ecological perspective. THE LANCET. MICROBE 2024; 5:100843. [PMID: 38608681 DOI: 10.1016/s2666-5247(24)00049-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 04/14/2024]
Abstract
The incidence of antibiotic-resistant bacterial infections is increasing, and development of new antibiotics has been deprioritised by the pharmaceutical industry. Interdisciplinary research approaches, based on the ecological principles of bacterial fitness, competition, and transmission, could open new avenues to combat antibiotic-resistant infections. Many facultative bacterial pathogens use human mucosal surfaces as their major reservoirs and induce infectious diseases to aid their lateral transmission to new host organisms under some pathological states of the microbiome and host. Beneficial bacterial commensals can outcompete specific pathogens, thereby lowering the capacity of the pathogens to spread and cause serious infections. Despite the clinical relevance, however, the understanding of commensal-pathogen interactions in their natural habitats remains poor. In this Personal View, we highlight directions to intensify research on the interactions between bacterial pathogens and commensals in the context of human microbiomes and host biology that can lead to the development of innovative and sustainable ways of preventing and treating infectious diseases.
Collapse
Affiliation(s)
- Lisa Maier
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; German Center for Infection Research, partner site, Tübingen, Germany
| | - Christoph Stein-Thoeringer
- Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; German Center for Infection Research, partner site, Tübingen, Germany; Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| | - Ruth E Ley
- Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; Max Planck Institute for Biology, Tübingen, Germany
| | - Heike Brötz-Oesterhelt
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; German Center for Infection Research, partner site, Tübingen, Germany
| | - Hannes Link
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany
| | - Nadine Ziemert
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; German Center for Infection Research, partner site, Tübingen, Germany
| | - Samuel Wagner
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; German Center for Infection Research, partner site, Tübingen, Germany
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; German Center for Infection Research, partner site, Tübingen, Germany.
| |
Collapse
|
9
|
Beattie GA, Bayliss KL, Jacobson DA, Broglie R, Burkett-Cadena M, Sessitsch A, Kankanala P, Stein J, Eversole K, Lichens-Park A. From Microbes to Microbiomes: Applications for Plant Health and Sustainable Agriculture. PHYTOPATHOLOGY 2024; 114:1742-1752. [PMID: 38776137 DOI: 10.1094/phyto-02-24-0054-kc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Plant-microbe interaction research has had a transformative trajectory, from individual microbial isolate studies to comprehensive analyses of plant microbiomes within the broader phytobiome framework. Acknowledging the indispensable role of plant microbiomes in shaping plant health, agriculture, and ecosystem resilience, we underscore the urgent need for sustainable crop production strategies in the face of contemporary challenges. We discuss how the synergies between advancements in 'omics technologies and artificial intelligence can help advance the profound potential of plant microbiomes. Furthermore, we propose a multifaceted approach encompassing translational considerations, transdisciplinary research initiatives, public-private partnerships, regulatory policy development, and pragmatic expectations for the practical application of plant microbiome knowledge across diverse agricultural landscapes. We advocate for strategic collaboration and intentional transdisciplinary efforts to unlock the benefits offered by plant microbiomes and address pressing global issues in food security. By emphasizing a nuanced understanding of plant microbiome complexities and fostering realistic expectations, we encourage the scientific community to navigate the transformative journey from discoveries in the laboratory to field applications. As companies specializing in agricultural microbes and microbiomes undergo shifts, we highlight the necessity of understanding how to approach sustainable agriculture with site-specific management solutions. While cautioning against overpromising, we underscore the excitement of exploring the many impacts of microbiome-plant interactions. We emphasize the importance of collaborative endeavors with societal partners to accelerate our collective capacity to harness the diverse and yet-to-be-discovered beneficial activities of plant microbiomes.
Collapse
Affiliation(s)
- Gwyn A Beattie
- International Alliance for Phytobiomes Research, Eau Claire, WI 54701, U.S.A
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA 50014, U.S.A
| | - Kirsty L Bayliss
- Food Futures Institute, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Daniel A Jacobson
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN 37830, U.S.A
| | - Richard Broglie
- International Alliance for Phytobiomes Research, Eau Claire, WI 54701, U.S.A
| | | | - Angela Sessitsch
- International Alliance for Phytobiomes Research, Eau Claire, WI 54701, U.S.A
- Bioresources Unit, AIT Austrian Institute of Technology, 3430 Tulln, Austria
| | | | - Joshua Stein
- International Alliance for Phytobiomes Research, Eau Claire, WI 54701, U.S.A
- Eversole Associates, Arlington, MA 02476, U.S.A
| | - Kellye Eversole
- International Alliance for Phytobiomes Research, Eau Claire, WI 54701, U.S.A
- Eversole Associates, Arlington, MA 02476, U.S.A
| | - Ann Lichens-Park
- International Alliance for Phytobiomes Research, Eau Claire, WI 54701, U.S.A
| |
Collapse
|
10
|
Poupin MJ, González B. Embracing complexity in plant-microbiome systems. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70000. [PMID: 39189551 PMCID: PMC11348195 DOI: 10.1111/1758-2229.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/27/2024] [Indexed: 08/28/2024]
Abstract
Despite recent advances in understanding the role of microorganisms in plant holobiont metabolism, physiology, and fitness, several relevant questions are yet to be answered, with implications for ecology, evolution, and sustainable agriculture. This article explores some of these questions and discusses emerging research areas in plant microbiomes. Firstly, it emphasizes the need to move beyond taxonomic characterization towards understanding microbial functions within plant ecosystems. Secondly, controlling methodological biases and enhancing OMICS technologies' standardization is imperative for a deeper comprehension of plant-microbiota interactions. Furthermore, while plant microbiota research has primarily centred on bacteria and fungi, other microbial players such as archaea, viruses, and microeukaryotes have been largely overlooked. Emerging evidence highlights their presence and potential roles, underscoring the need for thorough assessments. Future research should aim to elucidate the ecological microbial interactions, their impact on plant performance, and how the plant context shapes microbial community dynamics. Finally, a discussion is provided on how the multiple layers of abiotic and biotic factors influencing the spatiotemporal dynamics of plant-microbiome systems require in-depth attention. Examples illustrate how synthetic communities and computational methods such as machine learning and artificial intelligence provide alternatives to tackle these challenges and analyse the plant holobiont as a complex system.
Collapse
Affiliation(s)
- María Josefina Poupin
- Laboratorio de Bioingeniería, Facultad de Ingeniería y CienciasUniversidad Adolfo IbáñezSantiagoChile
- Center of Applied Ecology and Sustainability (CAPES)SantiagoChile
- Millennium Nucleus for the Development of Super Adaptable Plants (MN‐SAP)SantiagoChile
| | - Bernardo González
- Laboratorio de Bioingeniería, Facultad de Ingeniería y CienciasUniversidad Adolfo IbáñezSantiagoChile
- Center of Applied Ecology and Sustainability (CAPES)SantiagoChile
- Millennium Nucleus for the Development of Super Adaptable Plants (MN‐SAP)SantiagoChile
| |
Collapse
|
11
|
Bustamante M, Koopman F, Martens J, Brons JK, DelaFuente J, Hackl T, Kuipers OP, van Doorn GS, de Vos MGJ. Community context influences the conjugation efficiency of Escherichia coli. FEMS MICROBES 2024; 5:xtae023. [PMID: 39170752 PMCID: PMC11338288 DOI: 10.1093/femsmc/xtae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/18/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
In urinary tract infections (UTIs), different bacteria can live in a polymicrobial community consisting of different species. It is unknown how community members affect the conjugation efficiency of uropathogenic Escherichia coli. We investigated the influence of individual species often coisolated from urinary infections (UTI) on the conjugation efficiency of E. coli isolates in artificial urine medium. Pairwise conjugation rate experiments were conducted between a donor E. coli strain containing the pOXA-48 plasmid and six uropathogenic E. coli isolates, in the presence and absence of five different species commonly coisolated in polymicrobial UTIs to elucidate their effect on the conjugation efficiency of E. coli. We found that the basal conjugation rates of pOXA-48, in the absence of other species, are dependent on the bacterial host genetic background. Additionally, we found that bacterial interactions have an overall positive effect on the conjugation rate of pOXA-48. Particularly, Gram-positive enterococcal species were found to enhance the conjugation rates towards uropathogenic E. coli isolates. We hypothesize that the nature of the coculture and physical interactions are important for these increased conjugation rates in an artificial urine medium environment.
Collapse
Affiliation(s)
| | - Floor Koopman
- GELIFES, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Jesper Martens
- GELIFES, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Jolanda K Brons
- GELIFES, University of Groningen, 9747 AG Groningen, The Netherlands
| | | | - Thomas Hackl
- GELIFES, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Oscar P Kuipers
- GBB, University of Groningen, 9747 AG Groningen, The Netherlands
| | | | - Marjon G J de Vos
- GELIFES, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
12
|
Riva V, Vergani L, Rashed AA, El Saadi A, Sabatino R, Di Cesare A, Crotti E, Mapelli F, Borin S. Plant species influences the composition of root system microbiome and its antibiotic resistance profile in a constructed wetland receiving primary treated wastewater. Front Microbiol 2024; 15:1436122. [PMID: 39113842 PMCID: PMC11303162 DOI: 10.3389/fmicb.2024.1436122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Constructed wetlands (CWs) are nature-based solutions for wastewater treatment where the root system microbiome plays a key role in terms of nutrient and pollutant removal. Nonetheless, little is known on plant-microbe interactions and bacterial population selection in CWs, which are mostly characterized in terms of engineering aspects. Methods Here, cultivation-independent and cultivation-based analyses were applied to study the bacterial communities associated to the root systems of Phragmites australis and Typha domingensis co-occurring in the same cell of a CW receiving primary treated wastewaters. Results and discussion Two endophytic bacteria collections (n = 156) were established aiming to find novel strains for microbial-assisted phytodepuration, however basing on their taxonomy the possible use of these strains was limited by their low degrading potential and/or for risks related to the One-Health concept. A sharp differentiation arose between the P. australis and T. domingensis collections, mainly represented by lactic acid bacteria (98%) and Enterobacteriaceae (69%), respectively. Hence, 16S rRNA amplicon sequencing was used to disentangle the microbiome composition in the root system fractions collected at increasing distance from the root surface. Both the fraction type and the plant species were recognized as drivers of the bacterial community structure. Moreover, differential abundance analysis revealed that, in all fractions, several bacteria families were significantly and differentially enriched in P. australis or in T. domingensis. CWs have been also reported as interesting options for the removal of emerging contaminants (e.g, antibiotic resistance genes, ARGs). In this study, ARGs were mostly present in the rhizosphere of both plant species, compared to the other analyzed fractions. Notably, qPCR data showed that ARGs (i.e., ermB, bla TEM, tetA) and intl1 gene (integrase gene of the class 1 integrons) were significantly higher in Phragmites than Typha rhizospheres, suggesting that macrophyte species growing in CWs can display a different ability to remove ARGs from wastewater. Overall, the results suggest the importance to consider the plant-microbiome interactions, besides engineering aspects, to select the most suitable species when designing phytodepuration systems.
Collapse
Affiliation(s)
- Valentina Riva
- Department of Food, Environmental, and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Lorenzo Vergani
- Department of Food, Environmental, and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Ahmed Ali Rashed
- National Water Management and Irrigation Systems Research Institute, National Water Research Center, Shoubra meuip El-Kheima, Egypt
| | - Aiman El Saadi
- National Water Management and Irrigation Systems Research Institute, National Water Research Center, Shoubra meuip El-Kheima, Egypt
| | - Raffaella Sabatino
- National Research Council of Italy – Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Andrea Di Cesare
- National Research Council of Italy – Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Elena Crotti
- Department of Food, Environmental, and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Francesca Mapelli
- Department of Food, Environmental, and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Sara Borin
- Department of Food, Environmental, and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| |
Collapse
|
13
|
Brame JE, Liddicoat C, Abbott CA, Cando‐Dumancela C, Fickling NW, Robinson JM, Breed MF. Urban sports fields support higher levels of soil butyrate and butyrate-producing bacteria than urban nature parks. Ecol Evol 2024; 14:e70057. [PMID: 39041015 PMCID: PMC11262829 DOI: 10.1002/ece3.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024] Open
Abstract
Butyrate-producing bacteria colonise the gut of humans and non-human animals, where they produce butyrate, a short-chain fatty acid with known health benefits. Butyrate-producing bacteria also reside in soils and soil bacteria can drive the assembly of airborne bacterial communities (the aerobiome). Aerobiomes in urban greenspaces are important reservoirs of butyrate-producing bacteria as they supplement the human microbiome, but soil butyrate producer communities have rarely been examined in detail. Here, we studied soil metagenome taxonomic and functional profiles and soil physicochemical data from two urban greenspace types: sports fields (n = 11) and nature parks (n = 22). We also developed a novel method to quantify soil butyrate and characterised the in situ activity of butyrate-producing bacteria. We show that soil butyrate was higher in sports fields than nature parks and that sports fields also had significantly higher relative abundances of the terminal butyrate production genes buk and butCoAT than nature parks. Soil butyrate positively correlated with buk gene abundance (but not butCoAT). Soil moisture (r = .50), calcium (r = -.62), iron (ρ = .54), ammonium nitrogen (ρ = .58) and organic carbon (r = .45) had the strongest soil abiotic effects on soil butyrate concentrations and iron (ρ = .56) and calcium (ρ = -.57) had the strongest soil abiotic effects on buk read abundances. Overall, our findings contribute important new insights into the role of sports fields as key exposure reservoirs of butyrate producing bacteria, with important implications for the provision of microbiome-mediated human health benefits via butyrate.
Collapse
Affiliation(s)
- Joel E. Brame
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
- The Aerobiome Innovation and Research Hub (The AIR Hub), College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
| | - Craig Liddicoat
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
- The Aerobiome Innovation and Research Hub (The AIR Hub), College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
| | - Catherine A. Abbott
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
| | - Christian Cando‐Dumancela
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
- The Aerobiome Innovation and Research Hub (The AIR Hub), College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
| | - Nicole W. Fickling
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
- The Aerobiome Innovation and Research Hub (The AIR Hub), College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
| | - Jake M. Robinson
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
- The Aerobiome Innovation and Research Hub (The AIR Hub), College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
| | - Martin F. Breed
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
- The Aerobiome Innovation and Research Hub (The AIR Hub), College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
| |
Collapse
|
14
|
Hassan S, Mushtaq M, Ganiee SA, Zaman M, Yaseen A, Shah AJ, Ganai BA. Microbial oases in the ice: A state-of-the-art review on cryoconite holes as diversity hotspots and their scientific connotations. ENVIRONMENTAL RESEARCH 2024; 252:118963. [PMID: 38640991 DOI: 10.1016/j.envres.2024.118963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Cryoconite holes, small meltwater pools on the surface of glaciers and ice sheets, represent extremely cold ecosystems teeming with diverse microbial life. Cryoconite holes exhibit greater susceptibility to the impacts of climate change, underlining the imperative nature of investigating microbial communities as an essential module of polar and alpine ecosystem monitoring efforts. Microbes in cryoconite holes play a critical role in nutrient cycling and can produce bioactive compounds, holding promise for industrial and pharmaceutical innovation. Understanding microbial diversity in these delicate ecosystems is essential for effective conservation strategies. Therefore, this review discusses the microbial diversity in these extreme environments, aiming to unveil the complexity of their microbial communities. The current study envisages that cryoconite holes as distinctive ecosystems encompass a multitude of taxonomically diverse and functionally adaptable microorganisms that exhibit a rich microbial diversity and possess intricate ecological functions. By investigating microbial diversity and ecological functions of cryoconite holes, this study aims to contribute valuable insights into the broader field of environmental microbiology and enhance further understanding of these ecosystems. This review seeks to provide a holistic overview regarding the formation, evolution, characterization, and molecular adaptations of cryoconite holes. Furthermore, future research directions and challenges underlining the need for long-term monitoring, and ethical considerations in preserving these pristine environments are also provided. Addressing these challenges and resolutely pursuing future research directions promises to enrich our comprehension of microbial diversity within cryoconite holes, revealing the broader ecological and biogeochemical implications. The inferences derived from the present study will provide researchers, ecologists, and policymakers with a profound understanding of the significance and utility of cryoconite holes in unveiling the microbial diversity and its potential applications.
Collapse
Affiliation(s)
- Shahnawaz Hassan
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India.
| | - Misba Mushtaq
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Shahid Ahmad Ganiee
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Muzafar Zaman
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Aarif Yaseen
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Abdul Jalil Shah
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, 190006, India
| | - Bashir Ahmad Ganai
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India.
| |
Collapse
|
15
|
Yurayart C, Niae S, Limsivilai O, Thengchaisri N, Sattasathuchana P. Comparative analysis of the distribution and antifungal susceptibility of yeast species in cat facial hair and human nails. Sci Rep 2024; 14:14726. [PMID: 38926524 PMCID: PMC11208614 DOI: 10.1038/s41598-024-65730-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024] Open
Abstract
Zoonotic yeast species have been implicated in disease development in both humans and cats. This study analyzed the yeast mycobiota present in feline facial hair and human nails and explored potential interspecies associations. A total of 118 biological specimens were examined, including 59 feline facial hair and 59 human nail samples. DNA extraction and DNA sequencing were performed to identify the specific yeast species. The most predominant yeast species in humans and cats were selected for antifungal susceptibility testing (itraconazole, ketoconazole, miconazole, and terbinafine). The findings unveiled diverse yeast species in cats and humans. Malassezia pachydermatis (45.8%) and Malassezia furfur (30.5%) were the most common yeast species in cats and humans, respectively. However, no significant correlation was detected between the yeast species identified in cats and their owners residing in the same household (p > 0.05). Miconazole exhibited the highest minimum inhibitory concentrations (MICs) against Malassezia pachydermatis and Malassezia furfur in both cat and human isolates, whereas terbinafine showed the lowest MICs against most Malassezia pachydermatis and Malassezia furfur in both cat and human isolates. Diverse yeast species in cat facial hair and human nails suggest possible cross-contamination among humans, pets, and environments.
Collapse
Affiliation(s)
- Chompoonek Yurayart
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Sara Niae
- Faculty of Veterinary Science, Rajamangala University of Technology Srivijaya, Nakhon Si Thammarat, 80240, Thailand
| | - Orawan Limsivilai
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Naris Thengchaisri
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, 50 Ngamwongwan Rd, Latyao, Jatujak, Bangkok, 10900, Thailand
| | - Panpicha Sattasathuchana
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, 50 Ngamwongwan Rd, Latyao, Jatujak, Bangkok, 10900, Thailand.
| |
Collapse
|
16
|
Timmis K, Hallsworth JE. This is the Age of Microbial Technology: Crucial roles of learned societies and academies. Microb Biotechnol 2024; 17:e14450. [PMID: 38683674 PMCID: PMC11057497 DOI: 10.1111/1751-7915.14450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 03/07/2024] [Indexed: 05/02/2024] Open
Abstract
Microbial technologies constitute a huge and unique potential for confronting major humanitarian and biosphere challenges, especially in the realms of sustainability and providing basic goods and services where they are needed and particularly in low-resource settings. These technologies are evolving rapidly. Powerful approaches are being developed to create novel products, processes, and circular economies, including new prophylactics and therapies in healthcare, bioelectric systems, and whole-cell understanding of metabolism that provides novel insights into mechanisms and how they can be utilised for applications. The modulation of microbiomes promises to create important applications and mitigate problems in a number of spheres. Collectively, microbial technologies save millions of lives each year and have the potential, through increased deployment, to save many more. They help restore environmental health, improve soil fertility, enable regenerative agriculture, reduce biodiversity losses, reduce pollution, and mitigate polluted environments. Many microbial technologies may be considered to be 'healing' technologies - healing of humans, of other members of the biosphere, and of the environment. This is the Age of Microbial Technology. However, the current exploitation of microbial technologies in the service of humanity and planetary health is woefully inadequate and this failing unnecessarily costs many lives and biosphere deterioration. Microbiologists - the practitioners of these healing technologies - have a special, preordained responsibility to promote and increase their deployment for the good of humanity and the planet. To do this effectively - to actually make a difference - microbiologists will need to partner with key enablers and gatekeepers, players such as other scientists with essential complementary skills like bioengineering and bioinformatics, politicians, financiers, and captains of industry, international organisations, and the general public. Orchestration and coordination of the establishment and functioning of effective partnerships will best be accomplished by learned societies, their academies, and the international umbrella organisations of learned societies. Effective dedication of players to the tasks at hand will require unstinting support from employers, particularly the heads of institutes of higher education and of research establishments. Humanity and the biosphere are currently facing challenges to their survival not experienced for millennia. Effectively confronting these challenges is existential, and microbiologists and their learned societies have pivotal roles to play: they must step up and act now.
Collapse
Affiliation(s)
- Kenneth Timmis
- Institute for MicrobiologyTechnical University of BraunschweigBraunschweigGermany
| | - John E. Hallsworth
- Institute for Global Food Security, School of Biological SciencesQueen's University BelfastBelfastUK
| |
Collapse
|
17
|
Timmis K, Hallsworth JE, McGenity TJ, Armstrong R, Colom MF, Karahan ZC, Chavarría M, Bernal P, Boyd ES, Ramos JL, Kaltenpoth M, Pruzzo C, Clarke G, López‐Garcia P, Yakimov MM, Perlmutter J, Greening C, Eloe‐Fadrosh E, Verstraete W, Nunes OC, Kotsyurbenko O, Nikel PI, Scavone P, Häggblom MM, Lavigne R, Le Roux F, Timmis JK, Parro V, Michán C, García JL, Casadevall A, Payne SM, Frey J, Koren O, Prosser JI, Lahti L, Lal R, Anand S, Sood U, Offre P, Bryce CC, Mswaka AY, Jores J, Kaçar B, Blank LM, Maaßen N, Pope PB, Banciu HL, Armitage J, Lee SY, Wang F, Makhalanyane TP, Gilbert JA, Wood TK, Vasiljevic B, Soberón M, Udaondo Z, Rojo F, Tamang JP, Giraud T, Ropars J, Ezeji T, Müller V, Danbara H, Averhoff B, Sessitsch A, Partida‐Martínez LP, Huang W, Molin S, Junier P, Amils R, Wu X, Ron E, Erten H, de Martinis ECP, Rapoport A, Öpik M, Pokatong WDR, Stairs C, Amoozegar MA, Serna JG. A concept for international societally relevant microbiology education and microbiology knowledge promulgation in society. Microb Biotechnol 2024; 17:e14456. [PMID: 38801001 PMCID: PMC11129164 DOI: 10.1111/1751-7915.14456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/08/2024] [Indexed: 05/29/2024] Open
Abstract
EXECUTIVE SUMMARY Microbes are all pervasive in their distribution and influence on the functioning and well-being of humans, life in general and the planet. Microbially-based technologies contribute hugely to the supply of important goods and services we depend upon, such as the provision of food, medicines and clean water. They also offer mechanisms and strategies to mitigate and solve a wide range of problems and crises facing humanity at all levels, including those encapsulated in the sustainable development goals (SDGs) formulated by the United Nations. For example, microbial technologies can contribute in multiple ways to decarbonisation and hence confronting global warming, provide sanitation and clean water to the billions of people lacking them, improve soil fertility and hence food production and develop vaccines and other medicines to reduce and in some cases eliminate deadly infections. They are the foundation of biotechnology, an increasingly important and growing business sector and source of employment, and the centre of the bioeconomy, Green Deal, etc. But, because microbes are largely invisible, they are not familiar to most people, so opportunities they offer to effectively prevent and solve problems are often missed by decision-makers, with the negative consequences this entrains. To correct this lack of vital knowledge, the International Microbiology Literacy Initiative-the IMiLI-is recruiting from the global microbiology community and making freely available, teaching resources for a curriculum in societally relevant microbiology that can be used at all levels of learning. Its goal is the development of a society that is literate in relevant microbiology and, as a consequence, able to take full advantage of the potential of microbes and minimise the consequences of their negative activities. In addition to teaching about microbes, almost every lesson discusses the influence they have on sustainability and the SDGs and their ability to solve pressing problems of societal inequalities. The curriculum thus teaches about sustainability, societal needs and global citizenship. The lessons also reveal the impacts microbes and their activities have on our daily lives at the personal, family, community, national and global levels and their relevance for decisions at all levels. And, because effective, evidence-based decisions require not only relevant information but also critical and systems thinking, the resources also teach about these key generic aspects of deliberation. The IMiLI teaching resources are learner-centric, not academic microbiology-centric and deal with the microbiology of everyday issues. These span topics as diverse as owning and caring for a companion animal, the vast range of everyday foods that are produced via microbial processes, impressive geological formations created by microbes, childhood illnesses and how they are managed and how to reduce waste and pollution. They also leverage the exceptional excitement of exploration and discovery that typifies much progress in microbiology to capture the interest, inspire and motivate educators and learners alike. The IMiLI is establishing Regional Centres to translate the teaching resources into regional languages and adapt them to regional cultures, and to promote their use and assist educators employing them. Two of these are now operational. The Regional Centres constitute the interface between resource creators and educators-learners. As such, they will collect and analyse feedback from the end-users and transmit this to the resource creators so that teaching materials can be improved and refined, and new resources added in response to demand: educators and learners will thereby be directly involved in evolution of the teaching resources. The interactions between educators-learners and resource creators mediated by the Regional Centres will establish dynamic and synergistic relationships-a global societally relevant microbiology education ecosystem-in which creators also become learners, teaching resources are optimised and all players/stakeholders are empowered and their motivation increased. The IMiLI concept thus embraces the principle of teaching societally relevant microbiology embedded in the wider context of societal, biosphere and planetary needs, inequalities, the range of crises that confront us and the need for improved decisioning, which should ultimately lead to better citizenship and a humanity that is more sustainable and resilient. ABSTRACT The biosphere of planet Earth is a microbial world: a vast reactor of countless microbially driven chemical transformations and energy transfers that push and pull many planetary geochemical processes, including the cycling of the elements of life, mitigate or amplify climate change (e.g., Nature Reviews Microbiology, 2019, 17, 569) and impact the well-being and activities of all organisms, including humans. Microbes are both our ancestors and creators of the planetary chemistry that allowed us to evolve (e.g., Life's engines: How microbes made earth habitable, 2023). To understand how the biosphere functions, how humans can influence its development and live more sustainably with the other organisms sharing it, we need to understand the microbes. In a recent editorial (Environmental Microbiology, 2019, 21, 1513), we advocated for improved microbiology literacy in society. Our concept of microbiology literacy is not based on knowledge of the academic subject of microbiology, with its multitude of component topics, plus the growing number of additional topics from other disciplines that become vitally important elements of current microbiology. Rather it is focused on microbial activities that impact us-individuals/communities/nations/the human world-and the biosphere and that are key to reaching informed decisions on a multitude of issues that regularly confront us, ranging from personal issues to crises of global importance. In other words, it is knowledge and understanding essential for adulthood and the transition to it, knowledge and understanding that must be acquired early in life in school. The 2019 Editorial marked the launch of the International Microbiology Literacy Initiative, the IMiLI. HERE, WE PRESENT: our concept of how microbiology literacy may be achieved and the rationale underpinning it; the type of teaching resources being created to realise the concept and the framing of microbial activities treated in these resources in the context of sustainability, societal needs and responsibilities and decision-making; and the key role of Regional Centres that will translate the teaching resources into local languages, adapt them according to local cultural needs, interface with regional educators and develop and serve as hubs of microbiology literacy education networks. The topics featuring in teaching resources are learner-centric and have been selected for their inherent relevance, interest and ability to excite and engage. Importantly, the resources coherently integrate and emphasise the overarching issues of sustainability, stewardship and critical thinking and the pervasive interdependencies of processes. More broadly, the concept emphasises how the multifarious applications of microbial activities can be leveraged to promote human/animal, plant, environmental and planetary health, improve social equity, alleviate humanitarian deficits and causes of conflicts among peoples and increase understanding between peoples (Microbial Biotechnology, 2023, 16(6), 1091-1111). Importantly, although the primary target of the freely available (CC BY-NC 4.0) IMiLI teaching resources is schoolchildren and their educators, they and the teaching philosophy are intended for all ages, abilities and cultural spectra of learners worldwide: in university education, lifelong learning, curiosity-driven, web-based knowledge acquisition and public outreach. The IMiLI teaching resources aim to promote development of a global microbiology education ecosystem that democratises microbiology knowledge.
Collapse
Affiliation(s)
- Kenneth Timmis
- Institute for MicrobiologyTechnical University of BraunschweigBraunschweigGermany
| | | | | | | | | | - Zeynep Ceren Karahan
- Department of Medical MicrobiologyAnkara University School of MedicineAnkaraTurkey
| | - Max Chavarría
- Escuela de Química, CIPRONAUniversidad de Costa Rica & Centro Nacional de Innovaciones Biotecnológicas (CENIBiot)San JoséCosta Rica
| | - Patricia Bernal
- Department of MicrobiologyUniversidad de SevillaSevillaSpain
| | - Eric S. Boyd
- Department of Microbiology and Cell BiologyMontana State UniversityBozemanMontanaUSA
| | - Juan Luis Ramos
- Consejo Superior de Investigaciones CientificasEstación Experimental del ZaidínGranadaSpain
| | - Martin Kaltenpoth
- Department of Insect SymbiosisMax Planck Institute for Chemical EcologyJenaGermany
| | - Carla Pruzzo
- Department of Earth, Environmental and Life Sciences (DISTAV)University of GenoaGenoaItaly
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science and APC Microbiome IrelandUniversity College CorkCorkIreland
| | | | - Michail M. Yakimov
- Institute of Polar SciencesItalian National Research Council (ISP‐CNR)MessinaItaly
| | | | - Chris Greening
- Department of Microbiology, Biomedicine Discovery InstituteMonash UniversityClaytonAustralia
| | - Emiley Eloe‐Fadrosh
- Metagenome Program, DOE Joint Genome InstituteLawrence Berkeley National LabBerkeleyCaliforniaUSA
| | - Willy Verstraete
- Center for Microbial Ecology and Technology (CMET)Ghent UniversityGhentBelgium
| | - Olga C. Nunes
- LEPABE‐Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of EngineeringUniversity of PortoPortoPortugal
| | | | - Pablo Iván Nikel
- Systems Environmental Microbiology Group, The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkLyngbyDenmark
| | - Paola Scavone
- Departamento de MicrobiologíaInstituto de Investigaciones Biológicas Clemente EstableMontevideoUruguay
| | - Max M. Häggblom
- Department of Biochemistry and MicrobiologyRutgers UniversityNew BrunswickNew JerseyUSA
| | - Rob Lavigne
- Laboratory of Gene TechnologyKU LeuvenHeverleeBelgium
| | - Frédérique Le Roux
- Département de Microbiologie, Infectiologie et ImmunologieUniversité de MontréalMontrealQuebecCanada
| | - James K. Timmis
- Department of Political ScienceUniversity of FreiburgFreiburg im BreisgauGermany
| | - Victor Parro
- Centro de Astrobiología (CAB)CSICINTAMadridSpain
| | - Carmen Michán
- Departamento de Bioquímica y Biología MolecularUniversidad de CórdobaCórdobaSpain
| | - José Luis García
- Environmental Biotechnology LaboratoryCentro de Investigaciones Biológicas Margarita Salas (CIB‐MS, CSIC)MadridSpain
| | - Arturo Casadevall
- Department of Molecular Microbiology and ImmunologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Shelley M. Payne
- Department of Molecular BiosciencesUniversity of Texas at AustinAustinTexasUSA
| | - Joachim Frey
- Vetsuisse FacultyUniversity of BernBernSwitzerland
| | - Omry Koren
- Azrieli Faculty of MedicineBar‐Ilan UniversitySafedIsrael
| | | | - Leo Lahti
- Department of ComputingUniversity of TurkuTurkuFinland
| | - Rup Lal
- Acharya Narendra Dev CollegeUniversity of DelhiNew DelhiDelhiIndia
| | - Shailly Anand
- Department of Zoology, Deen Dayal Upadhyaya CollegeUniversity of DelhiNew DelhiDelhiIndia
| | - Utkarsh Sood
- Department of Zoology, Kirori Mal CollegeUniversity of DelhiNew DelhiDelhiIndia
| | - Pierre Offre
- Department of Marine Microbiology and BiogeochemistryNIOZ–Royal Netherlands Institute for Sea ResearchDen BurgThe Netherlands
| | - Casey C. Bryce
- Cabot Institute for the EnvironmentUniversity of BristolBristolUK
| | | | - Jörg Jores
- Institute of Veterinary BacteriologyUniversity of BernBernSwitzerland
| | - Betül Kaçar
- Department of BacteriologyUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| | | | - Nicole Maaßen
- Institute of Applied MicrobiologyRWTH Aachen UniversityAachenGermany
| | - Phillip B. Pope
- Faculty of BiosciencesNorwegian University of Life SciencesAsNorway
- Faculty of Chemistry, Biotechnology and Food ScienceNMBUAsNorway
| | - Horia L. Banciu
- Department of Molecular Biology and BiotechnologyBabeș‐Bolyai UniversityCluj‐NapocaRomania
| | | | - Sang Yup Lee
- Department of Chemical & Biomolecular EngineeringKAIST (Korea Advanced Institute of Science and Technology)DaejeonSouth Korea
| | - Fengping Wang
- International Center for Deep Life Investigation (ICDLI)Shanghai JiaoTong UniversityShanghaiChina
| | - Thulani P. Makhalanyane
- Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaHatfieldSouth Africa
| | - Jack A. Gilbert
- Department of Pediatrics and Scripps, Institution of OceanographyUC San DiegoLa JollaCaliforniaUSA
| | - Thomas K. Wood
- Department of Chemical EngineeringPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Branka Vasiljevic
- Institute of Molecular Genetics and Genetic EngineeringUniversity of BelgradeBelgradeSerbia
| | - Mario Soberón
- Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Zulema Udaondo
- Consejo Superior de Investigaciones CientificasEstación Experimental del ZaidínGranadaSpain
| | - Fernando Rojo
- Department of Microbial Biotechnology, Centro Nacional de BiotecnologíaCSICMadridSpain
| | | | - Tatiana Giraud
- Laboratoire Ecologie, Systématique et Evolution (ESE)Université Paris‐SaclayGif‐sur‐YvetteFrance
| | - Jeanne Ropars
- Laboratoire Ecologie, Systématique et Evolution (ESE)Université Paris‐SaclayGif‐sur‐YvetteFrance
| | - Thaddeus Ezeji
- Department of Animal SciencesThe Ohio State University & OARDCWoosterOhioUSA
| | - Volker Müller
- Molekulare Mikrobiologie & BioenergetikGoethe‐Universität FrankfurtFrankfurtGermany
| | - Hirofume Danbara
- Shibasaburo Kitasato Memorial MuseumKitasato UniversityMinato‐kuJapan
| | - Beate Averhoff
- Molekulare Mikrobiologie & BioenergetikGoethe‐Universität FrankfurtFrankfurtGermany
| | | | | | - Wei Huang
- Department of Engineering ScienceUniversity of OxfordOxfordUK
| | | | - Pilar Junier
- Laboratory of MicrobiologyUniversity of NeuchâtelNeuchâtelSwitzerland
| | - Ricardo Amils
- Centro de Biología Molecular Severo OchoaMadridSpain
| | - Xiao‐Lei Wu
- Department of Energy Resources EngineeringPeking UniversityBeijingChina
| | - Eliora Ron
- The Shmunis School of Biomedicine and Cancer ResearchTel Aviv UniversityTel AvivIsrael
| | - Huseyin Erten
- Department of Food EngineeringCukurova UniversityAdanaTurkey
| | | | - Alexander Rapoport
- Institute of Microbiology and BiotechnologyUniversity of LatviaRigaLatvia
| | - Maarja Öpik
- Department of BotanyUniversity of TartuTartuEstonia
| | | | | | | | - Jéssica Gil Serna
- Departamento de Genética, Fisiología y MicrobiologíaUniversidad Complutense de MadridMadridSpain
| |
Collapse
|
18
|
Mathan Muthu CM, Vickram AS, Bhavani Sowndharya B, Saravanan A, Kamalesh R, Dinakarkumar Y. A comprehensive review on the utilization of probiotics in aquaculture towards sustainable shrimp farming. FISH & SHELLFISH IMMUNOLOGY 2024; 147:109459. [PMID: 38369068 DOI: 10.1016/j.fsi.2024.109459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/06/2024] [Accepted: 02/16/2024] [Indexed: 02/20/2024]
Abstract
Probiotics in shrimp aquaculture have gained considerable attention as a potential solution to enhance production efficiency, disease management, and overall sustainability. Probiotics, beneficial microorganisms, have shown promising effects when administered to shrimp as dietary supplements or water additives. Their inclusion has been linked to improved gut health, nutrient absorption, and disease resistance in shrimp. Probiotics also play a crucial role in maintaining a balanced microbial community within the shrimp pond environment, enhancing water quality and reducing pathogen prevalence. This article briefly summarizes the many ways that probiotics are used in shrimp farming and the advantages that come with them. Despite the promising results, challenges such as strain selection, dosage optimization, and environmental conditions are carefully addressed for successful probiotic integration in shrimp aquaculture. The potential of probiotics as a sustainable and ecologically friendly method of promoting shrimp development and health while advancing environmentally friendly shrimp farming techniques is highlighted in this analysis. Further research is required to fully exploit probiotics' benefits and develop practical guidelines for their effective implementation in shrimp aquaculture.
Collapse
Affiliation(s)
- C M Mathan Muthu
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - A S Vickram
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - B Bhavani Sowndharya
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - R Kamalesh
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Yuvaraj Dinakarkumar
- Department of Biotechnology, Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai, India
| |
Collapse
|
19
|
Bogri A, Jensen EEB, Borchert AV, Brinch C, Otani S, Aarestrup FM. Transmission of antimicrobial resistance in the gut microbiome of gregarious cockroaches: the importance of interaction between antibiotic exposed and non-exposed populations. mSystems 2024; 9:e0101823. [PMID: 38095429 PMCID: PMC10805027 DOI: 10.1128/msystems.01018-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/17/2023] [Indexed: 01/24/2024] Open
Abstract
Antimicrobial resistance (AMR) is a major global health concern, further complicated by its spread via the microbiome bacterial members. While mathematical models discuss AMR transmission through the symbiotic microbiome, experimental studies are scarce. Herein, we used a gregarious cockroach, Pycnoscelus surinamensis, as an in vivo animal model for AMR transmission investigations. We explored whether the effect of antimicrobial treatment is detectable with metagenomic sequencing, and whether AMR genes can be spread and established in unchallenged (not treated with antibiotics) individuals following contact with treated donors, and under various frequencies of interaction. Gut and soil substrate microbiomes were investigated by metagenomic sequencing for bacterial community composition and resistome profiling. We found that tetracycline treatment altered the treated gut microbiome by decreasing bacterial diversity and increasing the abundance of tetracycline resistance genes. Untreated cockroaches that interacted with treated donors also had elevated tetracycline resistance. The levels of resistance differed depending on the magnitude and frequency of donor transfer. Additionally, treated donors showed signs of microbiome recovery due to their interaction with the untreated ones. Similar patterns were also recorded in the soil substrate microbiomes. Our results shed light on how interacting microbiomes facilitate AMR gene transmission to previously unchallenged hosts, a dynamic influenced by the interaction frequencies, using an in vivo model to validate theoretical AMR transmission models.IMPORTANCEAntimicrobial resistance is a rising threat to human and animal health. The spread of resistance through the transmission of the symbiotic gut microbiome is of concern and has been explored in theoretical modeling studies. In this study, we employ gregarious insect populations to examine the emergence and transmission of antimicrobial resistance in vivo and validate modeling hypotheses. We find that antimicrobial treatment increases the levels of resistance in treated populations. Most importantly, we show that resistance increased in untreated populations after interacting with the treated ones. The level of resistance transmission was affected by the magnitude and frequency of population mixing. Our results highlight the importance of microbial transmission in the spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Amalia Bogri
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs., Lyngby, Denmark
| | | | - Asbjørn Vedel Borchert
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs., Lyngby, Denmark
| | - Christian Brinch
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs., Lyngby, Denmark
| | - Saria Otani
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs., Lyngby, Denmark
| | - Frank M. Aarestrup
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs., Lyngby, Denmark
| |
Collapse
|
20
|
Wicaksono WA, Cernava T, Wassermann B, Abdelfattah A, Soto-Giron MJ, Toledo GV, Virtanen SM, Knip M, Hyöty H, Berg G. The edible plant microbiome: evidence for the occurrence of fruit and vegetable bacteria in the human gut. Gut Microbes 2023; 15:2258565. [PMID: 37741805 PMCID: PMC10519362 DOI: 10.1080/19490976.2023.2258565] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/08/2023] [Indexed: 09/25/2023] Open
Abstract
Diversity of the gut microbiota is crucial for human health. However, whether fruit and vegetable associated bacteria contribute to overall gut bacterial diversity is still unknown. We reconstructed metagenome-assembled genomes from 156 fruit and vegetable metagenomes to investigate the prevalence of associated bacteria in 2,426 publicly available gut metagenomes. The microbiomes of fresh fruits and vegetables and the human gut are represented by members in common such as Enterobacterales, Burkholderiales, and Lactobacillales. Exposure to bacteria via fruit and vegetable consumption potentially has a beneficial impact on the functional diversity of gut microbiota particularly due to the presence of putative health-promoting genes for the production of vitamin and short-chain fatty acids. In the human gut, they were consistently present, although at a low abundance, approx. 2.2%. Host age, vegetable consumption frequency, and the diversity of plants consumed were drivers favoring a higher proportion. Overall, these results provide one of the primary links between the human microbiome and the environmental microbiome. This study revealed evidence that fruit and vegetable-derived microbes could be found in the human gut and contribute to gut microbiome diversity.
Collapse
Affiliation(s)
- Wisnu Adi Wicaksono
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Birgit Wassermann
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Ahmed Abdelfattah
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
| | | | | | - Suvi M. Virtanen
- Finnish Institute for Health and Welfare, Helsinki, Finland
- Center for Child Health Research, Tampere University and Tampere University Hospital, Tampere, Finland
- Faculty of Social Sciences, Tampere University, Tampere, Finland
- Research, Development and Innovation Center, Tampere University Hospital, Tampere, Finland
| | - Mikael Knip
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Pediatric Research Center, Children’s Hospital, University of Helsinki, Helsinki, Finland
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories, Tampere, Finland
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
21
|
Dungan AM, Tandon K, Jameson V, Gotze CR, Blackall LL, van Oppen MJH. A targeted approach to enrich host-associated bacteria for metagenomic sequencing. FEMS MICROBES 2023; 5:xtad021. [PMID: 38264162 PMCID: PMC10804224 DOI: 10.1093/femsmc/xtad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/02/2023] [Accepted: 11/27/2023] [Indexed: 01/25/2024] Open
Abstract
Multicellular eukaryotic organisms are hosts to communities of bacteria that reside on or inside their tissues. Often the eukaryotic members of the system contribute to high proportions of metagenomic sequencing reads, making it challenging to achieve sufficient sequencing depth to evaluate bacterial ecology. Stony corals are one such complex community; however, separation of bacterial from eukaryotic (primarily coral and algal symbiont) cells has so far not been successful. Using a combination of hybridization chain reaction fluorescence in situ hybridization and fluorescence activated cell sorting (HCR-FISH + FACS), we sorted two populations of bacteria from five genotypes of the coral Acropora loripes, targeting (i) Endozoicomonas spp, and (ii) all other bacteria. NovaSeq sequencing resulted in 67-91 M reads per sample, 55%-90% of which were identified as bacterial. Most reads were taxonomically assigned to the key coral-associated family, Endozoicomonadaceae, with Vibrionaceae also abundant. Endozoicomonadaceae were 5x more abundant in the 'Endozoicomonas' population, highlighting the success of the dual-labelling approach. This method effectively enriched coral samples for bacteria with <1% contamination from host and algal symbionts. The application of this method will allow researchers to decipher the functional potential of coral-associated bacteria. This method can also be adapted to accommodate other host-associated communities.
Collapse
Affiliation(s)
- Ashley M Dungan
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kshitij Tandon
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Vanta Jameson
- Melbourne Cytometry Platform, Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Cecilie Ravn Gotze
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
- Reef Recovery, Restoration and Adaptation Program, Australian Institute of Marine Science, Townsville, QLD 4810, Australia
| | - Linda L Blackall
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Madeleine J H van Oppen
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
- Reef Recovery, Restoration and Adaptation Program, Australian Institute of Marine Science, Townsville, QLD 4810, Australia
| |
Collapse
|
22
|
Orozco-Mosqueda MDC, Kumar A, Babalola OO, Santoyo G. Rhizobiome Transplantation: A Novel Strategy beyond Single-Strain/Consortium Inoculation for Crop Improvement. PLANTS (BASEL, SWITZERLAND) 2023; 12:3226. [PMID: 37765390 PMCID: PMC10535606 DOI: 10.3390/plants12183226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023]
Abstract
The growing human population has a greater demand for food; however, the care and preservation of nature as well as its resources must be considered when fulfilling this demand. An alternative employed in recent decades is the use and application of microbial inoculants, either individually or in consortium. The transplantation of rhizospheric microbiomes (rhizobiome) recently emerged as an additional proposal to protect crops from pathogens. In this review, rhizobiome transplantation was analyzed as an ecological alternative for increasing plant protection and crop production. The differences between single-strain/species inoculation and dual or consortium application were compared. Furthermore, the feasibility of the transplantation of other associated micro-communities, including phyllosphere and endosphere microbiomes, were evaluated. The current and future challenges surrounding rhizobiome transplantation were additionally discussed. In conclusion, rhizobiome transplantation emerges as an attractive alternative that goes beyond single/group inoculation of microbial agents; however, there is still a long way ahead before it can be applied in large-scale agriculture.
Collapse
Affiliation(s)
- Ma. del Carmen Orozco-Mosqueda
- Departamento de Ingeniería Bioquímica y Ambiental, Tecnológico Nacional de México en Celaya, Celaya 38010, Guanajuato, Mexico;
| | - Ajay Kumar
- Amity Institute of Biotechnology, Amity University, Noida 201303, India;
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag X2046, Mmabatho 2735, South Africa;
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacan, Mexico
| |
Collapse
|