1
|
Makambi WK, Chiu VL, Kasper L, Hube B, Karlsson AJ. Role of amino acid substitutions on proteolytic stability of histatin 5 in the presence of secreted aspartyl proteases and salivary proteases. Protein Sci 2025; 34:e70011. [PMID: 39720900 DOI: 10.1002/pro.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/26/2024]
Abstract
Histatin 5 (Hst5) is a 24-amino-acid peptide naturally present in human saliva that has been proposed as a potential antifungal therapeutic. However, Hst5 is susceptible to degradation by secreted aspartyl proteases (Saps) produced by Candida albicans, which could limit its efficacy as a therapeutic. To better understand the role of the lysine residues of Hst5 in proteolysis by C. albicans Saps (Sap1, Sap2, Sap3, Sap5, Sap6, Sap9, and Sap10), we studied variants of Hst5 with substitutions to leucine or arginine at the lysine residues (K5, K11, K13, and K17). Sap5, Sap6, and Sap10 did not degrade Hst5 or the variants. However, we observed degradation of the peptides by Sap1, Sap2, Sap3, and Sap9, and the degradation depended on the site of substitution and the substituent residue. Some modifications, such as K11L and K13L, were particularly susceptible to proteolysis by Sap1, Sap2, Sap3, and Sap9. In contrast, the K17L modification substantially increased the stability and antifungal activity of Hst5 in the presence of Saps. We used mass spectrometry to characterize the proteolysis products, which allowed us to identify fragments likely to have maintained or lost antifungal activity. We also evaluated the proteolytic stability of the Hst5 variants in saliva. Both K17L and K5R showed improved stability; however, the enhancements were modest, suggesting that further engineering is required to achieve significant improvements. Our approach demonstrates the potential of simple, rational substitutions to enhance peptide efficacy and proteolytic stability, providing a promising strategy for improving the properties of antifungal peptides.
Collapse
Affiliation(s)
- Wright K Makambi
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland, USA
| | - Victoria L Chiu
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland, USA
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
- Institute of Microbiology, Friedrich-Schiller University, Jena, Germany
| | - Amy J Karlsson
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
2
|
Prusty JS, Kumar A. In silico-driven identification and experimental confirmation of antifungal proteins (AFPs) against Candidaalbicans. Biochimie 2025; 228:44-57. [PMID: 39134296 DOI: 10.1016/j.biochi.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/30/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
Mycoses infect millions of people annually across the world. The most common mycosis agent, Candida albicans is responsible for a great deal of illness and death. C. albicans infection is becoming more widespread and the current antifungals polyenes, triazoles, and echinocandins are less efficient against it. Investigating antifungal peptides (AFPs) as therapeutic is gaining momentum. Therefore, we used MALDI-TOF/MS analysis to identify AFPs and protein-protein docking to analyze their interactions with the C. albicans target protein. Some microorganisms with strong antifungal action against C. albicans were selected for the isolation of AFPs. Using MALDI-TOF/MS, we identified 3 AFPs Chitin binding protein (ACW83017.1; Bacillus licheniformis), the bifunctional protein GlmU (BBQ13478.1; Stenotrophomonas maltophilia), and zinc metalloproteinase aureolysin (BBA25172.1; Staphylococcus aureus). These AFPs showed robust interactions with C. albicans target protein Sap5. We deciphered some important residues in identified APFs and highlighted interaction with Sap5 through hydrogen bonds, protein-protein interactions, and salt bridges using protein-protein docking and MD simulations. The three discovered AFPs-Sap5 complexes exhibit different levels of stability, as seen by the RMSD analysis and interaction patterns. Among protein-protein interactions, the remarkable stability of the BBQ25172.1-2QZX complex highlights the role of salt bridges and hydrogen bonds. Identified AFPs could be further studied for developing successful antifungal candidates and peptide-based new antifungal therapeutic strategies as fresh insights into addressing antifungal resistance also.
Collapse
Affiliation(s)
- Jyoti Sankar Prusty
- Department of Biotechnology, National Institute of Technology, Raipur, 492010, CG, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, 492010, CG, India.
| |
Collapse
|
3
|
Yazdanpanah S, Shafiekhani M, Emami M, Khodadadi H, Pakshir K, Zomorodian K. Exploring the anti-biofilm and gene regulatory effects of anti-inflammatory drugs on Candida albicans. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03727-y. [PMID: 39731595 DOI: 10.1007/s00210-024-03727-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/11/2024] [Indexed: 12/30/2024]
Abstract
Researchers have repurposed several existing anti-inflammatory drugs as potential antifungal agents in recent years. So, this study aimed to investigate the effects of anti-inflammatory drugs on the growth, biofilm formation, and expression of genes related to morphogenesis and pathogenesis in Candida albicans. The minimum inhibitory concentration (MIC) of anti-inflammatory drugs was assessed using the broth microdilution method. Biofilm formation in C. albicans was evaluated using XTT reduction assay following exposure to different concentrations of drugs. Additionally, the expression of adhesin-related genes (ALS1, ALS3), hyphal cell wall specific genes (EAP1, HWP1), secreted aspartyl proteinase (SAP4, SAP6), and morphogenesis pathway regulatory gene (EFG1) was analyzed using quantitative RT-PCR. Betamethasone and dexamethasone markedly inhibited C. albicans biofilm formation by up to 80% at a concentration of 2 mg/mL. Moreover, the inhibition of C. albicans biofilm formation was significant at concentrations ranging from 0.6 to 10 mg/mL for piroxicam and from 0.75 to 12 mg/mL for diclofenac. The expression of key genes involved in biofilm formation including EFG1, HWP1, and ALS3 was all downregulated under hyphae-inducing conditions. Moreover, the expression proteinase genes of C. albicans were upregulated following exposure with corticosteroids. The data obtained provides valuable insights into the antifungal potential of anti-inflammatory drugs. Our novel findings indicate the downregulation of several Candida genes that are crucial for morphogenesis, pathogenesis, and biofilm formation. However, further research is necessary to fully elucidate the clinical applications and effectiveness of anti-inflammatory drugs as alternative or adjunctive therapies for Candida infections.
Collapse
Affiliation(s)
- Somayeh Yazdanpanah
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Shafiekhani
- Department of Clinical Pharmacy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mina Emami
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Khodadadi
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Keyvan Pakshir
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Basic Sciences in Infectious Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamiar Zomorodian
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Basic Sciences in Infectious Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Gómez-Gaviria M, Baruch-Martínez DA, Mora-Montes HM. Exploring the Biology, Virulence, and General Aspects of Candida dubliniensis. Infect Drug Resist 2024; 17:5755-5773. [PMID: 39722735 PMCID: PMC11669290 DOI: 10.2147/idr.s497862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
Fungal infections have become a growing public health concern, aggravated by the emergence of new pathogenic species and increasing resistance to antifungal drugs. The most common candidiasis is caused by Candida albicans; however, Candida dubliniensis has become an emerging opportunistic pathogen, and although less prevalent, it can cause superficial and systemic infections, especially in immunocompromised individuals. This yeast can colonize the oral cavity, skin, and other tissues, and has been associated with oral infections in patients with human immunodeficiency virus (HIV) and acquired immunodeficiency syndrome (AIDS), making it difficult to treat. The special interest in the study of this species lies in its ability to evade commonly used antifungal drugs, such as fluconazole, under different concentrations. In addition, it is difficult to identify because it can be confused with the species C. albicans, which could interfere with adequate treatment. Although the study of virulence factors in C. dubliniensis is limited, proteomic comparisons with C. albicans indicate that these virulence factors could be similar between the two species. However, differences could exist considering the evolutionary processes and lifestyle of each species. In this study, a detailed review of the current literature on C. dubliniensis was conducted, considering aspects such as biology, possible virulence factors, immune response, pathogen-host interaction, diagnosis, and treatment.
Collapse
Affiliation(s)
- Manuela Gómez-Gaviria
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto, Mexico
| | - Dario A Baruch-Martínez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto, Mexico
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto, Mexico
| |
Collapse
|
5
|
Rabaan AA, Alshahrani FS, Garout M, Alissa M, Mashraqi MM, Alshehri AA, Alsaleh AA, Alwarthan S, Sabour AA, Alfaraj AH, AlShehail BM, Alotaibi N, Abduljabbar WA, Aljeldah M, Alestad JH. Repositioning of anti-infective compounds against monkeypox virus core cysteine proteinase: a molecular dynamics study. Mol Divers 2024; 28:4113-4135. [PMID: 38652365 DOI: 10.1007/s11030-023-10802-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/26/2023] [Indexed: 04/25/2024]
Abstract
Monkeypox virus (MPXV) core cysteine proteinase (CCP) is one of the major drug targets used to examine the inhibitory action of chemical moieties. In this study, an in silico technique was applied to screen 1395 anti-infective compounds to find out the potential molecules against the MPXV-CCP. The top five hits were selected after screening and processed for exhaustive docking based on the docked score of ≤ -9.5 kcal/mol. Later, the top three hits based on the exhaustive-docking score and interaction profile were selected to perform MD simulations. The overall RMSD suggested that two compounds, SC75741 and ammonium glycyrrhizinate, showed a highly stable complex with a standard deviation of 0.18 and 0.23 nm, respectively. Later, the MM/GBSA binding free energies of complexes showed significant binding strength with ΔGTOTAL from -21.59 to -15 kcal/mol. This report reported the potential inhibitory activity of SC75741 and ammonium glycyrrhizinate against MPXV-CCP by competitively inhibiting the binding of the native substrate.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, 31311, Dhahran, Saudi Arabia.
- College of Medicine, Alfaisal University, 11533, Riyadh, Saudi Arabia.
- Department of Public Health and Nutrition, The University of Haripur, Haripur, 22610, Pakistan.
| | - Fatimah S Alshahrani
- Department of Internal Medicine, College of Medicine, King Saud University, 11362, Riyadh, Saudi Arabia
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, King Saud University and King Saud University Medical City, 11451, Riyadh, Saudi Arabia
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Mutaib M Mashraqi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, 61441, Najra, Saudi Arabia
| | - Ahmad A Alshehri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, 61441, Najra, Saudi Arabia
| | - Abdulmonem A Alsaleh
- Clinical Laboratory Science Department, Mohammed Al-Mana College for Medical Sciences, 34222, Dammam, Saudi Arabia
| | - Sara Alwarthan
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, 34212, Dammam, Saudi Arabia
| | - Amal A Sabour
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Amal H Alfaraj
- Pediatric Department, Abqaiq General Hospital, First Eastern Health Cluster, 33261, Abqaiq, Saudi Arabia
| | - Bashayer M AlShehail
- Pharmacy Practice Department, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| | - Nouf Alotaibi
- Clinical pharmacy Department, College of Pharmacy, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Wesam A Abduljabbar
- Department of Medical laboratory sciences, Fakeeh College for Medical Science, 21134, Jeddah, Saudi Arabia
| | - Mohammed Aljeldah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, 39831, Hafr Al Batin, Saudi Arabia
| | - Jeehan H Alestad
- Immunology and Infectious Microbiology Department, University of Glasgow, Glasgow, G1 1XQ, UK.
- Microbiology Department, Collage of Medicine, 46300, Jabriya, Kuwait.
| |
Collapse
|
6
|
Bednarek A, Kabut A, Rapala-Kozik M, Satala D. Exploring the effects of culture conditions on Yapsin ( YPS) gene expression in Nakaseomyces glabratus. Open Life Sci 2024; 19:20220995. [PMID: 39655190 PMCID: PMC11627043 DOI: 10.1515/biol-2022-0995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/24/2024] [Accepted: 10/07/2024] [Indexed: 12/12/2024] Open
Abstract
Nakaseomyces glabratus, previously known as Candida glabrata, has the great potential to cause systemic fungal infections despite its similarity to baker's yeast. Its pathogenicity is attributed to the production of numerous virulence factors, among which the YPS genes (YPS1-YPS11) encoding aspartyl proteases have yet to be sufficiently characterized, and limited studies suggest their involvement in cellular homeostasis. The study's novelty is an investigation of the role of YPS in N. glabratus's ability to adapt to different host environments. For this purpose, we isolated RNA from N. glabratus cells grown in both host niche-mimicking culture media, such as artificial saliva (AS) and vagina-simulating media (VS), as well as standard yeast media (RPMI 1640 and YPDA). We then performed quantitative real-time PCR to evaluate YPS gene expression at different growth phases. At the early logarithmic phase, we observed a general increase in the expression levels of YPS genes; however, at the stationary phase, high expression levels were maintained for YPS7 in RPMI 1640 and YPDA media and YPS6 in RPMI 1640 and AS media. In addition, although the VS medium does not promote the proliferation of N. glabratus, the yeast can survive in an acidic environment, and the significantly overexpressed gene is YPS7. These findings underscore the significant modulation of N. glabratus YPS gene expression in response to external environmental conditions. This research provides insights into the molecular basis of N. glabratus pathogenicity and highlights new potential targets for antifungal therapy.
Collapse
Affiliation(s)
- Aneta Bednarek
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Agnieszka Kabut
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Dorota Satala
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| |
Collapse
|
7
|
Brown GD, Ballou ER, Bates S, Bignell EM, Borman AM, Brand AC, Brown AJP, Coelho C, Cook PC, Farrer RA, Govender NP, Gow NAR, Hope W, Hoving JC, Dangarembizi R, Harrison TS, Johnson EM, Mukaremera L, Ramsdale M, Thornton CR, Usher J, Warris A, Wilson D. The pathobiology of human fungal infections. Nat Rev Microbiol 2024; 22:687-704. [PMID: 38918447 DOI: 10.1038/s41579-024-01062-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/27/2024]
Abstract
Human fungal infections are a historically neglected area of disease research, yet they cause more than 1.5 million deaths every year. Our understanding of the pathophysiology of these infections has increased considerably over the past decade, through major insights into both the host and pathogen factors that contribute to the phenotype and severity of these diseases. Recent studies are revealing multiple mechanisms by which fungi modify and manipulate the host, escape immune surveillance and generate complex comorbidities. Although the emergence of fungal strains that are less susceptible to antifungal drugs or that rapidly evolve drug resistance is posing new threats, greater understanding of immune mechanisms and host susceptibility factors is beginning to offer novel immunotherapeutic options for the future. In this Review, we provide a broad and comprehensive overview of the pathobiology of human fungal infections, focusing specifically on pathogens that can cause invasive life-threatening infections, highlighting recent discoveries from the pathogen, host and clinical perspectives. We conclude by discussing key future challenges including antifungal drug resistance, the emergence of new pathogens and new developments in modern medicine that are promoting susceptibility to infection.
Collapse
Affiliation(s)
- Gordon D Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK.
| | - Elizabeth R Ballou
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Steven Bates
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Elaine M Bignell
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Andrew M Borman
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Alexandra C Brand
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Alistair J P Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Carolina Coelho
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Peter C Cook
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Rhys A Farrer
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Nelesh P Govender
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Neil A R Gow
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - William Hope
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - J Claire Hoving
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Rachael Dangarembizi
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Thomas S Harrison
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Elizabeth M Johnson
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Liliane Mukaremera
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Mark Ramsdale
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | | | - Jane Usher
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Adilia Warris
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Duncan Wilson
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| |
Collapse
|
8
|
Padmavathi AR, Reddy GKK, Murthy PS, Nancharaiah YV. New arsenals for old armour: Biogenic nanoparticles in the battle against drug-resistant Candidaalbicans. Microb Pathog 2024; 194:106800. [PMID: 39025380 DOI: 10.1016/j.micpath.2024.106800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Candida albicans is a common commensal fungus and fourth most frequent causative agent of nosocomial infections including life-threatening invasive candidiasis in humans. The effectiveness of present antifungal therapies using azoles, polyenes, flucytosine and echinocandins has plateaued in managing fungal infections. The limitations of these antifungal drugs are related to polymorphic morphology, biofilm formation, emergence of drug-resistant strains and production of several virulence factors. Development of new antifungal agents, which can particularly afflict multiple cellular targets and limiting evolving resistant strains are needed. Recently, metal nanoparticles have emerged as a source of new antifungal agents for antifungal formulations. Furthermore, green nanotechnology deals with the use of biosynthetic routes that offer new avenue for synthesizing antifungal nanoparticles coupled with less toxic chemical inventory and environmental sustainability. This article reviews the recent developments on C. albicans pathogenesis, biofilm formation, drug resistance, mode of action of antifungal drugs and antifungal activities of metal nanoparticles. The antifungal efficacy and mode of action of metal nanoparticles are described in the context of prospective therapeutic applications.
Collapse
Affiliation(s)
- Alwar Ramanujam Padmavathi
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam, 603 102, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India.
| | - G Kiran Kumar Reddy
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam, 603 102, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India
| | - P Sriyutha Murthy
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam, 603 102, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India
| | - Y V Nancharaiah
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam, 603 102, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India
| |
Collapse
|
9
|
Rajasekaran JJ, Krishnamurthy HK, Bosco J, Jayaraman V, Krishna K, Wang T, Bei K. Oral Microbiome: A Review of Its Impact on Oral and Systemic Health. Microorganisms 2024; 12:1797. [PMID: 39338471 PMCID: PMC11434369 DOI: 10.3390/microorganisms12091797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 09/30/2024] Open
Abstract
PURPOSE OF REVIEW This review investigates the oral microbiome's composition, functions, influencing factors, connections to oral and systemic diseases, and personalized oral care strategies. RECENT FINDINGS The oral microbiome is a complex ecosystem consisting of bacteria, fungi, archaea, and viruses that contribute to oral health. Various factors, such as diet, smoking, alcohol consumption, lifestyle choices, and medical conditions, can affect the balance of the oral microbiome and lead to dysbiosis, which can result in oral health issues like dental caries, gingivitis, periodontitis, oral candidiasis, and halitosis. Importantly, our review explores novel associations between the oral microbiome and systemic diseases including gastrointestinal, cardiovascular, endocrinal, and neurological conditions, autoimmune diseases, and cancer. We comprehensively review the efficacy of interventions like dental probiotics, xylitol, oral rinses, fluoride, essential oils, oil pulling, and peptides in promoting oral health by modulating the oral microbiome. SUMMARY This review emphasizes the critical functions of the oral microbiota in dental and overall health, providing insights into the effects of microbial imbalances on various diseases. It underlines the significant connection between the oral microbiota and general health. Furthermore, it explores the advantages of probiotics and other dental care ingredients in promoting oral health and addressing common oral issues, offering a comprehensive strategy for personalized oral care.
Collapse
Affiliation(s)
- John J. Rajasekaran
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| | | | - Jophi Bosco
- Vibrant America LLC, Santa Clara, CA 95054, USA;
| | - Vasanth Jayaraman
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| | - Karthik Krishna
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| | - Tianhao Wang
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| | - Kang Bei
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| |
Collapse
|
10
|
Vera-González N, Deusenbery C, LaMastro V, Shukla A. Fungal Enzyme-Responsive Hydrogel Drug Delivery Platform for Triggered Antifungal Release. Adv Healthc Mater 2024:e2401157. [PMID: 39210641 DOI: 10.1002/adhm.202401157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Fungal infections can lead to debilitating consequences if they are not treated effectively. Antifungal drugs used to treat these infections can be toxic and overuse contributes to growing antifungal resistance. Candida spp., particularly C. albicans, are implicated in a majority of these infections. Virulent C. albicans produce secreted aspartic proteases (Saps) that aid in pathogen tissue invasion and proliferation at an infected site. Here, fungi-responsive hydrogels are developed that degrade in the presence of Saps to provide a triggered release of encapsulated liposomal antifungals. The hydrogel backbone incorporates a Sap-cleavable peptide sequence enabling Sap-responsive degradation. Hydrogels are found to effectively degrade in the presence of Saps extracted from C. albicans. Encapsulated liposomal antifungals show similar release kinetics as hydrogel degradation products in the presence of Saps, supporting a degradation-dependent release mechanism. Antifungal liposome-loaded responsive hydrogels exhibit successful eradication of C. albicans cultures and remain stable in sterile murine wound fluid. Finally, no significant cytotoxicity is observed for murine fibroblast cells and red blood cells exposed to hydrogel degradation products. These fungi-responsive hydrogels have the potential to be used for local, on-demand delivery of antifungal drugs, for effective treatment of fungal infections while helping to limit unnecessary exposure to these therapeutics.
Collapse
Affiliation(s)
- Noel Vera-González
- School Of Engineering, Institute for Biology, Engineering, and Medicine, Brown University, 184 Hope Street, Providence, RI, 02912, USA
| | - Carly Deusenbery
- School Of Engineering, Institute for Biology, Engineering, and Medicine, Brown University, 184 Hope Street, Providence, RI, 02912, USA
| | - Veronica LaMastro
- School Of Engineering, Institute for Biology, Engineering, and Medicine, Brown University, 184 Hope Street, Providence, RI, 02912, USA
| | - Anita Shukla
- School Of Engineering, Institute for Biology, Engineering, and Medicine, Brown University, 184 Hope Street, Providence, RI, 02912, USA
| |
Collapse
|
11
|
Cheng KO, Montaño DE, Zelante T, Dietschmann A, Gresnigt MS. Inflammatory cytokine signalling in vulvovaginal candidiasis: a hot mess driving immunopathology. OXFORD OPEN IMMUNOLOGY 2024; 5:iqae010. [PMID: 39234208 PMCID: PMC11374039 DOI: 10.1093/oxfimm/iqae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 09/06/2024] Open
Abstract
Protective immunity to opportunistic fungal infections consists of tightly regulated innate and adaptive immune responses that clear the infection. Immune responses to infections of the vaginal mucosa by Candida species are, however, an exception. In the case of vulvovaginal candidiasis (VVC), the inflammatory response is associated with symptomatic disease, rather than that it results in pathogen clearance. As such VVC can be considered an inflammatory disease, which is a significant public health problem due to its predominance as a female-specific fungal infection. Particularly, women with recurrent VVC (RVVC) suffer from a significant negative impact on their quality of life and mental health. Knowledge of the inflammatory pathogenesis of (R)VVC may guide more effective diagnostic and therapeutic options to improve the quality of life of women with (R)VVC. Here, we review the immunopathogenesis of (R)VVC describing several elements that induce an inflammatory arson, starting with the activation threshold established by vaginal epithelial cells that prevent unnecessary ignition of inflammatory responses, epithelial and inflammasome-dependent immune responses. These inflammatory responses will drive neutrophil recruitment and dysfunctional neutrophil-mediated inflammation. We also review the, sometimes controversial, findings on the involvement of adaptive and systemic responses. Finally, we provide future perspectives on the potential of some unexplored cytokine axes and discuss whether VVC needs to be subdivided into subgroups to improve diagnosis and treatment.
Collapse
Affiliation(s)
- Kar On Cheng
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (Leibniz-HKI), Beutenbergstraße 11a, Jena, 07749, Germany
| | - Dolly E Montaño
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (Leibniz-HKI), Beutenbergstraße 11a, Jena, 07749, Germany
| | - Teresa Zelante
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi 1, Perugia, 06132, Italy
| | - Axel Dietschmann
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (Leibniz-HKI), Beutenbergstraße 11a, Jena, 07749, Germany
| | - Mark S Gresnigt
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (Leibniz-HKI), Beutenbergstraße 11a, Jena, 07749, Germany
| |
Collapse
|
12
|
Corbu VM, Georgescu AM, Marinas IC, Pericleanu R, Mogos DV, Dumbravă AȘ, Marinescu L, Pecete I, Vassu-Dimov T, Czobor Barbu I, Csutak O, Ficai D, Gheorghe-Barbu I. Phenotypic and Genotypic Characterization of Resistance and Virulence Markers in Candida spp. Isolated from Community-Acquired Infections in Bucharest, and the Impact of AgNPs on the Highly Resistant Isolates. J Fungi (Basel) 2024; 10:563. [PMID: 39194889 DOI: 10.3390/jof10080563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND This study aimed to determine, at the phenotypic and molecular levels, resistance and virulence markers in Candida spp. isolated from community-acquired infections in Bucharest outpatients during 2021, and to demonstrate the efficiency of alternative solutions against them based on silver nanoparticles (AgNPs). METHODS A total of 62 Candida spp. strains were isolated from dermatomycoses and identified using chromogenic culture media and MALDI-TOF MS, and then investigated for their antimicrobial resistance and virulence markers (VMs), as well as for metabolic enzymes using enzymatic tests for the expression of soluble virulence factors, their biofilm formation and adherence capacity on HeLa cells, and PCR assays for the detection of virulence markers and the antimicrobial activity of alternative solutions based on AgNPs. RESULTS Of the total of 62 strains, 45.16% were Candida parapsilosis; 29.03% Candida albicans; 9.67% Candida guilliermondii; 3.22% Candida lusitaniae, Candia pararugosa, and Candida tropicalis; and 1.66% Candida kefyr, Candida famata, Candida haemulonii, and Candida metapsilosis. Aesculin hydrolysis, caseinase, and amylase production were detected in the analyzed strains. The strains exhibited different indices of adherence to HeLa cells and were positive in decreasing frequency order for the LIP1, HWP1, and ALS1,3 genes (C. tropicalis/C. albicans). An inhibitory effect on microbial growth, adherence capacity, and on the production of virulence factors was obtained using AgNPs. CONCLUSIONS The obtained results in C. albicans and Candida non-albicans circulating in Bucharest outpatients were characterized by moderate-to-high potential to produce VMs, necessitating epidemiological surveillance measures to minimize the chances of severe invasive infections.
Collapse
Affiliation(s)
- Viorica Maria Corbu
- Faculty of Biology, University of Bucharest, Intrarea Portocalelor No. 1-3, 060101 Bucharest, Romania
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania
| | - Ana-Maria Georgescu
- Faculty of Biology, University of Bucharest, Intrarea Portocalelor No. 1-3, 060101 Bucharest, Romania
| | | | - Radu Pericleanu
- Faculty of Biology, University of Bucharest, Intrarea Portocalelor No. 1-3, 060101 Bucharest, Romania
| | - Denisa Vasilica Mogos
- Faculty of Biology, University of Bucharest, Intrarea Portocalelor No. 1-3, 060101 Bucharest, Romania
| | - Andreea Ștefania Dumbravă
- Faculty of Biology, University of Bucharest, Intrarea Portocalelor No. 1-3, 060101 Bucharest, Romania
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania
| | - Liliana Marinescu
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politechnica of Bucharest, 060042 Bucharest, Romania
| | - Ionut Pecete
- Central Reference Synevo-Medicover Laboratory, 021408 Bucharest, Romania
| | - Tatiana Vassu-Dimov
- Faculty of Biology, University of Bucharest, Intrarea Portocalelor No. 1-3, 060101 Bucharest, Romania
| | - Ilda Czobor Barbu
- Faculty of Biology, University of Bucharest, Intrarea Portocalelor No. 1-3, 060101 Bucharest, Romania
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania
| | - Ortansa Csutak
- Faculty of Biology, University of Bucharest, Intrarea Portocalelor No. 1-3, 060101 Bucharest, Romania
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania
| | - Denisa Ficai
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politechnica of Bucharest, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Irina Gheorghe-Barbu
- Faculty of Biology, University of Bucharest, Intrarea Portocalelor No. 1-3, 060101 Bucharest, Romania
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania
| |
Collapse
|
13
|
Acs-Szabo L, Papp LA, Miklos I. Understanding the molecular mechanisms of human diseases: the benefits of fission yeasts. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:288-311. [PMID: 39104724 PMCID: PMC11299203 DOI: 10.15698/mic2024.08.833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 08/07/2024]
Abstract
The role of model organisms such as yeasts in life science research is crucial. Although the baker's yeast (Saccharomyces cerevisiae) is the most popular model among yeasts, the contribution of the fission yeasts (Schizosaccharomyces) to life science is also indisputable. Since both types of yeasts share several thousands of common orthologous genes with humans, they provide a simple research platform to investigate many fundamental molecular mechanisms and functions, thereby contributing to the understanding of the background of human diseases. In this review, we would like to highlight the many advantages of fission yeasts over budding yeasts. The usefulness of fission yeasts in virus research is shown as an example, presenting the most important research results related to the Human Immunodeficiency Virus Type 1 (HIV-1) Vpr protein. Besides, the potential role of fission yeasts in the study of prion biology is also discussed. Furthermore, we are keen to promote the uprising model yeast Schizosaccharomyces japonicus, which is a dimorphic species in the fission yeast genus. We propose the hyphal growth of S. japonicus as an unusual opportunity as a model to study the invadopodia of human cancer cells since the two seemingly different cell types can be compared along fundamental features. Here we also collect the latest laboratory protocols and bioinformatics tools for the fission yeasts to highlight the many possibilities available to the research community. In addition, we present several limiting factors that everyone should be aware of when working with yeast models.
Collapse
Affiliation(s)
- Lajos Acs-Szabo
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of DebrecenDebrecen, 4032Hungary
| | - Laszlo Attila Papp
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of DebrecenDebrecen, 4032Hungary
| | - Ida Miklos
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of DebrecenDebrecen, 4032Hungary
| |
Collapse
|
14
|
Lindemann-Perez E, Perez JC. Candida albicans natural diversity: a resource to dissect fungal commensalism and pathogenesis. Curr Opin Microbiol 2024; 80:102493. [PMID: 38833793 DOI: 10.1016/j.mib.2024.102493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/02/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
Candida albicans is a ubiquitous fungus of humans. It is not only a component of the oral and intestinal microbiota of most healthy adults but also a major cause of mucosal disorders and life-threatening disseminated infections. Until recently, research on the biology and pathogenesis of the fungus was largely based on a single clinical isolate. We review investigations that have started to dissect a diverse set of C. albicans strains. Using different approaches to leverage the species' phenotypic and/or genetic diversity, these studies illuminate the wide range of interactions between fungus and host. While connecting genetic variants to phenotypes of interest remains challenging, research on C. albicans' natural diversity is central to understand fungal commensalism and pathogenesis.
Collapse
Affiliation(s)
- Elena Lindemann-Perez
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, USA
| | - J Christian Perez
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, USA.
| |
Collapse
|
15
|
Lim SJ, Noor NDM, Sabri S, Ali MSM, Salleh AB, Oslan SN. Extracellular BSA-degrading SAPs in the rare pathogen Meyerozyma guilliermondii strain SO as potential virulence factors in candidiasis. Microb Pathog 2024; 193:106773. [PMID: 38960213 DOI: 10.1016/j.micpath.2024.106773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 05/08/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Meyerozyma guilliermondii (Candida guilliermondii) is one of the Candida species associated with invasive candidiasis. With the potential for expressing industrially important enzymes, M. guilliermondii strain SO possessed 99 % proteome similarity with the clinical ATCC 6260 isolate and showed pathogenicity towards zebrafish embryos. Recently, three secreted aspartyl proteinases (SAPs) were computationally identified as potential virulence factors in this strain without in vitro verification of SAP activity. The quantification of Candida SAPs activity in liquid broth were also scarcely reported. Thus, this study aimed to characterize M. guilliermondii strain SO's ability to produce SAPs (MgSAPs) in different conditions (morphology and medium) besides analyzing its growth profile. MgSAPs' capability to cleave bovine serum albumin (BSA) was also determined to propose that MgSAPs as the potential virulence factors compared to the avirulent Saccharomyces cerevisiae. M. guilliermondii strain SO produced more SAPs (higher activity) in yeast nitrogen base-BSA-dextrose broth compared to yeast extract-BSA-dextrose broth despite insignificantly different SAP activity in both planktonic and biofilm cells. FeCl3 supplementation significantly increased the specific protein activity (∼40 %). The BSA cleavage by MgSAPs at an acidic pH was proven through semi-quantitative SDS-PAGE, sharing similar profile with HIV-1 retropepsin. The presented work highlighted the MgSAPs on fungal cell wall and extracellular milieu during host infection could be corroborated to the quantitative production in different growth modes presented herein besides shedding lights on the potential usage of retropepsin's inhibitors in treating candidiasis. Molecular and expression analyses of MgSAPs and their deletion should be further explored to attribute their respective virulence effects.
Collapse
Affiliation(s)
- Si Jie Lim
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| | - Noor Dina Muhd Noor
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| | - Suriana Sabri
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| | - Mohd Shukuri Mohamad Ali
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| | - Abu Bakar Salleh
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| | - Siti Nurbaya Oslan
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
16
|
Wani SS, Qadri H, Shah AH, Dar TA. Dual Antifungal and Antiproliferative Activities of a Novel Protein Fraction from a Medicinally Important Herb Trillium govanianum Wall. ex. D. Don. Appl Biochem Biotechnol 2024; 196:5080-5098. [PMID: 38038807 DOI: 10.1007/s12010-023-04786-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 12/02/2023]
Abstract
Antimicrobial resistance of microorganisms and the unwanted side effects of chemoradiation therapy in cancer are major issues in healthcare. In recent times, protein-based drugs have emerged as promising candidates due to their high specificity, less side effects, etc. In this context, the rhizome of Trillium govanianum was first explored for biologically active proteins/peptides. For this, three protein fractions namely Aqueous protein fraction (APF), Hexane-Methanol-treated aqueous protein fraction (HMAPF), and Methanol-treated aqueous protein fraction (MAPF) were prepared and evaluated for antimicrobial and antiproliferative activities. In antifungal activity, HMAPF showed the lowest MIC90 values of 1.56 µg/ml against Candida parapsilosis and Candida glabrata and 3.12 µg/ml against Candida albicans and Candida auris. The antifungal activity was further confirmed by a chitinase assay, a growth kinetics and a proteinase inhibitory assay. Surprisingly, none of the three protein fractions exhibited antibacterial activity against Escherichia coli and Staphylococcus aureus. Moreover, APF exhibited potent antiproliferative and antioxidant activities with IC50 values of 18 µg/ml and 227 µg /ml, respectively. For HMAPF, an IC50 value of 70 µg/ml against the MDA-MB-231 cell line was observed. The present results demonstrate that the protein fractions, particularly HMAPF and APF, might serve as potential sources of a dual antifungal and antiproliferative protein-based drug.
Collapse
Affiliation(s)
- Snober S Wani
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir, India, 190006
| | - Hafsa Qadri
- Department of Bioresources, University of Kashmir, Srinagar, Jammu and Kashmir, India, 190006
| | - Abdul H Shah
- Department of Bioresources, University of Kashmir, Srinagar, Jammu and Kashmir, India, 190006.
| | - Tanveer A Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir, India, 190006.
| |
Collapse
|
17
|
Man VCW, Neelakantan P, Yiu CKY. The Prevalence of Candida albicans and Malassezia globosa in Preschool Children with Severe Early Childhood Caries: A Case-Control Study. Healthcare (Basel) 2024; 12:1359. [PMID: 38998894 PMCID: PMC11241614 DOI: 10.3390/healthcare12131359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
Background: This cross-sectional study aimed to identify the prevalence of Candida albicans and Malassezia globosa in children with severe early childhood caries and caries-free children in Hong Kong. Methods: This study first recruited a total of 80 children aged between 48 and 72 months old, 40 children with severe early childhood caries, and 40 caries-free children. The children were then further divided into four groups, with 20 children in each group: Group 1: Severe early childhood caries-C. albicans, Group 2: Severe early childhood caries-M. globosa, Group 3: Caries-free-C. albicans and Group 4: Caries-free-M. globosa. Saliva, plaque, and caries lesion samples were collected from participants with severe early childhood caries, while only saliva and plaque samples were collected from caries-free participants. Caries status of the primary molars was assessed using WHO's decayed, missing, and filled tooth index, and the severity of cavitated lesions was determined based on International Caries Diagnosis and Assessment System criteria as caries code 5 or 6. The samples were analyzed using an Internal Transcribed Space and Quantitative Real-Time Polymerase Chain Reaction. Results:C. albicans was more prevalent in saliva and plaque samples of severe early childhood caries than in the caries-free group. Proportion of C. albicans in both saliva and plaque samples differed significantly between severe early childhood caries and caries-free groups (p < 0.05). Within the severe early childhood caries group, the proportion of children with C. albicans varied between 6 and 46%. No significant difference in M. globosa load was found between plaque samples of the severe early childhood caries and caries-free groups (p = 0.159). Conversely, no significant difference in M. globosa load was observed between saliva samples of severe early childhood caries and caries-free groups (p = 0.051). Conclusions: This study demonstrated a strong association between C. albicans and severe early childhood caries. M. globosa was detected in both the caries-free and severe early childhood caries groups, albeit at low levels.
Collapse
Affiliation(s)
- Vanessa C W Man
- Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong
| | - Prasanna Neelakantan
- Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA
| | - Cynthia K Y Yiu
- Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong
| |
Collapse
|
18
|
Hizlisoy H, Dishan A, Bekdik IK, Barel M, Koskeroglu K, Ozkaya Y, Aslan O, Yilmaz OT. Candida albicans in the oral cavities of pets: biofilm formation, putative virulence, antifungal resistance profiles and classification of the isolates. Int Microbiol 2024:10.1007/s10123-024-00552-4. [PMID: 38955904 DOI: 10.1007/s10123-024-00552-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
The study aimed to investigate Candida albicans presence, antifungal resistance, biofilm formation, putative virulence genes, and molecular characterization in oral samples of dogs and cats. A total of 239 oral samples were collected from cats and dogs of various breeds and ages at Erciyes University, Faculty of Veterinary Medicine Clinics, between May 2017 and April 2018. Among 216 isolates obtained, 15 (6.95%) were identified as C. albicans, while 8 (3.7%) were non-albicans Candida species. Antifungal susceptibility testing revealed sensitivities to caspofungin, fluconazole, and flucytosine in varying proportions. Molecular analysis indicated the presence of fluconazole and caspofungin resistance genes in all C. albicans isolates. Additionally, virulence genes ALS1, HWP1, and HSP90 showed variable presence. Biofilm formation varied among isolates, with 46.7% strong, 33.3% moderate, and 20% weak producers. PCA analysis categorized isolates into two main clusters, with some dog isolates grouped separately. The findings underscore the significance of oral care and protective measures in pets due to C. albicans prevalence, biofilm formation, virulence factors, and antifungal resistance in their oral cavity, thereby aiding clinical diagnosis and treatment in veterinary medicine.
Collapse
Affiliation(s)
- Harun Hizlisoy
- Faculty of Veterinary Medicine, Department of Veterinary Public Health, Erciye University, Kayseri, Türkiye.
| | - Adalet Dishan
- Faculty of Veterinary Medicine, Department of Food Hygiene and Technology, Bozok University, Yozgat, Türkiye
| | - Ilknur Karaca Bekdik
- Faculty of Veterinary Medicine, Department of Internal Medicine, Erciyes University, Kayseri, Türkiye
| | - Mukaddes Barel
- Faculty of Veterinary Medicine, Department of Veterinary Public Health, Erciye University, Kayseri, Türkiye
| | | | - Yasin Ozkaya
- Health Sciences Institute, Erciyes University, Kayseri, Türkiye
| | - Oznur Aslan
- Faculty of Veterinary Medicine, Department of Internal Medicine, Erciyes University, Kayseri, Türkiye
| | | |
Collapse
|
19
|
Barbosa PF, Gonçalves DS, Ramos LS, Mello TP, Braga-Silva LA, Pinto MR, Taborda CP, Branquinha MH, Santos ALS. Saps1-3 Antigens in Candida albicans: Differential Modulation Following Exposure to Soluble Proteins, Mammalian Cells, and Infection in Mice. Infect Dis Rep 2024; 16:572-586. [PMID: 39051243 PMCID: PMC11270244 DOI: 10.3390/idr16040043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
The secreted aspartic peptidases (Saps) of Candida albicans play crucial roles in various steps of fungal-host interactions. Using a flow cytometry approach, this study investigated the expression of Saps1-3 antigens after (i) incubation with soluble proteins, (ii) interaction with mammalian cells, and (iii) infection in immunosuppressed BALB/c mice. Supplementation strategies involving increasing concentrations of bovine serum albumin (BSA) added to yeast carbon base (YCB) medium as the sole nitrogenous source revealed a positive and significant correlation between BSA concentration and both the growth rate and the percentage of fluorescent cells (%FC) labeled with anti-Saps1-3 antibodies. Supplementing the YCB medium with various soluble proteins significantly modulated the expression of Saps1-3 antigens in C. albicans. Specifically, immunoglobulin G, gelatin, and total bovine/human sera significantly reduced the %FC, while laminin, human serum albumin, fibrinogen, hemoglobin, and mucin considerably increased the %FC compared to BSA. Furthermore, co-cultivating C. albicans yeasts with either live epithelial or macrophage cells induced the expression of Saps1-3 antigens in 78% (mean fluorescence intensity [MFI] = 152.1) and 82.7% (MFI = 178.2) of the yeast cells, respectively, compared to BSA, which resulted in 29.3% fluorescent cells (MFI = 50.9). Lastly, the yeasts recovered from the kidneys of infected immunosuppressed mice demonstrated a 4.8-fold increase in the production of Saps1-3 antigens (MFI = 246.6) compared to BSA, with 95.5% of yeasts labeled with anti-Saps1-3 antibodies. Altogether, these results demonstrated the positive modulation of Saps' expression in C. albicans by various key host proteinaceous components, as well as by in vitro and in vivo host challenges.
Collapse
Affiliation(s)
- Pedro F. Barbosa
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil; (P.F.B.); (D.S.G.); (L.S.R.); (T.P.M.); (L.A.B.-S.)
| | - Diego S. Gonçalves
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil; (P.F.B.); (D.S.G.); (L.S.R.); (T.P.M.); (L.A.B.-S.)
- Programa de Pós-Graduação em Bioquímica (PPGBq), Instituto de Química (IQ), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, Brazil
| | - Lívia S. Ramos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil; (P.F.B.); (D.S.G.); (L.S.R.); (T.P.M.); (L.A.B.-S.)
| | - Thaís P. Mello
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil; (P.F.B.); (D.S.G.); (L.S.R.); (T.P.M.); (L.A.B.-S.)
| | - Lys A. Braga-Silva
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil; (P.F.B.); (D.S.G.); (L.S.R.); (T.P.M.); (L.A.B.-S.)
- Programa de Pós-Graduação em Bioquímica (PPGBq), Instituto de Química (IQ), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, Brazil
| | - Marcia R. Pinto
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense (UFF), Niterói 24210-130, Brazil;
| | - Carlos P. Taborda
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo 05508-060, Brazil;
| | - Marta H. Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil; (P.F.B.); (D.S.G.); (L.S.R.); (T.P.M.); (L.A.B.-S.)
- Rede Micologia RJ—Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-901, Brazil
| | - André L. S. Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil; (P.F.B.); (D.S.G.); (L.S.R.); (T.P.M.); (L.A.B.-S.)
- Programa de Pós-Graduação em Bioquímica (PPGBq), Instituto de Química (IQ), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, Brazil
- Rede Micologia RJ—Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-901, Brazil
| |
Collapse
|
20
|
Katsipoulaki M, Stappers MHT, Malavia-Jones D, Brunke S, Hube B, Gow NAR. Candida albicans and Candida glabrata: global priority pathogens. Microbiol Mol Biol Rev 2024; 88:e0002123. [PMID: 38832801 PMCID: PMC11332356 DOI: 10.1128/mmbr.00021-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
SUMMARYA significant increase in the incidence of Candida-mediated infections has been observed in the last decade, mainly due to rising numbers of susceptible individuals. Recently, the World Health Organization published its first fungal pathogen priority list, with Candida species listed in medium, high, and critical priority categories. This review is a synthesis of information and recent advances in our understanding of two of these species-Candida albicans and Candida glabrata. Of these, C. albicans is the most common cause of candidemia around the world and is categorized as a critical priority pathogen. C. glabrata is considered a high-priority pathogen and has become an increasingly important cause of candidemia in recent years. It is now the second most common causative agent of candidemia in many geographical regions. Despite their differences and phylogenetic divergence, they are successful as pathogens and commensals of humans. Both species can cause a broad variety of infections, ranging from superficial to potentially lethal systemic infections. While they share similarities in certain infection strategies, including tissue adhesion and invasion, they differ significantly in key aspects of their biology, interaction with immune cells, host damage strategies, and metabolic adaptations. Here we provide insights on key aspects of their biology, epidemiology, commensal and pathogenic lifestyles, interactions with the immune system, and antifungal resistance.
Collapse
Affiliation(s)
- Myrto Katsipoulaki
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Mark H. T. Stappers
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Dhara Malavia-Jones
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Neil A. R. Gow
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
21
|
de Paiva Macedo J, Dias VC. Antifungal resistance: why are we losing this battle? Future Microbiol 2024; 19:1027-1040. [PMID: 38904325 PMCID: PMC11318685 DOI: 10.1080/17460913.2024.2342150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/09/2024] [Indexed: 06/22/2024] Open
Abstract
The emergence of fungal pathogens and changes in the epidemiological landscape are prevalent issues in clinical mycology. Reports of resistance to antifungals have been reported. This review aims to evaluate molecular and nonmolecular mechanisms related to antifungal resistance. Mutations in the ERG genes and overexpression of the efflux pump (MDR1, CDR1 and CDR2 genes) were the most reported molecular mechanisms of resistance in clinical isolates, mainly related to Azoles. For echinocandins, a molecular mechanism described was mutation in the FSK genes. Furthermore, nonmolecular virulence factors contributed to therapeutic failure, such as biofilm formation and selective pressure due to previous exposure to antifungals. Thus, there are many public health challenges in treating fungal infections.
Collapse
Affiliation(s)
- Jamile de Paiva Macedo
- Master's Student in Biological Science, Federal University of Juiz de Fora – UFJF Rua José Lourenço Kelmer, s/n, São Pedro, Juiz de Fora, MG 36036 900, Brazil
| | - Vanessa Cordeiro Dias
- Department of Parasitology, Microbiology & Immunology Federal University of Juiz de Fora – UFJF Rua José Lourenço Kelmer, s/n, São Pedro, Juiz de Fora, MG 36036 900, Brazil
| |
Collapse
|
22
|
Li Y, Chadwick B, Pham T, Xie X, Lin X. Aspartyl peptidase May1 induces host inflammatory response by altering cell wall composition in the fungal pathogen Cryptococcus neoformans. mBio 2024; 15:e0092024. [PMID: 38742885 PMCID: PMC11237595 DOI: 10.1128/mbio.00920-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
Cryptococcus neoformans causes cryptococcal meningoencephalitis, a disease that kills more than 180,000 people annually. Contributing to its success as a fungal pathogen is its cell wall surrounded by a capsule. When the cryptococcal cell wall is compromised, exposed pathogen-associated molecular pattern molecules (PAMPs) could trigger host recognition and initiate attack against this fungus. Thus, cell wall composition and structure are tightly regulated. The cryptococcal cell wall is unusual in that chitosan, the acetylated form of chitin, is predominant over chitin and is essential for virulence. Recently, it was shown that acidic pH weakens the cell wall and increases exposure of PAMPs partly due to decreased chitosan levels. However, the molecular mechanism responsible for the cell wall remodeling in acidic pH is unknown. In this study, by screening for genes involved in cryptococcal tolerance to high levels of CO2, we serendipitously discovered that the aspartyl peptidase May1 contributes to cryptococcal sensitivity to high levels of CO2 due to acidification of unbuffered media. Overexpression of MAY1 increases the cryptococcal cell size and elevates PAMP exposure, causing a hyper-inflammatory response in the host while MAY1 deletion does the opposite. We discovered that May1 weakens the cell wall and reduces the chitosan level, partly due to its involvement in the degradation of Chs3, the sole chitin synthase that supplies chitin to be converted to chitosan. Consistently, overexpression of CHS3 largely rescues the phenotype of MAY1oe in acidic media. Collectively, we demonstrate that May1 remodels the cryptococcal cell wall in acidic pH by reducing chitosan levels through its influence on Chs3. IMPORTANCE The fungal cell wall is a dynamic structure, monitoring and responding to internal and external stimuli. It provides a formidable armor to the fungus. However, in a weakened state, the cell wall also triggers host immune attack when PAMPs, including glucan, chitin, and mannoproteins, are exposed. In this work, we found that the aspartyl peptidase May1 impairs the cell wall of Cryptococcus neoformans and increases the exposure of PAMPs in the acidic environment by reducing the chitosan level. Under acidic conditions, May1 is involved in the degradation of the chitin synthase Chs3, which supplies chitin to be deacetylated to chitosan. Consistently, the severe deficiency of chitosan in acidic pH can be rescued by overexpressing CHS3. These findings improve our understanding of cell wall remodeling and reveal a potential target to compromise the cell wall integrity in this important fungal pathogen.
Collapse
Affiliation(s)
- Yeqi Li
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Benjamin Chadwick
- Department of Plant Biology, University of Georgia, Athens, Georgia, USA
| | - Tuyetnhu Pham
- Department of Plant Biology, University of Georgia, Athens, Georgia, USA
| | - Xiaofeng Xie
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
- Department of Plant Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
23
|
Yang B, Vaisvil B, Schmitt D, Collins J, Young E, Kapatral V, Rao R. A correlative study of the genomic underpinning of virulence traits and drug tolerance of Candida auris. Infect Immun 2024; 92:e0010324. [PMID: 38722168 PMCID: PMC11326119 DOI: 10.1128/iai.00103-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 06/12/2024] Open
Abstract
Candida auris is an opportunistic fungal pathogen with high mortality rates which presents a clear threat to public health. The risk of C. auris infection is high because it can colonize the body, resist antifungal treatment, and evade the immune system. The genetic mechanisms for these traits are not well known. Identifying them could lead to new targets for new treatments. To this end, we present an analysis of the genetics and gene expression patterns of C. auris carbon metabolism, drug resistance, and macrophage interaction. We chose to study two C. auris isolates simultaneously, one drug sensitive (B11220 from Clade II) and one drug resistant (B11221 from Clade III). Comparing the genomes, we confirm the previously reported finding that B11220 was missing a 12.8 kb region on chromosome VI. This region contains a gene cluster encoding proteins related to alternative sugar utilization. We show that B11221, which has the gene cluster, readily assimilates and utilizes D-galactose and L-rhamnose as compared to B11220, which harbors the deletion. B11221 exhibits increased adherence and drug resistance compared to B11220 when grown in these sugars. Transcriptomic analysis of both isolates grown on glucose or galactose showed that the gene cluster was upregulated when grown on D-galactose. These findings reinforce growing evidence of a link between metabolism and drug tolerance. B11221 resists phagocytosis by macrophages and exhibits decreased β-1,3-glucan exposure, a key determinant that allows Candida to evade the host immune system, as compared to B11220. In a transcriptomic analysis of both isolates co-cultured with macrophages, we find upregulation of genes associated with transport and transcription factors in B11221. Our studies show a positive correlation between membrane composition and immune evasion, alternate sugar utilization, and drug tolerance in C. auris.
Collapse
Affiliation(s)
- Bo Yang
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | | | | | - Joseph Collins
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Eric Young
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | | | - Reeta Rao
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| |
Collapse
|
24
|
Xu Z, Li Y, Xu A, Xue L, Soteyome T, Yuan L, Ma Q, Seneviratne G, Hong W, Mao Y, Kjellerup BV, Liu J. Differential alteration in Lactiplantibacillus plantarum subsp. plantarum quorum-sensing systems and reduced Candida albicans yeast survival and virulence gene expression in dual-species interaction. Microbiol Spectr 2024; 12:e0035324. [PMID: 38717160 PMCID: PMC11237386 DOI: 10.1128/spectrum.00353-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/15/2024] [Indexed: 06/06/2024] Open
Abstract
Candida albicans (C. albicans) and Lactiplantibacillus plantarum subsp. plantarum (L. plantarum) are frequently identified in various niches, but their dual-species interaction, especially with C. albicans in yeast form, remains unclear. This study aimed to investigate the dual-species interaction of L. plantarum and C. albicans, including proliferation, morphology, and transcriptomes examined by selective agar plate counting, microscopy, and polymicrobial RNA-seq, respectively. Maintaining a stable and unchanged growth rate, L. plantarum inhibited C. albicans yeast cell proliferation but not hyphal growth. Combining optical microscopy and atomic force microscopy, cell-to-cell direct contact and co-aggregation with L. plantarum cells surrounding C. albicans yeast cells were observed during dual-species interaction. Reduced C. albicans yeast cell proliferation in mixed culture was partially due to L. plantarum cell-free culture supernatant but not the acidic environment. Upon polymicrobial transcriptomics analysis, interesting changes were identified in both L. plantarum and C. albicans gene expression. First, two L. plantarum quorum-sensing systems showed contrary changes, with the activation of lamBDCA and repression of luxS. Second, the upregulation of stress response-related genes and downregulation of cell cycle, cell survival, and cell integrity-related pathways were identified in C. albicans, possibly connected to the stress posed by L. plantarum and the reduced yeast cell proliferation. Third, a large scale of pathogenesis and virulence factors were downregulated in C. albicans, indicating the potential interruption of pathogenic activities by L. plantarum. Fourth, partial metabolism and transport pathways were changed in L. plantarum and C. albicans. The information in this study might aid in understanding the behavior of L. plantarum and C. albicans in dual-species interaction.IMPORTANCEThe anti-Candida albicans activity of Lactiplantibacillus plantarum has been explored in the past decades. However, the importance of C. albicans yeast form and the effect of C. albicans on L. plantarum had also been omitted. In this study, the dual-species interaction of L. plantarum and C. albicans was investigated with a focus on the transcriptomes. Cell-to-cell direct contact and co-aggregation with L. plantarum cells surrounding C. albicans yeast cells were observed. Upon polymicrobial transcriptomics analysis, interesting changes were identified, including contrary changes in two L. plantarum quorum-sensing systems and reduced cell survival-related pathways and pathogenesis determinants in C. albicans.
Collapse
Affiliation(s)
- Zhenbo Xu
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Department of Laboratory Medicine, the Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yaqin Li
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Aijuan Xu
- Guangzhou Hybribio Medical Laboratory, Guangzhou, China
| | - Liang Xue
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, China, Guangzhou, Guangdong
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Thanapop Soteyome
- Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand
| | - Lei Yuan
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qin Ma
- Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | | | - Wei Hong
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuzhu Mao
- Department of Civil and Environmental Engineering, University of Maryland, College Park, Maryland, USA
| | - Birthe V. Kjellerup
- Department of Civil and Environmental Engineering, University of Maryland, College Park, Maryland, USA
| | - Junyan Liu
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, College of Light Industry and Food Science, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, China
| |
Collapse
|
25
|
Sobieh SS, Elshazly RG, Tawab SA, Zaki SS. Estimating the expression levels of genes controlling biofilm formation and evaluating the effects of different conditions on biofilm formation and secreted aspartic proteinase activity in Candida albicans and Saccharomyces cerevisiae: a comparative study. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2024; 13:49. [DOI: 10.1186/s43088-024-00504-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/13/2024] [Indexed: 01/03/2025] Open
Abstract
Abstract
Background
Characterization of yeast virulence genes is an important tool for identifying the molecular pathways involved in switching yeast virulence. Biofilm formation (BF) and secreted aspartic proteinase (SAP) activity are essential virulence factors that contribute to yeast pathogenicity.
Results
Four Candida albicans and two Saccharomyces cerevisiae strains were tested for BF and SAP activity under optimum conditions, and the expression levels of several genes controlling BF were quantified under the optimal conditions. Biofilm formation was assessed by the microplate method at different pH values, incubation times and culture media. Similarly, SAP activity was assessed at different pH values and incubation periods. The expression levels of nine genes were determined via qRT-PCR technique. All tests were carried out in triplicate, and the values presented as the means ± standard deviations and were analysed with the SPSS programme. Only C. albicans (1), C. albicans (2) and S. cerevisiae 43 formed biofilms. The optimal BF was obtained after culture in sabouraud dextrose broth with 8% glucose at pH 7.5, 4 and 6, respectively, for 48h. Candida albicans biofilm production was more significant than that of S. cerevisiae 43. Moreover, the SAP activity was estimated under the optimum conditions. All yeasts showed optimal SAP activity at pH 4, but astonishingly the SAP activity of S. cerevisiae 44 was higher than that of C. albicans. The expression levels of EFG1 and ZAP1 (transcription factors); ALS3, HWP1and YWP1 (adhesion genes); SAP1 and SAP4 (aspartic proteinase) in C. albicans (1); and FLO11 (adhesion gene) and YPS3 (aspartic proteinase) in S. cerevisiae 43 were quantified during biofilm development at different time intervals. The expression levels of EFG1, ALS3, YWP1, SAP1, SAP4, FLO11 and YPS3 were upregulated at 8 h, while that of ZAP1 was upregulated at 48 h. Only HWP1 was downregulated.
Conclusions
The findings of the present study may provide information for overcoming yeast BF and pathogenicity by regulating specific genes at specific times. Additionally, this study revealed the virulence of the commensal S. cerevisiae, which may take the pathogenicity direction as C. albicans.
Collapse
|
26
|
Musinguzi B, Akampurira A, Derick H, Mwesigwa A, Mwebesa E, Mwesigye V, Kabajulizi I, Sekulima T, Ocheng F, Itabangi H, Mboowa G, Sande OJ, Achan B. In Vitro Evaluation of the Virulence Attributes of Oropharyngeal Candida Species Isolated from People Living with Human Immunodeficiency Virus with Oropharyngeal Candidiasis on Antiretroviral Therapy. RESEARCH SQUARE 2024:rs.3.rs-4371952. [PMID: 38766148 PMCID: PMC11100903 DOI: 10.21203/rs.3.rs-4371952/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Background Oropharyngeal Candida species are part commensal microflora in the the oral cavity of health individuals. Commensal Candida species can become opportunist and transition to pathogenic causes of oropharyngeal candidiasis (OPC) in individuals with impaired immunity through ecological cues and expression of virulence factors. Limited studies have evaluated virulence attributes of oropharyngeal Candida species among people living with human immunodeficiency virus (PLHIV) with OPC on antiretroviral therapy (ART) in Uganda. Objective Evaluation of the Virulence Attributes of Oropharyngeal Candida Species Isolated from People Living with Human Immunodeficiency Virus with Oropharyngeal Candidiasis on Antiretroviral Therapy. Methods Thirty-five (35) Candida isolates from PLHIV with OPC on ART were retrieved from sample repository and evaluated for phospholipase activity using the egg yolk agar method, proteinase activity using the bovine serum albumin agar method, hemolysin activity using the blood agar plate method, esterase activity using the Tween 80 opacity test medium method, coagulase activity using the classical tube method and biofilm formation using the microtiter plate assay method in vitro. Results Phospholipase and proteinase activities were detected in 33/35 (94.3%) and 31/35 (88.6%) of the strains, respectively. Up to 25/35 (71.4%) of the strains exhibited biofilm formation while esterase activity was demonstrated in 23/35 (65.7%) of the strains. Fewer isolates 21/35 (60%) of the strains produced hemolysin and coagulase production was the least virulence activity detected in 18/35 (51.4%). Conclusion Phospholipase and proteinase activities were the strongest virulence attributes of oropharyngeal Candida species.
Collapse
Affiliation(s)
- Benson Musinguzi
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Muni University, P. O. Box 725, Arua, Uganda
| | - Andrew Akampurira
- Department of Medical Microbiology, School of Biomedical Sciences, College of Health Sciences, P.O. Box 7072, Makerere University, Kampala, Uganda
| | - Hope Derick
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Muni University, P. O. Box 725, Arua, Uganda
| | - Alex Mwesigwa
- Department of Microbiology and Immunology, School of Medicine, P.O Box 317, Kabale University Kabale, Uganda
| | - Edson Mwebesa
- Department of Mathematics, Faculty of Science, Muni University, P. O. Box 725, Arua, Uganda
| | - Vicent Mwesigye
- Department of Medical Laboratory Sciences, Faculty of Medicine, Mbarara University of Science and Technology, P.O. Box 1410, Mbarara, Uganda
| | - Immaculate Kabajulizi
- Mycology Unit, Department of Microbiology, Faculty of Medicine, Mbarara University of Science and Technology, P.O. Box 1410, Mbarara, Uganda
| | - Tahalu Sekulima
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P.O. Box 7072, Kampala, Uganda
| | - Francis Ocheng
- Department of Dentistry, School of Health Sciences, College of Health Sciences, Makerere University, P.O. Box 7072, Kampala, Uganda
| | - Herbert Itabangi
- Department of Microbiology and Immunology, Faculty of Health Sciences, Busitema University, P.O Box 1460, Mbale, Uganda
| | - Gerald Mboowa
- African Centre of Excellence in Bioinformatics and Data-Intensive Sciences, Infectious Diseases Institute, College of Health Sciences, Makerere University, P.O Box 22418, Kampala, Uganda
| | - Obondo James Sande
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, P.O. Box 7072, Kampala, Uganda
| | - Beatrice Achan
- Department of Medical Microbiology, School of Biomedical Sciences, College of Health Sciences, P.O. Box 7072, Makerere University, Kampala, Uganda
| |
Collapse
|
27
|
Nenciarini S, Renzi S, di Paola M, Meriggi N, Cavalieri D. Ascomycetes yeasts: The hidden part of human microbiome. WIREs Mech Dis 2024; 16:e1641. [PMID: 38228159 DOI: 10.1002/wsbm.1641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/18/2024]
Abstract
The fungal component of the microbiota, the mycobiota, has been neglected for a long time due to its poor richness compared to bacteria. Limitations in fungal detection and taxonomic identification arise from using metagenomic approaches, often borrowed from bacteriome analyses. However, the relatively recent discoveries of the ability of fungi to modulate the host immune response and their involvement in human diseases have made mycobiota a fundamental component of the microbial communities inhabiting the human host, deserving some consideration in host-microbe interaction studies and in metagenomics. Here, we reviewed recent data on the identification of yeasts of the Ascomycota phylum across human body districts, focusing on the most representative genera, that is, Saccharomyces and Candida. Then, we explored the key factors involved in shaping the human mycobiota across the lifespan, ranging from host genetics to environment, diet, and lifestyle habits. Finally, we discussed the strengths and weaknesses of culture-dependent and independent methods for mycobiota characterization. Overall, there is still room for some improvements, especially regarding fungal-specific methodological approaches and bioinformatics challenges, which are still critical steps in mycobiota analysis, and to advance our knowledge on the role of the gut mycobiota in human health and disease. This article is categorized under: Immune System Diseases > Genetics/Genomics/Epigenetics Immune System Diseases > Environmental Factors Infectious Diseases > Environmental Factors.
Collapse
Affiliation(s)
| | - Sonia Renzi
- Department of Biology, University of Florence, Florence, Italy
| | - Monica di Paola
- Department of Biology, University of Florence, Florence, Italy
| | - Niccolò Meriggi
- Department of Biology, University of Florence, Florence, Italy
| | | |
Collapse
|
28
|
Bras G, Satala D, Juszczak M, Kulig K, Wronowska E, Bednarek A, Zawrotniak M, Rapala-Kozik M, Karkowska-Kuleta J. Secreted Aspartic Proteinases: Key Factors in Candida Infections and Host-Pathogen Interactions. Int J Mol Sci 2024; 25:4775. [PMID: 38731993 PMCID: PMC11084781 DOI: 10.3390/ijms25094775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Extracellular proteases are key factors contributing to the virulence of pathogenic fungi from the genus Candida. Their proteolytic activities are crucial for extracting nutrients from the external environment, degrading host defenses, and destabilizing the internal balance of the human organism. Currently, the enzymes most frequently described in this context are secreted aspartic proteases (Saps). This review comprehensively explores the multifaceted roles of Saps, highlighting their importance in biofilm formation, tissue invasion through the degradation of extracellular matrix proteins and components of the coagulation cascade, modulation of host immune responses via impairment of neutrophil and monocyte/macrophage functions, and their contribution to antifungal resistance. Additionally, the diagnostic challenges associated with Candida infections and the potential of Saps as biomarkers were discussed. Furthermore, we examined the prospects of developing vaccines based on Saps and the use of protease inhibitors as adjunctive therapies for candidiasis. Given the complex biology of Saps and their central role in Candida pathogenicity, a multidisciplinary approach may pave the way for innovative diagnostic strategies and open new opportunities for innovative clinical interventions against candidiasis.
Collapse
Affiliation(s)
- Grazyna Bras
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland (M.Z.); (J.K.-K.)
| | - Dorota Satala
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland (M.Z.); (J.K.-K.)
| | - Magdalena Juszczak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland (M.Z.); (J.K.-K.)
- Doctoral School of Exact and Natural Sciences, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Kamila Kulig
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland (M.Z.); (J.K.-K.)
| | - Ewelina Wronowska
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland (M.Z.); (J.K.-K.)
| | - Aneta Bednarek
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland (M.Z.); (J.K.-K.)
- Doctoral School of Exact and Natural Sciences, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland (M.Z.); (J.K.-K.)
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland (M.Z.); (J.K.-K.)
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland (M.Z.); (J.K.-K.)
| |
Collapse
|
29
|
Jafarlou M. Unveiling the menace: a thorough review of potential pandemic fungal disease. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1338726. [PMID: 38711422 PMCID: PMC11071163 DOI: 10.3389/ffunb.2024.1338726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/04/2024] [Indexed: 05/08/2024]
Abstract
Fungal diseases have emerged as a significant global health threat, with the potential to cause widespread outbreaks and significant morbidity and mortality. Anticipating future pandemic fungal diseases is essential for effective preparedness and response strategies. This comprehensive literature review aims to provide a comprehensive analysis of the existing research on this topic. Through an extensive examination of scholarly articles, this review identifies potential fungal pathogens that have the potential to become pandemics in the future. It explores the factors contributing to the emergence and spread of these fungal diseases, including climate change, globalization, and antimicrobial resistance. The review also discusses the challenges in diagnosing and treating these diseases, including limited access to diagnostic tools and antifungal therapies. Furthermore, it examines the strategies and interventions that can be employed to mitigate the impact of future pandemic fungal diseases, such as improved surveillance systems, public health education, and research advancements. The findings of this literature review contribute to our understanding of the potential risks posed by fungal diseases and provide valuable insights for public health professionals and policymakers in effectively preparing for and responding to future pandemic outbreaks. Overall, this review emphasizes the importance of proactive measures and collaborative efforts to anticipate and mitigate the impact of future pandemic fungal diseases.
Collapse
|
30
|
Hefny ZA, Ji B, Elsemman IE, Nielsen J, Van Dijck P. Transcriptomic meta-analysis to identify potential antifungal targets in Candida albicans. BMC Microbiol 2024; 24:66. [PMID: 38413885 PMCID: PMC10898158 DOI: 10.1186/s12866-024-03213-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Candida albicans is a fungal pathogen causing human infections. Here we investigated differential gene expression patterns and functional enrichment in C. albicans strains grown under different conditions. METHODS A systematic GEO database search identified 239 "Candida albicans" datasets, of which 14 were selected after rigorous criteria application. Retrieval of raw sequencing data from the ENA database was accompanied by essential metadata extraction from dataset descriptions and original articles. Pre-processing via the tailored nf-core pipeline for C. albicans involved alignment, gene/transcript quantification, and diverse quality control measures. Quality assessment via PCA and DESeq2 identified significant genes (FDR < = 0.05, log2-fold change > = 1 or <= -1), while topGO conducted GO term enrichment analysis. Exclusions were made based on data quality and strain relevance, resulting in the selection of seven datasets from the SC5314 strain background for in-depth investigation. RESULTS The meta-analysis of seven selected studies unveiled a substantial number of genes exhibiting significant up-regulation (24,689) and down-regulation (18,074). These differentially expressed genes were further categorized into 2,497 significantly up-regulated and 2,573 significantly down-regulated Gene Ontology (GO) IDs. GO term enrichment analysis clustered these terms into distinct groups, providing insights into the functional implications. Three target gene lists were compiled based on previous studies, focusing on central metabolism, ion homeostasis, and pathogenicity. Frequency analysis revealed genes with higher occurrence within the identified GO clusters, suggesting their potential as antifungal targets. Notably, the genes TPS2, TPS1, RIM21, PRA1, SAP4, and SAP6 exhibited higher frequencies within the clusters. Through frequency analysis within the GO clusters, several key genes emerged as potential targets for antifungal therapies. These include RSP5, GLC7, SOD2, SOD5, SOD1, SOD6, SOD4, SOD3, and RIM101 which exhibited higher occurrence within the identified clusters. CONCLUSION This comprehensive study significantly advances our understanding of the dynamic nature of gene expression in C. albicans. The identification of genes with enhanced potential as antifungal drug targets underpins their value for future interventions. The highlighted genes, including TPS2, TPS1, RIM21, PRA1, SAP4, SAP6, RSP5, GLC7, SOD2, SOD5, SOD1, SOD6, SOD4, SOD3, and RIM101, hold promise for the development of targeted antifungal therapies.
Collapse
Affiliation(s)
- Zeinab Abdelmoghis Hefny
- Laboratory of Molecular Cell Biology, Department of Biology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 31, Leuven, B-3001, Belgium
| | - Boyang Ji
- BioInnovation Institute, Ole Maaløes Vej 3, Copenhagen, DK2200, Denmark
| | - Ibrahim E Elsemman
- Department of Information Systems, Faculty of Computers and Information, Assiut University, Assiut, 2071515, Egypt
| | - Jens Nielsen
- BioInnovation Institute, Ole Maaløes Vej 3, Copenhagen, DK2200, Denmark.
- Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, SE41296, Gothenburg, SE41296, Sweden.
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Department of Biology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 31, Leuven, B-3001, Belgium.
| |
Collapse
|
31
|
Yuan X, Sun J, Kadowaki T. Aspartyl protease in the secretome of honey bee trypanosomatid parasite contributes to infection of bees. Parasit Vectors 2024; 17:60. [PMID: 38341595 PMCID: PMC10859015 DOI: 10.1186/s13071-024-06126-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND The exoproteome, which consists of both secreted proteins and those originating from cell surfaces and lysed cells, is a critical component of trypanosomatid parasites, facilitating interactions with host cells and gut microbiota. However, its specific roles in the insect hosts of these parasites remain poorly understood. METHODS We conducted a comprehensive characterization of the exoproteome in Lotmaria passim, a trypanosomatid parasite infecting honey bees, under culture conditions. We further investigated the functions of two conventionally secreted proteins, aspartyl protease (LpAsp) and chitinase (LpCht), as representative models to elucidate the role of the secretome in L. passim infection of honey bees. RESULTS Approximately 48% of L. passim exoproteome proteins were found to share homologs with those found in seven Leishmania spp., suggesting the existence of a core exoproteome with conserved functions in the Leishmaniinae lineage. Bioinformatics analyses suggested that the L. passim exoproteome may play a pivotal role in interactions with both the host and its microbiota. Notably, the deletion of genes encoding two secretome proteins revealed the important role of LpAsp, but not LpCht, in L. passim development under culture conditions and its efficiency in infecting the honey bee gut. CONCLUSIONS Our results highlight the exoproteome as a valuable resource for unraveling the mechanisms employed by trypanosomatid parasites to infect insect hosts by interacting with the gut environment.
Collapse
Affiliation(s)
- Xuye Yuan
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou Dushu Lake Higher Education Town, 215123, Jiangsu, China
| | - Jianying Sun
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou Dushu Lake Higher Education Town, 215123, Jiangsu, China
| | - Tatsuhiko Kadowaki
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou Dushu Lake Higher Education Town, 215123, Jiangsu, China.
| |
Collapse
|
32
|
Feng Z, Lu H, Jiang Y. Promising immunotherapeutic targets for treating candidiasis. Front Cell Infect Microbiol 2024; 14:1339501. [PMID: 38404288 PMCID: PMC10884116 DOI: 10.3389/fcimb.2024.1339501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
In the last twenty years, there has been a significant increase in invasive fungal infections, which has corresponded with the expanding population of individuals with compromised immune systems. As a result, the mortality rate linked to these infections remains unacceptably high. The currently available antifungal drugs, such as azoles, polyenes, and echinocandins, face limitations in terms of their diversity, the escalating resistance of fungi and the occurrence of significant adverse effects. Consequently, there is an urgent need to develop new antifungal medications. Vaccines and antibodies present a promising avenue for addressing fungal infections due to their targeted antifungal properties and ability to modulate the immune response. This review investigates the structure and function of cell wall proteins, secreted proteins, and functional proteins within C. albicans. Furthermore, it seeks to analyze the current advancements and challenges in macromolecular drugs to identify new targets for the effective management of candidiasis.
Collapse
Affiliation(s)
| | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
33
|
Zhang FY, Lian N, Li M. Macrophage pyroptosis induced by Candida albicans. Pathog Dis 2024; 82:ftae003. [PMID: 38499444 PMCID: PMC11162155 DOI: 10.1093/femspd/ftae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/21/2023] [Accepted: 03/15/2024] [Indexed: 03/20/2024] Open
Abstract
Candida albicans (C. albicans) is a prevalent opportunistic pathogen that causes mucocutaneous and systemic infections, particularly in immunocompromised individuals. Macrophages play a crucial role in eliminating C. albicans in local and bloodstream contexts, while also regulating antifungal immune responses. However, C. albicans can induce macrophage lysis through pyroptosis, a type of regulated cell death. This process can enable C. albicans to escape from immune cells and trigger the release of IL-1β and IL-18, which can impact both the host and the pathogen. Nevertheless, the mechanisms by which C. albicans triggers pyroptosis in macrophages and the key factors involved in this process remain unclear. In this review, we will explore various factors that may influence or trigger pyroptosis in macrophages induced by C. albicans, such as hypha, ergosterol, cell wall remodeling, and other virulence factors. We will also examine the possible immune response following macrophage pyroptosis.
Collapse
Affiliation(s)
- Feng-yuan Zhang
- Hospital for Skin Diseases, Institute of Dermatology,Chinese Academy of Medical Sciences & Peking Union Medical College, 12th. JiangWangmiao street, Nanjing, 210042, China
| | - Ni Lian
- Hospital for Skin Diseases, Institute of Dermatology,Chinese Academy of Medical Sciences & Peking Union Medical College, 12th. JiangWangmiao street, Nanjing, 210042, China
| | - Min Li
- Hospital for Skin Diseases, Institute of Dermatology,Chinese Academy of Medical Sciences & Peking Union Medical College, 12th. JiangWangmiao street, Nanjing, 210042, China
- Center for Global Health, School of Public Health, Nanjing Medical University, 101st. LongMian Avenue, Nanjing, 211166, China
| |
Collapse
|
34
|
Yadav A, Yadav R, Sharma V, Dutta U. A comprehensive guide to assess gut mycobiome and its role in pathogenesis and treatment of inflammatory bowel disease. Indian J Gastroenterol 2024; 43:112-128. [PMID: 38409485 DOI: 10.1007/s12664-023-01510-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/20/2023] [Indexed: 02/28/2024]
Abstract
Inflammatory bowel disease (IBD) is an immune mediated chronic inflammatory disorder of gastrointestinal tract, which has underlying multifactorial pathogenic determinants such as environmental factors, susceptibility genes, gut microbial dysbiosis and a dysregulated immune response. Human gut is a frequent inhabitant of complex microbial ecosystem encompassing bacteria, viruses, parasites, fungi and other microorganisms that have an undisputable role in maintaining balanced homeostasis. All of these microbes interact with immune system and affect human gut physiology either directly or indirectly with interaction of each other. Intestinal fungi represent a smaller but crucial component of the human gut microbiome. Besides interaction with bacteriome and virome, it helps in balancing homoeostasis between pathophysiological and physiological processes, which is often dysregulated in patients with IBD. Understanding of gut mycobiome and its clinical implications are still in in its infancy as opposed to bacterial component of gut microbiome, which is more often focused. Modulation of gut mycobiome represents a novel and promising strategy in the management of patients with IBD. Emerging mycobiome-based therapies such as diet interventions, fecal microbiota transplantation (FMT), probiotics (both fungal and bacterial strains) and antifungals exhibit substantial effects in calibrating the gut mycobiome and restoring dysbalanced immune homeostasis by restoring the core gut mycobiome. In this review, we summarized compositional and functional diversity of the gut mycobiome in healthy individuals and patients with IBD, gut mycobiome dysbiosis in patients with IBD, host immune-fungal interactions and therapeutic role of modulation of intestinal fungi in patients with IBD.
Collapse
Affiliation(s)
- Amit Yadav
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | - Renu Yadav
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, 110 029, India
| | - Vishal Sharma
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | - Usha Dutta
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012, India.
| |
Collapse
|
35
|
Alvarado M, Gómez-Navajas JA, Blázquez-Muñoz MT, Gómez-Molero E, Fernández-Sánchez S, Eraso E, Munro CA, Valentín E, Mateo E, de Groot PWJ. The good, the bad, and the hazardous: comparative genomic analysis unveils cell wall features in the pathogen Candidozyma auris typical for both baker's yeast and Candida. FEMS Yeast Res 2024; 24:foae039. [PMID: 39656857 DOI: 10.1093/femsyr/foae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 11/04/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024] Open
Abstract
The drug-resistant pathogenic yeast Candidozyma auris (formerly named Candida auris) is considered a critical health problem of global importance. As the cell wall plays a crucial role in pathobiology, here we performed a detailed bioinformatic analysis of its biosynthesis in C. auris and related Candidozyma haemuli complex species using Candida albicans and Saccharomyces cerevisiae as references. Our data indicate that the cell wall architecture described for these reference yeasts is largely conserved in Candidozyma spp.; however, expansions or reductions in gene families point to subtle alterations, particularly with respect to β--1,3--glucan synthesis and remodeling, phosphomannosylation, β-mannosylation, and glycosylphosphatidylinositol (GPI) proteins. In several aspects, C. auris holds a position in between C. albicans and S. cerevisiae, consistent with being classified in a separate genus. Strikingly, among the identified putative GPI proteins in C. auris are adhesins typical for both Candida (Als and Hyr/Iff) and Saccharomyces (Flo11 and Flo5-like flocculins). Further, 26 putative C. auris GPI proteins lack homologs in Candida genus species. Phenotypic analysis of one such gene, QG37_05701, showed mild phenotypes implicating a role associated with cell wall β-1,3-glucan. Altogether, our study uncovered a wealth of information relevant for the pathogenicity of C. auris as well as targets for follow-up studies.
Collapse
Affiliation(s)
- María Alvarado
- Institute for Biomedicine, ETSIAMB, University of Castilla-La Mancha, 02008 Albacete, Spain
| | - Jesús A Gómez-Navajas
- Institute for Biomedicine, ETSIAMB, University of Castilla-La Mancha, 02008 Albacete, Spain
| | | | - Emilia Gómez-Molero
- Institute for Biomedicine, ETSIAMB, University of Castilla-La Mancha, 02008 Albacete, Spain
| | | | - Elena Eraso
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Bilbao, Spain
| | - Carol A Munro
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | - Eulogio Valentín
- GMCA Research Unit, Departament of Microbiology and Ecology, University of Valencia, Burjassot, 46010 Valencia, Spain
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Estibaliz Mateo
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Bilbao, Spain
| | - Piet W J de Groot
- Institute for Biomedicine, ETSIAMB, University of Castilla-La Mancha, 02008 Albacete, Spain
| |
Collapse
|
36
|
Lim SJ, Muhd Noor ND, Sabri S, Mohamad Ali MS, Salleh AB, Oslan SN. Bibliometric analysis and thematic review of Candida pathogenesis: Fundamental omics to applications as potential antifungal drugs and vaccines. Med Mycol 2024; 62:myad126. [PMID: 38061839 DOI: 10.1093/mmy/myad126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/21/2023] [Accepted: 12/06/2023] [Indexed: 01/11/2024] Open
Abstract
Invasive candidiasis caused by the pathogenic Candida yeast species has resulted in elevating global mortality. The pathogenicity of Candida spp. is not only originated from its primary invasive yeast-to-hyphal transition; virulence factors (transcription factors, adhesins, invasins, and enzymes), biofilm, antifungal drug resistance, stress tolerance, and metabolic adaptation have also contributed to a greater clinical burden. However, the current research theme in fungal pathogenicity could hardly be delineated with the increasing research output. Therefore, our study analysed the research trends in Candida pathogenesis over the past 37 years via a bibliometric approach against the Scopus and Web of Science databases. Based on the 3993 unique documents retrieved, significant international collaborations among researchers were observed, especially between Germany (Bernhard Hube) and the UK (Julian Naglik), whose focuses are on Candida proteinases, adhesins, and candidalysin. The prominent researchers (Neils Gow, Alistair Brown, and Frank Odds) at the University of Exeter and the University of Aberdeen (second top performing affiliation) UK contribute significantly to the mechanisms of Candida adaptation, tolerance, and stress response. However, the science mapping of co-citation analysis performed herein could not identify a hub representative of subsequent work since the clusters were semi-redundant. The co-word analysis that was otherwise adopted, revealed three research clusters; the cluster-based thematic analyses indicated the severeness of Candida biofilm and antifungal resistance as well as the elevating trend on molecular mechanism elucidation for drug screening and repurposing. Importantly, the in vivo pathogen adaptation and interactions with hosts are crucial for potential vaccine development.
Collapse
Affiliation(s)
- Si Jie Lim
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Noor Dina Muhd Noor
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Suriana Sabri
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Abu Bakar Salleh
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
37
|
Chua W, Marsh CO, Poh SE, Koh WL, Lee MLY, Koh LF, Tang XZE, See P, Ser Z, Wang SM, Sobota RM, Dawson TL, Yew YW, Thng S, O'Donoghue AJ, Oon HH, Common JE, Li H. A Malassezia pseudoprotease dominates the secreted hydrolase landscape and is a potential allergen on skin. Biochimie 2024; 216:181-193. [PMID: 37748748 DOI: 10.1016/j.biochi.2023.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Malassezia globosa is abundant and prevalent on sebaceous areas of the human skin. Genome annotation reveals that M. globosa possesses a repertoire of secreted hydrolytic enzymes relevant for lipid and protein metabolism. However, the functional significance of these enzymes is uncertain and presence of these genes in the genome does not always translate to expression at the cutaneous surface. In this study we utilized targeted RNA sequencing from samples isolated directly from the skin to quantify gene expression of M. globosa secreted proteases, lipases, phospholipases and sphingomyelinases. Our findings indicate that the expression of these enzymes is dynamically regulated by the environment in which the fungus resides, as different growth phases of the planktonic culture of M. globosa show distinct expression levels. Furthermore, we observed significant differences in the expression of these enzymes in culture compared to healthy sebaceous skin sites. By examining the in situ gene expression of M. globosa's secreted hydrolases, we identified a predicted aspartyl protease, MGL_3331, which is highly expressed on both healthy and disease-affected dermatological sites. However, molecular modeling and biochemical studies revealed that this protein has a non-canonical active site motif and lacks measurable proteolytic activity. This pseudoprotease MGL_3331 elicits a heightened IgE-reactivity in blood plasma isolated from patients with atopic dermatitis compared to healthy individuals and invokes a pro-inflammatory response in peripheral blood mononuclear cells. Overall, our study highlights the importance of studying fungal proteins expressed in physiologically relevant environments and underscores the notion that secreted inactive enzymes may have important functions in influencing host immunity.
Collapse
Affiliation(s)
- Wisely Chua
- Molecular Engineering Lab, Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Carl O Marsh
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Si En Poh
- Molecular Engineering Lab, Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Winston Lc Koh
- Bioinformatics Institute, Agency for Science, Technology and Research, 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
| | - Melody Li Ying Lee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Li Fang Koh
- A∗STAR Skin Research Labs, Agency for Science, Technology and Research, 8A Biomedical Grove, #06-06, Immunos, 138648, Singapore
| | - Xin-Zi Emily Tang
- Molecular Engineering Lab, Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Peter See
- Molecular Engineering Lab, Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Zheng Ser
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Shi Mei Wang
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Radoslaw M Sobota
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Thomas L Dawson
- A∗STAR Skin Research Labs, Agency for Science, Technology and Research, 8A Biomedical Grove, #06-06, Immunos, 138648, Singapore; College of Pharmacy, Department of Drug Discovery, Medical University of South Carolina, USA
| | - Yik Weng Yew
- National Skin Centre, National Healthcare Group, 1 Mandalay Rd, 308205, Singapore; Skin Research Institute of Singapore, Skin Research Institute of Singapore (SRIS), 17-01 LKC CSB, 11 Mandalay Rd, 308232, Singapore
| | - Steven Thng
- National Skin Centre, National Healthcare Group, 1 Mandalay Rd, 308205, Singapore; Skin Research Institute of Singapore, Skin Research Institute of Singapore (SRIS), 17-01 LKC CSB, 11 Mandalay Rd, 308232, Singapore
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, United States
| | - Hazel H Oon
- National Skin Centre, National Healthcare Group, 1 Mandalay Rd, 308205, Singapore; Skin Research Institute of Singapore, Skin Research Institute of Singapore (SRIS), 17-01 LKC CSB, 11 Mandalay Rd, 308232, Singapore
| | - John E Common
- A∗STAR Skin Research Labs, Agency for Science, Technology and Research, 8A Biomedical Grove, #06-06, Immunos, 138648, Singapore; Skin Research Institute of Singapore, Skin Research Institute of Singapore (SRIS), 17-01 LKC CSB, 11 Mandalay Rd, 308232, Singapore
| | - Hao Li
- Molecular Engineering Lab, Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore, 61 Biopolis Drive, Proteos, 138673, Singapore; Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore.
| |
Collapse
|
38
|
Dhanasekaran S, Pushparaj Selvadoss P, Sundar Manoharan S, Jeyabalan S, Devi Rajeswari V. Revealing anti-fungal potential of plant-derived bioactive therapeutics in targeting secreted aspartyl proteinase (SAP) of Candida albicans: a molecular dynamics approach. J Biomol Struct Dyn 2024; 42:710-724. [PMID: 37021476 DOI: 10.1080/07391102.2023.2196703] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/17/2023] [Indexed: 04/07/2023]
Abstract
Candida species have established themselves as a major source of nosocomial infections. Increased expression of secreted aspartyl proteinases (SAP5) plays a crucial role in the pathogenesis of Candida species. Phytotherapeutics continue to serve as a viable resource for discovering novel antifungal agents. Hence the main aim of the present investigation is to explore the possible inhibitory role of the selected bioactive molecules against the SAP5 enzyme of C. albicans using in silico approach. Molecular docking and dynamic simulations were utilized to predict the binding affinity of the lead molecules using the AutoDock and Gromacs in-silico screening tools. Results of preliminary docking simulations show that the compounds hesperidin, vitexin, berberine, adhatodine, piperine, and chlorogenic acid exhibit significant interactions with the core catalytic residues of the target protein. The best binding ligands (hesperidin, vitexin, fluconazole) were subjected to molecular dynamics (MD) and essential dynamics of the trajectories. Results of the MD simulation confirm that the ligand-protein complexes became more stable from 20 ns until 100 ns. The calculated residue-level contributions to the interaction energy along a steady simulation trajectory of all three hits (hesperidin (-132.720 kJ/mol), vitexin (-83.963 kJ/mol) and fluconazole (-98.864 kJ/mol)) ensure greater stability of the leads near the catalytic region. Essential dynamics of PCA and DCCM analysis signifies that the binding of hesperidin and vitexin created a more structurally stable environment in the protein target. The overall outcomes of this study clearly emphasize that the bioactive therapeutics found in medicinal herbs may have remarkable scope in managing Candida infection.
Collapse
Affiliation(s)
| | | | | | - Srikanth Jeyabalan
- Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | | |
Collapse
|
39
|
Ma Y, Sui J, Wang Y, Sun W, Yi G, Wu J, Qiu S, Wang L, Zhang A, He X. RNA-Seq-Based Transcriptomics and GC-MS Quantitative Analysis Reveal Antifungal Mechanisms of Essential Oil of Clausena lansium (Lour.) Skeels Seeds against Candida albicans. Molecules 2023; 28:8052. [PMID: 38138542 PMCID: PMC10745804 DOI: 10.3390/molecules28248052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Infections caused by Candida albicans (C. albicans) and increasing resistance to commonly used drugs lead to a variety of mucosal diseases and systemic infectious diseases. We previously confirmed that the essential oil of Clausena lansium (Lour.) Skeels seeds (CSEO) had antifungal activity against C. albicans, but the detailed mechanism between the chemical components and antifungal activity is unclear. In this study, a quantitative analysis of five volatile components of CSEO, including sabinene, α-phellandrene, β-phellandrene, 4-terpineol, and β-caryophyllene, was carried out using the gas chromatography-mass spectrometry (GC-MS) method. Both the broth dilution and kinetic growth methods proved that the antifungal activity of CSEO against fluconazole-resistant C. albicans was better than that of its main components (sabinene and 4-terpineol). To further investigate the inhibitory mechanism, the transcriptional responses of C. albicans to CSEO, sabinene, and 4-terpineol treatment were determined based on RNA-seq. The Venn diagram and clustering analysis pattern of differential expression genes showed the mechanism of CSEO and 4-terpineol's anti-C. albicans activity might be similar from the perspective of the genes. Functional enrichment analysis suggested that CSEO regulated adherence-, hyphae-, and biofilm-formation-related genes, which may be CSEO's active mechanism of inhibiting the growth of fluconazole-resistant C. albicans. Overall, we preliminarily revealed the molecular mechanism between the chemical components and the antifungal activity of CSEO against C. albicans. This study provides new insights to overcome the azole resistance of C. albicans and promote the development and application of C. lansium (Lour.) Skeels seeds.
Collapse
Affiliation(s)
- Yinzheng Ma
- Public Research Center, Hainan Medical University, Haikou 571199, China; (Y.M.); (J.S.); (Y.W.); (W.S.); (G.Y.); (J.W.); (S.Q.); (L.W.)
- School of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Jinlei Sui
- Public Research Center, Hainan Medical University, Haikou 571199, China; (Y.M.); (J.S.); (Y.W.); (W.S.); (G.Y.); (J.W.); (S.Q.); (L.W.)
| | - Yan Wang
- Public Research Center, Hainan Medical University, Haikou 571199, China; (Y.M.); (J.S.); (Y.W.); (W.S.); (G.Y.); (J.W.); (S.Q.); (L.W.)
| | - Wanying Sun
- Public Research Center, Hainan Medical University, Haikou 571199, China; (Y.M.); (J.S.); (Y.W.); (W.S.); (G.Y.); (J.W.); (S.Q.); (L.W.)
| | - Guohui Yi
- Public Research Center, Hainan Medical University, Haikou 571199, China; (Y.M.); (J.S.); (Y.W.); (W.S.); (G.Y.); (J.W.); (S.Q.); (L.W.)
| | - Jinyan Wu
- Public Research Center, Hainan Medical University, Haikou 571199, China; (Y.M.); (J.S.); (Y.W.); (W.S.); (G.Y.); (J.W.); (S.Q.); (L.W.)
| | - Shi Qiu
- Public Research Center, Hainan Medical University, Haikou 571199, China; (Y.M.); (J.S.); (Y.W.); (W.S.); (G.Y.); (J.W.); (S.Q.); (L.W.)
| | - Lili Wang
- Public Research Center, Hainan Medical University, Haikou 571199, China; (Y.M.); (J.S.); (Y.W.); (W.S.); (G.Y.); (J.W.); (S.Q.); (L.W.)
| | - Aihua Zhang
- Public Research Center, Hainan Medical University, Haikou 571199, China; (Y.M.); (J.S.); (Y.W.); (W.S.); (G.Y.); (J.W.); (S.Q.); (L.W.)
| | - Xiaowen He
- Public Research Center, Hainan Medical University, Haikou 571199, China; (Y.M.); (J.S.); (Y.W.); (W.S.); (G.Y.); (J.W.); (S.Q.); (L.W.)
- School of Pharmacy, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island, Emergency Medicine of Chinese Academy of Medical Sciences, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
40
|
Safhi AY, Naveen NR, Rolla KJ, Bhavani PD, Kurakula M, Hosny KM, Abualsunun WA, Alissa M, Alsalhi A, Alahmadi AA, Zoghebi K, Halwaani AS, Ibrahim K R. Enhancement of antifungal activity and transdermal delivery of 5-flucytosine via tailored spanlastic nanovesicles: statistical optimization, in-vitro characterization, and in-vivo biodistribution study. Front Pharmacol 2023; 14:1321517. [PMID: 38125883 PMCID: PMC10731591 DOI: 10.3389/fphar.2023.1321517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Aim and background: This current study aimed to load 5-flucytosine (5-FCY) into spanlastic nanovesicles (SPLNs) to make the drug more efficient as an antifungal and also to load the 5-FCY into a hydrogel that would allow for enhanced transdermal permeation and improved patient compliance. Methods: The preparation of 5-FCY-SPLNs was optimized by using a central composite design that considered Span 60 (X1) and the edge activator Tween 80 (X2) as process variables in achieving the desired particle size and entrapment efficiency. A formulation containing 295.79 mg of Span 60 and 120.00 mg of Tween 80 was found to meet the prerequisites of the desirability method. The optimized 5-FCY-SPLN formulation was further formulated into a spanlastics gel (SPG) so that the 5-FCY-SPLNs could be delivered topically and characterized in terms of various parameters. Results: As required, the SPG had the desired elasticity, which can be credited to the physical characteristics of SPLNs. An ex-vivo permeation study showed that the greatest amount of 5-FCY penetrated per unit area (Q) (mg/cm2) over time and the average flux (J) (mg/cm2/h) was at the end of 24 h. Drug release studies showed that the drug continued to be released until the end of 24 h and that the pattern was correlated with an ex-vivo permeation and distribution study. The biodistribution study showed that the 99mTc-labeled SFG that permeated the skin had a steadier release pattern, a longer duration of circulation with pulsatile behavior in the blood, and higher levels in the bloodstream than the oral 99mTc-SPNLs. Therefore, a 5-FCY transdermal hydrogel could possibly be a long-acting formula for maintenance treatment that could be given in smaller doses and less often than the oral formula.
Collapse
Affiliation(s)
- Awaji Y. Safhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Nimbagal Raghavendra Naveen
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Mandya, Karnataka, India
| | - Krishna Jayanth Rolla
- Department of Biotechnology, Sri Indu Institute of Engineering, Hyderabad, Telangana, India
| | - Penmetsa Durga Bhavani
- Department of Pharmaceutics, Vishnu Institute of Pharmaceutical Education and Research, Narsapur, Telangana, India
| | | | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Walaa A. Abualsunun
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abdullah Alsalhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Amerh Aiad Alahmadi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | | | - Rasha Ibrahim K
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
41
|
Bellavita R, Falanga A, Merlino F, D'Auria G, Molfetta N, Saviano A, Maione F, Galdiero U, Catania MR, Galdiero S, Grieco P, Roscetto E, Falcigno L, Buommino E. Unveiling the mechanism of action of acylated temporin L analogues against multidrug-resistant Candida albicans. J Enzyme Inhib Med Chem 2023; 38:36-50. [PMID: 36305289 PMCID: PMC9621209 DOI: 10.1080/14756366.2022.2134359] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The increasing resistance of fungi to conventional antifungal drugs has prompted worldwide the search for new compounds. In this work, we investigated the antifungal properties of acylated Temporin L derivatives, Pent-1B and Dec-1B, against Candida albicans, including the multidrug-resistant strains. Acylated peptides resulted to be active both on reference and clinical strains with MIC values ranging from 6.5 to 26 µM, and they did not show cytotoxicity on human keratinocytes. In addition, we also observed a synergistic or additive effect with voriconazole for peptides Dec-1B and Pent-1B through the checkerboard assay on voriconazole-resistant Candida strains. Moreover, fluorescence-based assays, NMR spectroscopy, and confocal microscopy elucidated a potential membrane-active mechanism, consisting of an initial electrostatic interaction of acylated peptides with fungal membrane, followed by aggregation and insertion into the lipid bilayer and causing membrane perturbation probably through a carpeting effect.
Collapse
Affiliation(s)
- Rosa Bellavita
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Annarita Falanga
- Department of Agricultural Science, University of Naples "Federico II", Portici, Italy
| | - Francesco Merlino
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Gabriella D'Auria
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Nicola Molfetta
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Anella Saviano
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Francesco Maione
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Umberto Galdiero
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Maria Rosaria Catania
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Stefania Galdiero
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Paolo Grieco
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Emanuela Roscetto
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Lucia Falcigno
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | | |
Collapse
|
42
|
Birgin E, Hempel S, Reeg A, Oehme F, Schnizer A, Rink JS, Froelich MF, Hetjens S, Plodeck V, Nebelung H, Abdelhadi S, Rahbari M, Téoule P, Rasbach E, Reissfelder C, Weitz J, Schoenberg SO, Distler M, Rahbari NN. Development and Validation of a Model for Postpancreatectomy Hemorrhage Risk. JAMA Netw Open 2023; 6:e2346113. [PMID: 38055279 PMCID: PMC10701614 DOI: 10.1001/jamanetworkopen.2023.46113] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/14/2023] [Indexed: 12/07/2023] Open
Abstract
Importance Postpancreatectomy hemorrhage (PPH) due to postoperative pancreatic fistula (POPF) is a life-threatening complication after pancreatoduodenectomy. However, there is no prediction tool for early identification of patients at high risk of late PPH. Objective To develop and validate a prediction model for PPH. Design, Setting, and Participants This retrospective prognostic study included consecutive patients with clinically relevant POPF who underwent pancreatoduodenectomy from January 1, 2009, to May 20, 2023, at the University Hospital Mannheim (derivation cohort), and from January 1, 2012, to May 31, 2022, at the University Hospital Dresden (validation cohort). Data analysis was performed from May 30 to July 29, 2023. Exposure Clinical and radiologic features of PPH. Main Outcomes and Measures Accuracy of a predictive risk score of PPH. A multivariate prediction model-the hemorrhage risk score (HRS)-was established in the derivation cohort (n = 139) and validated in the validation cohort (n = 154). Results A total of 293 patients (187 [64%] men; median age, 69 [IQR, 60-76] years) were included. The HRS comprised 4 variables with associations: sentinel bleeding (odds ratio [OR], 35.10; 95% CI, 5.58-221.00; P < .001), drain fluid culture positive for Candida species (OR, 14.40; 95% CI, 2.24-92.20; P < .001), and radiologic proof of rim enhancement of (OR, 12.00; 95% CI, 2.08-69.50; P = .006) or gas within (OR, 12.10; 95% CI, 2.22-65.50; P = .004) a peripancreatic fluid collection. Two risk categories were identified with patients at low risk (0-1 points) and high risk (≥2 points) to develop PPH. Patients with PPH were predicted accurately in the derivation cohort (C index, 0.97) and validation cohort (C index 0.83). The need for more invasive PPH management (74% vs 34%; P < .001) and severe complications (49% vs 23%; P < .001) were more frequent in high-risk patients compared with low-risk patients. Conclusions and Relevance In this retrospective prognostic study, a robust prediction model for PPH was developed and validated. This tool may facilitate early identification of patients at high risk for PPH.
Collapse
Affiliation(s)
- Emrullah Birgin
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Sebastian Hempel
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Alina Reeg
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Florian Oehme
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Annika Schnizer
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Johann S. Rink
- Department of Radiology and Nuclear Medicine, University Medical Centre Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthias F. Froelich
- Department of Radiology and Nuclear Medicine, University Medical Centre Mannheim, Heidelberg University, Mannheim, Germany
| | - Svetlana Hetjens
- Department of Medical Statistics and Biomathematics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Verena Plodeck
- Department of Radiology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Heiner Nebelung
- Department of Radiology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Schaima Abdelhadi
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Mohammad Rahbari
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Patrick Téoule
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Erik Rasbach
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christoph Reissfelder
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jürgen Weitz
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Stefan O. Schoenberg
- Department of Radiology and Nuclear Medicine, University Medical Centre Mannheim, Heidelberg University, Mannheim, Germany
| | - Marius Distler
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Nuh N. Rahbari
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| |
Collapse
|
43
|
Amer L, Retout M, Jokerst JV. Activatable prodrug for controlled release of an antimicrobial peptide via the proteases overexpressed in Candida albicans and Porphyromonas gingivalis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.27.568833. [PMID: 38076788 PMCID: PMC10705279 DOI: 10.1101/2023.11.27.568833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
We report the controlled release of an antimicrobial peptide using enzyme-activatable prodrugs to treat and detect Candida albicans and Porphyromonas gingivalis . Our motivation lies in the prevalence of these microorganisms in the subgingival area where the frequency of fungal colonization increases with periodontal disease. This work is based on an antimicrobial peptide that is both therapeutic and induces a color change in a nanoparticle reporter. This antimicrobial peptide was then built into a zwitterionic prodrug that quenches its activity until activation by a protease inherent to these pathogens of interest: SAP9 or RgpB for C. albicans and P. gingivalis , respectively. We first confirmed that the intact zwitterionic prodrug has negligible toxicity to fungal, bacterial, and mammalian cells absent a protease trigger. Next, the therapeutic impact was assessed via disk diffusion and viability assays and showed a minimum inhibitory concentration of 3.1 - 16 µg/mL, which is comparable to the antimicrobial peptide alone (absent integration into prodrug). Finally, the zwitterionic design was exploited for colorimetric detection of C. albicans and P. gingivalis proteases. When the prodrugs were cleaved, the plasmonic nanoparticles aggregated causing a color change with a limit of detection of 10 nM with gold nanoparticles and 3 nM with silver nanoparticles. This approach has value as a convenient and selective protease sensing and protease-induced treatment mechanism based on bioinspired antimicrobial peptides. Abstract Figure
Collapse
|
44
|
Bodoga A, Nistorac A, Dragomir A, Ailenei EC, Seul A, Diaconu M, Balan CD, Loghin MC. Ozone–Vacuum-Based Decontamination: Balancing Environmental Responsibility and Textile Waste. SUSTAINABILITY 2023; 15:16068. [DOI: 10.3390/su152216068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
This study explores the use of ozone decontamination as a sustainable approach for eradicating pathogens from various environments. Ozone, a highly reactive gas, demonstrates remarkable efficacy in eliminating bacteria, viruses, and fungi. Decontamination of textile materials using an innovative ozone treatment method conducted under vacuum conditions has been investigated. A hybrid apparatus comprising a vacuum and an ozone generator was employed for the decontamination process. Ozone decontamination offers environmental benefits by avoiding harmful by-products and minimising long-term environmental exposure. However, challenges include the need for proper equipment and training to ensure safety and effectiveness. This research underscores the promise of ozone decontamination as a powerful and eco-friendly method for pathogen eradication in textile materials with future developments in diverse settings.
Collapse
Affiliation(s)
- Alexandra Bodoga
- Faculty of Industrial Design and Business Management, “Gheorghe Asachi” Technical University of Iasi, 29 Prof. Dimitrie Mangeron Blvd., 700050 Iasi, Romania
| | - Andreea Nistorac
- Faculty of Industrial Design and Business Management, “Gheorghe Asachi” Technical University of Iasi, 29 Prof. Dimitrie Mangeron Blvd., 700050 Iasi, Romania
| | - Alin Dragomir
- Faculty of Electronics, Telecommunications and Information Technology, “Gheorghe Asachi” Technical University of Iasi, 73 Prof. Dimitrie Mangeron Blvd., 700050 Iasi, Romania
| | - Eugen Constantin Ailenei
- Faculty of Industrial Design and Business Management, “Gheorghe Asachi” Technical University of Iasi, 29 Prof. Dimitrie Mangeron Blvd., 700050 Iasi, Romania
| | - Arina Seul
- Faculty of Industrial Design and Business Management, “Gheorghe Asachi” Technical University of Iasi, 29 Prof. Dimitrie Mangeron Blvd., 700050 Iasi, Romania
| | - Mariana Diaconu
- Cristofor Simionescu Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73 Prof. Dimitrie Mangeron Blvd., 700050 Iasi, Romania
| | - Catalin Dumitrel Balan
- Cristofor Simionescu Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73 Prof. Dimitrie Mangeron Blvd., 700050 Iasi, Romania
| | - Maria Carmen Loghin
- Faculty of Industrial Design and Business Management, “Gheorghe Asachi” Technical University of Iasi, 29 Prof. Dimitrie Mangeron Blvd., 700050 Iasi, Romania
| |
Collapse
|
45
|
Wu Y, Du S, Bimler LH, Mauk KE, Lortal L, Kichik N, Griffiths JS, Osicka R, Song L, Polsky K, Kasper L, Sebo P, Weatherhead J, Knight JM, Kheradmand F, Zheng H, Richardson JP, Hube B, Naglik JR, Corry DB. Toll-like receptor 4 and CD11b expressed on microglia coordinate eradication of Candida albicans cerebral mycosis. Cell Rep 2023; 42:113240. [PMID: 37819761 PMCID: PMC10753853 DOI: 10.1016/j.celrep.2023.113240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 07/17/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Abstract
The fungal pathogen Candida albicans is linked to chronic brain diseases such as Alzheimer's disease (AD), but the molecular basis of brain anti-Candida immunity remains unknown. We show that C. albicans enters the mouse brain from the blood and induces two neuroimmune sensing mechanisms involving secreted aspartic proteinases (Saps) and candidalysin. Saps disrupt tight junction proteins of the blood-brain barrier (BBB) to permit fungal brain invasion. Saps also hydrolyze amyloid precursor protein (APP) into amyloid β (Aβ)-like peptides that bind to Toll-like receptor 4 (TLR4) and promote fungal killing in vitro while candidalysin engages the integrin CD11b (Mac-1) on microglia. Recognition of Aβ-like peptides and candidalysin promotes fungal clearance from the brain, and disruption of candidalysin recognition through CD11b markedly prolongs C. albicans cerebral mycosis. Thus, C. albicans is cleared from the brain through innate immune mechanisms involving Saps, Aβ, candidalysin, and CD11b.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Shuqi Du
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Lynn H Bimler
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Kelsey E Mauk
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Léa Lortal
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 1UL, UK
| | - Nessim Kichik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 1UL, UK
| | - James S Griffiths
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 1UL, UK
| | - Radim Osicka
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lizhen Song
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Katherine Polsky
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute Jena (HKI), 07737 Jena, Germany
| | - Peter Sebo
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jill Weatherhead
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; National School of Tropical Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - J Morgan Knight
- Departments of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Farrah Kheradmand
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Departments of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Biology of Inflammation Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Michael E. DeBakey VA Center for Translational Research on Inflammatory Diseases, Houston, TX 77030, USA
| | - Hui Zheng
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jonathan P Richardson
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 1UL, UK
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute Jena (HKI), 07737 Jena, Germany; Institute of Microbiology, Friedrich Schiller University, 07737 Jena, Germany.
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 1UL, UK.
| | - David B Corry
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Departments of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Biology of Inflammation Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Michael E. DeBakey VA Center for Translational Research on Inflammatory Diseases, Houston, TX 77030, USA.
| |
Collapse
|
46
|
Miao Y, Ding T, Liu Y, Zhou X, Du J. The Yeast and Hypha Phases of Candida krusei Induce the Apoptosis of Bovine Mammary Epithelial Cells via Distinct Signaling Pathways. Animals (Basel) 2023; 13:3222. [PMID: 37893947 PMCID: PMC10603689 DOI: 10.3390/ani13203222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Infection with Candida spp. is a significant cause of bovine mastitis globally. We previously found that C. krusei was the main pathogen causing mycotic mastitis in dairy cows in Yinchuan, Ningxia, China. However, whether the infection of this pathogen could induce apoptosis in BMECs remained unclear. In this report, we explored the apoptosis and underlying mechanism of BMECs induced by C. krusei yeast and hypha phases using a pathogen/host cell co-culture model. Our results revealed that both the yeast and hypha phases of C. krusei could induce BMEC apoptosis; however, the yeast phase induced more cell apoptosis than the hypha phase, as assessed via electronic microscopy and flow cytometry assays. This finding was further corroborated via the measurement of the mitochondrial membrane potential (MMP) and the TUNEL test. Infection by both the yeast and hypha phases of C. krusei greatly induced the expression of proteins associated with cell death pathways and important components of toll-like receptor (TLR) signaling, including TLR2 and TLR4 receptors, as determined via a Western blotting assay. BMECs mainly underwent apoptosis after infection by the C. krusei yeast phase through a mitochondrial pathway. Meanwhile, BMEC apoptosis induced by the C. krusei hypha phase was regulated by a death ligand/receptor pathway. In addition, C. krusei-induced BMEC apoptosis was regulated by both the TLR2/ERK and JNK/ERK signaling pathways. These data suggest that the yeast phase and hypha phase of C. krusei induce BMEC apoptosis through distinct cell signaling pathways. This study represents a unique perspective on the molecular processes underlying BMEC apoptosis in response to C. krusei infection.
Collapse
Affiliation(s)
- Yuhang Miao
- College of Life Science, Ningxia University, Yinchuan 750021, China; (Y.M.); (T.D.); (Y.L.)
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan 750021, China
| | - Tao Ding
- College of Life Science, Ningxia University, Yinchuan 750021, China; (Y.M.); (T.D.); (Y.L.)
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan 750021, China
| | - Yang Liu
- College of Life Science, Ningxia University, Yinchuan 750021, China; (Y.M.); (T.D.); (Y.L.)
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan 750021, China
| | - Xuezhang Zhou
- College of Life Science, Ningxia University, Yinchuan 750021, China; (Y.M.); (T.D.); (Y.L.)
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan 750021, China
| | - Jun Du
- College of Life Science, Ningxia University, Yinchuan 750021, China; (Y.M.); (T.D.); (Y.L.)
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
47
|
David H, Solomon AP. Molecular association of Candida albicans and vulvovaginal candidiasis: focusing on a solution. Front Cell Infect Microbiol 2023; 13:1245808. [PMID: 37900321 PMCID: PMC10611527 DOI: 10.3389/fcimb.2023.1245808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/21/2023] [Indexed: 10/31/2023] Open
Abstract
Candida albicans-mediated vulvovaginal candidiasis (VVC) is a significant challenge in clinical settings, owing to the inefficacy of current antifungals in modulating virulence, development of resistance, and poor penetration into the biofilm matrix. Various predisposition factors are molecular drivers that lead to the dysbiosis of normal microflora of the vagina, upregulation of central metabolic pathways, morphogenesis, hyphal extension, adhesion, invasion, and biofilm formation leading to chronic infection and recurrence. Hence, it is crucial to understand the molecular mechanism behind the virulence pathways driven by those drivers to decode the drug targets. Finding innovative solutions targeting fungal virulence/biofilm may potentiate the antifungals at low concentrations without affecting the recurrence of resistance. With this background, the present review details the critical molecular drivers and associated network of virulence pathways, possible drug targets, target-specific inhibitors, and probable mode of drug delivery to cross the preclinical phase by appropriate in vivo models.
Collapse
Affiliation(s)
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
48
|
Kim JS, Lee KT, Bahn YS. Secreted aspartyl protease 3 regulated by the Ras/cAMP/PKA pathway promotes the virulence of Candida auris. Front Cell Infect Microbiol 2023; 13:1257897. [PMID: 37780854 PMCID: PMC10540861 DOI: 10.3389/fcimb.2023.1257897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
The surge of multidrug-resistant fungal pathogens, especially Candida auris, poses significant threats to global public health. Candida auris exhibits resistance to multiple antifungal drugs, leading to major outbreaks and a high mortality rate. With an urgent call for innovative therapeutic strategies, this study focused on the regulation and pathobiological significance of secreted aspartyl proteinases (SAPs) in C. auris, as these enzymes play pivotal roles in the virulence of some fungal species. We delved into the Ras/cAMP/PKA signaling pathway's influence on SAP activity in C. auris. Our findings underscored that the Ras/cAMP/PKA pathway significantly modulates SAP activity, with PKA catalytic subunits, Tpk1 and Tpk2, playing a key role. We identified a divergence in the SAPs of C. auris compared to Candida albicans, emphasizing the variation between Candida species. Among seven identified secreted aspartyl proteases in C. auris (Sapa1 to Sapa7), Sapa3 emerged as the primary SAP in the pathogen. Deletion of Sapa3 led to a significant decline in SAP activity. Furthermore, we have established the involvement of Sapa3 in the biofilm formation of C. auris. Notably, Sapa3 was primarily regulated by Tpk1 and Tpk2. Deletion of SAPA3 significantly reduced C. auris virulence, underscoring its pivotal role in C. auris pathogenicity. The outcomes of this study provide valuable insights into potential therapeutic targets, laying the groundwork for future interventions against C. auris infection.
Collapse
Affiliation(s)
- Ji-Seok Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Kyung-Tae Lee
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
49
|
Jayasinghe JNC, Whang I, De Zoysa M. Antifungal Efficacy of Antimicrobial Peptide Octominin II against Candida albicans. Int J Mol Sci 2023; 24:14053. [PMID: 37762357 PMCID: PMC10531694 DOI: 10.3390/ijms241814053] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Most clinically isolated Candida albicans strains are drug-resistant, emphasizing the urgent need to discover alternative therapies. In this study, the previously characterized Octominin was modified into a shorter peptide with an 18 amino acid sequence (1GWLIRGAIHAGKAIHGLI18) and named Octominin II. The secondary structure of Octominin II is a random coil with a helical turn and a positive charge (+2.46) with a hydrophobic ratio of 0.46. Octominin II inhibited C. albicans, C. auris, and C. glabrata with minimum inhibitory and fungicidal concentrations against C. albicans of 80 and 120 µg/mL, respectively. Field emission scanning electron microscopy confirmed that Octominin II treatment caused ultra-structural changes in C. albicans cells. Furthermore, membrane permeability results for the fluorescent indicator propidium iodide revealed modifications in cell wall integrity in Octominin II-treated C. albicans. Octominin II treatment increases the production of reactive oxygen species (ROS) in C. albicans. Gene expression studies revealed that Octominin II suppresses virulence genes of C. albicans such as CDR1, TUP1, AGE3, GSC1, SAP2, and SAP9. In addition, a nucleic acid binding assay revealed that Octominin II degraded genomic DNA and total RNA in a concentration-dependent manner. Additionally, Octominin II inhibited and eradicated C. albicans biofilm formation. Octominin II showed relatively less cytotoxicity on raw 264.7 cells (0-200 µg/mL) and hemolysis activity on murine erythrocytes (6.25-100 µg/mL). In vivo studies confirmed that Octominin II reduced the pathogenicity of C. albicans. Overall, the data suggests that Octominin II inhibits C. albicans by employing different modes of action and can be a promising candidate for controlling multidrug-resistant Candida infections.
Collapse
Affiliation(s)
- J. N. C. Jayasinghe
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea;
| | - Ilson Whang
- National Marine Biodiversity Institute of Korea (MABIK), Janghang-eup 33662, Republic of Korea
| | - Mahanama De Zoysa
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea;
| |
Collapse
|
50
|
Arafa SH, Elbanna K, Osman GEH, Abulreesh HH. Candida diagnostic techniques: a review. JOURNAL OF UMM AL-QURA UNIVERSITY FOR APPLIED SCIENCES 2023; 9:360-377. [DOI: 10.1007/s43994-023-00049-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/27/2023] [Indexed: 01/03/2025]
Abstract
AbstractFungal infections (mycoses) represent a major health issue in humans. They have emerged as a global concern for medical professionals by causing high morbidity and mortality. Fungal infections approximately impact one billion individuals per annum and account for 1.6 million deaths. The diagnosis of Candida infections is a challenging task. Laboratory-based Candida species identification techniques (molecular, commercial, and conventional) have been reviewed and summarized. This review aims to discuss the mycoses history, taxonomy, pathogenicity, and virulence characteristics.
Collapse
|