1
|
Neves-da-Rocha J, Santos-Saboya MJ, Lopes MER, Rossi A, Martinez-Rossi NM. Insights and Perspectives on the Role of Proteostasis and Heat Shock Proteins in Fungal Infections. Microorganisms 2023; 11:1878. [PMID: 37630438 PMCID: PMC10456932 DOI: 10.3390/microorganisms11081878] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 08/27/2023] Open
Abstract
Fungi are a diverse group of eukaryotic organisms that infect humans, animals, and plants. To successfully colonize their hosts, pathogenic fungi must continuously adapt to the host's unique environment, e.g., changes in temperature, pH, and nutrient availability. Appropriate protein folding, assembly, and degradation are essential for maintaining cellular homeostasis and survival under stressful conditions. Therefore, the regulation of proteostasis is crucial for fungal pathogenesis. The heat shock response (HSR) is one of the most important cellular mechanisms for maintaining proteostasis. It is activated by various stresses and regulates the activity of heat shock proteins (HSPs). As molecular chaperones, HSPs participate in the proteostatic network to control cellular protein levels by affecting their conformation, location, and degradation. In recent years, a growing body of evidence has highlighted the crucial yet understudied role of stress response circuits in fungal infections. This review explores the role of protein homeostasis and HSPs in fungal pathogenicity, including their contributions to virulence and host-pathogen interactions, as well as the concerted effects between HSPs and the main proteostasis circuits in the cell. Furthermore, we discuss perspectives in the field and the potential for targeting the components of these circuits to develop novel antifungal therapies.
Collapse
Affiliation(s)
- João Neves-da-Rocha
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (M.J.S.-S.); (M.E.R.L.); (A.R.)
| | | | | | | | - Nilce M. Martinez-Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (M.J.S.-S.); (M.E.R.L.); (A.R.)
| |
Collapse
|
2
|
Martins MP, Gomes EV, Sanches PR, Pedersoli WR, Martinez-Rossi NM, Rossi A. mus-52 disruption and metabolic regulation in Neurospora crassa: Transcriptional responses to extracellular phosphate availability. PLoS One 2018; 13:e0195871. [PMID: 29668735 PMCID: PMC5905970 DOI: 10.1371/journal.pone.0195871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 03/30/2018] [Indexed: 12/01/2022] Open
Abstract
Advances in the understanding of molecular systems depend on specific tools like the disruption of genes to produce strains with the desired characteristics. The disruption of any mutagen sensitive (mus) genes in the model fungus Neurospora crassa, i.e. mus-51, mus-52, or mus-53, orthologous to the human genes KU70, KU80, and LIG4, respectively, provides efficient tools for gene targeting. Accordingly, we used RNA-sequencing and reverse transcription-quantitative polymerase chain reaction amplification techniques to evaluate the effects of mus-52 deletion in N. crassa gene transcriptional modulation, and thus, infer its influence regarding metabolic response to extracellular availability of inorganic phosphate (Pi). Notably, the absence of MUS-52 affected the transcription of a vast number of genes, highlighting the expression of those coding for transcription factors, kinases, circadian clocks, oxi-reduction balance, and membrane- and nucleolus-related proteins. These findings may provide insights toward the KU molecular mechanisms, which have been related to telomere maintenance, apoptosis, DNA replication, and gene transcription regulation, as well as associated human conditions including immune system disorders, cancer, and aging.
Collapse
Affiliation(s)
- Maíra P. Martins
- Department of Genetics, Ribeirão Preto Medical School, São Paulo University, Ribeirão Preto, São Paulo, Brazil
| | - Eriston V. Gomes
- Department of Genetics, Ribeirão Preto Medical School, São Paulo University, Ribeirão Preto, São Paulo, Brazil
| | - Pablo R. Sanches
- Department of Genetics, Ribeirão Preto Medical School, São Paulo University, Ribeirão Preto, São Paulo, Brazil
| | - Wellington R. Pedersoli
- Department of Genetics, Ribeirão Preto Medical School, São Paulo University, Ribeirão Preto, São Paulo, Brazil
| | - Nilce M. Martinez-Rossi
- Department of Genetics, Ribeirão Preto Medical School, São Paulo University, Ribeirão Preto, São Paulo, Brazil
| | - Antonio Rossi
- Department of Genetics, Ribeirão Preto Medical School, São Paulo University, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
3
|
Martinez-Rossi NM, Jacob TR, Sanches PR, Peres NTA, Lang EAS, Martins MP, Rossi A. Heat Shock Proteins in Dermatophytes: Current Advances and Perspectives. Curr Genomics 2016; 17:99-111. [PMID: 27226766 PMCID: PMC4864838 DOI: 10.2174/1389202917666151116212437] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/02/2015] [Accepted: 07/13/2015] [Indexed: 11/29/2022] Open
Abstract
Heat shock proteins (HSPs) are proteins whose transcription responds rapidly to temperature shifts. They constitute a family of molecular chaperones, involved in the proper folding and stabilisation of proteins under physiological and adverse conditions. HSPs also assist in the protection and recovery of cells exposed to a variety of stressful conditions, including heat. The role of HSPs extends beyond chaperoning proteins, as they also participate in diverse cellular functions, such as the assembly of macromolecular complexes, protein transport and sorting, dissociation of denatured protein aggregates, cell cycle control, and programmed cell death. They are also important antigens from a variety of pathogens, are able to stimulate innate immune cells, and are implicated in acquired immunity. In fungi, HSPs have been implicated in virulence, dimorphic transition, and drug resistance. Some HSPs are potential targets for therapeutic strategies. In this review, we discuss the current understanding of HSPs in dermatophytes, which are a group of keratinophilic fungi responsible for superficial mycoses in humans and animals. Computational analyses were performed to characterise the group of proteins in these dermatophytes, as well as to assess their conservation and to identify DNA-binding domains (5′-nGAAn-3′) in the promoter regions of the hsp genes. In addition, the quantification of the transcript levels of few genes in a pacC background helped in the development of an extended model for the regulation of the expression of the hsp genes, which supports the participation of the pH-responsive transcriptional regulator PacC in this process.
Collapse
Affiliation(s)
- Nilce M Martinez-Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Tiago R Jacob
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Pablo R Sanches
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Nalu T A Peres
- Present address: Department of Morphology, Federal University of Sergipe, SE, Brazil
| | - Elza A S Lang
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Maíra P Martins
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Antonio Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
4
|
Deng S, Wang CY, Zhang X, Wang Q, Lin L. VdNUC-2, the Key Regulator of Phosphate Responsive Signaling Pathway, Is Required for Verticillium dahliae Infection. PLoS One 2015; 10:e0145190. [PMID: 26670613 PMCID: PMC4682923 DOI: 10.1371/journal.pone.0145190] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/01/2015] [Indexed: 02/07/2023] Open
Abstract
In fungal cells, a phosphate (Pi) responsive signaling and metabolism (PHO) pathway regulates Pi-homeostasis. NUC-2/PHO81 and its homologs are one of the most important components in the regulation pathway. In soil-borne phytopathogenic fungus Verticillium dahliae, we identified a Neurospora crassa nuc-2 homolog gene VdNUC-2. VdNUC-2 is composed of 1,018 amino acids, and is highly conserved in tested filamentous fungi. Under conditions of Pi-starvation, compared with the wild-type strain and ectopic complementation strains, the VdNUC-2 knocked out mutants exhibited reduced radial growth, decreased production of conidia and microsclerotia, and were more sensitive to hydrogen peroxide stress. The virulence of VdNUC-2 defective mutants was significantly compromised, and that was unable to be restored by exogenous application of extra Pi. Additionally, the deletion mutants of VdNUC-1, a key transcription factor gene positively controlled by VdNUC-2 in the PHO pathway, showed the similar cultural phenotypes as VdNUC-2 mutants when both of them grew in Pi-limited conditions. However, the virulence of VdNUC-1 mutants was comparable to the wild-type strain. These evidences indicated that the virulence reduction in VdNUC-2 mutants is not due to the interruptions in the PHO pathway or the disturbance of Pi-homeostasis in V. dahliae cytoplasm. VdNUC-2 is not only a crucial gene in the PHO pathway in V. dahliae, but also is required for the full virulence during host-infection.
Collapse
Affiliation(s)
- Sheng Deng
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Cai-yue Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xin Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qing Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ling Lin
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- * E-mail:
| |
Collapse
|
5
|
Abstract
In budding yeast, Saccharomyces cerevisiae, the phosphate signalling and response pathway, known as PHO pathway, monitors phosphate cytoplasmic levels by controlling genes involved in scavenging, uptake and utilization of phosphate. Recent attempts to understand the phosphate starvation response in other ascomycetes have suggested the existence of both common and novel components of the budding yeast PHO pathway in these ascomycetes. In this review, we discuss the components of PHO pathway, their roles in maintaining phosphate homeostasis in yeast and their conservation across ascomycetes. The role of high-affinity transporter, Pho84, in sensing and signalling of phosphate has also been discussed.
Collapse
Affiliation(s)
- Parul Tomar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400 005, India
| | | |
Collapse
|
6
|
Biochemical properties and possible roles of ectophosphatase activities in fungi. Int J Mol Sci 2014; 15:2289-304. [PMID: 24509700 PMCID: PMC3958851 DOI: 10.3390/ijms15022289] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 11/27/2013] [Accepted: 01/14/2014] [Indexed: 12/31/2022] Open
Abstract
Ectophosphatases are surface membrane-bound proteins whose active sites face the extracellular medium. These enzymes have been reported in several microorganisms including a large number of medically relevant fungal species. An effective technique for identifying ectophosphatases is performing phosphatase activity assays using living intact cells. Biochemical characterization of these activities has shown their differential modulation by classical phosphatase inhibitors, divalent metals and pH range. The physiological roles of ectophosphatases are not well established; however, it has been suggested that these enzymes play important roles in nutrition, proliferation, differentiation, adhesion, virulence and infection. Adhesion to host cells is the first step in establishing a fungal infection and ectophosphatases may be one of the first parasite proteins that come into contact with the host cells. Several results indicate that ectophosphatase activities increase the capacity of fungi to adhere to the host cells. In this context, the present review provides an overview of recent discoveries related to the occurrence and possible roles of ectophosphatase activities in fungal cells.
Collapse
|
7
|
Cosentino-Gomes D, Meyer-Fernandes JR. Ecto-phosphatases in protozoan parasites: possible roles in nutrition, growth and ROS sensing. J Bioenerg Biomembr 2011; 43:89-92. [PMID: 21253843 DOI: 10.1007/s10863-011-9334-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cellular plasma membrane contains enzymes whose active sites face the external medium rather than the cytoplasm. The activities of these enzymes, referred to as ecto-enzymes, can be measured using living cells. Ecto-phosphatases are ecto-enzymes that presumably hydrolyze extracellular phosphorylated substrates, releasing free inorganic phosphate. Although, several alternative functions have been suggested for these enzymes, such as participation in proliferation, differentiation, adhesion, virulence, and infection, little is known about the physiological roles of these enzymes in protozoa parasites. In this review, we discuss the principal features of ecto-phosphatases in protozoan parasites that are causative agents of important diseases such as Chagas' disease, leishmaniasis, amoebiasis, giardiasis, trichomoniasis and, sleeping sickness.
Collapse
Affiliation(s)
- Daniela Cosentino-Gomes
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | |
Collapse
|
8
|
Trypanosoma rangeli: Differential expression of ecto-phosphatase activities in response to inorganic phosphate starvation. Exp Parasitol 2010; 124:386-93. [DOI: 10.1016/j.exppara.2009.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 11/16/2009] [Accepted: 12/12/2009] [Indexed: 01/25/2023]
|
9
|
Squina FM, Leal J, Cipriano VTF, Martinez-Rossi NM, Rossi A. Transcription of the Neurospora crassa 70-kDa class heat shock protein genes is modulated in response to extracellular pH changes. Cell Stress Chaperones 2010; 15:225-31. [PMID: 19618296 PMCID: PMC2866986 DOI: 10.1007/s12192-009-0131-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Revised: 06/25/2009] [Accepted: 06/30/2009] [Indexed: 10/20/2022] Open
Abstract
Heat shock proteins belong to a conserved superfamily of molecular chaperones found in prokaryotes and eukaryotes. These proteins are linked to a myriad of physiological functions. In this study, we show that the N. crassa hsp70-1 (NCU09602.3) and hsp70-2 (NCU08693.3) genes are preferentially expressed in an acidic milieu after 15 h of cell growth in sufficient phosphate at 30 degrees C. No significant accumulation of these transcripts was detected at alkaline pH values. Both genes accumulated to a high level in mycelia that were incubated for 1 h at 45 degrees C, regardless of the phosphate concentration and extracellular pH changes. Transcription of the hsp70-1 and hsp70-2 genes was dependent on the pacC (+) background in mycelia cultured under optimal growth conditions or at 45 degrees C. The pacC gene encodes a Zn-finger transcription factor that is involved in the regulation of gene expression by pH. Heat shock induction of these two hsp genes in mycelia incubated in low-phosphate medium was almost not altered in the nuc-1 (-) background under both acidic and alkaline pH conditions. The NUC-1 transcriptional regulator is involved in the derepression of nucleases, phosphatases, and transporters that are necessary for fulfilling the cell's phosphate requirements. Transcription of the hsp70-3 (NCU01499.3) gene followed a different pattern of induction-the gene was depressed under insufficient phosphate conditions but was apparently unaffected by alkalinization of the culture medium. Moreover, this gene was not induced by heat shock. These results reveal novel aspects of the heat-sensing network of N. crassa.
Collapse
Affiliation(s)
- Fabio M. Squina
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirão Preto, SP Brazil
- Centro de Ciência e Tecnologia do Bioetanol-CTBE, Associação Brasileira de Tecnologia de Luz Síncrotron, Campinas, SP Brazil
| | - Juliana Leal
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirão Preto, SP Brazil
| | - Vivian T. F. Cipriano
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirão Preto, SP Brazil
| | - Nilce M. Martinez-Rossi
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirão Preto, SP Brazil
| | - Antonio Rossi
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirão Preto, SP Brazil
| |
Collapse
|
10
|
Gras DE, Silveira HC, Peres NT, Sanches PR, Martinez-Rossi NM, Rossi A. Transcriptional changes in the nuc-2A mutant strain of Neurospora crassa cultivated under conditions of phosphate shortage. Microbiol Res 2009; 164:658-64. [DOI: 10.1016/j.micres.2008.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2008] [Revised: 12/21/2008] [Accepted: 12/30/2008] [Indexed: 10/21/2022]
|
11
|
Trypanosoma rangeli: A possible role for ecto-phosphatase activity on cell proliferation. Exp Parasitol 2009; 122:242-6. [DOI: 10.1016/j.exppara.2009.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 01/06/2009] [Accepted: 03/06/2009] [Indexed: 12/16/2022]
|
12
|
Selker EU. Robert L. Metzenberg, June 11, 1930-July 15, 2007: geneticist extraordinaire and "model human". Genetics 2008; 178:611-9. [PMID: 18287405 DOI: 10.1093/genetics/178.2.611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Eric U Selker
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229, USA.
| |
Collapse
|
13
|
Leal J, Squina FM, Martinez-Rossi NM, Rossi A. The transcription of the gene for iso-orotate decarboxylase (IDCase), an enzyme of the thymidine salvage pathway, is downregulated in the pregc mutant strain of Neurospora crassa grown under phosphate starvation. Can J Microbiol 2008; 53:1011-5. [PMID: 17898858 DOI: 10.1139/w07-064] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The preg gene encodes a cyclin-like protein that is implicated in the derepression of nucleases and phosphatases that scavenge phosphate from the environment. To better understand the regulatory role of the preg gene product, the differential display reverse transcriptase - polymerase chain reaction was used to isolate transcripts differentially expressed in the pregc mutant strain of the mold Neurospora crassa grown under phosphate starvation, at pH 7.8. Two transcripts, whose differential expressions were confirmed by Northern blotting, were downregulated in a strain of N. crassa carrying a loss-of-function mutation in the preg gene (preg(c) allele). These transcripts revealed genes coding for enzymes involved in the thymidine salvage pathway (iso-orotate decarboxylase) and in the biosynthesis of coenzyme Q (ubiquinone C-methyltransferase), which may be relevant to a further understanding of the molecular events involved in the phosphorus sensing in N. crassa.
Collapse
Affiliation(s)
- Juliana Leal
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av Bandeirantes 3900, 14049-900, Ribeirão Preto, SP, Brazil
| | | | | | | |
Collapse
|
14
|
Gras DE, Silveira HCS, Martinez-Rossi NM, Rossi A. Identification of genes displaying differential expression in the nuc-2 mutant strain of the mold Neurospora crassa grown under phosphate starvation. FEMS Microbiol Lett 2007; 269:196-200. [PMID: 17229059 DOI: 10.1111/j.1574-6968.2006.00613.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Subtractive hybridization was used to isolate transcripts up-regulated in the nuc-2 mutant strain of Neurospora crassa grown under phosphate starvation. Following differential screening, 66 cDNA clones of the total enriched were screened in a second round by reverse Northern hybridization. The 17 cDNA candidates displaying visual positive differential expression were sequenced, and functional grouping identified putative proteins possibly involved in diverse cellular processes as, for example, protein synthesis, signal transduction mechanisms, and transport facilitation. Four of them, confirmed by both virtual and Northern blot analyses, revealed genes involved in the initiation of mRNA translation that are significantly up-regulated in the nuc-2 mutant strain, which may be relevant to a further understanding of the molecular events involved in the phosphorus sensing in N. crassa.
Collapse
Affiliation(s)
- Diana E Gras
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Brazil
| | | | | | | |
Collapse
|
15
|
Justino A, Nozawa SR, Maccheroni W, May GS, Martinez-Rossi NM, Rossi A. The Aspergillus nidulans pyrG89 Mutation Alters Glycosylation of Secreted Acid Phosphatase. Fungal Genet Biol 2001; 32:113-20. [PMID: 11352532 DOI: 10.1006/fgbi.2001.1255] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The glycosylation level of the pacA-encoded acid phosphatase secreted by Aspergillus nidulans was reduced in strains pabaA1 pyroA4and pabaA1 pyroA4 pyrG89, compared to strains carrying these mutations singly. The molecular mass of the enzyme secreted by the triple mutant grown at pH 5.0 was 105 and 45 kDa as determined by exclusion chromatography and SDS-PAGE, respectively. In contrast, the pabaA1 strain secreted acid phosphatases of 119 and 62 kDa. The enzyme also had an altered electrophoretic mobility and glycosylation had a protective effect against its heat inactivation. Thus, this combination of mutants alters glycosylation of the enzyme, leading to changes in their structural properties. In spite of this, no deviation was observed in the apparent optimum pH and Michaelis kinetics for enzymatic hydrolysis of p-nitrophenyl phosphate or alpha-naphthyl phosphate.
Collapse
Affiliation(s)
- A Justino
- Departamento Química, FFCLRP-USP, Ribeirão Preto, SP, 14040-901, Brazil
| | | | | | | | | | | |
Collapse
|
16
|
Amrani L, Primus J, Glatigny A, Arcangeli L, Scazzocchio C, Finnerty V. Comparison of the sequences of the Aspergillus nidulans hxB and Drosophila melanogaster ma-l genes with nifS from Azotobacter vinelandii suggests a mechanism for the insertion of the terminal sulphur atom in the molybdopterin cofactor. Mol Microbiol 2000; 38:114-25. [PMID: 11029694 DOI: 10.1046/j.1365-2958.2000.02119.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The molybdopterin cofactor (MoCF) is required for the activity of a variety of oxidoreductases. The xanthine oxidase class of molybdoenzymes requires the MoCF to have a terminal, cyanolysable sulphur ligand. In the sulphite oxidase/nitrate reductase class, an oxygen is present in the same position. Mutations in both the ma-l gene of Drosophila melanogaster and the hxB gene of Aspergillus nidulans result in loss of activities of all molybdoenzymes that necessitate a cyanolysable sulphur in the active centre. The ma-l and hxB genes encode highly similar proteins containing domains common to pyridoxal phosphate-dependent cysteine transulphurases, including the cofactor binding site and a conserved cysteine, which is the putative sulphur donor. Key similarities were found with NifS, the enzyme involved in the generation of the iron-sulphur centres in nitrogenase. These similarities suggest an analogous mechanism for the generation of the terminal molybdenum-bound sulphur ligand. We have identified putative homologues of these genes in a variety of organisms, including humans. The human homologue is located in chromosome 18.q12.
Collapse
Affiliation(s)
- L Amrani
- Institut de Génétique et Microbiologie, Université Paris-Sud XI, UMR-CNRS 8621, Centre Universitaire d'Orsay, Bâtiment 409, 91405 Orsay Cedex, France
| | | | | | | | | | | |
Collapse
|
17
|
Kumar A, Paietta JV. An additional role for the F-box motif: gene regulation within the Neurospora crassa sulfur control network. Proc Natl Acad Sci U S A 1998; 95:2417-22. [PMID: 9482900 PMCID: PMC19360 DOI: 10.1073/pnas.95.5.2417] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The F-box represents a protein motif originally identified as a conserved amino-terminal domain within the Neurospora crassa negative regulator sulfur controller-2. Recently, F-boxes have been found within a number of cell cycle regulatory proteins, where they mediate ubiquitin-driven proteolytic events required for major cell cycle transitions. F-box function, however, is not restricted solely to cell cycle pathways. Here we present evidence expanding F-box function to encompass gene regulatory processes independent of the cell cycle through in vivo analysis of an F-box acting within the N. crassa sulfur regulatory network. The Neurospora sulfur circuit features a set of regulatory genes acting to modulate gene expression based on environmental sulfur conditions. These sulfur regulatory genes include cys-3+, which encodes a basic region-leucine zipper transcriptional activator, as well as the negative regulatory gene scon-2+. Through site-directed mutagenesis of the SCON2 F-box, we have generated a sulfur auxotrophic phenotype previously unobserved in any scon-2 mutant. Using Northern analysis, we have traced this auxotrophy to a complete shutdown of cys-3+ gene expression. We have further analyzed F-box function by constructing a series of chimeric SCON2 proteins containing swapped F-box domains from the yeast transcriptional inhibitor Met30p and the Candida albicans cell cycle regulator Cdc4p. The ability of these chimeric proteins to restore partial wild-type sulfur regulation in vivo emphasizes the universal nature of this motif and confirms the functional importance of the F-box within noncell cycle regulatory pathways.
Collapse
Affiliation(s)
- A Kumar
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH 45435, USA
| | | |
Collapse
|
18
|
Poleg Y, Aramayo R, Kang S, Hall JG, Metzenberg RL. NUC-2, a component of the phosphate-regulated signal transduction pathway in Neurospora crassa, is an ankyrin repeat protein. MOLECULAR & GENERAL GENETICS : MGG 1996; 252:709-16. [PMID: 8917314 DOI: 10.1007/bf02173977] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In response to phosphorus limitation, the fungus Neurospora crassa synthesizes a number of enzymes that function to bring more phosphate into the cell. The NUC-2 protein appears to sense the availability of phosphate and transmits the signal downstream to the regulatory pathway. The nuc-2+ gene has been cloned by its ability to restore growth of a nuc-2 mutant under restrictive conditions of high pH and low phosphate concentration. We mapped the cloned gene to the right arm of linkage group II, consistent with the chromosomal position of the nuc-2 mutation as determined by classical genetic mapping. The nuc-2' open reading frame is interrupted by five introns and codes for a protein of 1066 amino acid residues. Its predicted amino acid sequence has high similarity to that of its homolog in Saccharomyces cerevisiae, PHO81. Both proteins contain six ankyrin repeats, which have been implicated in the cyclin-dependent kinase inhibitory activity of PHO81. The phenotypes of a nuc-2 mutant generated by repeat-induced point mutation and of a strain harboring a UV-induced nuc-2 allele are indistinguishable. Both are unable to grow under the restrictive conditions, a phenotype which is to some degree temperature dependent. The nuc-2+ gene is transcriptionally regulated. A 15-fold increase in the level of the nuc-2+ transcript occurs in response to a decrease in exogenous phosphate concentration.
Collapse
Affiliation(s)
- Y Poleg
- Department of Biomolecular Chemistry, University of Wisconsin, Madison 53706, USA
| | | | | | | | | |
Collapse
|
19
|
Cujec TP, Tyler BM. Nutritional and growth control of ribosomal protein mRNA and rRNA in Neurospora crassa. Nucleic Acids Res 1996; 24:943-50. [PMID: 8600464 PMCID: PMC145710 DOI: 10.1093/nar/24.5.943] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The effects of changing growth rates on the levels of 40S pre-rRNA and two r-protein mRNAs were examined to gain insight into the coordinate transcriptional regulation of ribosomal genes in the ascomycete fungus Neurospora crassa. Growth rates were varied either by altering carbon nutritional conditions, or by subjecting the isolates to inositol-limiting conditions. During carbon up- or down-shifts, r-protein mRNA levels were stoichiometrically coordinated. Changes in 40S pre-rRNA levels paralleled those of the r-protein mRNAs but in a non-stoichiometric manner. Comparison of crp-2 mRNA levels with those of a crp-2::qa-2 fusion gene indicated no major effect from changes in crp-2 mRNA stability. Crp-2 promoter mutagenesis experiments revealed that two elements of the crp-2 promoter, -95 to -83 bp (Dde box) and -74 to -66 bp (CG repeat) important for transcription under constant growth conditions, are also critical for transcriptional regulation by a carbon source. Ribosomal protein mRNA and rRNA levels were unaffected by changes in growth rates when the cultures were grown under inositol-limiting conditions, suggesting that, under these conditions, transcription of the ribosomal genes in N.crassa was regulated independently of growth rate.
Collapse
Affiliation(s)
- T P Cujec
- Department of Plant Pathology, University of California, Davis 95616, USA
| | | |
Collapse
|
20
|
Carmona EC, Han SW, Palma MS, Rossi A. Properties of a polynucleotide synthesized by strain 74A of Neurospora crassa. PHYTOCHEMISTRY 1996; 41:345-348. [PMID: 8821430 DOI: 10.1016/0031-9422(95)00531-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A polynucleotide (or a fragment of RNA) was purified to apparent homogeneity by HPLC from mycelium of the wild strain 74A of the mould Neurospora crassa, after growth on sucrose and in the presence of saturating amounts of inorganic phosphate (Pi) for 72 hr at 30 degrees. The M(r) was ca 20,000 as determined by HPLC at pH 6.8. Polynucleotide synthesis ranged from 4.0 to 6.5 micrograms polynucleotide per mg dry mycelium in mycelium of the wild strain 74A and the various phosphorus regulatory and structural mutant strains of the mould N. crassa. Kinetic data showed that the polynucleotide interacts with mycelial Pi-repressible alkaline phosphatase by inhibiting its p-nitrophenylphosphatase activity and by protecting the enzyme against thermal inactivation in the presence of high concentrations of ammonium sulphate.
Collapse
Affiliation(s)
- E C Carmona
- Departamento de Bioquimica e Microbiologia, IB - UNESP, Rio Claro, SP, Brazil
| | | | | | | |
Collapse
|
21
|
Abstract
A transgenic position effect that causes activator-independent gene expression has been described previously for three Neurospora crassa phosphate-repressible genes. We report analogous findings for two additional positively regulated genes, qa-2+ and ars-1+, indicating that such position effects are not limited to genes involved in phosphorus metabolism. In addition, we have characterized a number of mutants that display activator-independent gene expression. Each of these mutants contains a chromosomal rearrangement with one breakpoint located in the 5'-upstream region of the affected gene. This suggests that the rearrangements are associated with activator-independent gene expression and that these cis-acting mutations may represent a position effect similar to that responsible for rendering some transgenes independent of their transcriptional activators. We suggest that positively regulated genes in N. crassa are normally held in a transcriptionally repressed state by a cis-acting mechanism until specifically activated. Disruption of this cis-acting mechanism, either by random integration of a gene by transformation or by chromosomal rearrangement, renders these genes independent or partly independent of the transcriptional activator on which they normally depend.
Collapse
Affiliation(s)
- W K Versaw
- Department of Biomolecular Chemistry, University of Wisconsin, Madison 53706, USA
| | | |
Collapse
|
22
|
Versaw WK, Metzenberg RL. Repressible cation-phosphate symporters in Neurospora crassa. Proc Natl Acad Sci U S A 1995; 92:3884-7. [PMID: 7732001 PMCID: PMC42066 DOI: 10.1073/pnas.92.9.3884] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The filamentous fungus Neurospora crassa possesses two nonhomologous high-affinity phosphate permeases, PHO-4 and PHO-5. We have isolated separate null mutants of these permeases, allowing us to study the remaining active transporter in vivo in terms of phosphate uptake and sensitivity to inhibitors. The specificity for the cotransported cation differs for PHO-4 and PHO-5, suggesting that these permeases employ different mechanisms for phosphate translocation. Phosphate uptake by PHO-4 is stimulated 85-fold by the addition of Na+, which supports the idea that PHO-4 is a Na(+)-phosphate symporter. PHO-5 is unaffected by Na+ concentration but is much more sensitive to elevated pH than is PHO-4. Presumably, PHO-5 is a H(+)-phosphate symporter. Na(+)-coupled symport is usually associated with animal cells. The finding of such a system in a filamentous fungus is in harmony with the idea that the fungal and animal kingdoms are more closely related to each other than either is to the plant kingdom.
Collapse
Affiliation(s)
- W K Versaw
- Department of Biomolecular Chemistry, University of Wisconsin, Madison 53706, USA
| | | |
Collapse
|
23
|
Kumar A, Paietta JV. The sulfur controller-2 negative regulatory gene of Neurospora crassa encodes a protein with beta-transducin repeats. Proc Natl Acad Sci U S A 1995; 92:3343-7. [PMID: 7724564 PMCID: PMC42162 DOI: 10.1073/pnas.92.8.3343] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The sulfur regulatory system of Neurospora crassa is composed of a set of structural genes involved in sulfur catabolism controlled by a genetically defined set of trans-acting regulatory genes. These sulfur regulatory genes include cys-3+, which encodes a basic region-leucine zipper transcriptional activator, and the negative regulatory gene scon-2+. We report here that the scon-2+ gene encodes a polypeptide of 650 amino acids belonging to the expanding beta-transducin family of eukaryotic regulatory proteins. Specifically, SCON2 protein contains six repeated G beta-homologous domains spanning the C-terminal half of the protein. SCON2 represents the initial filamentous fungal protein identified in the beta-transducin group. Additionally, SCON2 exhibits a specific amino-terminal domain that potentially defines another subfamily of beta-transducin homologs. Expression of the scon-2+ gene has been examined using RNA hybridization and gel mobility-shift analysis. The dependence of scon-2+ expression on CYS3 function and the binding of CYS3 to the scon-2+ promoter indicate the presence of an important control loop within the N. crassa sulfur regulatory circuit involving CYS3 activation of scon-2+ expression. On the basis of the presence of beta-transducin repeats, the crucial role of SCON2 in the signal-response pathway triggered by sulfur limitation may be mediated by protein-protein interactions.
Collapse
Affiliation(s)
- A Kumar
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH 45435, USA
| | | |
Collapse
|
24
|
Paietta JV. Analysis of CYS3 regulator function in Neurospora crassa by modification of leucine zipper dimerization specificity. Nucleic Acids Res 1995; 23:1044-9. [PMID: 7731792 PMCID: PMC306803 DOI: 10.1093/nar/23.6.1044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The CYS3 positive regulator is a basic region-leucine zipper (bZIP) DNA-binding protein that is essential for the expression of sulfur-controlled structural genes in Neurospora crassa. An approach of modifying the dimerization specificity of the CYS3 leucine zipper was used to determine whether the in vivo regulatory function of CYS3 requires the formation of homodimeric or heterodimeric complexes. Two altered versions of CYS3 with coiled coil elecrostatic interactions favorable to heterodimerization showed restoration of wild-type CYS3 function only when simultaneously expressed in a delta cys-3 strain. In addition, constructs having the CYS3 leucine zipper swapped for that of the oncoprotein Jun or the CYS3 leucine zipper extended by a heptad repeat showed wild-type CYS3 function when transformed into a delta cys-3 strain. Gel mobility shift and immunoprecipitation assays were used to confirm the modified CYS3 proteins dimerization and DNA binding properties. The studies, which precluded wild-type CYS3 dimerization, indicate that in vivo CYS3 is fully functional as a homodimer since no interaction was required with other leucine zipper proteins to activate sulfur regulatory and structural gene expression. The results demonstrate the utility of leucine zipper modification to study the in vivo function of bZIP proteins.
Collapse
Affiliation(s)
- J V Paietta
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH 45435, USA
| |
Collapse
|
25
|
Versaw WK. A phosphate-repressible, high-affinity phosphate permease is encoded by the pho-5+ gene of Neurospora crassa. Gene 1995; 153:135-9. [PMID: 7883177 DOI: 10.1016/0378-1119(94)00814-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The pho-5+ gene of Neurospora crassa, which encodes a high-affinity phosphate permease, has been cloned and analyzed. The deduced ORF of 1707 nucleotides is interrupted by a single 63-nt intron and codes for a protein of 569 amino acids (aa). This aa sequence has 48% identity with the high-affinity phosphate transporter of Saccharomyces cerevisiae, PHO84. The pho-5 null mutants have no obvious phenotype. Strains which contain a null mutation in pho-4, which encodes an additional high-affinity phosphate permease [Bowman et al., J. Bacteriol. 153 (1983) 292-296], also have no obvious phenotype. However, strains containing mutations in both pho-5 and pho-4 are unable to grow under phosphate-restrictive conditions.
Collapse
Affiliation(s)
- W K Versaw
- Department of Biomolecular Chemistry, University of Wisconsin, Madison 53706
| |
Collapse
|
26
|
Chiang TY, Rai R, Cooper TG, Marzluf GA. DNA binding site specificity of the Neurospora global nitrogen regulatory protein NIT2: analysis with mutated binding sites. MOLECULAR & GENERAL GENETICS : MGG 1994; 245:512-6. [PMID: 7808401 DOI: 10.1007/bf00302264] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
NIT2, a positive-acting regulatory protein in Neurospora crassa, activates the expression of a series of unlinked structural genes that encode nitrogen catabolic enzymes. NIT2 binding sites in the promoter regions of nit3, alc and lao have at least two GATA sequence elements. We have examined the binding affinity of the NIT2 protein for the yeast DAL5 wild-type upstream activation sequence UASNTR, which contains two GATA elements, and for a series of mutated binding sites, each differing from the wild-type site by a single base. Substitution for individual nucleotides within 5' or 3' sequences that flank the GATA elements had only modest effects upon NIT2 binding. In contrast, nearly all substitutions within the GATA elements almost completely eliminated NIT2 binding, demonstrating the importance of the GATA sequence for NIT2 binding. Four high-affinity binding sites for the NIT2 protein were found within a central region of the nit-2 gene itself.
Collapse
Affiliation(s)
- T Y Chiang
- Department of Biochemistry, Ohio State University, Columbus 43210
| | | | | | | |
Collapse
|
27
|
Abstract
Proteins with phosphatase activity were produced during the growth of Aspergillus flavus in a phosphate-supplemented liquid synthetic medium. The best carbon and nitrogen sources for the synthesis of phosphatase were glucose and ammonium sulfate, respectively. The proteins were separated by molecular exclusion and ion exclusion chromatography (IEC) into three components one of which showed phosphatase activity. The molar mass of the enzyme was approximately 62 kDa. The purified enzyme exhibited an optimum activity at pH 4.0 and at 45 degrees C. The activity of the enzyme was stimulated by Ca2+ and Mg2+ but inhibited by fluoride, iodoacetic acid, ethylenediaminetetraacetic acid and 2,4-dinitrophenol, and exhibited an apparent KM of approximately 420 mumol/L.
Collapse
Affiliation(s)
- O Famurewa
- Department of Microbiology, Ondo State University, Ado-Ekiti, Nigeria
| | | |
Collapse
|
28
|
Dickman MB, Leslie JF. The regulatory gene nit-2 of Neurospora crassa complements a nnu mutant of Gibberella zeae (Fusarium graminearum). MOLECULAR & GENERAL GENETICS : MGG 1992; 235:458-62. [PMID: 1465117 DOI: 10.1007/bf00279394] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The nnu mutant of Gibberella zeae (=Fusarium graminearum) is unable to catabolize many of the nitrogen sources utilized by its wild-type parent, and may have suffered a mutation in the major nitrogen regulatory locus. Transformation of this mutant with the major nitrogen regulatory gene from Neurospora crassa, nit-2, restored the wild-type phenotype, thus confirming that the nnu mutation is in the major nitrogen regulatory locus of G. zeae. Our results are consistent with the premise of conservation of the structure of regulatory factors and suggest the possibility that functional DNA homologues of this regulatory element occur across a broad range of ascomycetous fungi.
Collapse
Affiliation(s)
- M B Dickman
- Department of Plant Pathology, University of Nebraska, Lincoln 68583-0722
| | | |
Collapse
|
29
|
Production of the CYS3 regulator, a bZIP DNA-binding protein, is sufficient to induce sulfur gene expression in Neurospora crassa. Mol Cell Biol 1992. [PMID: 1532230 DOI: 10.1128/mcb.12.4.1568] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cys-3+ gene of Neurospora crassa encodes a bZIP (basic region-leucine zipper) regulatory protein that is essential for sulfur structural gene expression (e.g., ars-1+). Nuclear transcription assays confirmed that cys-3+ was under sulfur-regulated transcriptional control and that cys-3+ transcription was constitutive in sulfur controller (scon)-negative regulator mutants. Given these results, I have tested whether expression of cys-3+ under high-sulfur (repressing) conditions was sufficient to induce sulfur gene expression. The N. crassa beta-tubulin (tub) promoter was fused to the cys-3+ coding segment and used to transform a cys-3 deletion mutant. Function of the tub::cys-3 fusion in homokaryotic transformants grown under high-sulfur conditions was confirmed by Northern (RNA) and Western immunoblot analysis. The tub::cys-3 transformants showed arylsulfatase gene expression under normally repressing high-sulfur conditions. A tub::cys-3ts fusion encoding a temperature-sensitive CYS3 protein was used to confirm that the induced structural gene expression was due to CYS3 protein function. Constitutive CYS3 production did not induce scon-2+ expression under repressing conditions. In addition, a cys-3 promoter fusion to lacZ showed that CYS3 production was sufficient to induce its own expression and provides in vivo evidence for autoregulation. Finally, an apparent inhibitory effect observed with a strain carrying a point mutation at the cys-3 locus was examined by in vitro heterodimerization studies. These results support an interpretation of CYS3 as a transcriptional activator whose regulation is a crucial control point in the signal response pathway triggered by sulfur limitation.
Collapse
|
30
|
Paietta JV. Production of the CYS3 regulator, a bZIP DNA-binding protein, is sufficient to induce sulfur gene expression in Neurospora crassa. Mol Cell Biol 1992; 12:1568-77. [PMID: 1532230 PMCID: PMC369599 DOI: 10.1128/mcb.12.4.1568-1577.1992] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The cys-3+ gene of Neurospora crassa encodes a bZIP (basic region-leucine zipper) regulatory protein that is essential for sulfur structural gene expression (e.g., ars-1+). Nuclear transcription assays confirmed that cys-3+ was under sulfur-regulated transcriptional control and that cys-3+ transcription was constitutive in sulfur controller (scon)-negative regulator mutants. Given these results, I have tested whether expression of cys-3+ under high-sulfur (repressing) conditions was sufficient to induce sulfur gene expression. The N. crassa beta-tubulin (tub) promoter was fused to the cys-3+ coding segment and used to transform a cys-3 deletion mutant. Function of the tub::cys-3 fusion in homokaryotic transformants grown under high-sulfur conditions was confirmed by Northern (RNA) and Western immunoblot analysis. The tub::cys-3 transformants showed arylsulfatase gene expression under normally repressing high-sulfur conditions. A tub::cys-3ts fusion encoding a temperature-sensitive CYS3 protein was used to confirm that the induced structural gene expression was due to CYS3 protein function. Constitutive CYS3 production did not induce scon-2+ expression under repressing conditions. In addition, a cys-3 promoter fusion to lacZ showed that CYS3 production was sufficient to induce its own expression and provides in vivo evidence for autoregulation. Finally, an apparent inhibitory effect observed with a strain carrying a point mutation at the cys-3 locus was examined by in vitro heterodimerization studies. These results support an interpretation of CYS3 as a transcriptional activator whose regulation is a crucial control point in the signal response pathway triggered by sulfur limitation.
Collapse
Affiliation(s)
- J V Paietta
- Department of Biochemistry, Wright State University, Dayton, Ohio 45435
| |
Collapse
|
31
|
Kallies A, Mohsenzadeh S, Rensing L. Effects of light on protein secretion in Neurospora crassa. Arch Microbiol 1992; 157:104-6. [PMID: 1532303 DOI: 10.1007/bf00245276] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The relative concentrations of secreted proteins in liquid cultures of Neurospora crassa differ in constant darkness compared to constant light (2500 lx). Light reduces the concentrations of some polypeptides markedly and increases the concentrations of protein species of 67, 40, 18 and 13 kDa. The "blind" wc-2 mutant of Neurospora does not show light dependent differences in amounts of secreted proteins. One of the light-sensitive extracellular proteins is shown to be a protease of 17.5 kDa.
Collapse
Affiliation(s)
- A Kallies
- Institut für Zellbiologie, Biochemie und Biotechnologie der Universität, Bremen, Federal Republic of Germany
| | | | | |
Collapse
|
32
|
Villarreal LP. Relationship of eukaryotic DNA replication to committed gene expression: general theory for gene control. Microbiol Rev 1991; 55:512-42. [PMID: 1943999 PMCID: PMC372832 DOI: 10.1128/mr.55.3.512-542.1991] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The historic arguments for the participation of eukaryotic DNA replication in the control of gene expression are reconsidered along with more recent evidence. An earlier view in which gene commitment was achieved with stable chromatin structures which required DNA replication to reset expression potential (D. D. Brown, Cell 37:359-365, 1984) is further considered. The participation of nonspecific stable repressor of gene activity (histones and other chromatin proteins), as previously proposed, is reexamined. The possible function of positive trans-acting factors is now further developed by considering evidence from DNA virus models. It is proposed that these positive factors act to control the initiation of replicon-specific DNA synthesis in the S phase (early or late replication timing). Stable chromatin assembles during replication into potentially active (early S) or inactive (late S) states with prevailing trans-acting factors (early) or repressing factors (late) and may asymmetrically commit daughter templates. This suggests logical schemes for programming differentiation based on replicons and trans-acting initiators. This proposal requires that DNA replication precede major changes in gene commitment. Prior evidence against a role for DNA replication during terminal differentiation is reexamined along with other results from terminal differentiation of lower eukaryotes. This leads to a proposal that DNA replication may yet underlie terminal gene commitment, but that for it to do so there must exist two distinct modes of replication control. In one mode (mitotic replication) replicon initiation is tightly linked to the cell cycle, whereas the other mode (terminal replication) initiation is not cell cycle restricted, is replicon specific, and can lead to a terminally differentiated state. Aberrant control of mitotic and terminal modes of DNA replication may underlie the transformed state. Implications of a replicon basis for chromatin structure-function and the evolution of metazoan organisms are considered.
Collapse
Affiliation(s)
- L P Villarreal
- Department of Molecular Biology and Biochemistry, University of California, Irvine 92717
| |
Collapse
|
33
|
Molecular cloning and analysis of the scon-2 negative regulatory gene of Neurospora crassa. Mol Cell Biol 1990. [PMID: 1975945 DOI: 10.1128/mcb.10.10.5207] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sulfur regulatory system of Neurospora crassa is composed of a group of highly regulated structural genes (e.g., the gene encoding arylsulfatase) that are under coordinate control of scon+ (sulfur controller) negative and cys-3+ positive regulatory genes. In scon-1 (previously designated sconC) and scon-2 mutants, there is constitutive expression of sulfur structural genes regardless of the sulfur level available to the cells. The scon-2+ gene was cloned by sib selection screening of a cosmid-based gene library. The screening was based on the use of chromate, a toxic sulfate analog, which is transported into scon-2 cells grown on high sulfur but is not transported into cells that have regained normal sulfur regulation. Restriction fragment length polymorphism analysis was used to confirm that the cloned segment mapped to the proper chromosomal location. In wild-type cells, Northern (RNA) blot analysis showed that a 2.6-kilobase scon-2+ transcript was present at a substantial level only under sulfur-derepressing conditions. Kinetic analysis showed that scon-2+ mRNA content increased as the cells became sulfur starved. Further, scon-2+ RNA was detectable in a nuclear transcription assay only under derepressing conditions. In scon-1, the levels of scon-2+ mRNA were found to be constitutive. In the cys-3 regulatory mutant, there was a reduced level of scon-2+ transcript. cys-3+ and ars-1+ mRNAs were present under both derepressing and repressing conditions in the scon-2 mutant. Repeat-induced point mutation-generated scon-2 mutants were identical in phenotype to the known mutant.
Collapse
|
34
|
Molecular cloning and analysis of the scon-2 negative regulatory gene of Neurospora crassa. Mol Cell Biol 1990; 10:5207-14. [PMID: 1975945 PMCID: PMC361201 DOI: 10.1128/mcb.10.10.5207-5214.1990] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The sulfur regulatory system of Neurospora crassa is composed of a group of highly regulated structural genes (e.g., the gene encoding arylsulfatase) that are under coordinate control of scon+ (sulfur controller) negative and cys-3+ positive regulatory genes. In scon-1 (previously designated sconC) and scon-2 mutants, there is constitutive expression of sulfur structural genes regardless of the sulfur level available to the cells. The scon-2+ gene was cloned by sib selection screening of a cosmid-based gene library. The screening was based on the use of chromate, a toxic sulfate analog, which is transported into scon-2 cells grown on high sulfur but is not transported into cells that have regained normal sulfur regulation. Restriction fragment length polymorphism analysis was used to confirm that the cloned segment mapped to the proper chromosomal location. In wild-type cells, Northern (RNA) blot analysis showed that a 2.6-kilobase scon-2+ transcript was present at a substantial level only under sulfur-derepressing conditions. Kinetic analysis showed that scon-2+ mRNA content increased as the cells became sulfur starved. Further, scon-2+ RNA was detectable in a nuclear transcription assay only under derepressing conditions. In scon-1, the levels of scon-2+ mRNA were found to be constitutive. In the cys-3 regulatory mutant, there was a reduced level of scon-2+ transcript. cys-3+ and ars-1+ mRNAs were present under both derepressing and repressing conditions in the scon-2 mutant. Repeat-induced point mutation-generated scon-2 mutants were identical in phenotype to the known mutant.
Collapse
|
35
|
Molecular cloning and regulatory analysis of the arylsulfatase structural gene of Neurospora crassa. Mol Cell Biol 1989. [PMID: 2528685 DOI: 10.1128/mcb.9.9.3630] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ars-1+ gene of Neurospora crassa encodes the enzyme arylsulfatase. ars-1+ is in a group of highly regulated sulfur-related structural genes that are expressed under conditions of sulfur limitation and are under coordinate control of the cys-3+ and scon+ regulatory genes. The ars-1+ gene was cloned by chromosome walking from the qa gene cluster, using a lambda library. Cotransformation of an N. crassa ars-1 mutant with the isolated lambda clones and the benomyl resistance gene, followed by assay for arylsulfatase activity, was used to screen for the ars-1+ gene. Further confirmation that the cloned segment mapped to the ars-1+ locus was obtained by restriction-fragment-length polymorphism analysis. Northern (RNA) blot analysis showed that the ars-1+ gene was transcribed to give an mRNA of 2.3 kilobases. In wild-type cells, the ars-1+ transcript was abundant under sulfur-derepressing conditions but absent under repressing conditions. Time course analysis showed that the appearance of ars-1+ message in sulfur-derepressed cultures paralleled the appearance of arylsulfatase enzyme activity. In addition, transcription of ars-1+ was detected only under derepressing conditions in a nuclear transcription assay. In a cys-3 regulatory mutant that was unable to synthesize arylsulfatase (or other sulfur-controlled enzymes), there was no ars-1+ transcript under repressing or derepressing conditions. In a temperature-sensitive cys-3 mutant, the ars-1+ transcript was present only at the permissive growth temperature and under sulfur derepression. A negative regulatory mutant, sconc, displayed both constitutive expression of arylsulfatase enzyme activity and content of ars-1+ message.
Collapse
|
36
|
Paietta JV. Molecular cloning and regulatory analysis of the arylsulfatase structural gene of Neurospora crassa. Mol Cell Biol 1989; 9:3630-7. [PMID: 2528685 PMCID: PMC362423 DOI: 10.1128/mcb.9.9.3630-3637.1989] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The ars-1+ gene of Neurospora crassa encodes the enzyme arylsulfatase. ars-1+ is in a group of highly regulated sulfur-related structural genes that are expressed under conditions of sulfur limitation and are under coordinate control of the cys-3+ and scon+ regulatory genes. The ars-1+ gene was cloned by chromosome walking from the qa gene cluster, using a lambda library. Cotransformation of an N. crassa ars-1 mutant with the isolated lambda clones and the benomyl resistance gene, followed by assay for arylsulfatase activity, was used to screen for the ars-1+ gene. Further confirmation that the cloned segment mapped to the ars-1+ locus was obtained by restriction-fragment-length polymorphism analysis. Northern (RNA) blot analysis showed that the ars-1+ gene was transcribed to give an mRNA of 2.3 kilobases. In wild-type cells, the ars-1+ transcript was abundant under sulfur-derepressing conditions but absent under repressing conditions. Time course analysis showed that the appearance of ars-1+ message in sulfur-derepressed cultures paralleled the appearance of arylsulfatase enzyme activity. In addition, transcription of ars-1+ was detected only under derepressing conditions in a nuclear transcription assay. In a cys-3 regulatory mutant that was unable to synthesize arylsulfatase (or other sulfur-controlled enzymes), there was no ars-1+ transcript under repressing or derepressing conditions. In a temperature-sensitive cys-3 mutant, the ars-1+ transcript was present only at the permissive growth temperature and under sulfur derepression. A negative regulatory mutant, sconc, displayed both constitutive expression of arylsulfatase enzyme activity and content of ars-1+ message.
Collapse
Affiliation(s)
- J V Paietta
- Department of Biochemistry, Wright State University, Dayton, Ohio 45435
| |
Collapse
|
37
|
cys-3, the positive-acting sulfur regulatory gene of Neurospora crassa, encodes a protein with a putative leucine zipper DNA-binding element. Mol Cell Biol 1989. [PMID: 2524646 DOI: 10.1128/mcb.9.3.1120] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sulfur-regulatory circuit of Neurospora crassa consists of a set of unlinked structural genes which encode sulfur-catabolic enzymes and two major regulatory genes which govern their expression. The positive-acting cys-3 regulatory gene is required to turn on the expression of the sulfur-related enzymes, whereas the other regulatory gene, scon, acts in a negative fashion to repress the synthesis of the same set of enzymes. Expression of the cys-3 regulatory gene was found to be controlled by scon and by sulfur availability. The nucleotide sequence of the cys-3 gene was determined and can be translated to yield a protein of molecular weight 25,892 which displays significant homology with the oncogene protein Fos, yeast GCN4 protein, and sea urchin histone H1. Moreover, the putative cys-3 protein has a well-defined leucine zipper element plus an adjacent charged region which together may make up a DNA-binding site. A cys-3 mutant and a cys-3 temperature-sensitive mutant lead to substitutions of glutamine for basic amino acids within the charged region and thus may alter DNA-binding properties of the cys-3 protein.
Collapse
|
38
|
A single, phosphate-repressible deoxyribonuclease, DNase A, secreted inAspergillus nidulans. Biochem Genet 1989. [DOI: 10.1007/pl00020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
Käfer E, Tittler A, Fraser MJ. A single, phosphate-repressible deoxyribonuclease, DNase A, secreted in Aspergillus nidulans. Biochem Genet 1989; 27:153-66. [PMID: 2673210 DOI: 10.1007/bf02401798] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
High levels of nuclease activities were identified in filtrates of Aspergillus cultures after growth in low-but not in high-phosphate media. Deoxyribonuclease activities, characterized extensively by column chromatography, showed a coincident single peak for ss- and ds-DNase which was distinct from the peak for RNase. Both ss-DNase and ds-DNase are endonucleolytic and showed the highest activity in the presence of Ca2+ and Mn2+ (at pH 8.0). They also showed identical heat sensitivities suggesting that a single, phosphate-repressible DNase was secreted. This enzyme, therefore, corresponds to the well-characterized extracellular DNase A of Neurospora. However, the Aspergillus DNase A did not cross-react with antisera to secreted Neurospora nucleases and showed different chromatographic properties, and active peptides of different sizes were visualized on DNA activity gels. The increasing derepression of Aspergillus DNase A by decreasing phosphate levels was similar to that of secreted alkaline phosphatase and these increases were both abolished by the regulatory mutant palcA.
Collapse
Affiliation(s)
- E Käfer
- Department of Biology, McGill University, Montreal, Canada
| | | | | |
Collapse
|
40
|
Fu YH, Paietta JV, Mannix DG, Marzluf GA. cys-3, the positive-acting sulfur regulatory gene of Neurospora crassa, encodes a protein with a putative leucine zipper DNA-binding element. Mol Cell Biol 1989; 9:1120-7. [PMID: 2524646 PMCID: PMC362702 DOI: 10.1128/mcb.9.3.1120-1127.1989] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The sulfur-regulatory circuit of Neurospora crassa consists of a set of unlinked structural genes which encode sulfur-catabolic enzymes and two major regulatory genes which govern their expression. The positive-acting cys-3 regulatory gene is required to turn on the expression of the sulfur-related enzymes, whereas the other regulatory gene, scon, acts in a negative fashion to repress the synthesis of the same set of enzymes. Expression of the cys-3 regulatory gene was found to be controlled by scon and by sulfur availability. The nucleotide sequence of the cys-3 gene was determined and can be translated to yield a protein of molecular weight 25,892 which displays significant homology with the oncogene protein Fos, yeast GCN4 protein, and sea urchin histone H1. Moreover, the putative cys-3 protein has a well-defined leucine zipper element plus an adjacent charged region which together may make up a DNA-binding site. A cys-3 mutant and a cys-3 temperature-sensitive mutant lead to substitutions of glutamine for basic amino acids within the charged region and thus may alter DNA-binding properties of the cys-3 protein.
Collapse
Affiliation(s)
- Y H Fu
- Department of Biochemistry, Ohio State University, Columbus 43210
| | | | | | | |
Collapse
|
41
|
Pall ML, Robertson CK. Growth regulation by GTP. Regulation of nucleotide pools in Neurospora by nitrogen and sulfur control systems. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)37937-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
42
|
|
43
|
Fu YH, Marzluf GA. Molecular cloning and analysis of the regulation of nit-3, the structural gene for nitrate reductase in Neurospora crassa. Proc Natl Acad Sci U S A 1987; 84:8243-7. [PMID: 2891138 PMCID: PMC299518 DOI: 10.1073/pnas.84.23.8243] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The nit-3 gene of Neurospora crassa encodes the enzyme nitrate reductase and is regulated by nitrogen catabolite repression and by specific induction with nitrate. The nit-3 gene was isolated from a cosmid-based genomic library by dual selection for benomyl resistance and for the ability to complement a nit-3 mutant strain using the sibling-selection procedure. The nit-3 gene was subcloned as a 3.8-kilobase DNA fragment from a cosmid that carried an approximately 40-kilobase N. crassa DNA insert. A restriction fragment length polymorphism analysis revealed that the cloned segment displayed tight linkage to two linkage-group-4 markers that flank the genomic location of nit-3. RNA gel blot analyses of RNA from wild-type and various mutant strains were carried out to examine the molecular mechanism for regulation of nit-3 gene expression. The nit-3 gene was transcribed to give a large mRNA of approximately 3.4 kilobases, the expected size to encode nitrate reductase. The nit-3 gene was only expressed in wild-type cells subject to simultaneous nitrogen derepression and nitrate induction. A mutant of nit-2, the major nitrogen regulatory gene of Neurospora, did not have detectable levels of nit-3 gene transcripts under the exact conditions in which these transcripts were highly expressed in wild type. Similarly, a mutant of nit-4, which defines a minor positive-acting nitrogen control gene, failed to express detectable levels of the nit-3 transcript. Nitrate reductase gene expression was partially resistant to nitrogen repression in a mutant of the nmr gene, which appears to be a regulatory gene with a direct role in nitrogen catabolite repression. Results are presented that suggest that the enzyme glutamine synthetase does not serve any regulatory role in controlling nitrate reductase gene expression.
Collapse
Affiliation(s)
- Y H Fu
- Department of Biochemistry, Ohio State University, Columbus 43210
| | | |
Collapse
|
44
|
Vierula PJ, Kapoor M. Antibiotic-induced derepression of the NAD-specific glutamate dehydrogenase of Neurospora crassa. J Bacteriol 1987; 169:5022-7. [PMID: 2822659 PMCID: PMC213903 DOI: 10.1128/jb.169.11.5022-5027.1987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The catabolic, NAD-specific glutamate dehydrogenase (NAD-GDH) of Neurospora crassa is under carbon catabolite repression. Cells grown on a glycolytic carbon source, such as sucrose, have low basal levels of enzyme activity. Treatment of repressed cells with either polymyxin B or amphotericin B resulted in derepression of NAD-GDH. Derepression at the transcriptional level occurred very rapidly (within 30 min) in response to polymyxin B addition but reached a plateau within 2 h. Amphotericin B-induced derepression initiated more slowly but continued for at least 6 h, resulting in a specific activity comparable to that seen with cells transferred to glutamate as the sole carbon source. These antibiotics had no significant effect upon the activities of two constitutive enzymes, pyruvate kinase and malate dehydrogenase. Curiously, only polymyxin B treatment derepressed invertase, another catabolite-repressed enzyme. The addition of 100 mM KCl to the growth medium blocked derepression by both antibiotics, but the addition of 50 mM MgCl2 only annulled derepression by polymyxin B. The ergosterol-deficient erg-1 mutant, which is resistant to amphotericin B, did not derepress NAD-GDH when treated with this drug. These results are consistent with derepression resulting from interactions of these antibiotics with the plasma membrane.
Collapse
Affiliation(s)
- P J Vierula
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | | |
Collapse
|
45
|
Han SW, Nahas E, Rossi A. Regulation of synthesis and secretion of acid and alkaline phosphatases in Neurospora crassa. Curr Genet 1987; 11:521-7. [PMID: 2967123 DOI: 10.1007/bf00384615] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We show that N. crassa represses the production of acid phosphatase at pH higher than 8.0, irrespective of the carbon source used, whereas production was stimulated by sucrose at slightly acidic pH. The same profile of acid phosphatase production was observed in the pho-2A, pho-3A, nuc-1A, nuc-2A and pregc mutant strains. We also show that acid phosphatase synthesized by the pregc mutant strain grown on high phosphate medium has pronounced differences when compared to the enzyme synthesized by the wild-type strain grown on low phosphate medium in terms of heat stability, steady-state kinetic properties and DEAE-cellulose chromatography. In addition, the synthesis and/or secretion of only phosphate-repressible alkaline phosphatase is affected by mutations in acu-1, and acu-5 and acu-7 genes. These results, which indicate distinct pathways for the synthesis and secretion of acid and alkaline phosphatases in N. crassa, contradict the dosage titration model proposed by Metzenberg et al. (1974) whereby the synthesis of these enzymes should occur through a single hierarchical regulatory circuit as a response to phosphate starvation.
Collapse
Affiliation(s)
- S W Han
- Departamento de Quimica, FFCLRP-USP, Ribeirao Preto, Brazil
| | | | | |
Collapse
|
46
|
Structure of the SAD mutation and the location of control sites at silent mating type genes in Saccharomyces cerevisiae. Mol Cell Biol 1985. [PMID: 6095058 DOI: 10.1128/mcb.4.7.1278] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The SAD mutation, an extra mating type cassette, has been shown to arise from an unequal mitotic crossover between the MAT and HMR loci, resulting in the formation of a hybrid cassette and a duplication of the MAT-HMR interval. The SAD cassette contains the "a" information and left-hand flanking regions from the parental HMRa cassette and the right-hand flanking sequences of the parental MAT cassette. This arrangement of flanking sequences causes a leaky but reproducible mating phenotype correlated with a low-level expression of the cassette as measured by RNA blotting. This weak expression is attributed to the loss of one flanking control site normally present at the silent HM storage loci.
Collapse
|
47
|
Hicks J, Strathern J, Klar A, Ismail S, Broach J. Structure of the SAD mutation and the location of control sites at silent mating type genes in Saccharomyces cerevisiae. Mol Cell Biol 1984; 4:1278-85. [PMID: 6095058 PMCID: PMC368909 DOI: 10.1128/mcb.4.7.1278-1285.1984] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The SAD mutation, an extra mating type cassette, has been shown to arise from an unequal mitotic crossover between the MAT and HMR loci, resulting in the formation of a hybrid cassette and a duplication of the MAT-HMR interval. The SAD cassette contains the "a" information and left-hand flanking regions from the parental HMRa cassette and the right-hand flanking sequences of the parental MAT cassette. This arrangement of flanking sequences causes a leaky but reproducible mating phenotype correlated with a low-level expression of the cassette as measured by RNA blotting. This weak expression is attributed to the loss of one flanking control site normally present at the silent HM storage loci.
Collapse
|
48
|
Lindberg RA, Drucker H. Regulation of a Neurospora crassa extracellular RNase by phosphorus, nitrogen, and carbon derepressions. J Bacteriol 1984; 157:380-4. [PMID: 6229529 PMCID: PMC215258 DOI: 10.1128/jb.157.2.380-384.1984] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A new extracellular RNase, designated N4, was detected in culture filtrates from Neurospora crassa and its regulation was studied. Limitation of a nutrient obtainable from RNA alone was not sufficient to cause enzyme derepression. The addition of RNA to the medium had no inductive effect, but the addition of exogenous protein caused enzyme production. With protein in the medium, N4 was derepressible for all three elemental nutrients obtainable from RNA: carbon, nitrogen, and phosphorus. Successful carbon derepression required the addition of a small amount of proteolytic activity to the cultures, as has been reported for the carbon-derepressible proteases of N. crassa. Exogenous protein affected RNase production before translation. Effects of the exogenous protein appeared similar to those previously reported for N. crassa protease induction. N4 was under the control of the nit-2 and nuc-1 gene products. nit-2 and nuc-1 mutants were unable to derepress enzyme synthesis for nitrogen and phosphorus limitation, respectively; however, these mutants responded like wild types to the other two states of derepression. Enzyme synthesis was constitutive in the preg mutant. Results indicate that the transcription of the N4 structural gene responds to multiple regulatory gene products from different regulatory circuits and that external protein affects the synthesis of classes of hydrolases other than proteases.
Collapse
|
49
|
Lindberg RA, Drucker H. Characterization and comparison of a Neurospora crassa RNase purified from cultures undergoing each of three different states of derepression. J Bacteriol 1984; 157:375-9. [PMID: 6229528 PMCID: PMC215257 DOI: 10.1128/jb.157.2.375-379.1984] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Extracellular RNase N4 from Neurospora crassa is derepressible by limitation of any of the three nutrient elements obtainable from RNA. We have purified and characterized the enzyme from cultures grown under each of the three states of derepression. The purification procedure consisted of an ultrafiltration step, cation-exchange chromatography, and gel filtration. We found only one enzyme (N4) that hydrolyzed RNA at pH 7.5 in the presence of EDTA in culture filtrates from nitrogen-, phosphorus-, or carbon-limited cells. In all three cases, the enzymes were identical by polyacrylamide gel electrophoresis (Mr approximately 9,500) and by gel filtration (Mr approximately 10,000). There were no differences in thermal stability or pH optimum; all three cross-reacted with antibody to the nitrogen-depressed enzyme in interfacial ring and in Ouchterlony tests. Digestion of homopolyribonucleotides indicated that N4 preferentially cleaved phosphodiester bonds adjacent to guanine residues. Results indicate that the enzymes are very similar or identical and are probably products of the same gene. N4 appears to be homologous to guanine-specific RNases from other fungal sources.
Collapse
|
50
|
Soave C, Salamini F. The role of structural and regulatory genes in the development of maize endosperm. ACTA ACUST UNITED AC 1984. [DOI: 10.1002/dvg.1020050102] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|