1
|
Krysenko S, Wohlleben W. Role of Carbon, Nitrogen, Phosphate and Sulfur Metabolism in Secondary Metabolism Precursor Supply in Streptomyces spp. Microorganisms 2024; 12:1571. [PMID: 39203413 PMCID: PMC11356490 DOI: 10.3390/microorganisms12081571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
The natural soil environment of Streptomyces is characterized by variations in the availability of nitrogen, carbon, phosphate and sulfur, leading to complex primary and secondary metabolisms. Their remarkable ability to adapt to fluctuating nutrient conditions is possible through the utilization of a large amount of substrates by diverse intracellular and extracellular enzymes. Thus, Streptomyces fulfill an important ecological role in soil environments, metabolizing the remains of other organisms. In order to survive under changing conditions in their natural habitats, they have the possibility to fall back on specialized enzymes to utilize diverse nutrients and supply compounds from primary metabolism as precursors for secondary metabolite production. We aimed to summarize the knowledge on the C-, N-, P- and S-metabolisms in the genus Streptomyces as a source of building blocks for the production of antibiotics and other relevant compounds.
Collapse
Affiliation(s)
- Sergii Krysenko
- Department of Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany;
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, 72076 Tübingen, Germany
| | - Wolfgang Wohlleben
- Department of Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany;
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, 72076 Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
2
|
Abreu S, Lejeune C, David M, Chaminade P, Virolle MJ. Impact of the Deletion of Genes of the Nitrogen Metabolism on Triacylglycerol, Cardiolipin and Actinorhodin Biosynthesis in Streptomyces coelicolor. Microorganisms 2024; 12:1560. [PMID: 39203402 PMCID: PMC11356632 DOI: 10.3390/microorganisms12081560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
Since nitrogen limitation is known to be an important trigger of triacylglycerol (TAG) accumulation in most microorganisms, we first assessed the global lipid content of 21 strains derived from Streptomyces coelicolor M145 deleted for genes involved in nitrogen metabolism. Seven of these strains deleted for genes encoding proteins involved in polyamine (GlnA2/SCO2241, GlnA3/SCO6962, GlnA4/SCO1613), or protein (Pup/SCO1646) degradation, in the regulation of nitrogen metabolism (GlnE/SCO2234 and GlnK/SCO5584), or the global regulator DasR/SCO5231 that controls negatively the degradation of N-acetylglucosamine, a constituent of peptidoglycan, had a higher TAG content than the original strain, whereas five of these strains (except the glnA2 and pup mutants) had a lower cardiolipin (CL) content. The production of the blue polyketide actinorhodin (ACT) was totally abolished in the dasR mutant in both Pi conditions, whereas the deletion of pup, glnA2, glnA3, and glnA4 was correlated with a significant increase in total ACT production, but mainly in Pi limitation. Unexpectedly, ACT production was strongly reduced in the glnA3 mutant in Pi proficiency. Altogether, our data suggest that high TAG and ACT biosynthesis and low CL biosynthesis might all contribute to the lowering of oxidative stress resulting from nitrogen limitation or from other causes.
Collapse
Affiliation(s)
- Sonia Abreu
- Lip (Sys)2 (Lipides Systèmes Analytiques et Biologiques), UFR Pharmacie-Bâtiment Henri Moissan, CNRS, CEA, Université Paris-Saclay, 17 Avenue des Sciences, 91400 Orsay, France; (S.A.); (P.C.)
| | - Clara Lejeune
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CNRS, CEA, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-Sur-Yvette, France (M.D.)
| | - Michelle David
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CNRS, CEA, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-Sur-Yvette, France (M.D.)
| | - Pierre Chaminade
- Lip (Sys)2 (Lipides Systèmes Analytiques et Biologiques), UFR Pharmacie-Bâtiment Henri Moissan, CNRS, CEA, Université Paris-Saclay, 17 Avenue des Sciences, 91400 Orsay, France; (S.A.); (P.C.)
| | - Marie-Joelle Virolle
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CNRS, CEA, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-Sur-Yvette, France (M.D.)
| |
Collapse
|
3
|
Solomon S, Babu DT, Gopalakrishnan S, Augustine D, Kachiprath B, Kesavan D, Sarasan M, Philip R. Marine actinomycete Streptomyces variabilis S26 as a biocontrol agent for vibriosis in shrimp larval rearing systems. J Basic Microbiol 2024; 64:e2300225. [PMID: 37906111 DOI: 10.1002/jobm.202300225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/02/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023]
Abstract
Indiscriminate use of antibiotics has led to the emergence of antibiotic-resistant microbes and the loss of natural flora in aquaculture systems necessitating the ban of many of these chemotherapeutants in aquaculture. Actinobacteria play a profound role in the biogeochemical cycling in the marine environment and represent the principal source of secondary metabolites with antimicrobial property. In the present study, 98 marine-derived actinomycete isolates were screened for antimicrobial activity against the common aquatic pathogens. A potent actinomycete isolate S26, identified as Streptomyces variabilis based on 16 S ribosomal RNA (rRNA) gene sequencing was then checked for the production of antibiotic in five different fermentation media and the one which showed maximum production was chosen for further study. Optimization of the fermentation medium for secondary metabolite production was carried out by response surface methodology (RSM) using DESIGN EXPERT. The analysis of variance (ANOVA) of the quadratic regression model demonstrated that the model was highly significant for the response concerned that is, antimicrobial activity as evident from the Fisher's F- test with a very low probability value [(P model>F) = 0.0001]. Of the 10 different solutions suggested by the software, the most suitable composition was found to be starch, 1.38%; soy powder, 0.88%; ammonium sulfate, 0.16% and salinity, 27.76‰. S. variabilis S26 cultured in the optimized production medium was applied in the Penaeus monodon larval rearing system and the total Vibrio count and survival rate were estimated. S. variabilis S26 treatment showed a significant reduction in vibrios and conferred better protection to P. monodon in culture system compared with control.
Collapse
Affiliation(s)
- Solly Solomon
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kerala, India
- Fishery Survey of India, Cochin Zonal Base, Kochi, Kerala, India
| | - Divya T Babu
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kerala, India
| | - Sumitha Gopalakrishnan
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kerala, India
| | - Deepthi Augustine
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kerala, India
| | - Bhavya Kachiprath
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kerala, India
| | - Dhanya Kesavan
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kerala, India
| | - Manomi Sarasan
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kerala, India
| | - Rosamma Philip
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kerala, India
| |
Collapse
|
4
|
Lee B, Lee GE, Hwang GJ, Heo KT, Lee JK, Jang JP, Hwang BY, Jang JH, Cho YY, Hong YS. Rubiflavin G, photorubiflavin G, and photorubiflavin E: Novel pluramycin derivatives from Streptomyces sp. W2061 and their anticancer activity against breast cancer cells. J Antibiot (Tokyo) 2023; 76:585-591. [PMID: 37414938 DOI: 10.1038/s41429-023-00643-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/08/2023]
Abstract
The pluramycin family of antibiotics comprises angucycline compounds derived from actinomycetes that possess anticancer and antibacterial properties. Pluramycins are structurally characterized by two aminoglycosides linked by a carbon-carbon bond next to the γ-pyrone angucycline backbone. Kidamycins (3, 4) and rubiflavins (6-9) were screened through liquid chromatography-mass spectrometry analysis of the crude extracts of Streptomyces sp. W2061, which was cultured in complex media under phosphate-limiting conditions. Newly isolated rubiflavin G (7) and photoactivated compounds (8, 9) were characterized using exhaustive 1D and 2D nuclear magnetic resonance analysis. The cytotoxicity of kidamycin (3), photokidamycin (4), and photorubiflavin G (8) was determined using two human breast cancer cell lines-MCF7 and MDA-MB-231. Compared to MCF7 cells, MDA-MB-231 cells were more sensitive to the active compounds, and photokidamycin (4) considerably inhibited MCF7 and MDA-MB-231 cell growth (IC50 = 3.51 and 0.66 μM, respectively).
Collapse
Affiliation(s)
- Byeongsan Lee
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Korea
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Korea
| | - Ga-Eun Lee
- College of Pharmacy, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, 14662, Korea
| | - Gwi Ja Hwang
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Korea
| | - Kyung Taek Heo
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Korea
| | - Jae Kyoung Lee
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Korea
| | - Jun-Pil Jang
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Korea
| | - Bang Yeon Hwang
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Korea
| | - Jae-Hyuk Jang
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Korea.
- KRIBB School of Bioscience, University of Science and Technology, Daejeon, 34141, Korea.
| | - Yong-Yeon Cho
- College of Pharmacy, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, 14662, Korea.
| | - Young-Soo Hong
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Korea.
- KRIBB School of Bioscience, University of Science and Technology, Daejeon, 34141, Korea.
| |
Collapse
|
5
|
Martín JF. Interaction of calcium responsive proteins and transcriptional factors with the PHO regulon in yeasts and fungi. Front Cell Dev Biol 2023; 11:1225774. [PMID: 37601111 PMCID: PMC10437122 DOI: 10.3389/fcell.2023.1225774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Phosphate and calcium ions are nutrients that play key roles in growth, differentiation and the production of bioactive secondary metabolites in filamentous fungi. Phosphate concentration regulates the biosynthesis of hundreds of fungal metabolites. The central mechanisms of phosphate transport and regulation, mediated by the master Pho4 transcriptional factor are known, but many aspects of the control of gene expression need further research. High ATP concentration in the cells leads to inositol pyrophosphate molecules formation, such as IP3 and IP7, that act as phosphorylation status reporters. Calcium ions are intracellular messengers in eukaryotic organisms and calcium homeostasis follows elaborated patterns in response to different nutritional and environmental factors, including cross-talking with phosphate concentrations. A large part of the intracellular calcium is stored in vacuoles and other organelles forming complexes with polyphosphate. The free cytosolic calcium concentration is maintained by transport from the external medium or by release from the store organelles through calcium permeable transient receptor potential (TRP) ion channels. Calcium ions, particularly the free cytosolic calcium levels, control the biosynthesis of fungal metabolites by two mechanisms, 1) direct interaction of calcium-bound calmodulin with antibiotic synthesizing enzymes, and 2) by the calmodulin-calcineurin signaling cascade. Control of very different secondary metabolites, including pathogenicity determinants, are mediated by calcium through the Crz1 factor. Several interactions between calcium homeostasis and phosphate have been demonstrated in the last decade: 1) The inositol pyrophosphate IP3 triggers the release of calcium ions from internal stores into the cytosol, 2) Expression of the high affinity phosphate transporter Pho89, a Na+/phosphate symporter, is controlled by Crz1. Also, mutants defective in the calcium permeable TRPCa7-like of Saccharomyces cerevisiae shown impaired expression of Pho89. This information suggests that CrzA and Pho89 play key roles in the interaction of phosphate and calcium regulatory pathways, 3) Finally, acidocalcisomes organelles have been found in mycorrhiza and in some melanin producing fungi that show similar characteristics as protozoa calcisomes. In these organelles there is a close interaction between orthophosphate, pyrophosphate and polyphosphate and calcium ions that are absorbed in the polyanionic polyphosphate matrix. These advances open new perspectives for the control of fungal metabolism.
Collapse
Affiliation(s)
- Juan F. Martín
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, León, Spain
| |
Collapse
|
6
|
Lertcanawanichakul M, Sahabuddeen T. Characterization of Streptomyces sp. KB1 and its cultural optimization for bioactive compounds production. PeerJ 2023; 11:e14909. [PMID: 36860769 PMCID: PMC9969850 DOI: 10.7717/peerj.14909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/25/2023] [Indexed: 03/03/2023] Open
Abstract
Background Bioactive compounds (BCs) from natural resources have been extensively studied because of their use as models in the development of novel and important medical and biopreservative agents. One important source of BCs is microorganisms, particularly terrestrial bacteria of the order Actinomycetales. Methods We characterized Streptomyces sp. KB1 by observing its morphology, physiology, and growth on different media using biochemical tests, optimizing cultural conditions by changing one independent variable at a time. Results Streptomyces sp. KB1 (TISTR 2304) is a gram-positive and long filamentous bacteria that forms straight to flexuous (rectiflexibile) chains of globose-shaped and smooth-surfaced spores. It can grow under aerobic condition s only at a temperature range of 25-37 °C and initial pH range of 5-10 in the presence of sodium chloride 4% (w/v). Therefore, it is considered an obligate aerobe, mesophilic, neutralophilic, and moderately halophilic bacteria. The isolate grew well on peptone-yeast extract iron, Luria Bertani (LB), and a half-formula of LB (LB/2), but could not grow on MacConkey agar. It utilized fructose, mannose, glucose, and lactose as its carbon source along with acid production and showed positive reactions to casein hydrolysis, gelatin liquefaction, nitrate reduction, urease, and catalase production. Streptomyces sp. KB1 (TISTR 2304) could produce the maximum number of BCs when 1% of its starter was cultivated in a 1,000 ml baffled flask containing 200 ml of LB/2 broth with its initial pH adjusted to 7 with no supplemental carbon source, nitrogen source, NaCl, or trace element at 30 °C, shaken at 200 rpm in an incubator for 4 days.
Collapse
Affiliation(s)
- Monthon Lertcanawanichakul
- School of Allied Health Sciences, Walailak University, Thasala, Thaiburi, Nakhon Si Thammarat, Thailand,Food Technology and Innovation Research Center of Excellence, Walailak University, Thaiburi, Thasala, Nakhon Si Thammarat, Thailand
| | - Tuanhawanti Sahabuddeen
- Research Unit of Natural Product Utilization, Walialk University, Thaiburi, Thasala, Nakhon Si Thammarat, Thailand
| |
Collapse
|
7
|
Pouzet S, Cruz-Ramón J, Le Bec M, Cordier C, Banderas A, Barral S, Castaño-Cerezo S, Lautier T, Truan G, Hersen P. Optogenetic control of beta-carotene bioproduction in yeast across multiple lab-scales. Front Bioeng Biotechnol 2023; 11:1085268. [PMID: 36814715 PMCID: PMC9939774 DOI: 10.3389/fbioe.2023.1085268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
Optogenetics arises as a valuable tool to precisely control genetic circuits in microbial cell factories. Light control holds the promise of optimizing bioproduction methods and maximizing yields, but its implementation at different steps of the strain development process and at different culture scales remains challenging. In this study, we aim to control beta-carotene bioproduction using optogenetics in Saccharomyces cerevisiae and investigate how its performance translates across culture scales. We built four lab-scale illumination devices, each handling different culture volumes, and each having specific illumination characteristics and cultivating conditions. We evaluated optogenetic activation and beta-carotene production across devices and optimized them both independently. Then, we combined optogenetic induction and beta-carotene production to make a light-inducible beta-carotene producer strain. This was achieved by placing the transcription of the bifunctional lycopene cyclase/phytoene synthase CrtYB under the control of the pC120 optogenetic promoter regulated by the EL222-VP16 light-activated transcription factor, while other carotenogenic enzymes (CrtI, CrtE, tHMG) were expressed constitutively. We show that illumination, culture volume and shaking impact differently optogenetic activation and beta-carotene production across devices. This enabled us to determine the best culture conditions to maximize light-induced beta-carotene production in each of the devices. Our study exemplifies the stakes of scaling up optogenetics in devices of different lab scales and sheds light on the interplays and potential conflicts between optogenetic control and metabolic pathway efficiency. As a general principle, we propose that it is important to first optimize both components of the system independently, before combining them into optogenetic producing strains to avoid extensive troubleshooting. We anticipate that our results can help designing both strains and devices that could eventually lead to larger scale systems in an effort to bring optogenetics to the industrial scale.
Collapse
Affiliation(s)
- Sylvain Pouzet
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Jessica Cruz-Ramón
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Matthias Le Bec
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Céline Cordier
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Alvaro Banderas
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Simon Barral
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Sara Castaño-Cerezo
- Toulouse Biotechnology Institute, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l′Agriculture, l′Alimentation et l′Environnement (INRAE), Institut National des Sciences Appliquées (INSA), Toulouse, France
| | - Thomas Lautier
- Toulouse Biotechnology Institute, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l′Agriculture, l′Alimentation et l′Environnement (INRAE), Institut National des Sciences Appliquées (INSA), Toulouse, France,CNRS@CREATE, Singapore Institute of Food and Biotechnology Innovation, Agency for Science Technology and Research, Singapore, Singapore
| | - Gilles Truan
- Toulouse Biotechnology Institute, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l′Agriculture, l′Alimentation et l′Environnement (INRAE), Institut National des Sciences Appliquées (INSA), Toulouse, France
| | - Pascal Hersen
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France,*Correspondence: Pascal Hersen,
| |
Collapse
|
8
|
Calcium-Phosphate Combination Enhances Spinosad Production in Saccharopolyspora spinosa via Regulation of Fatty Acid Metabolism. Appl Biochem Biotechnol 2022; 194:2528-2541. [PMID: 35166996 DOI: 10.1007/s12010-022-03799-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2021] [Indexed: 11/02/2022]
Abstract
Phosphate concentration above 10 mM reduces the production of many secondary metabolites; however, the phenomenon is not mechanistically understood yet. Specifically, the problem of phosphorus limitation in antibiotic production remains unresolved. This study investigates the phosphorus inhibition effect on spinosad production and alleviates it by calcium and phosphate supplementation to fermentation media. Furthermore, we examined the mechanism of fatty acids-induced increase in polyketides production. Four phosphates that were supplemented into the fermentation media include NaH2PO4, Na2HPO4, KH2PO4, and K2HPO4 and NaH2PO4 was found to be the most effective phosphate. Under the optimal phosphate condition of supplementing 20 mM NaH2PO4 on the fourth day and 5 g/L CaCO3, the maximal spinosad production reached 520 mg/L, showing a 1.65-fold increase over the control treatment. In the NaH2PO4-CaCO3 system, the de novo fatty acid biosynthesis was significantly downregulated while spinosad biosynthesis and β-oxidation were upregulated. The coordination of de novo fatty acid biosynthesis and β-oxidation promoted intracellular acetyl-CoA concentration. The results demonstrate that NaH2PO4-CaCO3 combined addition is a simple and effective strategy to alleviate phosphorus inhibition effect through the regulation of fatty acid metabolism and accumulation of immediate precursors. This information improves our understanding of phosphates' influence on the large-scale production of polyketides.
Collapse
|
9
|
Gladysheva IV, Cherkasov SV, Khlopko YA, Plotnikov AO. Genome Characterization and Probiotic Potential of Corynebacterium amycolatum Human Vaginal Isolates. Microorganisms 2022; 10:microorganisms10020249. [PMID: 35208706 PMCID: PMC8878833 DOI: 10.3390/microorganisms10020249] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/17/2022] Open
Abstract
The vaginal microbiome of healthy women contains nondiphtheria corynebacteria. The role and functions of nondiphtheria corynebacteria in the vaginal biotope are still under study. We sequenced and analysed the genomes of three vaginal C. amycolatum strains isolated from healthy women. Previous studies have shown that these strains produced metabolites that significantly increased the antagonistic activity of peroxide-producing lactic acid bacteria against pathogenic and opportunistic microorganisms and had strong antimicrobial activity against opportunistic pathogens. Analysis of the C. amycolatum genomes revealed the genes responsible for adaptation and survival in the vaginal environment, including acid and oxidative stress resistance genes. The genes responsible for the production of H2O2 and the synthesis of secondary metabolites, essential amino acids and vitamins were identified. A cluster of genes encoding the synthesis of bacteriocin was revealed in one of the annotated genomes. The obtained results allow us to consider the studied strains as potential probiotics that are capable of preventing the growth of pathogenic microorganisms and supporting colonisation resistance in the vaginal biotope.
Collapse
|
10
|
Noël A, Garnier A, Clément M, Rouaud I, Sauvager A, Bousarghin L, Vásquez-Ocmín P, Maciuk A, Tomasi S. Lichen-associated bacteria transform antibacterial usnic acid to products of lower antibiotic activity. PHYTOCHEMISTRY 2021; 181:112535. [PMID: 33099225 DOI: 10.1016/j.phytochem.2020.112535] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/22/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
Lichens are specific symbiotic organisms harboring various microorganisms in addition to the two classic partners (algae or cyanobacterium and fungus). Although lichens produce many antibiotic compounds such as (+)-usnic acid, their associated microorganisms possess the ability to colonize an environment where antibiosis exists. Here, we have studied the behavior of several lichen-associated bacterial strains in the presence of (+)-usnic acid, a known antibiotic lichen compound. The effect of this compound was firstly evaluated on the growth and metabolism of three bacteria, thus showing its ability to inhibit Gram-positive bacteria. This inhibition was not thwarted with the usnic acid producer strain Streptomyces cyaneofuscatus. The biotransformation of this lichen metabolite was also studied. An ethanolamine derivative of (+)-usnic acid with low antibiotic activity was highlighted with chemical profiling, using HPLC-UV combined with low resolution mass spectrometry. These findings highlight the way in which some strains develop resistance mechanisms. A methylated derivative of (+)-usnic acid was annotated using the molecular networking method, thus showing the interest of this computer-based approach in biotransformation studies.
Collapse
Affiliation(s)
- Alba Noël
- Univ Rennes, CNRS, ISCR - UMR 6226, F-35000, Rennes, France
| | | | | | | | | | - Latifa Bousarghin
- INSERM, Univ. Rennes, INRA, CHU Rennes, Nutrition Metabolisms and Cancer (NuMeCan), UMR-1241, Biosit, MRic/ISFR, Rennes, France
| | | | - Alexandre Maciuk
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France
| | - Sophie Tomasi
- Univ Rennes, CNRS, ISCR - UMR 6226, F-35000, Rennes, France.
| |
Collapse
|
11
|
Patel AA, Shukla YM, Kumar S, Sakure AA, Parekh MJ, Zala HN. Transcriptome analysis for molecular landscaping of genes controlling diterpene andrographolide biosynthesis in Andrographis paniculata ( Burm . f.) Nees. 3 Biotech 2020; 10:512. [PMID: 33173716 PMCID: PMC7648546 DOI: 10.1007/s13205-020-02511-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/25/2020] [Indexed: 11/30/2022] Open
Abstract
Kalmegh [Andrographis paniculata (Burm. f.) Nees.] is one of the essential medicinal plants due to an important terpenoid, i.e. andrographolide possesses immense therapeutic and pharmacological uses. The experiment was performed to elucidate the expression of candidate genes associated with andrographolide biosynthesis. Based on results obtained in chromatography for andrographolide content analysis of six genotypes, two contrast genotypes, i.e. IC-520361 (maximum andrographolide content-2.33%) and Anand Local (lowest andrographolide content-1.01%) were selected for the transcriptome analysis. A total of 1.04 Gb of raw data were produced using MiSeq Illumina platform, in which IC 520361 generated 645 million base pairs sequence along with 4,524,251 raw reads and Anand Local produced 419 million base pairs sequence along with 3,021,316 raw reads. The combined assembly of high quality reads generated for both the samples had 33,247,454 bp of total assembled bases and 38,292 of transcripts. The GC percent of assembled transcripts was 44.79%, an average read length was 800 bp and N50 value was 1186 bp. Species-specific distribution using BLAST X (Nr), showed the highest Blast hits with Sesamum indicum. Out of 23,346 transcripts, 87% of transcripts annotated in UniProt KB (Universal Protein Resource KnowledgeBase) database and only 0.21% of transcripts were annotated in TAIR (The Arabidopsis Information Resources). Biological processes gene ontology classified based on Blast2GO showed, out of 6853 transcripts, 1370 of transcripts were represented by terpenoid biosynthetic pathway, which involved in secondary metabolite andrographolide biosynthesis. The heat map showed 1016 transcripts were differentially expressed between two kalmegh genotypes, in which nine important differentially expressed transcripts related to MEP (2C methyl-d-erythritol 4-phosphate) and MVA (Mevalonic acid) andrographolide biosynthesis pathways such as, geranyl diphosphate synthase small subunit, Isopentenyl-diphosphate delta-isomerase i-like, 4, 13-hydroxy-3-methylglutaryl-coenzyme a reductase etc. were upregulated in IC 520361 as compared to Anand Local, which were validated through RT-qPCR. The highest expression of gene 13-hydroxy-3-methylglutaryl-coenzyme a reductase (HMGR) was reported, which is responsible for accumulation of andrographolide in leaf. This comparative transcriptome analysis confirmed the expression level of genes were higher in accession IC 520361 as compare to Anand Local related to andrographolide biosynthesis pathways i.e. MEP and MVA. These up-regulated genes could be over-expressed to enhance the andrographolide content using genetic engineering of these metabolic pathways. It will also give an idea to the breeder for development of molecular markers for direct screening of the genotypes.
Collapse
Affiliation(s)
- Ankita A. Patel
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand, 388 110 India
| | - Yogesh M. Shukla
- Department of Biochemistry, B.A. College of Agriculture, Anand Agricultural University, Anand, 388 110 India
| | - Sushil Kumar
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand, 388 110 India
| | - Amar A. Sakure
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand, 388 110 India
| | - Mithil J. Parekh
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand, 388 110 India
| | - Harshvardhan N. Zala
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand, 388 110 India
- Department of Biotechnology, S. D. Agricultural University, Sardarkrushinagar, 385 506 India
| |
Collapse
|
12
|
Çetinkaya S. A Novel Isolate (S15) of Streptomyces griseobrunneus Produces 1-Dodecanol. Curr Microbiol 2020; 78:144-149. [PMID: 33123751 DOI: 10.1007/s00284-020-02261-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/16/2020] [Indexed: 11/26/2022]
Abstract
One-dodecanol was identified to be the predominant secondary metabolite of a novel isolate (S15) of Streptomyces griseobrunneus. For its demonstration, secondary metabolite extracts were electrophoresed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). A yellowish unique band was then cut out from the gel and its metabolite content was eluted in n-butanol. GC-MS analysis indicated that more than 93% of the of the elution material were 1-dodecanol. The compound was further characterized by FTIR and 13C NMR analyses. Dendrogram built on the basis of 16S rRNA gene sequence indicated that the isolate S15 was a member of Streptomyces griseobrunneus.
Collapse
Affiliation(s)
- Serap Çetinkaya
- Department of Molecular Biology and Genetics, Science Faculty, Sivas Cumhuriyet University, Sivas, Turkey.
| |
Collapse
|
13
|
Millan-Oropeza A, Henry C, Lejeune C, David M, Virolle MJ. Expression of genes of the Pho regulon is altered in Streptomyces coelicolor. Sci Rep 2020; 10:8492. [PMID: 32444655 PMCID: PMC7244524 DOI: 10.1038/s41598-020-65087-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/24/2020] [Indexed: 12/30/2022] Open
Abstract
Most currently used antibiotics originate from Streptomycetes and phosphate limitation is an important trigger of their biosynthesis. Understanding the molecular processes underpinning such regulation is of crucial importance to exploit the great metabolic diversity of these bacteria and get a better understanding of the role of these molecules in the physiology of the producing bacteria. To contribute to this field, a comparative proteomic analysis of two closely related model strains, Streptomyces lividans and Streptomyces coelicolor was carried out. These strains possess identical biosynthetic pathways directing the synthesis of three well-characterized antibiotics (CDA, RED and ACT) but only S. coelicolor expresses them at a high level. Previous studies established that the antibiotic producer, S. coelicolor, is characterized by an oxidative metabolism and a reduced triacylglycerol content compared to the none producer, S. lividans, characterized by a glycolytic metabolism. Our proteomic data support these findings and reveal that these drastically different metabolic features could, at least in part, due to the weaker abundance of proteins of the two component system PhoR/PhoP in S. coelicolor compared to S. lividans. In condition of phosphate limitation, PhoR/PhoP is known to control positively and negatively, respectively, phosphate and nitrogen assimilation and our study revealed that it might also control the expression of some genes of central carbon metabolism. The tuning down of the regulatory role of PhoR/PhoP in S. coelicolor is thus expected to be correlated with low and high phosphate and nitrogen availability, respectively and with changes in central carbon metabolic features. These changes are likely to be responsible for the observed differences between S. coelicolor and S. lividans concerning energetic metabolism, triacylglycerol biosynthesis and antibiotic production. Furthermore, a novel view of the contribution of the bio-active molecules produced in this context, to the regulation of the energetic metabolism of the producing bacteria, is proposed and discussed.
Collapse
Affiliation(s)
- Aaron Millan-Oropeza
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
- PAPPSO, Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Céline Henry
- PAPPSO, Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Clara Lejeune
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Michelle David
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Marie-Joelle Virolle
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| |
Collapse
|
14
|
Martín JF, Liras P. The Balance Metabolism Safety Net: Integration of Stress Signals by Interacting Transcriptional Factors in Streptomyces and Related Actinobacteria. Front Microbiol 2020; 10:3120. [PMID: 32038560 PMCID: PMC6988585 DOI: 10.3389/fmicb.2019.03120] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/24/2019] [Indexed: 12/19/2022] Open
Abstract
Soil dwelling Streptomyces species are faced with large variations in carbon or nitrogen sources, phosphate, oxygen, iron, sulfur, and other nutrients. These drastic changes in key nutrients result in an unbalanced metabolism that have undesirable consequences for growth, cell differentiation, reproduction, and secondary metabolites biosynthesis. In the last decades evidence has accumulated indicating that mechanisms to correct metabolic unbalances in Streptomyces species take place at the transcriptional level, mediated by different transcriptional factors. For example, the master regulator PhoP and the large SARP-type regulator AfsR bind to overlapping sequences in the afsS promoter and, therefore, compete in the integration of signals of phosphate starvation and S-adenosylmethionine (SAM) concentrations. The cross-talk between phosphate control of metabolism, mediated by the PhoR-PhoP system, and the pleiotropic orphan nitrogen regulator GlnR, is very interesting; PhoP represses GlnR and other nitrogen metabolism genes. The mechanisms of control by GlnR of several promoters of ATP binding cassettes (ABC) sugar transporters and carbon metabolism are highly elaborated. Another important cross-talk that governs nitrogen metabolism involves the competition between GlnR and the transcriptional factor MtrA. GlnR and MtrA exert opposite effects on expression of nitrogen metabolism genes. MtrA, under nitrogen rich conditions, represses expression of nitrogen assimilation and regulatory genes, including GlnR, and competes with GlnR for the GlnR binding sites. Strikingly, these sites also bind to PhoP. Novel examples of interacting transcriptional factors, discovered recently, are discussed to provide a broad view of this interactions. Altogether, these findings indicate that cross-talks between the major transcriptional factors protect the cell metabolic balance. A detailed analysis of the transcriptional factors binding sequences suggests that the transcriptional factors interact with specific regions, either by overlapping the recognition sequence of other factors or by binding to adjacent sites in those regions. Additional interactions on the regulatory backbone are provided by sigma factors, highly phosphorylated nucleotides, cyclic dinucleotides, and small ligands that interact with cognate receptor proteins and with TetR-type transcriptional regulators. We propose to define the signal integration DNA regions (so called integrator sites) that assemble responses to different stress, nutritional or environmental signals. These integrator sites constitute nodes recognized by two, three, or more transcriptional factors to compensate the unbalances produced by metabolic stresses. This interplay mechanism acts as a safety net to prevent major damage to the metabolism under extreme nutritional and environmental conditions.
Collapse
Affiliation(s)
- Juan F Martín
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, León, Spain
| | - Paloma Liras
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, León, Spain
| |
Collapse
|
15
|
Tesche S, Rösemeier-Scheumann R, Lohr J, Hanke R, Büchs J, Krull R. Salt-enhanced cultivation as a morphology engineering tool for filamentous actinomycetes: Increased production of labyrinthopeptin A1 in Actinomadura namibiensis. Eng Life Sci 2019; 19:781-794. [PMID: 32624971 DOI: 10.1002/elsc.201900036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/03/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022] Open
Abstract
Salt-enhanced cultivation as a morphology engineering tool for the filamentous actinomycete Actinomadura namibiensis was evaluated in 500-mL shaking flasks (working volume 100 mL) with the aim of increasing the concentration of the pharmaceutically interesting peptide labyrinthopeptin A1. Among the inorganic salts added to a complex production medium, the addition of (NH4)2SO4 led to the highest amount of labyrinthopeptin A1 production. By using 50 mM (NH4)2SO4, the labyrinthopeptin A1 concentration increased up to sevenfold compared to the non-supplemented control, resulting in 325 mg L-1 labyrinthopeptin A1 after 10 days of cultivation. The performance of other ammonium- and sulfate-containing salts (e.g., NH4Cl, K2SO4) was much lower than the performance of (NH4)2SO4. A positive correlation between the uptake of glycerol as one of the main carbon sources and nongrowth-associated labyrinthopeptin productivity was found. The change in the cell morphology of A. namibiensis in conjunction with increased osmolality by the addition of 50 mM (NH4)2SO4, was quantified by image analysis. A. namibiensis always developed a heterogeneous morphology with pellets and loose mycelia present simultaneously. In contrast to the non-supplemented control, the morphology of (NH4)2SO4-supplemented cultures was characterized by smaller and circular pellets that were more stable against disintegration in the stationary production phase.
Collapse
Affiliation(s)
- Sebastian Tesche
- Institute of Biochemical Engineering Technische Universität Braunschweig Braunschweig Germany.,Center of Pharmaceutical Engineering (PVZ) Technische Universität Braunschweig Braunschweig Germany
| | - René Rösemeier-Scheumann
- Institute of Biochemical Engineering Technische Universität Braunschweig Braunschweig Germany.,Center of Pharmaceutical Engineering (PVZ) Technische Universität Braunschweig Braunschweig Germany
| | - Jonas Lohr
- Institute of Biochemical Engineering Technische Universität Braunschweig Braunschweig Germany.,Center of Pharmaceutical Engineering (PVZ) Technische Universität Braunschweig Braunschweig Germany
| | - René Hanke
- AVT - Chair of Biochemical Engineering RWTH Aachen University Aachen Germany
| | - Jochen Büchs
- AVT - Chair of Biochemical Engineering RWTH Aachen University Aachen Germany
| | - Rainer Krull
- Institute of Biochemical Engineering Technische Universität Braunschweig Braunschweig Germany.,Center of Pharmaceutical Engineering (PVZ) Technische Universität Braunschweig Braunschweig Germany
| |
Collapse
|
16
|
Elsayed EA, Farid MA, El-Enshasy HA. Enhanced Natamycin production by Streptomyces natalensis in shake-flasks and stirred tank bioreactor under batch and fed-batch conditions. BMC Biotechnol 2019; 19:46. [PMID: 31311527 PMCID: PMC6636160 DOI: 10.1186/s12896-019-0546-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/11/2019] [Indexed: 12/14/2022] Open
Abstract
Background Natamycin is an antifungal polyene macrolide antibiotic with wide applications in health and food industries. Currently, it is the only antifungal food additive with the GRAS status (Generally Regarded as Safe). Results Natamycin production was investigated under the effect of different initial glucose concentrations. Maximal antibiotic production (1.58 ± 0.032 g/L) was achieved at 20 g/L glucose. Under glucose limitation, natamycin production was retarded and the produced antibiotic was degraded. Higher glucose concentrations resulted in carbon catabolite repression. Secondly, intermittent feeding of glucose improved natamycin production due to overcoming glucose catabolite regulation, and moreover it was superior to glucose-beef mixture feeding, which overcomes catabolite regulation, but increased cell growth on the expense of natamycin production. Finally, the process was optimized in 7.5 L stirred tank bioreactor under batch and fed-batch conditions. Continuous glucose feeding for 30 h increased volumetric natamycin production by about 1.6- and 1.72-folds in than the batch cultivation in bioreactor and shake-flasks, respectively. Conclusions Glucose is a crucial substrate that significantly affects the production of natamycin, and its slow feeding is recommended to alleviate the effects of carbon catabolite regulation as well as to prevent product degradation under carbon source limitation. Cultivation in bioreactor under glucose feeding increased maximal volumetric enzyme production by about 72% from the initial starting conditions.
Collapse
Affiliation(s)
- Elsayed Ahmed Elsayed
- Bioproducts Research Chair, Zoology Department, Faculty of Science, King Saud University, 11451, Riyadh, Kingdom of Saudi Arabia. .,Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, Cairo, Egypt.
| | - Mohamed A Farid
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, Cairo, Egypt
| | - Hesham A El-Enshasy
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), 81130 UTM, Skudai, Malaysia.,City of Scientific Research and Technology Application, New Burg Al Arab, Alexandria, Egypt
| |
Collapse
|
17
|
Habicher T, Czotscher V, Klein T, Daub A, Keil T, Büchs J. Glucose‐containing polymer rings enable fed‐batch operation in microtiter plates with parallel online measurement of scattered light, fluorescence, dissolved oxygen tension, and pH. Biotechnol Bioeng 2019; 116:2250-2262. [DOI: 10.1002/bit.27077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/20/2019] [Accepted: 05/28/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Tobias Habicher
- AVT—Biochemical EngineeringRWTH Aachen UniversityAachen Germany
| | - Vroni Czotscher
- AVT—Biochemical EngineeringRWTH Aachen UniversityAachen Germany
| | - Tobias Klein
- White Biotechnology Research UnitBASF SELudwigshafen am Rhein Germany
| | - Andreas Daub
- Chemical Engineering Industrial BiotechnologyBASF SELudwigshafen am Rhein Germany
| | - Timm Keil
- AVT—Biochemical EngineeringRWTH Aachen UniversityAachen Germany
| | - Jochen Büchs
- AVT—Biochemical EngineeringRWTH Aachen UniversityAachen Germany
| |
Collapse
|
18
|
Martín JF, Ramos A, Liras P. Regulation of Geldanamycin Biosynthesis by Cluster-Situated Transcription Factors and the Master Regulator PhoP. Antibiotics (Basel) 2019; 8:antibiotics8030087. [PMID: 31262015 PMCID: PMC6784220 DOI: 10.3390/antibiotics8030087] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/25/2019] [Accepted: 06/29/2019] [Indexed: 11/16/2022] Open
Abstract
Geldanamycin and the closely related herbimycins A, B, and C are benzoquinone-type ansamycins with antitumoral activity. They are produced by Streptomyces hygroscopicus var. geldanus, Streptomyces lydicus and Streptomyces autolyticus among other Streptomyces strains. Geldanamycins interact with the Hsp-90 chaperone, a protein that has a key role in tumorigenesis of human cells. Geldanamycin is a polyketide antibiotic and the polyketide synthase contain seven modules organized in three geldanamycin synthases genes named gdmAI, gdmAII, and gdmAIII. The loading domain of GdmI activates AHBA, and also related hydroxybenzoic acid derivatives, forming geldanamycin analogues. Three regulatory genes, gdmRI, gdmRII, and gdmRIII were found associated with the geldanamycin gene cluster in S. hygroscopicus strains. GdmRI and GdmRII are LAL-type (large ATP binding regulators of the LuxR family) transcriptional regulators, while GdmRIII belongs to the TetR-family. All three are positive regulators of geldanamycin biosynthesis and are strictly required for expression of the geldanamycin polyketide synthases. In S. autolyticus the gdmRIII regulates geldanamycin biosynthesis and also expression of genes in the elaiophylin gene cluster, an unrelated macrodiolide antibiotic. The biosynthesis of geldanamycin is very sensitive to the inorganic phosphate concentration in the medium. This regulation is exerted through the two components system PhoR-PhoP. The phoRP genes of S. hygroscopicus are linked to phoU encoding a transcriptional modulator. The phoP gene was deleted in S. hygroscopicus var geldanus and the mutant was unable to grow in SPG medium unless supplemented with 5 mM phosphate. Also, the S. hygroscopicus pstS gene involved in the high affinity phosphate transport was cloned, and PhoP binding sequences (PHO boxes), were found upstream of phoU, phoRP, and pstS; the phoRP-phoU sequences were confirmed by EMSA and nuclease footprinting protection assays. The PhoP binding sequence consists of 11 nucleotide direct repeat units that are similar to those found in S. coelicolor Streptomyces avermitilis and other Streptomyces species. The available genetic information provides interesting tools for modification of the biosynthetic and regulatory mechanisms in order to increase geldanamycin production and to obtain new geldanamycin analogues with better antitumor properties.
Collapse
Affiliation(s)
- Juan F Martín
- Area de Microbiología, Departmento de Biología Molecular, Universidad de León, 24071 León, Spain.
| | - Angelina Ramos
- Instituto de Biotecnología (INBIOTEC). Av. Real 1, 24006 León, Spain
| | - Paloma Liras
- Area de Microbiología, Departmento de Biología Molecular, Universidad de León, 24071 León, Spain
| |
Collapse
|
19
|
Demir Z, Bayraktar A, Tunca S. One Extra Copy of lon Gene Causes a Dramatic Increase in Actinorhodin Production by Streptomyces coelicolor A3(2). Curr Microbiol 2019; 76:1045-1054. [PMID: 31214822 DOI: 10.1007/s00284-019-01719-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/12/2019] [Indexed: 01/01/2023]
Abstract
ATP-dependent Lon protease plays important roles in different physiological processes, including cellular differentiation of the bacteria and is a part of an important stress response regulon (HspR/HAIR). In Streptomyces, biosynthesis of secondary metabolites starts with cellular differentiation and stress is one of the factor that affect metabolite production. To clarify the effect of Lon protease on secondary metabolite production, we constructed a recombinant strain of Streptomyces coelicolor A3(2) that has one extra copy of lon gene with its own promoter and transcriptional terminator in its genome. Expression of lon gene in the recombinant strain was determined by quantitative real time (RT-qPCR). Actinorhodin and undecylprodigiosin production of the recombinant cell was measured in liquid R2YE and it was found to produce about 34 times more actinorhodin and 9 times more undecylprodigiosin than the wild-type at 168 h of growth. Development of stable Streptomyces strains capable of producing high amounts of secondary metabolites is valuable for biotechnology industry. One extra copy of lon gene is enough to boost antibiotic production by S. coelicolor A3(2) and this change do not cause any metabolic burden in the cell.
Collapse
Affiliation(s)
- Zeynep Demir
- Molecular Biology and Genetic Department, Faculty of Science, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Aslı Bayraktar
- Molecular Biology and Genetic Department, Faculty of Science, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Sedef Tunca
- Molecular Biology and Genetic Department, Faculty of Science, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey.
| |
Collapse
|
20
|
Li Z, Liu X, Wang J, Wang Y, Zheng G, Lu Y, Zhao G, Wang J. Insight into the Molecular Mechanism of the Transcriptional Regulation of amtB Operon in Streptomyces coelicolor. Front Microbiol 2018. [PMID: 29515546 PMCID: PMC5826061 DOI: 10.3389/fmicb.2018.00264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In Streptomyces coelicolor, amtB transcription is promptly regulated by the global nitrogen regulator GlnR. Although the GlnR binding cis-element has been characterized in amtB promoter, consisting of three GlnR boxes of a3-b3, a1-b1, and a2-b2, its role in GlnR-mediated transcriptional regulation remains unclear. Here, we showed that GlnR had different binding affinity against each pair of GlnR binding sites in amtB promoter (i.e., a3-b3, a1-b1, and a2-b2 sites), and GlnR was able to bind a3-b3 and a1-b1, respectively, but not a2-b2 alone. Consistently, a2 was not a typical GlnR binding site and further experiments showed that a2 was non-essential for GlnR-mediated binding in vitro and transcriptional regulation in vivo. To uncover the physiological role of the three GlnR boxes, we then mutated the wild-type amtB promoter to a typical GlnR-binding motif containing two GlnR boxes (a3-b3–a2-b2), and found although the transcription of the mutated promoter could still be activated by GlnR, its increasing rate was less than that of the wild-type. Based on these findings, one could conclude that the three GlnR boxes assisted GlnR in more promptly activating amtB transcription in response to nitrogen limitation, facilitating bacterial growth under nitrogen stresses.
Collapse
Affiliation(s)
- Zhendong Li
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xinqiang Liu
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jingzhi Wang
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ying Wang
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guosong Zheng
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yinhua Lu
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guoping Zhao
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,State Key Laboratory of Genetic Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China.,Department of Microbiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong.,Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jin Wang
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
21
|
Kumar SS, Rao KB. Efficacy of Alpha Glucosidase Inhibitor from Marine Actinobacterium in the Control of Postprandial Hyperglycaemia in Streptozotocin (STZ) Induced Diabetic Male Albino Wister Rats. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2018; 17:202-214. [PMID: 29755552 PMCID: PMC5937091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The current study was carried out to evaluate the in-vitro and in-vivo efficiency of alpha glucosidase inhibitor of marine actinobacteria in the control of postprandial hyperglycaemia. Soil samples were collected from salterns, coastal area in Kothapatnam, Ongole, Andhra Pradesh, India. Among the actinobacterial isolates tested for yeastα-glucosidase inhibitory activity, only three isolates showed prominent inhibition. The patient isolate was selected and identified as Streptomyces coelicoflavus SRBVIT13 using 16S r-RNA gene sequencing. In in-vitro studies, the chloroform extract of Streptomyces coelicoflavus SRBVIT13 showed significant enzyme inhibitory activity against yeast and mammalian α-glucosidaseenzymes. In animal studies, the oral ingestion of chloroform extract (600 mg/kg) of S. coelicoflavus SRBVIT13 in maltose and sucrose loaded diabetic rats, showed significant regulation of postprandial blood glucose by 82.25% and a 77.25% reduction, respectively. The lead compound from S. coelicoflavusSRBVIT13 was isolated, purified, characterized, and identified by stranded analytical techniques as 2-t-butyl-5-chloromethyl-3-methyl-4-oxoimidazolidine-1-carboxylic acid, t-butyl ester. The results obtained in the present study are promising and the bioactive compound from S. coelicoflavusSRBVIT13 may be considered as a potential agent in regulating the postprandial hyperglycaemia.
Collapse
|
22
|
Dutta S, Basak B, Bhunia B, Sinha A, Dey A. Approaches towards the enhanced production of Rapamycin by Streptomyces hygroscopicus MTCC 4003 through mutagenesis and optimization of process parameters by Taguchi orthogonal array methodology. World J Microbiol Biotechnol 2017; 33:90. [PMID: 28390015 DOI: 10.1007/s11274-017-2260-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 04/01/2017] [Indexed: 11/28/2022]
Abstract
The present research was conducted to define the approaches for enhanced production of rapamycin (Rap) by Streptomyces hygroscopicus microbial type culture collection (MTCC) 4003. Both physical mutagenesis by ultraviolet ray (UV) and chemical mutagenesis by N-methyl-N-nitro-N-nitrosoguanidine (NTG) have been applied successfully for the improvement of Rap production. Enhancing Rap yield by novel sequential UV mutagenesis technique followed by fermentation gives a significant difference in getting economically scalable amount of this industrially important macrolide compound. Mutant obtained through NTG mutagenesis (NTG-30-27) was found to be superior to others as it initially produced 67% higher Rap than wild type. Statistical optimization of nutritional and physiochemical parameters was carried out to find out most influential factors responsible for enhanced Rap yield by NTG-30-27 which was performed using Taguchi orthogonal array approach. Around 72% enhanced production was achieved with nutritional factors at their assigned level at 23 °C, 120 rpm and pH 7.6. Results were analysed in triplicate basis where validation and purification was carried out using high performance liquid chromatography. Stability study and potency of extracted Rap was supported by turbidimetric assay taking Candida albicans MTCC 227 as test organism.
Collapse
Affiliation(s)
- Subhasish Dutta
- Department of Biotechnology, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, 713209, India
| | - Bikram Basak
- Energy Research and Technology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur, 713209, India
| | - Biswanath Bhunia
- Department of Bioengineering, National Institute of Technology Agartala, Barjala, Tripura, 799055, India
| | - Ankan Sinha
- Department of Biotechnology, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, 713209, India.,Bioprocess Development Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Apurba Dey
- Department of Biotechnology, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, 713209, India.
| |
Collapse
|
23
|
The master regulator PhoP coordinates phosphate and nitrogen metabolism, respiration, cell differentiation and antibiotic biosynthesis: comparison in Streptomyces coelicolor and Streptomyces avermitilis. J Antibiot (Tokyo) 2017; 70:534-541. [PMID: 28293039 DOI: 10.1038/ja.2017.19] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/16/2017] [Accepted: 01/26/2017] [Indexed: 11/08/2022]
Abstract
Phosphate limitation is important for production of antibiotics and other secondary metabolites in Streptomyces. Phosphate control is mediated by the two-component system PhoR-PhoP. Following phosphate depletion, PhoP stimulates expression of genes involved in scavenging, transport and mobilization of phosphate, and represses the utilization of nitrogen sources. PhoP reduces expression of genes for aerobic respiration and activates nitrate respiration genes. PhoP activates genes for teichuronic acid formation and reduces expression of genes for phosphate-rich teichoic acid biosynthesis. In Streptomyces coelicolor, PhoP repressed several differentiation and pleiotropic regulatory genes, which affects development and indirectly antibiotic biosynthesis. A new bioinformatics analysis of the putative PhoP-binding sequences in Streptomyces avermitilis was made. Many sequences in S. avermitilis genome showed high weight values and were classified according to the available genetic information. These genes encode phosphate scavenging proteins, phosphate transporters and nitrogen metabolism genes. Among of the genes highlighted in the new studies was aveR, located in the avermectin gene cluster, encoding a LAL-type regulator, and afsS, which is regulated by PhoP and AfsR. The sequence logo for S. avermitilis PHO boxes is similar to that of S. coelicolor, with differences in the weight value for specific nucleotides in the sequence.
Collapse
|
24
|
Petković H, Lukežič T, Šušković J. Biosynthesis of Oxytetracycline by Streptomyces rimosus:
Past, Present and Future Directions in the Development
of Tetracycline Antibiotics. Food Technol Biotechnol 2017; 55:3-13. [PMID: 28559729 DOI: 10.17113/ftb.55.01.17.4617] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Natural tetracycline (TC) antibiotics were the first major class of therapeutics to earn the distinction of 'broad-spectrum antibiotics' and they have been used since the 1940s against a wide range of both Gram-positive and Gram-negative pathogens, mycoplasmas, intracellular chlamydiae, rickettsiae and protozoan parasites. The second generation of semisynthetic tetracyclines, such as minocycline and doxycycline, with improved antimicrobial potency, were introduced during the 1960s. Despite emerging resistance to TCs erupting during the 1980s, it was not until 2006, more than four decades later, that a third--generation TC, named tigecycline, was launched. In addition, two TC analogues, omadacycline and eravacycline, developed via (semi)synthetic and fully synthetic routes, respectively, are at present under clinical evaluation. Interestingly, despite very productive early work on the isolation of a Streptomyces aureofaciens mutant strain that produced 6-demethyl-7-chlortetracycline, the key intermediate in the production of second- and third-generation TCs, biosynthetic approaches in TC development have not been productive for more than 50 years. Relatively slow and tedious molecular biology approaches for the genetic manipulation of TC-producing actinobacteria, as well as an insufficient understanding of the enzymatic mechanisms involved in TC biosynthesis have significantly contributed to the low success of such biosynthetic engineering efforts. However, new opportunities in TC drug development have arisen thanks to a significant progress in the development of affordable and versatile biosynthetic engineering and synthetic biology approaches, and, importantly, to a much deeper understanding of TC biosynthesis, mostly gained over the last two decades.
Collapse
Affiliation(s)
- Hrvoje Petković
- Department of Food Science and Technology, University of Ljubljana, Biotechnical Faculty,
Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Tadeja Lukežič
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Pharmaceutical Biotechnology,
Saarland University, Campus E 8.1, DE-66123 Saarbrücken, Germany
| | - Jagoda Šušković
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology,
University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia
| |
Collapse
|
25
|
GlnR and PhoP Directly Regulate the Transcription of Genes Encoding Starch-Degrading, Amylolytic Enzymes in Saccharopolyspora erythraea. Appl Environ Microbiol 2016; 82:6819-6830. [PMID: 27637875 PMCID: PMC5103082 DOI: 10.1128/aem.02117-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 09/07/2016] [Indexed: 11/20/2022] Open
Abstract
Starch-degrading enzymes hydrolyze starch- and starch-derived oligosaccharides to yield glucose. We investigated the transcriptional regulation of genes encoding starch-degrading enzymes in the industrial actinobacterium Saccharopolyspora erythraea We observed that most genes encoding amylolytic enzymes (one α-amylase, one glucoamylase, and four α-glucosidases) were regulated by GlnR and PhoP, which are global regulators of nitrogen and phosphate metabolism, respectively. Electrophoretic mobility shift assays and reverse transcription-PCR (RT-PCR) analyses demonstrated that GlnR and PhoP directly interact with their promoter regions and collaboratively or competitively activate their transcription. Deletion of glnR caused poor growth on starch, maltodextrin, and maltose, whereas overexpression of glnR and phoP increased the total activity of α-glucosidase, resulting in enhanced carbohydrate utilization. Additionally, transcript levels of amylolytic genes and total glucosidase activity were induced in response to nitrogen and phosphate limitation. Furthermore, regulatory effects of GlnR and PhoP on starch-degrading enzymes were conserved in Streptomyces coelicolor A3(2). These results demonstrate that GlnR and PhoP are involved in polysaccharide degradation by mediating the interplay among carbon, nitrogen, and phosphate metabolism in response to cellular nutritional states. Our study reveals a novel regulatory mechanism underlying carbohydrate metabolism, and suggests new possibilities for designing genetic engineering approaches to improve the rate of utilization of starch in actinobacteria.IMPORTANCE The development of efficient strategies for utilization of biomass-derived sugars, such as starch and cellulose, remains a major technical challenge due to the weak activity of associated enzymes. Here, we found that GlnR and PhoP directly regulate the transcription of genes encoding amylolytic enzymes and present insights into the regulatory mechanisms of degradation and utilization of starch in actinobacteria. Two nutrient-sensing regulators may play important roles in creating a direct association between nitrogen/phosphate metabolisms and carbohydrate utilization, as well as modulate the C:N:P balance in response to cellular nutritional states. These findings highlight the interesting possibilities for designing genetic engineering approaches and optimizing the fermentation process to improve the utilization efficiency of sugars in actinobacteria via overexpression of the glnR and phoP genes and nutrient signal stimulation.
Collapse
|
26
|
Reciprocal Regulation of GlnR and PhoP in Response to Nitrogen and Phosphate Limitations in Saccharopolyspora erythraea. Appl Environ Microbiol 2015; 82:409-20. [PMID: 26519391 DOI: 10.1128/aem.02960-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/22/2015] [Indexed: 11/20/2022] Open
Abstract
Nitrogen and phosphate source sensing, uptake, and assimilation are essential for the growth and development of microorganisms. In this study, we demonstrated that SACE_6965 encodes the phosphate regulator PhoP, which controls the transcription of genes involved in phosphate metabolism in the erythromycin-producing Saccharopolyspora erythraea. We found that PhoP and the nitrogen regulator GlnR both regulate the transcription of glnR as well as other nitrogen metabolism-related genes. Interestingly, both GlnR- and PhoP-binding sites were identified in the phoP promoter region. Unlike the nonreciprocal regulation of GlnR and PhoP observed in Streptomyces coelicolor and Streptomyces lividans, GlnR negatively controls the transcription of the phoP gene in S. erythraea. This suggests that GlnR directly affects phosphate metabolism and demonstrates that the cross talk between GlnR and PhoP is reciprocal. Although GlnR and PhoP sites in the glnR and phoP promoter regions are located in close proximity to one another (separated by only 2 to 4 bp), the binding of both regulators to their respective region was independent and noninterfering. These results indicate that two regulators could separately bind to their respective binding sites and control nitrogen and phosphate metabolism in response to environmental changes. The reciprocal cross talk observed between GlnR and PhoP serves as a foundation for understanding the regulation of complex primary and secondary metabolism in antibiotic-producing actinomycetes.
Collapse
|
27
|
Kramer A, Beck HC, Kumar A, Kristensen LP, Imhoff JF, Labes A. Proteomic Analysis of Anti-Cancerous Scopularide Production by a Marine Microascus brevicaulis Strain and Its UV Mutant. PLoS One 2015; 10:e0140047. [PMID: 26460745 PMCID: PMC4603891 DOI: 10.1371/journal.pone.0140047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 09/21/2015] [Indexed: 11/19/2022] Open
Abstract
The marine fungus Microascus brevicaulis strain LF580 is a non-model secondary metabolite producer with high yields of the two secondary metabolites scopularides A and B, which exhibit distinct activities against tumour cell lines. A mutant strain was obtained using UV mutagenesis, showing faster growth and differences in pellet formation besides higher production levels. Here, we show the first proteome study of a marine fungus. Comparative proteomics were applied to gain deeper understanding of the regulation of production and of the physiology of the wild type strain and its mutant. For this purpose, an optimised protein extraction protocol was established. In total, 4759 proteins were identified. The central metabolic pathway of strain LF580 was mapped using the KEGG pathway analysis and GO annotation. Employing iTRAQ labelling, 318 proteins were shown to be significantly regulated in the mutant strain: 189 were down- and 129 upregulated. Proteomics are a powerful tool for the understanding of regulatory aspects: The differences on proteome level could be attributed to limited nutrient availability in the wild type strain due to a strong pellet formation. This information can be applied for optimisation on strain and process level. The linkage between nutrient limitation and pellet formation in the non-model fungus M. brevicaulis is in consensus with the knowledge on model organisms like Aspergillus niger and Penicillium chrysogenum.
Collapse
Affiliation(s)
- Annemarie Kramer
- Research Unit Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Hans Christian Beck
- Centre for Clinical Proteomics, Department for Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Abhishek Kumar
- Department for Botany and Molecular Biology, Institute of Botany, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Lars Peter Kristensen
- Centre for Clinical Proteomics, Department for Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Johannes F. Imhoff
- Research Unit Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Antje Labes
- Research Unit Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| |
Collapse
|
28
|
Fermentation and Cost-Effective 13C/15N Labeling of the Nonribosomal Peptide Gramicidin S for Nuclear Magnetic Resonance Structure Analysis. Appl Environ Microbiol 2015; 81:3593-603. [PMID: 25795666 DOI: 10.1128/aem.00229-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/04/2015] [Indexed: 11/20/2022] Open
Abstract
Gramicidin S (GS) is a nonribosomally synthesized decapeptide from Aneurinibacillus migulanus. Its pronounced antibiotic activity is attributed to amphiphilic structure and enables GS interaction with bacterial membranes. Despite its medical use for over 70 years, the peptide-lipid interactions of GS and its molecular mechanism of action are still not fully understood. Therefore, a comprehensive structural analysis of isotope-labeled GS needs to be performed in its biologically relevant membrane-bound state, using advanced solid-state nuclear magnetic resonance (NMR) spectroscopy. Here, we describe an efficient method for producing the uniformly (13)C/(15)N-labeled peptide in a minimal medium supplemented by selected amino acids. As GS is an intracellular product of A. migulanus, we characterized the producer strain DSM 5759 (rough-convex phenotype) and examined its biosynthetic activity in terms of absolute and biomass-dependent peptide accumulation. We found that the addition of either arginine or ornithine increases the yield only at very high supplementing concentrations (1% and 0.4%, respectively) of these expensive (13)C/(15)N-labeled amino acids. The most cost-effective production of (13)C/(15)N-GS, giving up to 90 mg per gram of dry cell weight, was achieved in a minimal medium containing 1% (13)C-glycerol and 0.5% (15)N-ammonium sulfate, supplemented with only 0.025% of (13)C/(15)N-phenylalanine. The 100% efficiency of labeling is corroborated by mass spectrometry and preliminary solid-state NMR structure analysis of the labeled peptide in the membrane-bound state.
Collapse
|
29
|
Chekabab SM, Harel J, Dozois CM. Interplay between genetic regulation of phosphate homeostasis and bacterial virulence. Virulence 2014; 5:786-93. [PMID: 25483775 DOI: 10.4161/viru.29307] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bacterial pathogens, including those of humans, animals, and plants, encounter phosphate (Pi)-limiting or Pi-rich environments in the host, depending on the site of infection. The environmental Pi-concentration results in modulation of expression of the Pho regulon that allows bacteria to regulate phosphate assimilation pathways accordingly. In many cases, modulation of Pho regulon expression also results in concomitant changes in virulence phenotypes. Under Pi-limiting conditions, bacteria use the transcriptional-response regulator PhoB to translate the Pi starvation signal sensed by the bacterium into gene activation or repression. This regulator is employed not only for the maintenance of bacterial Pi homeostasis but also to differentially regulate virulence. The Pho regulon is therefore not only a regulatory circuit of phosphate homeostasis but also plays an important adaptive role in stress response and bacterial virulence. Here we focus on recent findings regarding the mechanisms of gene regulation that underlie the virulence responses to Pi stress in Vibrio cholerae, Pseudomonas spp., and pathogenic E. coli.
Collapse
Affiliation(s)
- Samuel Mohammed Chekabab
- a Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA); Université de Montréal; Faculté de Médecine Vétérinaire ; Saint-Hyacinthe , QC Canada
| | | | | |
Collapse
|
30
|
Tamminen A, Kramer A, Labes A, Wiebe MG. Production of scopularide A in submerged culture with Scopulariopsis brevicaulis. Microb Cell Fact 2014; 13:89. [PMID: 24943257 PMCID: PMC4075624 DOI: 10.1186/1475-2859-13-89] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 06/10/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Marine organisms produce many novel compounds with useful biological activity, but are currently underexploited. Considerable research has been invested in the study of compounds from marine bacteria, and several groups have now recognised that marine fungi also produce an interesting range of compounds. During product discovery, these compounds are often produced only in non-agitated culture conditions, which are unfortunately not well suited for scaling up. A marine isolate of Scopulariopsis brevicaulis, strain LF580, produces the cyclodepsipeptide scopularide A, which has previously only been produced in non-agitated cultivation. RESULTS Scopulariopsis brevicaulis LF580 produced scopularide A when grown in batch and fed-batch submerged cultures. Scopularide A was extracted primarily from the biomass, with approximately 7% being extractable from the culture supernatant. By increasing the biomass density of the cultivations, we were able to increase the volumetric production of the cultures, but it was important to avoid nitrogen limitation. Specific production also increased with increasing biomass density, leading to improvements in volumetric production up to 29-fold, compared with previous, non-agitated cultivations. Cell densities up to 36 g L-1 were achieved in 1 to 10 L bioreactors. Production of scopularide A was optimised in complex medium, but was also possible in a completely defined medium. CONCLUSIONS Scopularide A production has been transferred from a non-agitated to a stirred tank bioreactor environment with an approximately 6-fold increase in specific and 29-fold increase in volumetric production. Production of scopularide A in stirred tank bioreactors demonstrates that marine fungal compounds can be suitable for scalable production, even with the native production organism.
Collapse
Affiliation(s)
| | | | | | - Marilyn G Wiebe
- VTT Technical Research Centre of Finland, P,O, Box 1000, FI-02044 VTT, Finland.
| |
Collapse
|
31
|
Gomes ES, Schuch V, de Macedo Lemos EG. Biotechnology of polyketides: new breath of life for the novel antibiotic genetic pathways discovery through metagenomics. Braz J Microbiol 2014; 44:1007-34. [PMID: 24688489 PMCID: PMC3958165 DOI: 10.1590/s1517-83822013000400002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 04/04/2013] [Indexed: 11/21/2022] Open
Abstract
The discovery of secondary metabolites produced by microorganisms (e.g., penicillin in 1928) and the beginning of their industrial application (1940) opened new doors to what has been the main medication source for the treatment of infectious diseases and tumors. In fact, approximately 80 years after the discovery of the first antibiotic compound, and despite all of the warnings about the failure of the “goose that laid the golden egg,” the potential of this wealth is still inexorable: simply adjust the focus from “micro” to “nano”, that means changing the look from microorganisms to nanograms of DNA. Then, the search for new drugs, driven by genetic engineering combined with metagenomic strategies, shows us a way to bypass the barriers imposed by methodologies limited to isolation and culturing. However, we are far from solving the problem of supplying new molecules that are effective against the plasticity of multi- or pan-drug-resistant pathogens. Although the first advances in genetic engineering date back to 1990, there is still a lack of high-throughput methods to speed up the screening of new genes and design new molecules by recombination of pathways. In addition, it is necessary an increase in the variety of heterologous hosts and improvements throughout the full drug discovery pipeline. Among numerous studies focused on this subject, those on polyketide antibiotics stand out for the large technical-scientific efforts that established novel solutions for the transfer/engineering of major metabolic pathways using transposons and other episomes, overcoming one of the main methodological constraints for the heterologous expression of major pathways. In silico prediction analysis of three-dimensional enzymatic structures and advances in sequencing technologies have expanded access to the metabolic potential of microorganisms.
Collapse
Affiliation(s)
- Elisângela Soares Gomes
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista "Júlio de Mesquita Filho", Campus de Jaboticabal, Jaboticabal, SP, Brazil
| | - Viviane Schuch
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista "Júlio de Mesquita Filho", Campus de Jaboticabal, Jaboticabal, SP, Brazil
| | - Eliana Gertrudes de Macedo Lemos
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista "Júlio de Mesquita Filho", Campus de Jaboticabal, Jaboticabal, SP, Brazil
| |
Collapse
|
32
|
Zhu H, Sandiford SK, van Wezel GP. Triggers and cues that activate antibiotic production by actinomycetes. J Ind Microbiol Biotechnol 2013; 41:371-86. [PMID: 23907251 DOI: 10.1007/s10295-013-1309-z] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/30/2013] [Indexed: 12/24/2022]
Abstract
Actinomycetes are a rich source of natural products, and these mycelial bacteria produce the majority of the known antibiotics. The increasing difficulty to find new drugs via high-throughput screening has led to a decline in antibiotic research, while infectious diseases associated with multidrug resistance are spreading rapidly. Here we review new approaches and ideas that are currently being developed to increase our chances of finding novel antimicrobials, with focus on genetic, chemical, and ecological methods to elicit the expression of biosynthetic gene clusters. The genome sequencing revolution identified numerous gene clusters for natural products in actinomycetes, associated with a potentially huge reservoir of unknown molecules, and prioritizing them is a major challenge for in silico screening-based approaches. Some antibiotics are likely only expressed under very specific conditions, such as interaction with other microbes, which explains the renewed interest in soil and marine ecology. The identification of new gene clusters, as well as chemical elicitors and culturing conditions that activate their expression, should allow scientists to reinforce their efforts to find the necessary novel antimicrobial drugs.
Collapse
Affiliation(s)
- Hua Zhu
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | | | | |
Collapse
|
33
|
Comparative proteomic analysis of Streptomyces lividans Wild-Type and ppk mutant strains reveals the importance of storage lipids for antibiotic biosynthesis. Appl Environ Microbiol 2013; 79:5907-17. [PMID: 23872561 DOI: 10.1128/aem.02280-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Streptomyces lividans TK24 is a strain that naturally produces antibiotics at low levels, but dramatic overproduction of antibiotics occurs upon interruption of the ppk gene. However, the role of the Ppk enzyme in relation to the regulation of antibiotic biosynthesis remains poorly understood. In order to gain a better understanding of the phenotype of the ppk mutant, the proteomes of the wild-type (wt) and ppk mutant strains, grown for 96 h on R2YE medium limited in phosphate, were analyzed. Intracellular proteins were separated on two-dimensional (2D) gels, spots were quantified, and those showing a 3-fold variation or more were identified by mass spectrometry. The expression of 12 proteins increased and that of 29 decreased in the ppk mutant strain. Our results suggested that storage lipid degradation rather than hexose catabolism was taking place in the mutant. In order to validate this hypothesis, the triacylglycerol contents of the wt and ppk mutant strains of S. lividans as well as that of Streptomyces coelicolor M145, a strain that produces antibiotics at high levels and is closely related to S. lividans, were assessed using electron microscopy and thin-layer chromatography. These studies highlighted the large difference in triacylglycerol contents of the three strains and confirmed the hypothetical link between storage lipid metabolism and antibiotic biosynthesis in Streptomyces.
Collapse
|
34
|
Kong D, Lee MJ, Lin S, Kim ES. Biosynthesis and pathway engineering of antifungal polyene macrolides in actinomycetes. ACTA ACUST UNITED AC 2013; 40:529-43. [DOI: 10.1007/s10295-013-1258-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 03/04/2013] [Indexed: 11/27/2022]
Abstract
Abstract
Polyene macrolides are a large family of natural products typically produced by soil actinomycetes. Polyene macrolides are usually biosynthesized by modular and large type I polyketide synthases (PKSs), followed by several steps of sequential post-PKS modifications such as region-specific oxidations and glycosylations. Although known as powerful antibiotics containing potent antifungal activities (along with additional activities against parasites, enveloped viruses and prion diseases), their high toxicity toward mammalian cells and poor distribution in tissues have led to the continuous identification and structural modification of polyene macrolides to expand their general uses. Advances in in-depth investigations of the biosynthetic mechanism of polyene macrolides and the genetic manipulations of the polyene biosynthetic pathways provide great opportunities to generate new analogues. Recently, a novel class of polyene antibiotics was discovered (a disaccharide-containing NPP) that displays better pharmacological properties such as improved water-solubility and reduced hemolysis. In this review, we summarize the recent advances in the biosynthesis, pathway engineering, and regulation of polyene antibiotics in actinomycetes.
Collapse
Affiliation(s)
- Dekun Kong
- grid.16821.3c 0000000403688293 State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology Shanghai Jiao Tong University 200240 Shanghai P. R. China
| | - Mi-Jin Lee
- grid.202119.9 0000000123648385 Department of Biological Engineering Inha University 402-751 Incheon Korea
| | - Shuangjun Lin
- grid.16821.3c 0000000403688293 State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology Shanghai Jiao Tong University 200240 Shanghai P. R. China
| | - Eung-Soo Kim
- grid.202119.9 0000000123648385 Department of Biological Engineering Inha University 402-751 Incheon Korea
| |
Collapse
|
35
|
Singh KP, Mahendra AL, Jayaraj V, Wangikar PP, Jadhav S. Distribution of live and dead cells in pellets of an actinomycete Amycolatopsis balhimycina and its correlation with balhimycin productivity. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s10295-012-1215-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Abstract
Secondary metabolites such as antibiotics are typically produced by actinomycetes as a response to growth limiting stress conditions. Several studies have shown that secondary metabolite production is correlated with changes observed in actinomycete pellet morphology. Therefore, we investigated the correlation between the production of balhimycin and the spatio-temporal distribution of live and dead cells in pellets of Amycolatopsis balhimycina in submerged cultures. To this end, we used laser scanning confocal microscopy to analyze pellets from balhimycin producing and nonproducing media containing 0.2 and 1.0 g l−1 of potassium di-hydrogen phosphate, respectively. We observed a substantially higher fraction of live cells in pellets from cultures yielding larger amounts of balhimycin. Moreover, in media that resulted in no balhimycin production, the pellets exhibit an initial death phase which commences from the centre of the pellet and extends in the radial direction. A second growth phase was observed in these pellets, where live mycelia are seen to appear in the dead core of the pellets. This secondary growth was absent in pellets from media producing higher amounts of balhimycin. These results suggest that distribution of live and dead cells and its correlation with antibiotic production in the non-sporulating A. balhimycina differs markedly than that observed in Streptomycetes.
Collapse
Affiliation(s)
- Kamaleshwar P Singh
- grid.417971.d 0000000121987527 Department of Biosciences and Bioengineering Indian Institute of Technology Bombay 400076 Powai Mumbai India
| | - Amit L Mahendra
- grid.417971.d 0000000121987527 Department of Chemical Engineering Indian Institute of Technology Bombay 400076 Powai Mumbai India
| | - Vibha Jayaraj
- grid.417971.d 0000000121987527 Department of Chemical Engineering Indian Institute of Technology Bombay 400076 Powai Mumbai India
| | - Pramod P Wangikar
- grid.417971.d 0000000121987527 Department of Chemical Engineering Indian Institute of Technology Bombay 400076 Powai Mumbai India
| | - Sameer Jadhav
- grid.417971.d 0000000121987527 Department of Chemical Engineering Indian Institute of Technology Bombay 400076 Powai Mumbai India
| |
Collapse
|
36
|
Sola-Landa A, Rodríguez-García A, Amin R, Wohlleben W, Martín JF. Competition between the GlnR and PhoP regulators for the glnA and amtB promoters in Streptomyces coelicolor. Nucleic Acids Res 2012; 41:1767-82. [PMID: 23248009 PMCID: PMC3561978 DOI: 10.1093/nar/gks1203] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Interaction of regulatory networks is a subject of great interest in systems biology of bacteria. Phosphate control of metabolism in Streptomyces is mediated by the two-component system PhoR-PhoP. Similarly, the utilization of different nitrogen sources is controlled by the regulator GlnR. Transcriptomic and biochemical analysis revealed that glnA (encoding a glutamine synthetase), glnR and other nitrogen metabolism genes are under PhoP control. DNA-binding experiments showed that PhoP binds to other nitrogen-regulated genes (SCO0255, SCO01863 and ureA). Using the glnA promoter as model, we observed that PhoP and GlnR compete for binding to the same promoter region, showing GlnR a higher affinity. Using a total of 14 GlnR-binding sites (50 direct repeat units) we established two information-based models that describe the GlnR box as consisting of two 11-nt direct repeats each with clear differences to PHO box. DNA-binding studies with different mutant sequences of glnA promoter revealed that the sequence recognized by GlnR is found in the coding strand whereas that recognized by PhoP is overlapping in the non-coding strand. In amtB promoter PhoP and GlnR boxes are not totally overlapping and both proteins bind simultaneously. PhoP control of nitrogen metabolism genes helps to balance the cellular P/N equilibrium.
Collapse
Affiliation(s)
- Alberto Sola-Landa
- INBIOTEC, Instituto de Biotecnología de León, Avda. Real n°. 1, Parque Científico de León, 24006 León, Spain
| | | | | | | | | |
Collapse
|
37
|
Wentzel A, Bruheim P, Øverby A, Jakobsen ØM, Sletta H, Omara WAM, Hodgson DA, Ellingsen TE. Optimized submerged batch fermentation strategy for systems scale studies of metabolic switching in Streptomyces coelicolor A3(2). BMC SYSTEMS BIOLOGY 2012; 6:59. [PMID: 22676814 PMCID: PMC3431225 DOI: 10.1186/1752-0509-6-59] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 05/09/2012] [Indexed: 12/15/2022]
Abstract
BACKGROUND Systems biology approaches to study metabolic switching in Streptomyces coelicolor A3(2) depend on cultivation conditions ensuring high reproducibility and distinct phases of culture growth and secondary metabolite production. In addition, biomass concentrations must be sufficiently high to allow for extensive time-series sampling before occurrence of a given nutrient depletion for transition triggering. The present study describes for the first time the development of a dedicated optimized submerged batch fermentation strategy as the basis for highly time-resolved systems biology studies of metabolic switching in S. coelicolor A3(2). RESULTS By a step-wise approach, cultivation conditions and two fully defined cultivation media were developed and evaluated using strain M145 of S. coelicolor A3(2), providing a high degree of cultivation reproducibility and enabling reliable studies of the effect of phosphate depletion and L-glutamate depletion on the metabolic transition to antibiotic production phase. Interestingly, both of the two carbon sources provided, D-glucose and L-glutamate, were found to be necessary in order to maintain high growth rates and prevent secondary metabolite production before nutrient depletion. Comparative analysis of batch cultivations with (i) both L-glutamate and D-glucose in excess, (ii) L-glutamate depletion and D-glucose in excess, (iii) L-glutamate as the sole source of carbon and (iv) D-glucose as the sole source of carbon, reveal a complex interplay of the two carbon sources in the bacterium's central carbon metabolism. CONCLUSIONS The present study presents for the first time a dedicated cultivation strategy fulfilling the requirements for systems biology studies of metabolic switching in S. coelicolor A3(2). Key results from labelling and cultivation experiments on either or both of the two carbon sources provided indicate that in the presence of D-glucose, L-glutamate was the preferred carbon source, while D-glucose alone appeared incapable of maintaining culture growth, likely due to a metabolic bottleneck at the oxidation of pyruvate to acetyl-CoA.
Collapse
Affiliation(s)
- Alexander Wentzel
- Department of Biotechnology, SINTEF Materials and Chemistry, 7465, Trondheim, Norway
- Department of Biotechnology, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Per Bruheim
- Department of Biotechnology, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Anders Øverby
- Department of Biotechnology, SINTEF Materials and Chemistry, 7465, Trondheim, Norway
| | - Øyvind M Jakobsen
- Department of Biotechnology, SINTEF Materials and Chemistry, 7465, Trondheim, Norway
| | - Håvard Sletta
- Department of Biotechnology, SINTEF Materials and Chemistry, 7465, Trondheim, Norway
| | - Walid A M Omara
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - David A Hodgson
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Trond E Ellingsen
- Department of Biotechnology, SINTEF Materials and Chemistry, 7465, Trondheim, Norway
| |
Collapse
|
38
|
Kojic acid biosynthesis in Aspergillus oryzae is regulated by a Zn(II)(2)Cys(6) transcriptional activator and induced by kojic acid at the transcriptional level. J Biosci Bioeng 2011; 112:40-3. [PMID: 21514215 DOI: 10.1016/j.jbiosc.2011.03.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 03/15/2011] [Accepted: 03/17/2011] [Indexed: 11/23/2022]
Abstract
A gene encoding the Zn(II)(2)Cys(6) transcriptional factor is clustered with two genes involved in biosynthesis of a secondary metabolite, kojic acid (KA), in Aspergillus oryzae. We determined that the gene was essential for KA production and the transcriptional activation of KA biosynthetic genes, which were triggered by the addition of KA.
Collapse
|
39
|
Comparative analysis of antimicrobial activities of valinomycin and cereulide, the Bacillus cereus emetic toxin. Appl Environ Microbiol 2011; 77:2755-62. [PMID: 21357430 DOI: 10.1128/aem.02671-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cereulide and valinomycin are highly similar cyclic dodecadepsipeptides with potassium ionophoric properties. Cereulide, produced by members of the Bacillus cereus group, is known mostly as emetic toxin, and no ecological function has been assigned. A comparative analysis of the antimicrobial activity of valinomycin produced by Streptomyces spp. and cereulide was performed at a pH range of pH 5.5 to pH 9.5, under anaerobic and aerobic conditions. Both compounds display pH-dependent activity against selected Gram-positive bacteria, including Staphylococcus aureus, Listeria innocua, Listeria monocytogenes, Bacillus subtilis, and Bacillus cereus ATCC 10987. Notably, B. cereus strain ATCC 14579 and the emetic B. cereus strains F4810/72 and A529 showed reduced sensitivity to both compounds, with the latter two strains displaying full resistance to cereulide. Both compounds showed no activity against the selected Gram-negative bacteria. Antimicrobial activity against Gram-positive bacteria was highest at alkaline pH values, where the membrane potential (ΔΨ) is the main component of the proton motive force (PMF). Furthermore, inhibition of growth was observed in both aerobic and anaerobic conditions. Determination of the ΔΨ, using the membrane potential probe DiOC(2)(3) (in the presence of 50 mM KCl) in combination with flow cytometry, demonstrated for the first time the ability of cereulide to dissipate the ΔΨ in sensitive Gram-positive bacteria. The putative role of cereulide production in the ecology of emetic B. cereus is discussed.
Collapse
|
40
|
Martín JF, Sola-Landa A, Santos-Beneit F, Fernández-Martínez LT, Prieto C, Rodríguez-García A. Cross-talk of global nutritional regulators in the control of primary and secondary metabolism in Streptomyces. Microb Biotechnol 2010; 4:165-74. [PMID: 21342462 PMCID: PMC3818857 DOI: 10.1111/j.1751-7915.2010.00235.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Limitation of different nutrients in Streptomyces coelicolor A3(2) triggers nutrient‐stress responses, mediated by PhoP, GlnR, AfsR and other regulators, that are integrated at the molecular level and control secondary metabolite biosynthesis and differentiation. In addition, utilization of chitin or N‐acetylglucosamine regulates secondary metabolite biosynthesis by a mechanism mediated by DasR. Phosphate control of primary and secondary metabolism in Streptomyces species is mediated by the two‐component PhoR–PhoP system. In S. coelicolor, PhoP controls secondary metabolism by binding to a PHO box in the afsS promoter overlapping with the AfsR binding site. Therefore, the afsS promoter serves to integrate the PhoP‐mediated response to phosphate limitation and AfsR‐mediated responses to other unknown environmental stimuli. Interestingly, phosphate control oversees nitrogen regulation but not vice versa. In ΔphoP mutants, expression of some nitrogen metabolism genes including glnA, glnII and glnK is increased. Phosphate control of these genes is exerted through binding of PhoP to the promoters of glnR (the global nitrogen regulator), glnA, glnII and the amtB–glnK–glnD operon. This regulation allows a ‘metabolic homeostasis’ of phosphate and nitrogen utilization pathways, preventing nutritional unbalances. Similar mechanisms of interaction between phosphate control and carbon catabolite regulation or between phosphate and DasR‐mediated N‐acetylglucosamine regulation appear to exist. Transport of N‐acetylglucosamine by the NagE2 permease and, therefore, regulation of secondary metabolism, is dependent upon the balance of phosphorylated/dephosphorylated proteins of the N‐acetylglucosamine phosphotransferase system. These findings provide the bases for understanding the mechanisms underlying systems biology of Streptomyces species.
Collapse
Affiliation(s)
- Juan F Martín
- INBIOTEC, Instituto de Biotecnología de León, Avda. Real n°. 1, Parque Científico de León, 24006 León, Spain.
| | | | | | | | | | | |
Collapse
|
41
|
Do we need new antibiotics? The search for new targets and new compounds. J Ind Microbiol Biotechnol 2010; 37:1241-8. [PMID: 21086099 DOI: 10.1007/s10295-010-0849-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 08/16/2010] [Indexed: 02/01/2023]
Abstract
Resistance to antibiotics and other antimicrobial compounds continues to increase. There are several possibilities for protection against pathogenic microorganisms, for instance, preparation of new vaccines against resistant bacterial strains, use of specific bacteriophages, and searching for new antibiotics. The antibiotic search includes: (1) looking for new antibiotics from nontraditional or less traditional sources, (2) sequencing microbial genomes with the aim of finding genes specifying biosynthesis of antibiotics, (3) analyzing DNA from the environment (metagenomics), (4) re-examining forgotten natural compounds and products of their transformations, and (5) investigating new antibiotic targets in pathogenic bacteria.
Collapse
|
42
|
Expression of the Streptomyces coelicolor SoxR regulon is intimately linked with actinorhodin production. J Bacteriol 2010; 192:6428-38. [PMID: 20952574 DOI: 10.1128/jb.00916-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The [2Fe-2S]-containing transcription factor SoxR is conserved in diverse bacteria. SoxR is traditionally known as the regulator of a global oxidative stress response in Escherichia coli, but recent studies suggest that this function may be restricted to enteric bacteria. In the vast majority of nonenterics, SoxR is predicted to mediate a response to endogenously produced redox-active metabolites. We have examined the regulation and function of the SoxR regulon in the model antibiotic-producing filamentous bacterium Streptomyces coelicolor. Unlike the E. coli soxR deletion mutant, the S. coelicolor equivalent is not hypersensitive to oxidants, indicating that SoxR does not potentiate antioxidant defense in the latter. SoxR regulates five genes in S. coelicolor, including those encoding a putative ABC transporter, two oxidoreductases, a monooxygenase, and a possible NAD-dependent epimerase/dehydratase. Expression of these genes depends on the production of the benzochromanequinone antibiotic actinorhodin and requires intact [2Fe-2S] clusters in SoxR. These data indicate that actinorhodin, or a redox-active precursor, modulates SoxR activity in S. coelicolor to stimulate the production of a membrane transporter and proteins with homology to actinorhodin-tailoring enzymes. While the role of SoxR in S. coelicolor remains under investigation, these studies support the notion that SoxR has been adapted to perform distinct physiological functions to serve the needs of organisms that occupy different ecological niches and face different environmental challenges.
Collapse
|
43
|
Bartman CD, Doerfler DL, Bird BA, Remaley AT, Peace JN, Campbell IM. Mycophenolic Acid Production by Penicillium brevicompactum on Solid Media. Appl Environ Microbiol 2010; 41:729-36. [PMID: 16345733 PMCID: PMC243768 DOI: 10.1128/aem.41.3.729-736.1981] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When grown on Czapek-Dox agar, Penicillium brevicompactum produced mycophenolic acid after a vegetative mycelium had been formed and as aerial hyphae were developing. Nutrients were still plenteous in the agar when the synthesis began. If aerial hyphal development was prevented by placing a dialysis membrane over the growing fungus, no mycophenolic acid was produced. When the dialysis membrane was peeled back and, as a consequence, production of aerial hyphae began, mycophenolic acid biosynthesis was observed. We concluded that mycophenolic acid was produced only by P. brevicompactum colonies that possessed an aerial mycelium.
Collapse
Affiliation(s)
- C D Bartman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | | | | | | | | | | |
Collapse
|
44
|
Freilich S, Kreimer A, Borenstein E, Gophna U, Sharan R, Ruppin E. Decoupling Environment-Dependent and Independent Genetic Robustness across Bacterial Species. PLoS Comput Biol 2010; 6:e1000690. [PMID: 20195496 PMCID: PMC2829043 DOI: 10.1371/journal.pcbi.1000690] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 01/26/2010] [Indexed: 11/18/2022] Open
Abstract
The evolutionary origins of genetic robustness are still under debate: it may arise as a consequence of requirements imposed by varying environmental conditions, due to intrinsic factors such as metabolic requirements, or directly due to an adaptive selection in favor of genes that allow a species to endure genetic perturbations. Stratifying the individual effects of each origin requires one to study the pertaining evolutionary forces across many species under diverse conditions. Here we conduct the first large-scale computational study charting the level of robustness of metabolic networks of hundreds of bacterial species across many simulated growth environments. We provide evidence that variations among species in their level of robustness reflect ecological adaptations. We decouple metabolic robustness into two components and quantify the extents of each: the first, environmental-dependent, is responsible for at least 20% of the non-essential reactions and its extent is associated with the species' lifestyle (specialized/generalist); the second, environmental-independent, is associated (correlation = approximately 0.6) with the intrinsic metabolic capacities of a species-higher robustness is observed in fast growers or in organisms with an extensive production of secondary metabolites. Finally, we identify reactions that are uniquely susceptible to perturbations in human pathogens, potentially serving as novel drug-targets.
Collapse
Affiliation(s)
- Shiri Freilich
- The Blavatnik School of Computer Sciences, Faculty of Life Sciences, Ramat Aviv, Israel
- Sackler School of Medicine, Faculty of Life Sciences, Ramat Aviv, Israel
- * E-mail: (SF); (ER)
| | - Anat Kreimer
- School of Mathematical Science, Faculty of Life Sciences, Ramat Aviv, Israel
- Department of Biomedical Informatics, Columbia University, New York, New York, United States of America
| | - Elhanan Borenstein
- Department of Biological Sciences, Stanford University, Stanford, California, United States of America
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| | - Uri Gophna
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Ramat Aviv, Israel
| | - Roded Sharan
- The Blavatnik School of Computer Sciences, Faculty of Life Sciences, Ramat Aviv, Israel
| | - Eytan Ruppin
- The Blavatnik School of Computer Sciences, Faculty of Life Sciences, Ramat Aviv, Israel
- Sackler School of Medicine, Faculty of Life Sciences, Ramat Aviv, Israel
- * E-mail: (SF); (ER)
| |
Collapse
|
45
|
Rodríguez-García A, Sola-Landa A, Apel K, Santos-Beneit F, Martín JF. Phosphate control over nitrogen metabolism in Streptomyces coelicolor: direct and indirect negative control of glnR, glnA, glnII and amtB expression by the response regulator PhoP. Nucleic Acids Res 2009; 37:3230-42. [PMID: 19321498 PMCID: PMC2691820 DOI: 10.1093/nar/gkp162] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bacterial growth requires equilibrated concentration of C, N and P sources. This work shows a phosphate control over the nitrogen metabolism in the model actinomycete Streptomyces coelicolor. Phosphate control of metabolism in Streptomyces is exerted by the two component system PhoR-PhoP. The response regulator PhoP binds to well-known PHO boxes composed of direct repeat units (DRus). PhoP binds to the glnR promoter, encoding the major nitrogen regulator as shown by EMSA studies, but not to the glnRII promoter under identical experimental conditions. PhoP also binds to the promoters of glnA and glnII encoding two glutamine synthetases, and to the promoter of the amtB-glnK-glnD operon, encoding an ammonium transporter and two putative nitrogen sensing/regulatory proteins. Footprinting analyses revealed that the PhoP-binding sequence overlaps the GlnR boxes in both glnA and glnII. ‘Information theory’ quantitative analyses of base conservation allowed us to establish the structure of the PhoP-binding regions in the glnR, glnA, glnII and amtB genes. Expression studies using luxAB as reporter showed that PhoP represses the above mentioned nitrogen metabolism genes. A mutant deleted in PhoP showed increased expression of the nitrogen metabolism genes. The possible conservation of phosphate control over nitrogen metabolism in other microorganisms is discussed.
Collapse
Affiliation(s)
- Antonio Rodríguez-García
- Instituto de Biotecnología de León, INBIOTEC, Parque Científico de León, Av. Real, 1, 24006, León, Spain
| | | | | | | | | |
Collapse
|
46
|
Esteban A, Díaz M, Yepes A, Santamaría RI. Expression of the pstS gene of Streptomyces lividans is regulated by the carbon source and is partially independent of the PhoP regulator. BMC Microbiol 2008; 8:201. [PMID: 19019225 PMCID: PMC2605767 DOI: 10.1186/1471-2180-8-201] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Accepted: 11/19/2008] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND PstS is a phosphate-binding lipoprotein that is part of the high-affinity phosphate transport system. Streptomyces lividans accumulates high amounts of the PstS protein in the supernatant of liquid cultures grown in the presence of different carbon sources, such as fructose or mannose, but not in the presence of glucose or in basal complex medium. RESULTS Functionality experiments revealed that this extracellular PstS protein does not have the capacity to capture phosphate and transfer it to the cell. Regulation of the pstS promoter was studied with Northern blot experiments, and protein levels were detected by Western blot analysis. We observed that the pstS gene was expressed in cultures containing glucose or fructose, but not in complex basal medium. Northern blot analyses revealed that the pst operon (pstSCAB) was transcribed as a whole, although higher transcript levels of pstS relative to those of the other genes of the operon (pstC, pstA and pstB) were observed. Deletion of the -329/-144 fragment of the pstS promoter, including eight degenerated repeats of a sequence of 12 nucleotides, resulted in a two-fold increase in the expression of this promoter, suggesting a regulatory role for this region. Additionally, deletion of the fragment corresponding to the Pho boxes recognized by the PhoP regulator (from nucleotide -141 to -113) resulted in constitutive pstS expression that was independent of this regulator. Thus, the PhoP-independent expression of the pstS gene makes this system different from all those studied previously. CONCLUSION 1.- In S. lividans, only the PstS protein bound to the cell has the capacity to bind phosphate and transfer it there, whereas the PstS form accumulated in the supernatant lacks this capacity. 2.- The stretch of eight degenerated repeats present in the pstS promoter may act as a binding site for a repressor. 3.- There is a basal expression of the pstS gene that is not controlled by the main regulator: PhoP.
Collapse
Affiliation(s)
- Ana Esteban
- Instituto de Microbiología Bioquímica/Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Margarita Díaz
- Instituto de Microbiología Bioquímica/Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Ana Yepes
- Instituto de Microbiología Bioquímica/Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Ramón I Santamaría
- Instituto de Microbiología Bioquímica/Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| |
Collapse
|
47
|
Pusey PL, Stockwell VO, Rudell DR. Antibiosis and acidification by Pantoea agglomerans strain E325 may contribute to suppression of Erwinia amylovora. PHYTOPATHOLOGY 2008; 98:1136-1143. [PMID: 18943460 DOI: 10.1094/phyto-98-10-1136] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Pantoea agglomerans strain E325, a commercially available antagonist for fire blight of apple and pear, was originally selected through screening based on suppression of Erwinia amylovora on flower stigmas, but specific mechanisms of antagonism were unknown. Bacterial modification of pH was evaluated as a possible mechanism by analyzing stigma exudates extracted from 'Gala' apple stigmas. The pH values for field samples were only slightly lower than controls, but indicated a range (pH 5 to 6) conducive for antibiotic activity according to subsequent assays. Under low-phosphate and low-pH conditions, an antibacterial product of E325 with high specificity to E. amylovora was effective at low concentrations. A minimum of 20 to 40 ng of a ninhydrin-reactive compound purified using RP-HPLC caused visible inhibition in assays. Activity was heat stable and unaffected by amino acids, iron, or enzymes known to affect antibiotics of P. agglomerans. Antibiosis was diminished, however, under basic conditions, and with increasing phosphate concentrations at pH 6 and 7. Inhibition was not observed in media containing phosphate concentrations commonly used in antibiosis assays. We propose that E325 suppresses the fire blight pathogen not only by competing for nutrients on the stigma, but by producing an antibiotic specific to E. amylovora. Further work is necessary to substantiate that the compound is produced and active on flower stigmas.
Collapse
Affiliation(s)
- P L Pusey
- USDA-ARS, Tree Fruit Research Laboratory, Wenatchee, WA 98801, USA.
| | | | | |
Collapse
|
48
|
Vieira GRT, Liebl M, Tavares LBB, Paulert R, Smânia Júnior A. Submerged culture conditions for the production of mycelial biomass and antimicrobial metabolites by Polyporus tricholoma Mont. Braz J Microbiol 2008; 39:561-8. [PMID: 24031266 PMCID: PMC3768415 DOI: 10.1590/s1517-838220080003000029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 11/22/2007] [Accepted: 07/13/2008] [Indexed: 11/21/2022] Open
Abstract
Basidiomycete fungi of the Polyporus genus are a source of secondary metabolites which are of medicinal interest as antibacterial compounds. As these substances are produced in a small amount by the fungi, the study of the cultivation conditions in vitro that could possibly optimize their production seems of major importance. The effects of glucose and lactose, pH and agitation on biomass concentration and on the specific growth rate caused by the basidiomycete Polyporus tricholoma were investigated. The initial pH (4.5, 6.5 and 8.5) was autoregulated at pH 5.5, and the agitation increased the mycelial growth and the specific growth rate. The high concentration of carbon sources (4%) increased biomass production. The lactose concentration and the absence of agitation were determinant in the production of antibacterial metabolites. The characterization of the antibacterial substance by GC-MS indicated a major compound, isodrimenediol, produced by the fungus Polyporus tricholoma with activity against Staphylococcus aureus.
Collapse
Affiliation(s)
- Gladys Rosane Thomé Vieira
- Departamento de Ciências Naturais, Universidade Regional de Blumenau, Blumenau, SC, Brasil e Programa de Pós-Graduação em Biotecnologia, Universidade Federal de Santa Catarina , Florianópolis, SC , Brasil
| | | | | | | | | |
Collapse
|
49
|
Knappe TA, Linne U, Zirah S, Rebuffat S, Xie X, Marahiel MA. Isolation and Structural Characterization of Capistruin, a Lasso Peptide Predicted from the Genome Sequence of Burkholderia thailandensis E264. J Am Chem Soc 2008; 130:11446-54. [PMID: 18671394 DOI: 10.1021/ja802966g] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Thomas A. Knappe
- Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Strasse, D-35032 Marburg, Germany, and Chimie et Biochimie des Substances Naturelles, UMR 5154 CNRS, Muséum National d’Histoire Naturelle, CP 54, 57 rue Cuvier, 75005 Paris, France
| | - Uwe Linne
- Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Strasse, D-35032 Marburg, Germany, and Chimie et Biochimie des Substances Naturelles, UMR 5154 CNRS, Muséum National d’Histoire Naturelle, CP 54, 57 rue Cuvier, 75005 Paris, France
| | - Séverine Zirah
- Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Strasse, D-35032 Marburg, Germany, and Chimie et Biochimie des Substances Naturelles, UMR 5154 CNRS, Muséum National d’Histoire Naturelle, CP 54, 57 rue Cuvier, 75005 Paris, France
| | - Sylvie Rebuffat
- Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Strasse, D-35032 Marburg, Germany, and Chimie et Biochimie des Substances Naturelles, UMR 5154 CNRS, Muséum National d’Histoire Naturelle, CP 54, 57 rue Cuvier, 75005 Paris, France
| | - Xiulan Xie
- Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Strasse, D-35032 Marburg, Germany, and Chimie et Biochimie des Substances Naturelles, UMR 5154 CNRS, Muséum National d’Histoire Naturelle, CP 54, 57 rue Cuvier, 75005 Paris, France
| | - Mohamed A. Marahiel
- Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Strasse, D-35032 Marburg, Germany, and Chimie et Biochimie des Substances Naturelles, UMR 5154 CNRS, Muséum National d’Histoire Naturelle, CP 54, 57 rue Cuvier, 75005 Paris, France
| |
Collapse
|
50
|
Chen GQ, Lu FP, Du LX. Natamycin production by Streptomyces gilvosporeus based on statistical optimization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:5057-5061. [PMID: 18537260 DOI: 10.1021/jf800479u] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Natamycin has been widely used as a natural preservative to prevent mold contamination in food. In this study, statistically based experimental designs were employed for the optimization of medium components for natamycin production by Streptomyces gilvosporeus. After glucose, yeast extract, and soy peptone were screened as suitable carbon and nitrogen sources, a full factorial design was used to evaluate the effects of various factors on natamycin production. Glucose and pH were identified as having significant effects (with confidence level >90%). Glucose concentration and initial pH were subsequently optimized by use of a central composite design. The result indicated that glucose and pH had a significant interactive effect on natamycin production. The optimal glucose concentration and initial pH value were 38.2 g/L and 7.8, respectively. This optimization strategy led to a natamycin yield of 2.45 g/L, which was nearly 90% higher than that in the original medium.
Collapse
Affiliation(s)
- Guan-Qun Chen
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, 29 Thirteenth Avenue, TEDA, Tianjin 300457, China.
| | | | | |
Collapse
|