1
|
Gupta A, Shivachandran A, Saleena LM. Oral microbiome insights: Tracing acidic culprits in dental caries with functional metagenomics. Arch Oral Biol 2024; 168:106064. [PMID: 39216430 DOI: 10.1016/j.archoralbio.2024.106064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE This study aimed to investigate the presence and abundance of acid-producing bacteria in dental caries samples using functional gene prediction techniques. DESIGN A total of 24 dental caries samples were collected for analysis. DNA isolation was performed followed by shotgun metagenomic sequencing. Functional gene prediction techniques were used to identify enzymes responsible for acid production from primary metabolites. Enzymes responsible for converting primary metabolites into acids were identified from the KEGG database. Subsequently, 840 contigs were examined, and their genus and species were characterized. RESULTS Analysis of the obtained data revealed 31 KEGG IDs corresponding to enzymes involved in the conversion of primary metabolites into acids. All 117 identified genera from the contig analysis were found to be part of the oral microbiome. In addition, A higher prevalence of acid-producing bacteria was noted in dental caries samples compared to earlier reports. CONCLUSION The study indicates the significant role of acid-producing bacteria in the initiation and progression of dental caries. The findings highlight the importance of microbial activity in the demineralization process of tooth enamel. Methods for preventing dental decay may be promising if specific measures are implemented to reduce the amount of acid produced by oral bacteria.
Collapse
Affiliation(s)
- Annapurna Gupta
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai, Tamil Nadu 603203, India
| | - A Shivachandran
- Department of Oral Pathology, SRM Dental College and Hospital, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai, Tamil Nadu 603203, India
| | - Lilly M Saleena
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai, Tamil Nadu 603203, India.
| |
Collapse
|
2
|
Shah AB, Shim SH. Human microbiota peptides: important roles in human health. Nat Prod Rep 2024. [PMID: 39545326 DOI: 10.1039/d4np00042k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Covering: 1974 to 2024Human microbiota consist of a diverse array of microorganisms, such as bacteria, Eukarya, archaea, and viruses, which populate various parts of the human body and live in a cooperatively beneficial relationship with the host. They play a crucial role in supporting the functional balance of the microbiome. The coevolutionary progression has led to the development of specialized metabolites that have the potential to substitute traditional antibiotics in combating global health challenges. Although there has been a lot of research on the human microbiota, there is a considerable lack of understanding regarding the wide range of peptides that these microbial populations produce. Particularly noteworthy are the antibiotics that are uniquely produced by the human microbiome, especially by bacteria, to protect against invasive infections. This review seeks to fill this knowledge gap by providing a thorough understanding of various peptides, along with their in-depth biological importance in terms of human disorders. Advancements in genomics and the understanding of molecular mechanisms that control the interactions between microbiota and hosts have made it easier to find peptides that come from the human microbiome. We hope that this review will serve as a basis for developing new therapeutic approaches and personalized healthcare strategies. Additionally, it emphasizes the significance of these microbiota in the field of natural product discovery and development.
Collapse
Affiliation(s)
- Abdul Bari Shah
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| | - Sang Hee Shim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
3
|
Ahirwar P, Kozlovskaya V, Pukkanasut P, Nikishau P, Nealy S, Harber G, Michalek SM, Antony L, Wu H, Kharlampieva E, Velu SE. Polymer vesicles for the delivery of inhibitors of cariogenic biofilm. Dent Mater 2024; 40:1937-1953. [PMID: 39317560 DOI: 10.1016/j.dental.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024]
Abstract
OBJECTIVES The goal of this study is to develop a novel drug delivery platform for the pH-responsive delivery of biofilm inhibitors as a potential avenue to prevent and treat dental caries. METHODS Biofilm and growth inhibition assays were performed in polystyrene microtiter 96-well plates. Docking analysis was performed using the reported GtfB + HA5 co-crystal structure (PDB code: 8fg8) in SeeSAR 13.0.1 software. Polymersome vesicles were assembled from poly(N-vinylpyrrolidone)8-block-poly(dimethylsiloxane)64-block-poly(N-vinylpyrrolidone)8 (PVPON8-PDMS64-PVPON8) triblock copolymer using a nanoprecipitation method. Microbiome analysis of biofilm inhibitors and the in vivo drug release and antivirulence activities of polymersome encapsulated inhibitors have been carried out in a S. mutans induced rat caries model. RESULTS Biofilm inhibitors for HA5 and HA6 have shown species-specific selectivity towards S. mutans and the ability to preserve the oral microbiome in a S. mutans induced dental caries model. The inhibitors were encapsulated into pH-responsive block copolymer vesicles to generate polymersome-encapsulated biofilm inhibitors, and their biofilm and growth inhibitory activities against S. mutans and representative strains of oral commensal streptococci have been assessed. A 4-week treatment of S. mutans UA159 infected gnotobiotic rats with 100 µM of polymersome-encapsulated biofilm inhibitor, PEHA5 showed significant reductions in buccal, sulcal, and proximal caries scores compared to an untreated control group. SIGNIFICANCE Taken together, our data suggests that the biofilm-selective therapy using the polymersome-encapsulated biofilm inhibitors is a viable approach for the prevention and treatment of dental caries while preserving the oral microbiome.
Collapse
Affiliation(s)
- Parmanand Ahirwar
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Veronika Kozlovskaya
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Piyasuda Pukkanasut
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Pavel Nikishau
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sarah Nealy
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gregory Harber
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Suzanne M Michalek
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Linto Antony
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hui Wu
- Department of Integrative Biomedical and Diagnostic Sciences, Oregon Health and Science University, Portland, OR 97239, USA
| | - Eugenia Kharlampieva
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Center of Nanoscale Materials and Biointegration, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Sadanandan E Velu
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Microbiome Center, Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Global Center for Craniofacial Oral and Dental Disorders, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
4
|
Naka S, Matsuoka D, Misaki T, Nagasawa Y, Ito S, Nomura R, Nakano K, Matsumoto-Nakano M. Contribution of collagen-binding protein Cnm of Streptococcus mutans to induced IgA nephropathy-like nephritis in rats. Commun Biol 2024; 7:1141. [PMID: 39277690 PMCID: PMC11401903 DOI: 10.1038/s42003-024-06826-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 09/03/2024] [Indexed: 09/17/2024] Open
Abstract
IgA nephropathy (IgAN), the most common primary glomerulonephritis, is considered an intractable disease with unknown pathogenic factors. In our previous study, Streptococcus mutans, the major causative bacteria of dental caries, which expresses Cnm, was related to the induction of IgAN-like nephritis. In the present study, the Cnm-positive S. mutans parental strain, a Cnm-defective isogenic mutant strain, its complementation strain, and recombinant Cnm (rCnm) protein were administered intravenously to Sprague Dawley rats, and the condition of their kidneys was evaluated focusing on the pathogenicity of Cnm. Rats treated with parental and complement bacterial strains and rCnm protein developed IgAN-like nephritis with mesangial proliferation and IgA and C3 mesangial deposition. Scanning immunoelectron microscopy revealed that rCnm was present in the electron-dense deposition area of the mesangial region in the rCnm protein group. These results demonstrated that the Cnm protein itself is an important factor in the induction of IgAN in rats.
Collapse
Affiliation(s)
- Shuhei Naka
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Daiki Matsuoka
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Taro Misaki
- Division of Nephrology, Seirei Hamamatsu General Hospital, Hamamatsu, Shizuoka, Japan
- Department of Nursing, Faculty of Nursing, Seirei Christopher University, Hamamatsu, Shizuoka, Japan
| | - Yasuyuki Nagasawa
- Department of General Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Seigo Ito
- Department of Internal Medicine, Japan Self-Defense Force Iruma Hospital, Saitama, Japan
| | - Ryota Nomura
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Graduate School of Dentistry, The University of Osaka, Suita, Osaka, Japan
| | - Michiyo Matsumoto-Nakano
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan.
| |
Collapse
|
5
|
Xu T, Liu Y, Zhang W, Li M, Zhang L, Li X, Zhang Y, Yue L, Li S, Lin Y, Zou X, Chen F. Specific cell subclusters of dental pulp stem cells respond to distinct pathogens through the ROS pathway. Front Cell Infect Microbiol 2024; 14:1452124. [PMID: 39328360 PMCID: PMC11424553 DOI: 10.3389/fcimb.2024.1452124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/12/2024] [Indexed: 09/28/2024] Open
Abstract
Introduction Microbial pathogens invade various human organs, including the oral cavity. Candida albicans (C.a) and Streptococcus mutans (S.m) served respectively as representative oral pathogenic fungi and bacteria to stimulate dental pulp stem cells (DPSCs) and to screen the DPSC subcluster that specifically responded to fungal infection. Methods DPSCs were obtained from the impacted third molars of six healthy subjects. Then, cells were mixed and divided into three samples, two of which were stimulated with C.a and S.m, respectively; the third sample was exposed to cell medium only (Ctrl). Single-cell mRNA sequencing analysis of treated DPSCs was performed. Results DPSCs were composed of four major clusters of which one, DPSC.7, exhibited unique changes compared to those of other subclusters. The DPSC.7 cell percentage of the C.a sample was twice those of the Ctrl and S.m samples. DPSC.7 cells expressed genes associated with the response to reactive oxygen species (ROS) response. DPSC.7 subgroup cells established characteristic aggregation under the stimulation of different pathogens in UMAP. The MAPK/ERK1/2 and NF-κB pathways were up-regulated, DUSP1/5/6 expressions were suppressed, FOS synthesis was activated, the immune-related pathway was induced, and the levels of cytokines, including IL-6 and CCL2, were up-regulated in DPSC.7 cells when stimulated with C.a. Conclusions Our study analyzed the cellular and molecular properties of DPSCs infected by oral fungi and bacteria with single-cell RNA sequencing. A subcluster of DPSCs responded specifically to infections with different pathogens, activating the MAPK and NF-κB pathways to induce immune responses via the ROS pathway. This suggests novel treatment strategies for fungal infections.
Collapse
Affiliation(s)
- Tiansong Xu
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Fifth Clinical Division, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Yangjia Liu
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Wen Zhang
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Department of Stomatology, Peking University International Hospital, Beijing, China
| | - Murong Li
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Liqi Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Xueying Li
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Yifei Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Lin Yue
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Sha Li
- Department of Implantology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Ye Lin
- Department of Implantology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Xiaoying Zou
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Center of Stomatology, Peking University Hospital, Beijing, China
| | - Feng Chen
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| |
Collapse
|
6
|
Goc A, Sumera W, Rath M, Niedzwiecki A. Antibacterial and Antibiofilm Effects of L-Carnitine-Fumarate on Oral Streptococcal Strains Streptococcus mutans and Streptococcus sobrinus. Microorganisms 2024; 12:1613. [PMID: 39203455 PMCID: PMC11356751 DOI: 10.3390/microorganisms12081613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
Streptococcus mutans is a major pathogenic habitant of oral caries. Owing to its physiological and biochemical features, it prevails in the form of plaque biofilm together with another important mutans streptococci species, Streptococcus sobrinus. Both species are considered as initiators of cavity lesions, and biofilm is essential to the dental caries process. Compared with the planktonic populations, the biofilm form has higher resistance to environmental conditions and antibiotics. Dental plaques also secure the long-term survival of microorganisms and protection from any stress conditions. To address the need for new antibiofilm agents, we have focused on L-carnitine-fumarate, a fumarate-conjugated quaternary ammonium compound. Using the macro-broth susceptibility testing method, we established its MIC value as 6.0 mg/mL. The MBC value, determined from the broth dilution minimum inhibitory concentration test by sub-culturing it to BHI agar plates, was established as 7.0 mg/mL. Antibiofilm efficacy was tested in 96-well plates coated with saliva using BHI broth supplemented with 1% sucrose as a standard approach. The obtained results allowed us to assess the MIBC as 7.5 mg/mL and the MBBC value as 10.0 mg/mL. The latter concentration also caused approximately 20% eradication of pre-existing biofilm. EPS-rich matrix, forming the core of the biofilm and enabling a confined acidic microenvironment, was also examined and confirmed the effectiveness of 10.0 mg/mL L-carnitine-fumarate concentration in inhibiting EPS formation. Furthermore, the anti-adherent and anti-aciduric impacts of L-carnitine-fumarate were investigated and revealed significant inhibitory effects at sub-MIC concentrations. The influence of L-carnitine-fumarate on the phosphotransferase system was investigated as well. Our results provide a new insight into the antibacterial potential of L-carnitine-fumarate as a valuable compound to be considered for alternative or adjunct anti-caries and antibiofilm preventive approaches.
Collapse
Affiliation(s)
- Anna Goc
- Dr. Rath Research Institute, 5941 Optical Ct., San Jose, CA 95138, USA; (W.S.); (M.R.)
| | | | | | | |
Collapse
|
7
|
Zeng Y, Lockhart AC, Jin RU. The preclinical discovery and development of zolbetuximab for the treatment of gastric cancer. Expert Opin Drug Discov 2024; 19:873-886. [PMID: 38919123 DOI: 10.1080/17460441.2024.2370332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
INTRODUCTION Gastric cancer remains a formidable challenge in oncology with high mortality rates and few advancements in treatment. Claudin-18.2 (CLDN18.2) is a tight junction protein primarily expressed in the stomach and is frequently overexpressed in certain subsets of gastric cancers. Targeting CLDN18.2 with monoclonal antibodies, such as zolbetuximab (IMAB362), has shown promising efficacy results in combination with chemotherapy. AREAS COVERED The molecular cell biology of CLDN18.2 is discussed along with studies demonstrating the utility of CLDN18.2 expression as a biomarker and therapeutic target. Important clinical studies are reviewed, including Phase III trials, SPOTLIGHT and GLOW, which demonstrate the efficacy of zolbetuximab in combination with chemotherapy in patients with CLDN18.2-positive advanced gastric cancer. EXPERT OPINION CLDN18.2 is involved in gastric differentiation through maintenance of epithelial barrier function and coordination of signaling pathways, and its expression in gastric cancers reflects a 'gastric differentiation' program. Targeting Claudin-18.2 represents the first gastric cancer specific 'targeted' treatment. Further studies are needed to determine its role within current gastric cancer treatment sequencing, including HER2-targeted therapies and immunotherapies. Management strategies will also be needed to better mitigate zolbetuximab-related treatment side effects, including gastrointestinal (GI) toxicities.
Collapse
Affiliation(s)
- Yongji Zeng
- Section of Gastroenterology, Department of Medicine, Baylor College of Medicine, Houston, USA
| | - A Craig Lockhart
- Division of Hematology/Oncology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ramon U Jin
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, USA
| |
Collapse
|
8
|
Rojas EM, Zhang H, Velu SE, Wu H. Tetracyclic homoisoflavanoid (+)-brazilin: a natural product inhibits c-di-AMP-producing enzyme and Streptococcus mutans biofilms. Microbiol Spectr 2024; 12:e0241823. [PMID: 38591917 PMCID: PMC11064632 DOI: 10.1128/spectrum.02418-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 03/02/2024] [Indexed: 04/10/2024] Open
Abstract
The tenacious biofilms formed by Streptococcus mutans are resistant to conventional antibiotics and current treatments. There is a growing need for novel therapeutics that selectively inhibit S. mutans biofilms while preserving the normal oral microenvironment. Previous studies have shown that increased levels of cyclic di-AMP, an important secondary messenger synthesized by diadenylate cyclase (DAC), favored biofilm formation in S. mutans. Thus, targeting S. mutans DAC is a novel strategy to inhibit S. mutans biofilms. We screened a small NCI library of natural products using a fluorescence detection assay. (+)-Brazilin, a tetracyclic homoisoflavanoid found in the heartwood of Caesalpinia sappan, was identified as one of the 11 "hits," with the greatest reduction (>99%) in fluorescence at 100 µM. The smDAC inhibitory profiles of the 11 "hits" established by a quantitative high-performance liquid chromatography assay revealed that (+)-brazilin had the most enzymatic inhibitory activity (87% at 100 µM) and was further studied to determine its half maximal inhibitory concentration (IC50 = 25.1 ± 0.98 µM). (+)-Brazilin non-competitively inhibits smDAC's enzymatic activity (Ki = 140.0 ± 27.13 µM), as determined by a steady-state Michaelis-Menten kinetics assay. In addition, (+)-brazilin's binding profile with smDAC (Kd = 11.87 µM) was illustrated by a tyrosine intrinsic fluorescence quenching assay. Furthermore, at low micromolar concentrations, (+)-brazilin selectively inhibited the biofilm of S. mutans (IC50 = 21.0 ± 0.60 µM) and other oral bacteria. S. mutans biofilms were inhibited by a factor of 105 in colony-forming units when treated with 50 µM (+)-brazilin. In addition, a significant dose-dependent reduction in extracellular DNA and glucan levels was evident by fluorescence microscopy imaging of S. mutans biofilms exposed to different concentrations of (+)-brazilin. Furthermore, colonization of S. mutans on a representative model of enamel using suspended hydroxyapatite discs showed a >90% reduction with 50 µM (+)-brazilin. In summary, we have identified a drug-like natural product inhibitor of S. mutans biofilm that not only binds to smDAC but can also inhibit the function of smDAC. (+)-Brazilin could be a good candidate for further development as a potent therapeutic for the prevention and treatment of dental caries.IMPORTANCEThis study represents a significant advancement in our understanding of potential therapeutic options for combating cariogenic biofilms produced by Streptococcus mutans. The research delves into the use of (+)-brazilin, a natural product, as a potent inhibitor of Streptococcus mutans' diadenylate cyclase (smDAC), an enzyme crucial in the formation of biofilms. The study establishes (+)-brazilin as a non-competitive inhibitor of smDAC while providing initial insights into its binding mechanism. What makes this finding even more promising is that (+)-brazilin does not limit its inhibitory effects to S. mutans alone. Instead, it demonstrates efficacy in hindering biofilms in other oral bacteria as well. The broader spectrum of anti-biofilm activity suggests that (+)-brazilin could potentially serve as a versatile tool in a natural product-based treatment for combating a range of conditions caused by resilient biofilms.
Collapse
Affiliation(s)
- Edwin M. Rojas
- School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hua Zhang
- Division of Biomaterial & Biomedical Sciences, School of Dentistry, Oregon Health & Science University, Portland, Oregon, USA
| | - Sadanandan E. Velu
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hui Wu
- Division of Biomaterial & Biomedical Sciences, School of Dentistry, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
9
|
Villanueva-Lumbreras J, Rodriguez C, Aguilar MR, Avilés-Arnaut H, Cordell GA, Rodriguez-Garcia A. Nanofibrous ε-Polycaprolactone Matrices Containing Nano-Hydroxyapatite and Humulus lupulus L. Extract: Physicochemical and Biological Characterization for Oral Applications. Polymers (Basel) 2024; 16:1258. [PMID: 38732727 PMCID: PMC11085452 DOI: 10.3390/polym16091258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Oral bone defects occur as a result of trauma, cancer, infections, periodontal diseases, and caries. Autogenic and allogenic grafts are the gold standard used to treat and regenerate damaged or defective bone segments. However, these materials do not possess the antimicrobial properties necessary to inhibit the invasion of the numerous deleterious pathogens present in the oral microbiota. In the present study, poly(ε-caprolactone) (PCL), nano-hydroxyapatite (nHAp), and a commercial extract of Humulus lupulus L. (hops) were electrospun into polymeric matrices to assess their potential for drug delivery and bone regeneration. The fabricated matrices were analyzed using scanning electron microscopy (SEM), tensile analysis, thermogravimetric analysis (TGA), FTIR assay, and in vitro hydrolytic degradation. The antimicrobial properties were evaluated against the oral pathogens Streptococcus mutans, Porphyromonas gingivalis, and Aggregatibacter actinomycetemcomitans. The cytocompatibility was proved using the MTT assay. SEM analysis established the nanostructured matrices present in the three-dimensional interconnected network. The present research provides new information about the interaction of natural compounds with ceramic and polymeric biomaterials. The hop extract and other natural or synthetic medicinal agents can be effectively loaded into PCL fibers and have the potential to be used in oral applications.
Collapse
Affiliation(s)
- Jaime Villanueva-Lumbreras
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Instituto de Biotecnología, Ciudad Universitaria, Ave. Pedro de Alba S/N, San Nicolás de los Garza 66455, NL, Mexico; (J.V.-L.); (H.A.-A.)
| | - Ciro Rodriguez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, NL, Mexico
- Laboratorio Nacional de Manufactura Aditiva y Digital (MADIT), Apodaca 66629, NL, Mexico
| | - María Rosa Aguilar
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), 28006 Madrid, Spain;
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER.BBN, 28029 Madrid, Spain
| | - Hamlet Avilés-Arnaut
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Instituto de Biotecnología, Ciudad Universitaria, Ave. Pedro de Alba S/N, San Nicolás de los Garza 66455, NL, Mexico; (J.V.-L.); (H.A.-A.)
| | - Geoffrey A. Cordell
- Natural Products Inc., Evanston, IL 60201, USA;
- College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Aida Rodriguez-Garcia
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Instituto de Biotecnología, Ciudad Universitaria, Ave. Pedro de Alba S/N, San Nicolás de los Garza 66455, NL, Mexico; (J.V.-L.); (H.A.-A.)
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, NL, Mexico
| |
Collapse
|
10
|
Raja T, Agarwal N, Jabin Z, Anand A, Waikhom N, Thakur V. A Comparative Evaluation of Nanosilver Fluoride, Chlorhexidine, and Sodium Fluoride When Used as a Varnish on Streptococcus mutans Levels in Children with Caries. Int J Clin Pediatr Dent 2024; 17:410-416. [PMID: 39144168 PMCID: PMC11320816 DOI: 10.5005/jp-journals-10005-2831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
Abstract
Aim The purpose of the present study is to evaluate the effect of nanosilver fluoride (NSF), chlorhexidine (CHX), and sodium fluoride (NaF) when used as a varnish on Streptococcus mutans levels in children with dental caries. Study design A total of 120 children (age range 8-12 years) with incipient caries were randomly assigned to four groups (n = 30): group I-NSF varnish, group II-CHX varnish, group III-NaF varnish, and group IV-control. Varnish application at baseline was performed once. To assess the levels of S. mutans using the culture method [colony-forming units (CFUs)] and optical density (OD), plaque and samples were taken at baseline (T0), 1 month (T1), and 3 months (T3). Additionally, the oral hygiene index-simplified (OHI-S) was noted for clinical assessment. Results By the end of 3 months, a statistically significant reduction in plaque CFU and salivary CFU was found in group II. At the conclusion of the 3 months, group I had the greatest decrease in OHI-S. After 3 months, the plaque CFU score did not differ significantly across groups I, II, and III. However, a statistically significant difference in OD values (p-value of 0.00) was discovered between group I and all other groups. Conclusion Children with early caries can effectively lower their S. mutans count by using NSF varnish. How to cite this article Raja T, Agarwal N, Jabin Z, et al. A Comparative Evaluation of Nanosilver Fluoride, Chlorhexidine, and Sodium Fluoride When Used as a Varnish on Streptococcus mutans Levels in Children with Caries. Int J Clin Pediatr Dent 2024;17(4):410-416.
Collapse
Affiliation(s)
- Tinesh Raja
- Department of Pediatric and Preventive Dentistry, Priyadarshini Dental College and Hospital, Tiruvallur, Tamil Nadu, India
| | - Nidhi Agarwal
- Department of Pediatric and Preventive Dentistry, Institute of Dental Studies and Technology, Ghaziabad, Uttar Pradesh, India
| | - Zohra Jabin
- Department of Pediatric Dentistry, College of Health, Medicine and Life Sciences, Brunel University, Uxbridge, London, United Kingdom
| | - Ashish Anand
- Department of Pediatric and Preventive Dentistry, Institute of Dental Studies and Technology, Ghaziabad, Uttar Pradesh, India
| | - Nandita Waikhom
- Department of Pediatric and Preventive Dentistry, Institute of Dental Studies and Technology, Ghaziabad, Uttar Pradesh, India
| | - Vabool Thakur
- Department of Pediatric and Preventive Dentistry, Institute of Dental Studies and Technology, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
11
|
Schubert A, Griesmüller C, Gersdorff N, Bürgers R, Wiechens B, Wassmann T. Antibacterial coating of orthodontic elastomeric ligatures with silver and bismuth nanofilms by magnetron sputtering: A feasibility study. Clin Exp Dent Res 2024; 10:e864. [PMID: 38433291 PMCID: PMC10909824 DOI: 10.1002/cre2.864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 01/11/2024] [Accepted: 01/20/2024] [Indexed: 03/05/2024] Open
Abstract
OBJECTIVES Magnetron sputtering was evaluated to equip surfaces of orthodontic elastomeric ligatures with silver and bismuth nanofilms. MATERIAL AND METHODS Antibacterial properties were evaluated by the adhesion of Streptococcus mutans. Polyurethane-based elastomeric ligatures were coated with silver and bismuth nanofilms via direct current magnetron sputtering. Surface roughness (Ra ) and surface-free energy (SFE) were assessed. Coated specimens were incubated with S. mutans for 2 h. Adhering bacteria were visualized by Hoechst staining and quantified by an ATP-based luminescence assay. One-way analysis of variance with Tukey post hoc testing and Pearson correlation analysis were performed (p < .05) to relate bacterial adhesion to surface roughness and surface-free energy. RESULTS Elastomeric ligatures were successfully coated with silver and bismuth nanofilms. Ra was significantly reduced by silver coating. Silver and bismuth coatings showed significantly higher SFE than controls. Adhesion of S. mutans was significantly decreased by silver coating. No correlation between bacterial adhesion and SFE was found. Correlation between bacterial adhesion and Ra was positive but not statistically significant. CONCLUSIONS Magnetron sputtering proved to be a feasible method to equip orthodontic elastomeric ligatures with silver and bismuth nanofilms. Silver coatings of elastomeric ligatures may reduce white spots and carious lesions in orthodontic patients. Future research is required to stabilize coatings.
Collapse
Affiliation(s)
- Andrea Schubert
- Department of ProsthodonticsUniversity Medical Center GoettingenGoettingenGermany
| | - Carolin Griesmüller
- Department of ProsthodonticsUniversity Medical Center GoettingenGoettingenGermany
| | - Nikolaus Gersdorff
- Department of ProsthodonticsUniversity Medical Center GoettingenGoettingenGermany
| | - Ralf Bürgers
- Department of ProsthodonticsUniversity Medical Center GoettingenGoettingenGermany
| | - Bernhard Wiechens
- Department of OrthodonticsUniversity Medical Center GoettingenGoettingenGermany
| | - Torsten Wassmann
- Department of ProsthodonticsUniversity Medical Center GoettingenGoettingenGermany
| |
Collapse
|
12
|
Grün P, Pfaffeneder-Mantai F, Schneider B, Meier M, Bytyqi D, Bandura P, Turhani D. Can jaw bone healed from chronic sclerosing osteomyelitis be considered healthy when planning dental implants? Case report with 20-year follow-up. Ann Med Surg (Lond) 2024; 86:2266-2276. [PMID: 38576989 PMCID: PMC10990345 DOI: 10.1097/ms9.0000000000001826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/02/2024] [Indexed: 04/06/2024] Open
Abstract
Introduction and importance Extraction of mandibular third molars can lead to complications such as chronic sclerosing osteomyelitis (CSO), an inflammatory bone marrow disease that tends to progress. CSO involves the cortical plates and often the periosteal tissues and is caused by a variety of microorganisms, including Corynebacterium spp. The treatment of chronic osteomyelitis (CO) and CSO remains challenging, as there is no universal treatment protocol. This case report investigated whether jaw bone that has healed from chronic sclerosing osteomyelitis can be considered healthy bone when planning dental implants. Case presentation A 21-year-old Caucasian woman developed CO and CSO after third molar surgery. Clinical discussion A combination of alveolar ridge bone resection, extraction of teeth 47-32, and long-term specific antibiotic therapy against Corynebacterium spp. was administered. An attempt at preprosthetic alveolar ridge reconstruction with an anterior superior iliac crest bone graft resulted in graft failure and the patient refused further harvesting procedures. Implantation in the intraforaminal zone also resulted in the loss of two implants after loading. Finally, inferior alveolar nerve transposition resulted in the successful reimplantation of two implants, which were fully functional almost 11 years later. Conclusion This case report presents the treatment history of this patient. With a longitudinal observation period of greater than 20 years, the results of this case demonstrate the successful treatment of bone with CO, CSO, and Corynebacterium spp. infection. Following the removal of infected bone, radical debridement, and long-term antibiotic therapy, bone health was restored.
Collapse
Affiliation(s)
- Pascal Grün
- Center for Oral and Maxillofacial Surgery, Department of Dentistry
| | - Florian Pfaffeneder-Mantai
- Center for Oral and Maxillofacial Surgery, Department of Dentistry
- Division for Chemistry and Physics of Materials, Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, Krems, Austria
| | | | - Marius Meier
- Center for Oral and Maxillofacial Surgery, Department of Dentistry
| | - Ditjon Bytyqi
- Center for Oral and Maxillofacial Surgery, Department of Dentistry
| | - Patrick Bandura
- Center for Oral and Maxillofacial Surgery, Department of Dentistry
| | - Dritan Turhani
- Center for Oral and Maxillofacial Surgery, Department of Dentistry
| |
Collapse
|
13
|
Ealla KKR, Kumari N, Chintalapani S, Uppu S, Sahu V, Veeraraghavan VP, Ramani P, Govindool SR. Interplay between dental caries pathogens, periodontal pathogens, and sugar molecules: approaches for prevention and treatment. Arch Microbiol 2024; 206:127. [PMID: 38416201 DOI: 10.1007/s00203-024-03856-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/13/2024] [Accepted: 01/20/2024] [Indexed: 02/29/2024]
Abstract
Globally, oral diseases affect nearly 3.5 billion people, accounting for 4.6% of the healthcare expenditure. Common oral diseases include dental caries and periodontal disease, associated with biofilms formed by cariogenic pathogens. Epidemiological studies associate carbohydrates with these diseases due to the sugars metabolized by cariogenic pathogens. This review focuses on dental caries and periodontal pathogens, quorum sensing, lectin-carbohydrate interactions, and various sugar molecules. Cariogenic sugars significantly influence biofilms by enhancing pathogen adhesion, viability, and gene expressions associated with biofilm formation. Moreover, lectin-carbohydrate interactions contribute to biofilm stability. Disrupting these interactions is a potential strategy for oral disease prevention. The use of nanoparticles, such as quantum dots, provides novel insights into lectin-sugar interactions and the development of inhibitors. Additionally, nanomaterials like calcium phosphate nanoparticles neutralize acids and inhibit microbial growth. This overview emphasizes understanding the relationships between oral diseases, microbial communities, and sugars to devise preventive and therapeutic strategies against oral diseases.
Collapse
Affiliation(s)
- Kranti Kiran Reddy Ealla
- Oral and Maxillofacial Pathology, Malla Reddy Institute of Dental Sciences, Hyderabad, Telangana, India.
- Oral and Maxillofacial Pathology, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India.
| | - Neema Kumari
- Department of Microbiology, Malla Reddy Institute of Medical Sciences, Hyderabad, Telangana, India.
| | - Srikanth Chintalapani
- Department of Periodontology, Malla Reddy Institute of Dental Sciences, Hyderabad, Telangana, India
| | - Supriya Uppu
- Oral and Maxillofacial Pathology, Malla Reddy Institute of Dental Sciences, Hyderabad, Telangana, India
| | - Vikas Sahu
- Oral and Maxillofacial Pathology, Malla Reddy Institute of Dental Sciences, Hyderabad, Telangana, India
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Pratibha Ramani
- Oral and Maxillofacial Pathology, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Sharaschandra Reddy Govindool
- Department of Periodontics and Endodontics, School of Dental Medicine, University at Buffalo, 240D Squire Hall, Buffalo, NY, 14214, USA
| |
Collapse
|
14
|
Yu JS, Kim M, Cho IH, Sim YM, Hwang YS. Evidence Supporting Oral Hygiene Management by Owners through a Genetic Analysis of Dental Plaque Bacteria in Dogs. Vet Sci 2024; 11:96. [PMID: 38393114 PMCID: PMC10893504 DOI: 10.3390/vetsci11020096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
With the increase in the number of households raising dogs and the reports of human-to-dog transmission of oral bacteria, concerns about dogs' oral health and the need for oral hygiene management are increasing. In this study, the owners' perceptions about their dogs' oral health and the frequency of oral hygiene were determined along with the analysis of dog dental plaque bacteria through metagenomic amplicon sequencing so as to support the need for oral hygiene management for dogs. Although the perception of 63.2% of the owners about their dogs' oral health was consistent with the veterinarian's diagnosis, the owners' oral hygiene practices regarding their dogs were very poor. The calculi index (CI) and gingiva index (GI) were lower in dogs who had their teeth brushed more than once a week (57.89%) than in dogs brushed less than once a month (42.10%); however, the difference was nonsignificant (CI: p = 0.479, GI: p = 0.840). Genomic DNA was extracted from dental plaque bacteria removed during dog teeth scaling, and metagenomic amplicons were sequenced. The 16S amplicons of 73 species were identified from among the plaque bacteria of the dogs. These amplicons were of oral disease-causing bacteria in humans and dogs. The 16S amplicon of Streptococcus mutans matched that of the human S. mutans, with type c identified as the main serotype. This result suggests that human oral bacteria can be transmitted to dogs. Therefore, considering the high frequency of contact between dogs and humans because of communal living and the current poor oral health of dogs, owners must improve the oral hygiene management of their dogs.
Collapse
Affiliation(s)
- Jeong suk Yu
- Yeah Dental Animal Clinic, Seolleung-ro 126-6, Gangnam-Gu, Seoul 06092, Republic of Korea
| | - Minhee Kim
- Department of Physical Therapy, College of Health Science, Eulji University, Seongnam 13135, Republic of Korea
| | - Il-Hoon Cho
- Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Seongnam 13135, Republic of Korea
| | - Yu-Min Sim
- Department of Dental Hygiene, College of Health Science, Eulji University, Seongnam 13135, Republic of Korea
| | - Young Sun Hwang
- Department of Dental Hygiene, College of Health Science, Eulji University, Seongnam 13135, Republic of Korea
| |
Collapse
|
15
|
Fu K, Cheung AHK, Wong CC, Liu W, Zhou Y, Wang F, Huang P, Yuan K, Coker OO, Pan Y, Chen D, Lam NM, Gao M, Zhang X, Huang H, To KF, Sung JJY, Yu J. Streptococcus anginosus promotes gastric inflammation, atrophy, and tumorigenesis in mice. Cell 2024; 187:882-896.e17. [PMID: 38295787 DOI: 10.1016/j.cell.2024.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/13/2023] [Accepted: 01/02/2024] [Indexed: 02/18/2024]
Abstract
Streptococcus anginosus (S. anginosus) was enriched in the gastric mucosa of patients with gastric cancer (GC). Here, we show that S. anginosus colonized the mouse stomach and induced acute gastritis. S. anginosus infection spontaneously induced progressive chronic gastritis, parietal cell atrophy, mucinous metaplasia, and dysplasia in conventional mice, and the findings were confirmed in germ-free mice. In addition, S. anginosus accelerated GC progression in carcinogen-induced gastric tumorigenesis and YTN16 GC cell allografts. Consistently, S. anginosus disrupted gastric barrier function, promoted cell proliferation, and inhibited apoptosis. Mechanistically, we identified an S. anginosus surface protein, TMPC, that interacts with Annexin A2 (ANXA2) receptor on gastric epithelial cells. Interaction of TMPC with ANXA2 mediated attachment and colonization of S. anginosus and induced mitogen-activated protein kinase (MAPK) activation. ANXA2 knockout abrogated the induction of MAPK by S. anginosus. Thus, this study reveals S. anginosus as a pathogen that promotes gastric tumorigenesis via direct interactions with gastric epithelial cells in the TMPC-ANXA2-MAPK axis.
Collapse
Affiliation(s)
- Kaili Fu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Alvin Ho Kwan Cheung
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Weixin Liu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yunfei Zhou
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Feixue Wang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Pingmei Huang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kai Yuan
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Olabisi Oluwabukola Coker
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yasi Pan
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Danyu Chen
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Nga Man Lam
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Mengxue Gao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xiang Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - He Huang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Joseph Jao Yiu Sung
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
16
|
Tavvabi-Kashani N, Hasanpour M, Baradaran Rahimi V, Vahdati-Mashhadian N, Askari VR. Pharmacodynamic, pharmacokinetic, toxicity, and recent advances in Eugenol's potential benefits against natural and chemical noxious agents: A mechanistic review. Toxicon 2024; 238:107607. [PMID: 38191032 DOI: 10.1016/j.toxicon.2024.107607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/03/2024] [Indexed: 01/10/2024]
Abstract
The active biological phytochemicals, crucial compounds employed in creating hundreds of medications, are derived from valuable and medicinally significant plants. These phytochemicals offer excellent protection from various illnesses, including inflammatory disorders and chronic conditions caused by oxidative stress. A phenolic monoterpenoid known as eugenol (EUG), it is typically found in the essential oils of many plant species from the Myristicaceae, Myrtaceae, Lamiaceae, and Lauraceae families. One of the main ingredients of clove oil (Syzygium aromaticum (L.), Myrtaceae), it has several applications in industry, including flavoring food, pharmaceutics, dentistry, agriculture, and cosmeceuticals. Due to its excellent potential for avoiding many chronic illnesses, it has lately attracted attention. EUG has been classified as a nonmutant, generally acknowledged as a safe (GRAS) chemical by the World Health Organization (WHO). According to the existing research, EUG possesses notable anti-inflammatory, antioxidant, analgesic, antibacterial, antispasmodic, and apoptosis-promoting properties, which have lately gained attention for its ability to control chronic inflammation, oxidative stress, and mitochondrial malfunction and dramatically impact human wellness. The purpose of this review is to evaluate the scientific evidence from the most significant research studies that have been published regarding the protective role and detoxifying effects of EUG against a wide range of toxins, including biological and chemical toxins, as well as different drugs and pesticides that produce a variety of toxicities, throughout view of the possible advantages of EUG.
Collapse
Affiliation(s)
- Negin Tavvabi-Kashani
- Student Research Committee, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maede Hasanpour
- Department of Pharmacognosy and Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Vafa Baradaran Rahimi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Naser Vahdati-Mashhadian
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
17
|
Matar MA, Darwish SS, Salma RS, Lotfy WA. Evaluation of the antibacterial activity of Enamelast® and Fluor defender® fluoride varnishes against Streptococcus mutans biofilm: an in vitro study in primary teeth. Eur Arch Paediatr Dent 2023; 24:549-558. [PMID: 37525011 PMCID: PMC10600041 DOI: 10.1007/s40368-023-00811-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 06/02/2023] [Indexed: 08/02/2023]
Abstract
PURPOSE The aim of the current work was to compare the antibacterial activity of Enamelast® and Fluor defender® fluoride varnish on biofilm generation by Streptococcus mutans on extracted primary teeth. METHODS Thirty-six primary molars were collected and sliced into seventy-two test model disks. All specimens were examined, and the cracked or broken ones were discarded. A total number of specimens (n = 54) were divided into two experimental analyses viz; biofilm formation (n = 27) and microscopic examination (n = 27). Specimens of each analysis were tested under different experimental conditions: a negative control group (n = 9), Fluor defender group (n = 9), and Enamelast group (n = 9). Following treatment, biofilms were generated by adherent Streptococcus mutans on the test model disks on three time intervals: 24 h (n = 3), 48 h (n = 3), and 72 h (n = 3) for each analysis. Then, for biofilm formation analysis, the biofilm was detected spectrophotometrically at 620 nm after being stained by crystal violet. For microscopical analysis, the surfaces of the test model disks were visualized by scanning electron microscopy (SEM), and each image was processed and analyzed using ImageJ software. RESULTS At 48 and 72 h, Enamelast® and Fluor defender®-treated group showed significantly (p < 0.001) slight adhered bacterial cells when compared with the negative control group as revealed by the absorbance and SEM. Compared with the Fluor defender®-treated group, the absorbance of the Enamelast®-treated group showed a significant (p < 0.001) increase by approximately 7- and 16.5-fold at 48 and 72 h, respectively. Similarly, SEM showed that the number of bacterial cells adhered to enamel surfaces in the Fluor defender®-treated group was significantly (p < 0.001) fewer than the Enamelast®-treated group by approximately 36.55% and 20.62% at 48 and 72 h after exposure, respectively. CONCLUSION We conclude that the anti-biofilm activity of Fluor defender® against Streptococcus mutans was significantly (p < 0.001) greater than Enamelast® fluoride varnish. The use of Fluor defender® is encouraged as a preventive measure in children with the high risk of developing dental caries.
Collapse
Affiliation(s)
- M A Matar
- Pediatric and Community Dentistry Department, Faculty of Dentistry, Pharos University in Alexandria, Alexandria, Egypt
| | - S S Darwish
- Pediatric and Community Dentistry Department, Faculty of Dentistry, Pharos University in Alexandria, Alexandria, Egypt
| | - R S Salma
- Pediatric Dentistry Department, College of Dentistry El Alamein, Arab Academy for Science, Technology and Maritime Transport (AAST), Alamein, Egypt.
| | - W A Lotfy
- Microbiology Department, Faculty of Dentistry, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
18
|
Ren J, Guo X. The germicidal effect, biosafety and mechanical properties of antibacterial resin composite in cavity filling. Heliyon 2023; 9:e19078. [PMID: 37662807 PMCID: PMC10474440 DOI: 10.1016/j.heliyon.2023.e19078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/22/2023] [Accepted: 08/10/2023] [Indexed: 09/05/2023] Open
Abstract
In recent years, dental resin materials have become increasingly popular for cavity filling. However, these materials can shrink during polymerization, leading to microleakages that enable bacteria to erode tooth tissue and cause secondary caries. As a result, there is great clinical demand for the development of antibacterial resins. The principle of antibacterial resin includes contact killing and filler-release killing of bacteria. For contact killing, quaternary ammonium salts (QACs) and antibacterial peptides (AMPs) can be added. For filler-release killing, chlorhexidine (CHX) and nanoparticles are used. These antibacterial agents are effective against gram-positive bacteria, gram-negative bacteria, fungi, and more. Among them, QACs has a lasting antibacterial effect, and silver nanoparticles even have a certain ability to kill viruses. Biocompatibility-wise, QACs, AMPs, and CHX have low cytotoxicity to cells when added into the resin. However, nanoparticles with smaller particle sizes have higher cytotoxicity. In terms of mechanical properties, QACs, AMPs, and CHX do not negatively affect the resin. However, the addition of magnesium oxide can have a negative impact. This paper reviews the types and antibacterial principles of commonly used antibacterial resins in recent years, evaluates their antibacterial effect, biological safety, and mechanical properties, and provides references for selecting clinical filling materials.
Collapse
Affiliation(s)
- Jiamu Ren
- Yanbian University, Jilin, 133002, China
| | - Xinwei Guo
- Peking University, Haidian District, Beijing, 100871, China
| |
Collapse
|
19
|
Wang J, Wang J, Chang X, Shang J, Wang Y, Ma Q, Shen L. Rapid Detection of Streptococcus mutans Using an Integrated Microfluidic System with Loop-Mediated Isothermal Amplification. J Microbiol Biotechnol 2023; 33:1101-1110. [PMID: 37280774 PMCID: PMC10468681 DOI: 10.4014/jmb.2304.04026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 06/08/2023]
Abstract
Streptococcus mutans is the primary causative agent of caries, which is one of the most common human diseases. Thus, rapid and early detection of cariogenic bacteria is critical for its prevention. This study investigated the combination of loop-mediated isothermal amplification (LAMP) and microfluid technology to quantitatively detect S. mutans. A low-cost, rapid microfluidic chip using LAMP technology was developed to amplify and detect bacteria at 2.2-2.2 × 106 colony-forming units (CFU)/ml and its detection limits were compared to those of standard polymerase chain reaction. A visualization system was established to quantitatively determine the experimental results, and a functional relationship between the bacterial concentration and quantitative results was established. The detection limit of S. mutans using this microfluidic chip was 2.2 CFU/ml, which was lower than that of the standard approach. After quantification, the experimental results showed a good linear relationship with the concentration of S. mutans, thereby confirming the effectiveness and accuracy of the custom-made integrated LAMP microfluidic system for the detection of S. mutans. The microfluidic system described herein may represent a promising simple detection method for the specific and rapid testing of individuals at risk of caries.
Collapse
Affiliation(s)
- Jingfu Wang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Cranio-facial Trauma and Orthognathic Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, P.R.China
- Department of Stomatology, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang 110016, P.R.China
| | - Jingyi Wang
- College of Information and Electrical Engineering, Shenyang Agricultural University, Shenyang 110866, P.R.China
| | - Xin Chang
- Outpatient Department, The Ninth Retired Cadres Retreat of Liaoning Military Command, 176 Dongbei Road, Shenyang 110044, P.R.China
| | - Jin Shang
- Department of Stomatology, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang 110016, P.R.China
| | - Yuehui Wang
- Department of Stomatology, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang 110016, P.R.China
| | - Qin Ma
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Cranio-facial Trauma and Orthognathic Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, P.R.China
| | - Liangliang Shen
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, P.R.China
| |
Collapse
|
20
|
Paredes A, Iheacho C, Smith AT. Metal Messengers: Communication in the Bacterial World through Transition-Metal-Sensing Two-Component Systems. Biochemistry 2023; 62:2339-2357. [PMID: 37539997 PMCID: PMC10530140 DOI: 10.1021/acs.biochem.3c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Bacteria survive in highly dynamic and complex environments due, in part, to the presence of systems that allow the rapid control of gene expression in the presence of changing environmental stimuli. The crosstalk between intra- and extracellular bacterial environments is often facilitated by two-component signal transduction systems that are typically composed of a transmembrane histidine kinase and a cytosolic response regulator. Sensor histidine kinases and response regulators work in tandem with their modular domains containing highly conserved structural features to control a diverse array of genes that respond to changing environments. Bacterial two-component systems are widespread and play crucial roles in many important processes, such as motility, virulence, chemotaxis, and even transition metal homeostasis. Transition metals are essential for normal prokaryotic physiological processes, and the presence of these metal ions may also influence pathogenic virulence if their levels are appropriately controlled. To do so, bacteria use transition-metal-sensing two-component systems that bind and respond to rapid fluctuations in extracytosolic concentrations of transition metals. This perspective summarizes the structural and metal-binding features of bacterial transition-metal-sensing two-component systems and places a special emphasis on understanding how these systems are used by pathogens to establish infection in host cells and how these systems may be targeted for future therapeutic developments.
Collapse
Affiliation(s)
- Alexander Paredes
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Chioma Iheacho
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Aaron T Smith
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| |
Collapse
|
21
|
Ahirwar P, Kozlovskaya V, Nijampatnam B, Rojas EM, Pukkanasut P, Inman D, Dolmat M, Law AC, Schormann N, Deivanayagam C, Harber GJ, Michalek SM, Wu H, Kharlampieva E, Velu SE. Hydrogel-Encapsulated Biofilm Inhibitors Abrogate the Cariogenic Activity of Streptococcus mutans. J Med Chem 2023; 66:7909-7925. [PMID: 37285134 PMCID: PMC11188996 DOI: 10.1021/acs.jmedchem.3c00272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We designed and synthesized analogues of a previously identified biofilm inhibitor IIIC5 to improve solubility, retain inhibitory activities, and to facilitate encapsulation into pH-responsive hydrogel microparticles. The optimized lead compound HA5 showed improved solubility of 120.09 μg/mL, inhibited Streptococcus mutans biofilm with an IC50 value of 6.42 μM, and did not affect the growth of oral commensal species up to a 15-fold higher concentration. The cocrystal structure of HA5 with GtfB catalytic domain determined at 2.35 Å resolution revealed its active site interactions. The ability of HA5 to inhibit S. mutans Gtfs and to reduce glucan production has been demonstrated. The hydrogel-encapsulated biofilm inhibitor (HEBI), generated by encapsulating HA5 in hydrogel, selectively inhibited S. mutans biofilms like HA5. Treatment of S. mutans-infected rats with HA5 or HEBI resulted in a significant reduction in buccal, sulcal, and proximal dental caries compared to untreated, infected rats.
Collapse
Affiliation(s)
- Parmanand Ahirwar
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Veronika Kozlovskaya
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - Edwin M. Rojas
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- School of Dentistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Piyasuda Pukkanasut
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Daniel Inman
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Maksim Dolmat
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Anna C. Law
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Norbert Schormann
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Champion Deivanayagam
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gregory J. Harber
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Suzanne M. Michalek
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hui Wu
- Department of Integrative Biomedical and Diagnostic Sciences, Oregon Health and Science University, Portland, OR 97239, USA
| | - Eugenia Kharlampieva
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Center of Nanoscale Materials and Biointegration, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sadanandan E. Velu
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Microbiome Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
22
|
Mubaraki H, Ingle NA, Baseer MA, AlMugeiren OM, Mubaraki S, Cicciù M, Minervini G. Effect of Silver Diamine Fluoride on Bacterial Biofilms-A Review including In Vitro and In Vivo Studies. Biomedicines 2023; 11:1641. [PMID: 37371736 DOI: 10.3390/biomedicines11061641] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Caries/carious lesions are a growing concern among the general population across the world, and different strategies are evolving to combat the bacterial invasion that resultantly leads to caries. In this systematic review, we are looking to analyse the role of silver diamine fluoride (SDF) on the growth of bacterial biofilms. The search strategy for the studies to be selected for the review was initiated by a search across multiple databases, which ultimately yielded 15 studies that were in accordance with our objectives. The reviewed articles indicate a very clear correlation between the usage of SDF and the decrease in bacterial biofilms, which are limited not just to one or two but multiple bacterial species. As shown by the events favoring SDF's odds ratio of 3.59 (with a 95% confidence interval of 2.13 to 6.05), a risk ratio of 1.63 (1.32 to 2.00), and a risk difference of 0.28 (0.16 to 0.40), there was strong evidence that SDF is a successful treatment for reducing bacterial biofilms in dental practice. This study offers substantial proof that SDF works well to reduce bacterial biofilms in dentistry practices. We advise further investigation to examine the potential of SDF as a standard therapy choice for dental caries and related conditions given the obvious relationship between the use of SDF and the reduction in bacterial biofilms.
Collapse
Affiliation(s)
- Hind Mubaraki
- Preventive Dentistry Department, College of Dentistry, Riyadh Elm University, Riyadh 13244, Saudi Arabia
| | - Navin Anand Ingle
- Preventive Dentistry Department, College of Dentistry, Riyadh Elm University, Riyadh 13244, Saudi Arabia
| | - Mohammad Abdul Baseer
- Preventive Dentistry Department, College of Dentistry, Riyadh Elm University, Riyadh 13244, Saudi Arabia
| | - Osamah M AlMugeiren
- Preventive Dentistry Department, College of Dentistry, Riyadh Elm University, Riyadh 13244, Saudi Arabia
| | - Sarah Mubaraki
- Preventive Dentistry Department, College of Dentistry, Riyadh Elm University, Riyadh 13244, Saudi Arabia
| | - Marco Cicciù
- Department of Biomedical and Surgical and Biomedical Sciences, Catania University, 95123 Catania, Italy
| | - Giuseppe Minervini
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania, 80138 Naples, Italy
| |
Collapse
|
23
|
Kang CE, Park YJ, Kim JH, Lee NK, Paik HD. Probiotic Weissella cibaria displays antibacterial and anti-biofilm effect against cavity-causing Streptococcus mutans. Microb Pathog 2023; 180:106151. [PMID: 37172659 DOI: 10.1016/j.micpath.2023.106151] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Streptococcus mutans is a significant contributor to dental caries and causes functional and aesthetic discomfort. Weissella cibaria strains were isolated from kimchi, and their functional properties were determined. In this study, the antibacterial and antibiofilm effects of four W. cibaria strains (D29, D30, D31, and B22) were evaluated against three S. mutans strains using culture fluid and cell-free supernatants. The results showed that W. cibaria reduced the exopolysaccharides production and auto-aggregation, increased co-aggregation, and downregulated virulence factors, leading to the inhibition of bacterial growth and biofilm formation. These findings were confirmed using scanning electron microscopy and confocal laser scanning microscopy. These results indicate that oral health can be potentially improved by W. cibaria.
Collapse
Affiliation(s)
- Cho Eun Kang
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea
| | - Yeong Jin Park
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea
| | - Ji Hun Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
24
|
Vallejo-García LC, Sánchez-Olmos MDC, Gutiérrez-Ríos RM, López Munguía A. Glycosyltransferases Expression Changes in Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293 Grown on Different Carbon Sources. Foods 2023; 12:foods12091893. [PMID: 37174431 PMCID: PMC10177778 DOI: 10.3390/foods12091893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Leuconostoc mesenteroides strains are common contributors in fermented foods producing a wide variety of polysaccharides from sucrose through glycosyltransferases (GTFs). These polymers have been proposed as protective barriers against acidity, dehydration, heat, and oxidative stress. Despite its presence in many traditional fermented products and their association with food functional properties, regulation of GTFs expression in Ln. mesenteroides is still poorly understood. The strain Ln. mesenteroides ATCC 8293 contains three glucansucrases genes not found in operons, and three fructansucrases genes arranged in two operons, levLX and levC-scrB, a Glycoside-hydrolase. We described the first differential gene expression analysis of this strain when cultivated in different carbon sources. We observed that while GTFs are expressed in the presence of most sugars, they are down-regulated in xylose. We ruled out the regulatory effect of CcpA over GTFs and did not find regulatory elements with a direct effect on glucansucrases in the condition assayed. Our findings suggest that only operon levLX is repressed in xylose by LexA and that both fructansucrases operons can be regulated by the VicK/VicR system and PerR. It is essential to further explore the effect of environmental conditions in Ln. mesenteroides bacteria to better understand GTFs regulation and polymer function.
Collapse
Affiliation(s)
- Luz Cristina Vallejo-García
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Col. Chamilpa, Cuernavaca 62210, Morelos, Mexico
| | - María Del Carmen Sánchez-Olmos
- Departamento de Microbiología Molecular, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Col. Chamilpa, Cuernavaca 62210, Morelos, Mexico
| | - Rosa María Gutiérrez-Ríos
- Departamento de Microbiología Molecular, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Col. Chamilpa, Cuernavaca 62210, Morelos, Mexico
| | - Agustín López Munguía
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Col. Chamilpa, Cuernavaca 62210, Morelos, Mexico
| |
Collapse
|
25
|
Torshabi M, MoadabShoar Z, Negahban M. Preparation of Citrus reticulata peel nano-encapsulated essential oil and in vitro assessment of its biological properties. Eur J Oral Sci 2023; 131:e12924. [PMID: 36794558 DOI: 10.1111/eos.12924] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/26/2023] [Indexed: 02/17/2023]
Abstract
Dental caries is the most common biofilm-dependent oral disease. Streptococcus mutans is among the main microorganisms responsible for the development of dental caries. Nano-suspension of Citrus reticulata (tangerine) peel essential oil in 0.5% (v/v) concentration was prepared and its antibacterial effect on S. mutans in planktonic and biofilm forms as well as its cytotoxic and antioxidant effects were assessed and compared with chlorhexidine (CHX). The minimum inhibitory concentration (MIC) of free essential oil, nano-encapsulated essential oil, and CHX was 5.6% (v/v), 0.0005% (v/v), and 0.0002% (w/v), respectively. The percentage of biofilm inhibition by the free essential oil, nano-encapsulated essential oil, and CHX at half-MIC was 67.3%, 24%, and 90.6%, respectively. The nano-encapsulated essential oil had no cytotoxicity and showed significant antioxidant effects in different concentrations. Nano-encapsulation of tangerine peel essential oil significantly enhanced its biological activities in much lower concentrations than the free essential oil (11,000 times diluted). It also showed lower cytotoxicity and higher antibiofilm effects in sub-MICs compared with CHX, indicating the optimal potential of tangerine nano-encapsulated essential oil for incorporation in the composition of organic antibacterial and antioxidant mouth rinses.
Collapse
Affiliation(s)
- Maryam Torshabi
- Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra MoadabShoar
- School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Negahban
- Department of Pesticides Researches, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| |
Collapse
|
26
|
Alqarni D, Nakajima M, Tagami J, Alzahrani MS, Sá-Pinto AC, Alghamdi A, Hosaka K, Alzahrani F, Alsadon OA, Alharbi RA, Almalki SS, Alzahrani AAH. Study of Streptococcus mutans in Early Biofilms at the Surfaces of Various Dental Composite Resins. Cureus 2023; 15:e38090. [PMID: 37252523 PMCID: PMC10209747 DOI: 10.7759/cureus.38090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 04/23/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Biofilm deposit on the composite restoration is a common phenomenon and bacterial growth follows the deposition. The study aims to evaluate Streptococcus mutans (S. mutans) early biofilm formation on the surfaces of various dental composite resins by using the real-time quantitative polymerase chain reaction (qPCR) technique. MATERIALS AND METHODS Thirty-two discs, where eight discs were in each group of Filtek Supreme Ultra (FSU; 3M, St. Paul, MN), Clearfil AP-X (APX; Kuraray Noritake Dental Inc., Tokyo, Japan), Beautifil II (BE2; Shofu, Inc., Kyoto, Japan), and Estelite Sigma Quick (ESQ; Tokuyama Dental, Tokyo, Japan), were fabricated and subjected to S. mutans biofilm formation in an oral biofilm reactor for 12 hours. Contact angles (CA) were measured on the freshly fabricated specimen. The attached biofilms underwent fluorescent microscopy (FM). S. mutans from biofilms were analyzed using a qPCR technique. Surface roughness (Sa) measurements were taken before and after biofilm formation. Scanning electron microscopy (SEM), including energy dispersive X-ray spectrometer (EDS) analysis, was also performed for detecting relative elements on biofilms. RESULTS The study showed that FSU demonstrated the lowest CA while APX presented the highest values. FM revealed that condensed biofilm clusters were most on FSU. The qPCR results indicated the highest S. mutans DNA copies in the biofilm were on FSU while BE2 was the lowest (p < 0.05). Sa test signified that APX was significantly the lowest among all materials while FSU was the highest (p < 0.05). SEM displayed areas with apparently glucan-free S. mutans more on BE2 compared to APX and ESQ, while FSU had the least. Small white particles detected predominantly on the biofilms of BE2 appeared to be Si, Al, and F extruded from the resin. CONCLUSION Differences in early biofilm formation onto various composite resins are dependent on the differences in material compositions and their surface properties. BE2 showed the lowest quantity of biofilm accumulation compared to other resin composites (APX, ESQ, and FSU). This could be attributed to BE2 proprieties as a giomer and fluoride content.
Collapse
Affiliation(s)
- Dhaifallah Alqarni
- Restorative and Prosthodontic Department, Almikhawah Dental Center, Al-Baha, SAU
| | - Masatoshi Nakajima
- Department of Cariology and Operative Dentistry/Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, JPN
| | - Junji Tagami
- Department of Cariology and Operative Dentistry/Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, JPN
| | - Mohammed S Alzahrani
- Restorative Dental Sciences Department, School of Dentistry, Al-Baha University, Al-Baha, SAU
| | - Ana Clara Sá-Pinto
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Minas Gerais, BRA
| | - Ali Alghamdi
- Restorative and Prosthodontic Department, Almikhawah Dental Center, Al-Baha, SAU
| | - Keiichi Hosaka
- Department of Regenerative Dental Medicine, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, JPN
| | - Fouad Alzahrani
- Pulp Biology and Endodontic Department, Al-Baha Dental Center, Al-Baha, SAU
| | - Omar A Alsadon
- Department of Dental Health, School of Applied Medical Sciences, King Saud University, Riyadh, SAU
| | - Raed A Alharbi
- Department of Laboratory Medicine, School of Applied Medical Sciences, Al-Baha University, Al-Baha, SAU
| | - Shaia S Almalki
- Department of Laboratory Medicine, School of Applied Medical Sciences, Al-Baha University, Al-Baha, SAU
| | - Abdullah Ali H Alzahrani
- Department of Dental Health, School of Applied Medical Sciences, Al-Baha University, Al-Baha, SAU
| |
Collapse
|
27
|
Chismirina S, Sungkar S, Adlim M, Darmawi D. Streptococcus Mutans Serotype Analysis from Dental Plaque of Caries Patients in Banda Aceh Based on the GTF Gene. Rep Biochem Mol Biol 2023; 12:205-210. [PMID: 37724156 PMCID: PMC10505461 DOI: 10.52547/rbmb.12.1.205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/27/2023] [Indexed: 09/20/2023]
Abstract
Background Dental caries is an oral disease that is widely suffered by the population of Aceh caused by Streptococcus mutans. S. mutans serotypes c and d are widely isolated in the human oral cavity. This research was focused on detecting the presence and variability of S. mutans in supragingival dental plaque of caries teenager and young adults' patients. Methods Subjects involved in this study were patients who treated at the Rumah Sakit Gigi dan Mulut of Dentistry Faculty of Universitas Syiah Kuala. The approach used in this research was molecular microbiology technique. To determine the presence of S. mutans, supragingival plaque from caries patients was cultivated in TYS20B. The culture findings were utilized to detect the presence of bacteria using PCR. The primers utilized in the PCR were S. mutans specific primers, GTFB (517 bp) for S. mutans serotype c and GTFI (712 bp) for S. mutans serotype d. Results Culture results on TYS20B media showed the growth of S. mutans colonies isolated from the supragingival plaque of research subjects. PCR results also revealed the presence of S. mutans in the supragingival plaques of caries patients, with the variability of S. mutans discovered to be a serotype c and a serotype d. Conclusion Based on the findings of this study, it can be concluded that S. mutans can be found in the supragingival plaques of caries patients with the serotypes c and d variability.
Collapse
Affiliation(s)
- Santi Chismirina
- Graduate School of Department of Mathematics and Science Application, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia.
- Faculty of Dentistry, Universitas Syiah Kuala, Banda Aceh 23111, Aceh, Indonesia.
| | - Suzanna Sungkar
- Faculty of Dentistry, Universitas Syiah Kuala, Banda Aceh 23111, Aceh, Indonesia.
| | - Muhammad Adlim
- Department of Chemistry, FKIP, Universitas Syiah Kuala, Banda Aceh 23111, Aceh, Indonesia.
| | - Darmawi Darmawi
- Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Aceh, Indonesia.
| |
Collapse
|
28
|
Shkembi B, Huppertz T. Impact of Dairy Products and Plant-Based Alternatives on Dental Health: Food Matrix Effects. Nutrients 2023; 15:1469. [PMID: 36986199 PMCID: PMC10056336 DOI: 10.3390/nu15061469] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The impact of dairy products on dental health has been researched widely and shows an important role of various constituents, as well as the specific product matrix, in maintaining and improving dental health. These include, for instance, the position of lactose as the least cariogenic fermentable sugar, the high levels of calcium and phosphate, the presence of phosphopeptides as well as the antibacterial peptides lactoferrin and lysozyme and high buffering capacity. With plant-based alternatives for dairy products being developed and marketed these days, the specific benefits of dairy products in relation to dental health are often overlooked and most products contain more cariogenic carbohydrates, lack phosphopeptides, and have fewer minerals and less buffering capacity. Comparative studies performed to date indeed suggest that plant-based products do not match dairy counterparts when it comes to maintaining and improving dental health. Careful consideration of these aspects is required in relation to future developments of products and human diets. In this paper, we review the impact of dairy products and plant-based dairy alternatives on dental health.
Collapse
Affiliation(s)
- Blerina Shkembi
- Food Quality & Design Group, Wageningen University & Research, 6708 WG Wageningen, The Netherlands
| | - Thom Huppertz
- Food Quality & Design Group, Wageningen University & Research, 6708 WG Wageningen, The Netherlands
- FrieslandCampina, 3818 LE Amersfoort, The Netherlands
| |
Collapse
|
29
|
Zaidi S, Ali K, Chawla YM, Khan AU. mltG gene deletion mitigated virulence potential of Streptococcus mutans: An in-vitro, ex-situ and in-vivo study. AMB Express 2023; 13:19. [PMID: 36806997 PMCID: PMC9941400 DOI: 10.1186/s13568-023-01526-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
Bacterial cells are surrounded by a peptidoglycan (PG) cell wall, which is essential for cell integrity and intrinsic biogenesis pathways; hence, the cell wall is a potential target for several antibiotics. Among several lytic transglycosylases (LTs), the mltG gene plays a crucial role in the synthesis of peripheral PG. It localises the re-modelled PGs for septum formation and cleavage across the bacterial cell wall during daughter cells separation. However, the role of mltG gene in bacterial virulence, particularly in Gram-positive bacteria during dentine biofilm and caries development, has remained unexplored. Hence, we exploited Gram-positive Streptococcus mutans cells for the very first time to construct a mltG knock-out bacterial strain, e.g., ΔmltG S. mutans. Systematic comparative investigations revealed that doubling time (Td), survival, enzymatic efficiencies, pH tolerance, bio-synthesise of lipid, proteins and DNA, biofilm formation and dentine lesions were significantly (p < 0.001) compromised in case of ΔmltG S. mutans than wild type strain. The qRT-PCR based gene expression profiling revealed that transcriptional expression of critically important genes involved in biofilm, metabolism, and stress response were dysregulated in the mutant. Besides, an incredible reduction in dentine caries development was found in the molar teeth of Wistar rats and also in human extracted teeth. Concisely, these trends obtained evidently advocated the fact that the deletion of mltG gene can be a potential target to impair the S. mutans virulence through severe growth retardation, thereby reducing the virulence potential of S. mutans.
Collapse
Affiliation(s)
- Sahar Zaidi
- grid.411340.30000 0004 1937 0765Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary, Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002 UP India
| | - Khursheed Ali
- grid.411340.30000 0004 1937 0765Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary, Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002 UP India
| | - Yadya M. Chawla
- grid.425195.e0000 0004 0498 7682ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Asad U. Khan
- grid.411340.30000 0004 1937 0765Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary, Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002 UP India
| |
Collapse
|
30
|
Thimmegowda U, Belagatta V, Chikkanarasaiah N, Bilichodmath S. Identification and Correlation of Streptococcus mutans and Streptococcus sanguinis in Caries-active and Caries-free Children: A PCR Study. Int J Clin Pediatr Dent 2023; 16:9-15. [PMID: 37020765 PMCID: PMC10068000 DOI: 10.5005/jp-journals-10005-2512] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
Aim and objectives Dental caries is currently considered an ecological imbalance within the oral biofilm leading to the dissolution of the tooth's hard tissues. It has been traditionally thought that two species belonging to the Streptococci group, Streptococcus mutans (SM) and Streptococcus sanguinis (SS), are the etiologically responsible for the onset of dental decay. Materials and methods The present in vivo study was conducted on 40 children with caries-active (CA) and caries-free (CF). They were allocated into two groups, group I (CA) = 20 and group II (CF) = 20. The whole saliva was collected into the vials with buffer solution and was stored in cold storage. Polymerase chain reaction (PCR) was done to identify and correlate SM and SS in CA and CF children. Results Comparison of mean SM level between CA and CF groups showed a statistically significant result at p = 0.001. Spearman's correlation between caries score and SM showed a strong correlation of 0.77 between caries score and SM, which was statistically significant at p = 0.001. Similarly, SS and caries scores showed a weak correlation of 0.22. Simple linear regression analysis to SM and caries score showed a significant increase of 4.74 units for 1 score increase in caries score, which is statistically significant. Conclusion The presence of SM levels in children with caries is significant, whereas, in CF children, SS levels are present in increased levels. A strong correlation was seen between caries scores and SM. The simple linear regression analysis predicts a statistically significant increase by 4.74 units per increase of 1 score of caries at p < 0.001. As caries increase, SM count increases, but SS count decreases; as SS count increases, there is a reduction in SM counts. How to cite this article Thimmegowda U, Belagatta V, Chikkanarasaiah N, et al. Identification and Correlation of Streptococcus mutans and Streptococcus sanguinis in Caries-active and Caries-free Children: A PCR Study. Int J Clin Pediatr Dent 2023;16(1):9-15.
Collapse
Affiliation(s)
- Umapathy Thimmegowda
- Department of Pediatric and Preventive Dentistry, RajaRajeswari Dental College and Hospital, Bengaluru, Karnataka, India
| | - Vatsala Belagatta
- Department of Pediatric and Preventive Dentistry, RajaRajeswari Dental College and Hospital, Bengaluru, Karnataka, India
| | - Nagarathna Chikkanarasaiah
- Department of Pediatric and Preventive Dentistry, RajaRajeswari Dental College and Hospital, Bengaluru, Karnataka, India
| | - Sivaprasad Bilichodmath
- Department of Pediatric and Preventive Dentistry, RajaRajeswari Dental College and Hospital, Bengaluru, Karnataka, India
| |
Collapse
|
31
|
Novel Dental Restorative Solutions for Natural Teeth and Implants. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120772. [PMID: 36550979 PMCID: PMC9774112 DOI: 10.3390/bioengineering9120772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
The long-term survival of restorations in the oral cavity has always been one of the most significant challenges in modern dental practice [...].
Collapse
|
32
|
Hayashi H, Naiki Y, Murakami M, Oishi A, Takeuchi R, Nakagawa M, Kimoto S, Hasegawa Y, Araki A. Effects of cleaning sports mouthguards with ethylene-vinyl acetate on oral bacteria. PeerJ 2022; 10:e14480. [PMID: 36523462 PMCID: PMC9745906 DOI: 10.7717/peerj.14480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/07/2022] [Indexed: 12/07/2022] Open
Abstract
Background Sports mouthguards, worn in the oral cavity to prevent sports injuries, are constantly exposed to various microorganisms that cause oral infections. Hence, the optimal cleaning methods for sports mouthguards have been thoroughly examined. In this study, we evaluated the efficiency of cleaning effects with a mouthguard cleaner (MC) on microbial biofilm formation in sports mouthguards in vitro and in vivo. Methods We evaluated the cleaning effects of the discs produced by ethylene-vinyl acetate (EVA) on bacterial biofilms formed by the commensal bacterium Streptococcus oralis, the cariogenic bacterium Streptococcus mutans, and the opportunistic pathogen Staphylococcus aureus in vitro. EVA discs with biofilm were subjected to sterile distilled water (CTRL) and ultrasonic washing (UW), followed by treatment with MC and sodium hypochlorite (NaClO) as positive controls. Thereafter, the viable bacterial cell counts were determined. The bacteria adhering to the sheets before and after the treatment were observed under an electron microscope. The degree of cleanliness and measurement of viable microbial cell counts for total bacteria, Streptococci and Candida, opportunistic fungi, were evaluated on the used experimental sports mouthguards with and without UW and MC treatment in vivo. Results The number of bacterial cells significantly decreased against all the tested biofilm bacteria upon treatment with MC, compared with CTRL and UW. Electron microscopy analysis revealed the biofilm formation by all bacteria on the EVA discs before cleaning. We observed fewer bacteria on the EVA discs treated with MC than those treated with CTRL and UW. Furthermore, the degree of cleanliness of the used experimental sports mouthguards cleaned using MC was significantly higher than that of the CTRL-treated mouthguards. Moreover, the viable microbial cell counts on the used experimental sports mouthguard were considerably lower than those on the CTRL ones. Conclusion The cleaning effect of MC against oral bacteria was more effective than that of UW. MC treatment might have a potential future application as a cleaning method for sports mouthguards to protect athletes from oral infection.
Collapse
Affiliation(s)
- Hiroki Hayashi
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan,Department of Fixed Prosthodontics and Oral Implantology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Yoshikazu Naiki
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Masahiro Murakami
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan,Department of Gerodontology and Home Care Dentistry, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Akihiro Oishi
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Rihoko Takeuchi
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan,Department of Gerodontology and Home Care Dentistry, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Masayoshi Nakagawa
- Department of Fixed Prosthodontics and Oral Implantology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Suguru Kimoto
- Department of Fixed Prosthodontics and Oral Implantology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan,Department of Gerodontology and Home Care Dentistry, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Yoshiaki Hasegawa
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Akizumi Araki
- Department of Fixed Prosthodontics and Oral Implantology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| |
Collapse
|
33
|
Hasan A, Roome T, Wahid M, Ansari SA, Akhtar H, Jilani SNA, Kiyani A. Gene expression analysis of toll like receptor 2 and 4, Dectin-1, Osteopontin and inflammatory cytokines in human dental pulp ex-vivo. BMC Oral Health 2022; 22:563. [PMID: 36463168 PMCID: PMC9719632 DOI: 10.1186/s12903-022-02621-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/25/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Toll like receptors (TLR) 2 and 4 present on innate immune cells of the dental pulp detect cariogenic bacteria. Along with bacteria, C. albicans may also be present in dental caries. The presence of C. albicans can be detected by Dectin-1 a C type Lectin receptor. Expression of Dectin-1 in human pulpits has not been reported. Similarly, cytokines are released as a consequence of dental pulp inflammation caused by cariogenic bacteria. The T helper (Th) 1 inflammatory response leads to exacerbation of inflammation and its relationship with Osteopontin (OPN) is not known in pulp inflammation. OBJECTIVE The aim of this study was to observe the expression of Dectin-1, TLR-2, OPN and pro-inflammatory cytokines in irreversibly inflamed human dental pulp and to observe relationship between Dectin-1/TLR-2 and OPN/Pro-inflammatory cytokines in the presence of appropriate controls. METHODS A total of 28 subjects diagnosed with irreversible pulpitis were included in this ex-vivo study. Fifteen samples were subjected to standard hematoxylin and Eosin (H&E) and immunohistochemistry staining. Whereas, gene expression analysis was performed on 13 samples to observe mRNA expression of pro-inflammatory cytokines; tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1 beta (ß), IL-6 Dectin-1, OPN, TLR-2 and TLR-4. SPSS version 21 was used for statistical analysis. One way analysis of variance (ANOVA), Pearson correlation and Chi-square test were used at p ≤ 0.05. RESULTS Gene expressions of Dectin-1, TLR-2 and TLR-4 were observed in all samples. Dectin-1 and TLR-2 expressions were significantly correlated (r = 0.5587, p = 0.0002). Similarly, OPN and TNF-α expression showed a significant correlation (r = 0.5860, p = 0001). The agreement between histologic and clinical diagnosis was 69.2% in the cases of irreversible pulpitis. CONCLUSION Dectin-1 was expressed by inflamed human dental pulp. Dectin-1 and TLR-2 expression pattern was suggestive of a collaborative receptor response in inflamed pulp environment. OPN and TNF-α expressions showed a positive correlation indicating a possible relationship.
Collapse
Affiliation(s)
- Arshad Hasan
- grid.412080.f0000 0000 9363 9292Department of Operative Dentistry, Dow Dental College, Dow University of Health Sciences, Baba-E-Urdu Road, Karachi, 74200 Pakistan
| | - Talat Roome
- Department of Pathology, Section Molecular Pathology, Dow International Medical College, Ojha Campus, Gulzar-E-Hijri, Karachi, Pakistan ,grid.412080.f0000 0000 9363 9292Dow Institute for Advanced Biological and Animal Research, Dow University of Health Sciences, Ojha Campus, Gulzar-E-Hijri, Karachi, Pakistan
| | - Mohsin Wahid
- grid.412080.f0000 0000 9363 9292Department of Pathology, Dow International Medical College, Dow University of Health Sciences, Ojha Campus, Gulzar-E-Hijri, Karachi, Pakistan ,grid.412080.f0000 0000 9363 9292Dow Research Institute of Biotechnology and Biomedical Sciences, Dow University of Health Sciences, Ojha Campus, Gulzar-E-Hijri, Karachi, Pakistan
| | - Shazia Akbar Ansari
- grid.412080.f0000 0000 9363 9292Department of Oral Pathology, Dow Dental College, Dow University of Health Sciences, Baba-E-Urdu Road, Karachi, 74200 Pakistan
| | - Hira Akhtar
- grid.412080.f0000 0000 9363 9292Department of Operative Dentistry, Dow Dental College, Dow University of Health Sciences, Baba-E-Urdu Road, Karachi, 74200 Pakistan
| | - Syeda Neha Ahmed Jilani
- grid.412080.f0000 0000 9363 9292Dow Institute for Advanced Biological and Animal Research, Dow University of Health Sciences, Ojha Campus, Gulzar-E-Hijri, Karachi, Pakistan
| | - Amber Kiyani
- grid.414839.30000 0001 1703 6673Department of Oral Medicine and Diagnosis, Islamic International Dental College, Riphah International University, 7th Avenue G-7/4, Islamabad, Pakistan
| |
Collapse
|
34
|
Okahashi N, Nakata M, Kuwata H, Kawabata S. Oral mitis group streptococci: A silent majority in our oral cavity. Microbiol Immunol 2022; 66:539-551. [PMID: 36114681 DOI: 10.1111/1348-0421.13028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 12/13/2022]
Abstract
Members of the oral mitis group streptococci including Streptococcus oralis, Streptococcus sanguinis, and Streptococcus gordonii are the most abundant inhabitants of human oral cavity and dental plaque, and have been implicated in infectious complications such as bacteremia and infective endocarditis. Oral mitis group streptococci are genetically close to Streptococcus pneumoniae; however, they do not produce cytolysin (pneumolysin), which is a key virulence factor of S. pneumoniae. Similar to S. pneumoniae, oral mitis group streptococci possess several cell surface proteins that bind to the cell surface components of host mammalian cells. S. sanguinis expresses long filamentous pili that bind to the matrix proteins of host cells. The cell wall-anchored nuclease of S. sanguinis contributes to the evasion of the neutrophil extracellular trap by digesting its web-like extracellular DNA. Oral mitis group streptococci produce glucosyltransferases, which synthesize glucan (glucose polymer) from sucrose of dietary origin. Neuraminidase (NA) is a virulent factor in oral mitis group streptococci. Influenza type A virus (IAV) relies on viral NA activity to release progeny viruses from infected cells and spread the infection, and NA-producing oral streptococci elevate the risk of IAV infection. Moreover, oral mitis group streptococci produce hydrogen peroxide (H2 O2 ) as a by-product of sugar metabolism. Although the concentrations of streptococcal H2 O2 are low (1-2 mM), they play important roles in bacterial competition in the oral cavity and evasion of phagocytosis by host macrophages and neutrophils. In this review, we intended to describe the diverse pathogenicity of oral mitis group streptococci.
Collapse
Affiliation(s)
- Nobuo Okahashi
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan.,Center for Frontier Oral Science, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Masanobu Nakata
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hirotaka Kuwata
- Department of Oral Microbiology and Immunology, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| |
Collapse
|
35
|
Asensio G, Hernández-Arriaga AM, Martín-Del-Campo M, Prieto MA, Rojo L, Vázquez-Lasa B. A study on Sr/Zn phytate complexes: structural properties and antimicrobial synergistic effects against Streptococcus mutans. Sci Rep 2022; 12:20177. [PMID: 36418367 PMCID: PMC9684506 DOI: 10.1038/s41598-022-24300-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Phytic acid (PA) is an abundant natural plant component that exhibits a versatility of applications benefited from its chemical structure, standing out its use as food, packing and dental additive due to its antimicrobial properties. The capacity of PA to chelate ions is also well-established and the formation and thermodynamic properties of different metallic complexes has been described. However, research studies of these compounds in terms of chemistry and biological features are still demanded in order to extend the application scope of PA complexes. The main goal of this paper is to deepen in the knowledge of the bioactive metal complexes chemistry and their bactericide activity, to extend their application in biomaterial science, specifically in oral implantology. Thus, this work presents the synthesis and structural assessment of two metallic phytate complexes bearing the bioactive cations Zn2+ and Sr2+ (ZnPhy and SrPhy respectively), along with studies on the synergic biological properties between PA and cations. Metallic phytates were synthesized in the solid-state by hydrothermal reaction leading to pure solid compounds in high yields. Their molecular formulas were C6H12024P6Sr4·5H2O and C6H12024P6Zn6·6H2O, as determined by ICP and HRES-TGA. The metal coordination bond of the solid complexes was further analysed by EDS, Raman, ATR-FTIR and solid 13C and 31P-NMR spectroscopies. Likewise, we evaluated the in vitro ability of the phytate compounds for inhibiting biofilm production of Streptococcus mutans cultures. Results indicate that all compounds significantly reduced biofilm formation (PA < SrPhy < ZnPhy), and ZnPhy even showed remarkable differences with respect to PA and SrPhy. Analysis of antimicrobial properties shows the first clues of the possible synergic effects created between PA and the corresponding cation in different cell metabolic processes. In overall, findings of this work can contribute to expand the applications of these bioactive metallic complexes in the biotechnological and biomedical fields, and they can be considered for the fabrication of anti-plaque coating systems in the dentistry field.
Collapse
Affiliation(s)
- Gerardo Asensio
- Instituto de Ciencia y Tecnología de Polímeros, (ICTP), CSIC, C/ Juan de la Cierva, 3, 28006, Madrid, Spain
| | - Ana M Hernández-Arriaga
- Centro de Investigaciones Biológicas - Margarita Salas (CIB-Margarita Salas), CSIC, C/ Ramiro de Maeztu, 9, 28040, Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Marcela Martín-Del-Campo
- Instituto de Ciencia y Tecnología de Polímeros, (ICTP), CSIC, C/ Juan de la Cierva, 3, 28006, Madrid, Spain
- Facultad de Estomatología, Universidad Autónoma San Luis Potosí, Avenida Dr. Manuel Nava, 2, 78290, San Luis, México
| | - M Auxiliadora Prieto
- Centro de Investigaciones Biológicas - Margarita Salas (CIB-Margarita Salas), CSIC, C/ Ramiro de Maeztu, 9, 28040, Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Luis Rojo
- Instituto de Ciencia y Tecnología de Polímeros, (ICTP), CSIC, C/ Juan de la Cierva, 3, 28006, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain.
- Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain.
| | - Blanca Vázquez-Lasa
- Instituto de Ciencia y Tecnología de Polímeros, (ICTP), CSIC, C/ Juan de la Cierva, 3, 28006, Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| |
Collapse
|
36
|
Oral mitis group streptococci reduce infectivity of influenza A virus via acidification and H2O2 production. PLoS One 2022; 17:e0276293. [DOI: 10.1371/journal.pone.0276293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/04/2022] [Indexed: 11/11/2022] Open
Abstract
Members of the mitis group streptococci are the most abundant inhabitants of the oral cavity and dental plaque. Influenza A virus (IAV), the causative agent of influenza, infects the upper respiratory tract, and co-infection with Streptococcus pneumoniae is a major cause of morbidity during influenza epidemics. S. pneumoniae is a member of mitis group streptococci and shares many features with oral mitis group streptococci. In this study, we investigated the effect of viable Streptococcus oralis, a representative member of oral mitis group, on the infectivity of H1N1 IAV. The infectivity of IAV was measured by a plaque assay using Madin-Darby canine kidney cells. When IAV was incubated in growing culture of S. oralis, the IAV titer decreased in a time- and dose-dependent manner and became less than 100-fold, whereas heat-inactivated S. oralis had no effect. Other oral streptococci such as Streptococcus mutans and Streptococcus salivarius also reduced the viral infectivity to a lesser extent compared to S. oralis and Streptococcus gordonii, another member of the oral mitis group. S. oralis produces hydrogen peroxide (H2O2) at a concentration of 1–2 mM, and its mutant deficient in H2O2 production showed a weaker effect on the inactivation of IAV, suggesting that H2O2 contributes to viral inactivation. The contribution of H2O2 was confirmed by an inhibition assay using catalase, an H2O2-decomposing enzyme. These oral streptococci produce short chain fatty acids (SCFA) such as acetic acid as a by-product of sugar metabolism, and we also found that the inactivation of IAV was dependent on the mildly acidic pH (around pH 5.0) of these streptococcal cultures. Although inactivation of IAV in buffers of pH 5.0 was limited, incubation in the same buffer containing 2 mM H2O2 resulted in marked inactivation of IAV, which was similar to the effect of growing S. oralis culture. Taken together, these results reveal that viable S. oralis can inactivate IAV via the production of SCFAs and H2O2. This finding also suggests that the combination of mildly acidic pH and H2O2 at low concentrations could be an effective method to inactivate IAV.
Collapse
|
37
|
Kuryłek A, Stasiak M, Kern-Zdanowicz I. Virulence factors of Streptococcus anginosus - a molecular perspective. Front Microbiol 2022; 13:1025136. [PMID: 36386673 PMCID: PMC9643698 DOI: 10.3389/fmicb.2022.1025136] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/10/2022] [Indexed: 07/21/2023] Open
Abstract
Streptococcus anginosus together with S. constellatus and S. intermedius constitute the Streptococcus anginosus group (SAG), until recently considered to be benign commensals of the human mucosa isolated predominantly from oral cavity, but also from upper respiratory, intestinal, and urogenital tracts. For years the virulence potential of SAG was underestimated, mainly due to complications in correct species identification and their assignment to the physiological microbiota. Still, SAG representatives have been associated with purulent infections at oral and non-oral sites resulting in abscesses formation and empyema. Also, life threatening blood infections caused by SAG have been reported. However, the understanding of SAG as potential pathogen is only fragmentary, albeit certain aspects of SAG infection seem sufficiently well described to deserve a systematic overview. In this review we summarize the current state of knowledge of the S. anginosus pathogenicity factors and their mechanisms of action.
Collapse
|
38
|
Otsugu M, Mikasa Y, Kitamura T, Suehiro Y, Matayoshi S, Nomura R, Nakano K. Clinical characteristics of children and guardians possessing CBP-positive Streptococcus mutans strains: a cross-sectional study. Sci Rep 2022; 12:17510. [PMID: 36266432 PMCID: PMC9585102 DOI: 10.1038/s41598-022-22378-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/13/2022] [Indexed: 01/12/2023] Open
Abstract
Streptococcus mutans is a major etiological agent for dental caries. We previously demonstrated that S. mutans strains expressing collagen-binding proteins (CBPs) were related to the pathogenesis of systemic diseases. However, their acquisition and colonization remain unknown. Here, we investigated the detection rates of CBP-positive S. mutans strains in children and their guardians to clarify the background for the acquisition and colonization in children. Saliva samples were collected from children and their mothers, and detection of S. mutans and collagen-binding genes (cnm, cbm) was performed by PCR after DNA extraction. The oral status of each child was examined, and their mothers were asked to complete a questionnaire. The isolation rate of Cnm-positive S. mutans was significantly higher in mothers than in children. Notably, the possession rates of CBP-positive strains in children were significantly higher in children whose mothers had CBP-positive strains than in children whose mothers did not have these strains. Furthermore, children with CBP-positive strains had a significantly shorter breastfeeding period than children without these strains. The present results suggest that nutritional feeding habits in infancy are one of the factors involved in the acquisition and colonization of CBP-positive S. mutans strains.
Collapse
Affiliation(s)
- Masatoshi Otsugu
- grid.136593.b0000 0004 0373 3971Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamada-Oka, Suita, Osaka, 565-0871 Japan
| | - Yusuke Mikasa
- grid.136593.b0000 0004 0373 3971Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamada-Oka, Suita, Osaka, 565-0871 Japan
| | - Takahiro Kitamura
- grid.136593.b0000 0004 0373 3971Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamada-Oka, Suita, Osaka, 565-0871 Japan
| | - Yuto Suehiro
- grid.136593.b0000 0004 0373 3971Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamada-Oka, Suita, Osaka, 565-0871 Japan
| | - Saaya Matayoshi
- grid.136593.b0000 0004 0373 3971Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamada-Oka, Suita, Osaka, 565-0871 Japan
| | - Ryota Nomura
- grid.136593.b0000 0004 0373 3971Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamada-Oka, Suita, Osaka, 565-0871 Japan ,grid.257022.00000 0000 8711 3200Department of Pediatric Dentistry, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Kazuhiko Nakano
- grid.136593.b0000 0004 0373 3971Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamada-Oka, Suita, Osaka, 565-0871 Japan
| |
Collapse
|
39
|
Nguyen M, Dinis M, Lux R, Shi W, Tran NC. Correlation between Streptococcus mutans levels in dental plaque and saliva of children. J Oral Sci 2022; 64:290-293. [PMID: 36104181 DOI: 10.2334/josnusd.22-0177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
PURPOSE This study was designed to compare the levels of Streptococcus mutans (S. mutans) in saliva with those in occlusal plaque on posterior teeth at different stages of dentition, and to explore the correlation with caries experience to determine the most suitable source of S. mutans for research. METHODS Samples of saliva and occlusal plaque were collected from 83 patients (aged 3-17 years) over three months. S. mutans levels were determined by culture-based selective plating, morphological identification, and S.mutans-specific monoclonal antibody labeling. RESULTS The mean age of the participants was 8.8 (±3.7) years, and 74.7% of them were Hispanic. Mean caries experience for children with primary, mixed, and permanent dentition was 5.2 (±4.7), 4.0 (±3.3), and 0.8 (±1.3), respectively. Children with primary and mixed dentition had a higher caries experience than children with permanent dentition (P < 0.01), despite having similar S. mutans levels and total bacteria. A positive correlation was observed between S. mutans levels in plaque and those in saliva, but not between S. mutans levels and caries experience. It was noteworthy that plaque samples harbored higher S. mutans levels (>105 CFU/mL) than saliva samples. CONCLUSION Both plaque and saliva samples are useful sources for S. mutans isolation. S. mutans levels from both sources were not significantly correlated with caries experience, but occlusal plaque had greater sensitivity for quantification of high S. mutans levels.
Collapse
Affiliation(s)
- Matthew Nguyen
- Section of Pediatric Dentistry, Division of Preventive and Restorative Sciences, School of Dentistry, University of California, Los Angeles
| | - Márcia Dinis
- Section of Pediatric Dentistry, Division of Preventive and Restorative Sciences, School of Dentistry, University of California, Los Angeles
| | - Renate Lux
- Section of Biosystems and Function, Division of Oral and Systematic Health Sciences, School of Dentistry, University of California, Los Angeles
| | | | - Nini C Tran
- Section of Pediatric Dentistry, Division of Preventive and Restorative Sciences, School of Dentistry, University of California, Los Angeles
| |
Collapse
|
40
|
Chinipardaz Z, Zhong JM, Yang S. Regulation of LL-37 in Bone and Periodontium Regeneration. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101533. [PMID: 36294968 PMCID: PMC9604716 DOI: 10.3390/life12101533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022]
Abstract
The goal of regenerative therapy is to restore the structure and function of the lost tissues in the fields of medicine and dentistry. However, there are some challenges in regeneration therapy such as the delivery of oxygen and nutrition, and the risk of infection in conditions such as periodontitis, osteomyelitis, etc. Leucine leucine-37 (LL-37) is a 37-residue, amphipathic, and helical peptide found only in humans and is expressed throughout the body. It has been shown to induce neovascularization and vascular endothelial growth factor (VEGF) expression. LL-37 also stimulates the migration and differentiation of mesenchymal stem cells (MSCs). Recent studies have shown that LL-37 plays an important role in the innate defense system through the elimination of pathogenic microbes and the modulation of the host immune response. LL-37 also manifests other functions such as promoting wound healing, angiogenesis, cell differentiation, and modulating apoptosis. This review summarizes the current studies on the structure, expression, and function of LL-37 and highlights the contributions of LL-37 to oral cavity, periodontium, and bone regeneration.
Collapse
Affiliation(s)
- Zahra Chinipardaz
- Department of Basic and Translation Sciences, University of Pennsylvania, 240 South 40th Street, Levy 437, Philadelphia, PA 19104, USA
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica M. Zhong
- Department of Basic and Translation Sciences, University of Pennsylvania, 240 South 40th Street, Levy 437, Philadelphia, PA 19104, USA
| | - Shuying Yang
- Department of Basic and Translation Sciences, University of Pennsylvania, 240 South 40th Street, Levy 437, Philadelphia, PA 19104, USA
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Penn Center for Musculoskeletal Disorders, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence:
| |
Collapse
|
41
|
Amend S, Frankenberger R, Lücker S, Krämer N. Caries-inhibiting Effect of Microencapsulated Active Components in Pit and Fissure Sealants. Oper Dent 2022; 47:E174-E187. [PMID: 35917241 DOI: 10.2341/20-048-l] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVE The aim of the present in vitro study was to examine the caries-inhibiting effect of a pit and fissure sealant (PFS) containing ion-releasing microcapsules under cariogenic conditions in a biofilm artificial mouth. METHODS AND MATERIALS Forty-eight human third molars were divided into four groups (n=12 per group). Fissures were extended with burs and sealed with experimental PFS. The four groups of specimens were treated as follows: 1) EPFS 1: EPFS (Premier Dental) of increasing viscosity, containing microcapsules loaded with remineralizing agents (calcium, phosphate, and fluoride ions); 2) US: fluoride-releasing PFS (UltraSeal XT plus, UltraDent Products, South Jordan, UT, USA); 3) EPFS 2: experimental PFS of constant viscosity containing microcapsules loaded with calcium, phosphate, and fluoride ions; and 4) FT: glass ionomer cement (GIC) (GC Fuji Triage CAPSULE WHITE glass ionomer cement, GC Europe NV, Leuven, Belgium). FT and US were used as control groups. EPFS 1 and EPFS 2 were the experimental groups. Specimens were stored in distilled water for 14 days at 37°C, subjected to 10,000 thermocycles (5°C and 55°C) and finally exposed to microbiological cycling in a Streptococcus mutans-based artificial mouth for 10 days. Replicas were made for scanning electron microscopic (SEM) evaluation and specimens were cut for fluorescence microscopy. RESULTS Overall demineralization depths at the margin of Fuji Triage were significantly shallower than in the other groups (p<0.05). Overall demineralization depths adjacent to the experimental pit and fissure sealant EPFS 2 (59±15 μm) were comparable to the values of the resin-based pit and fissure sealant UltraSeal XT plus (58±10 μm, p≥0.05). SEM revealed surface roughness of the GIC-based PFS. CONCLUSIONS The experimental PFS with microcapsules containing active components for remineralization did not show a caries-inhibiting effect compared to a fluoride-releasing resin-based PFS. Lower demineralization depths adjacent to GIC sealants indicate an anticariogenic effect through fluoride ion release.
Collapse
Affiliation(s)
- S Amend
- Stefanie Amend, DMD, Justus Liebig University Giessen, Giessen, Hesse, Germany
| | - R Frankenberger
- *Roland Frankenberger, professor, Phillips-University Marburg, Marburg, Hesse, Germany
| | - S Lücker
- Susanne Lücker, DMV, Justus Liebig University Giessen, Giessen, Hesse, Germany
| | - N Krämer
- Norbert Krämer, DMD, PhD, Justus Liebig University Giessen, Giessen, Hesse, Germany
| |
Collapse
|
42
|
Trans-Cinnamaldehyde Eluting Porous Silicon Microparticles Mitigate Cariogenic Biofilms. Pharmaceutics 2022; 14:pharmaceutics14071428. [PMID: 35890323 PMCID: PMC9322055 DOI: 10.3390/pharmaceutics14071428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 02/05/2023] Open
Abstract
Dental caries, a preventable disease, is caused by highly-adherent, acid-producing biofilms composed of bacteria and yeasts. Current caries-preventive approaches are ineffective in controlling biofilm development. Recent studies demonstrate definite advantages in using natural compounds such as trans-cinnamaldehyde in thwarting biofilm assembly, and yet, the remarkable difficulty in delivering such hydrophobic bioactive molecules prevents further development. To address this critical challenge, we have developed an innovative platform composed of components with a proven track record of safety. We fabricated and thoroughly characterised porous silicon (pSi) microparticles to carry and deliver the natural phenyl propanoid trans-cinnamaldehyde (TC). We investigated its effects on preventing the development of cross-kingdom biofilms (Streptococcus mutans and Candida albicans), typical of dental caries found in children. The prepared pSi microparticles were roughly cubic in structure with 70–75% porosity, to which the TC (pSi-TC) was loaded with about 45% efficiency. The pSi-TC particles exhibited a controlled release of the cargo over a 14-day period. Notably, pSi-TC significantly inhibited biofilms, specifically downregulating the glucan synthesis pathways, leading to reduced adhesion to the substrate. Acid production, a vital virulent trait for caries development, was also hindered by pSi-TC. This pioneering study highlights the potential to develop the novel pSi-TC as a dental caries-preventive material.
Collapse
|
43
|
Gene Rearrangement and Modification of Immunity Factors Are Correlated with the Insertion of Bacteriocin Cassettes in Streptococcus mutans. Microbiol Spectr 2022; 10:e0180621. [PMID: 35604175 PMCID: PMC9241761 DOI: 10.1128/spectrum.01806-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Bacteriocins have been applied in the food industries and have become promising next-generation antibiotics. Some bacteria produce bacteriocins and possess immunity factors for self-protection. Nisin A, a bacteriocin produced by Lactococcus lactis, shows broad-spectrum activity. However, the evolution and cross-resistance ability of the immunity factors in some species results in reduced susceptibility to bacteriocins. Here, we investigated the elements responsible for nisin A resistance in Streptococcus mutans and their contribution to mutacins (bacteriocins produced by S. mutans) resistance. We classified the nisin A-resistance regions into six types based on the different combinations of 3 immunity factors, mutFEG, nsrX, and mutHIJ, and the presence of mutacin synthesis operon upstream of mutF. Data shows that NsrX effectively acts against nisin A but not mutacins, while the newly identified ABC transporter MutHIJ acts against three mutacins but not nisin A. Three types of MutFEG are identified based on their amino acid sequences: α (in Nsr-types C and D-I), β (in Nsr-types B and d-III), and γ (in Nsr-type E). MutFEG-α strongly contributes to mutacin I resistance, while MutFEG-β and MutFEG-γ strongly contribute to mutacin III, IIIb, and nisin A resistance. Additionally, mutFEG-like structures could be found in various streptococcal species isolated from the oral cavity of humans, chimpanzees, monkeys, bears, and hamsters. Our findings suggest that immunity factors rearrange and adapt in the presence of bacteriocins and could be transferred among closely related species, thus altering the bacterial competition within the microflora. IMPORTANCEStreptococcus mutans is an important organism of oral microbiota and associated with dental caries and systemic diseases such as stroke and endocarditis. They produce bacteriocins known as mutacins to compete with other oral bacteria and possess immune factors for self-protection. We found that the nisin A and mutacins resistance patterns correlated with the immunity components and MutFEG variants, and the genetic difference was driven by the insertion of mutacin-synthesis cassettes. Our study provides an understanding of the development of bacteriocin resistance among streptococcal species, which may alter the bacterial interaction and ecology within the oral biofilm.
Collapse
|
44
|
In Silico Identification of Novel Inhibitors Targeting the Homodimeric Interface of Superoxide Dismutase from the Dental Pathogen Streptococcus mutans. Antioxidants (Basel) 2022; 11:antiox11040785. [PMID: 35453470 PMCID: PMC9029323 DOI: 10.3390/antiox11040785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
The microaerophile Streptococcus mutans, the main microaerophile responsible for the development of dental plaque, has a single cambialistic superoxide dismutase (SmSOD) for its protection against reactive oxygen species. In order to discover novel inhibitors of SmSOD, possibly interfering with the biofilm formation by this pathogen, a virtual screening study was realised using the available 3D-structure of SmSOD. Among the selected molecules, compound ALS-31 was capable of inhibiting SmSOD with an IC50 value of 159 µM. Its inhibition power was affected by the Fe/Mn ratio in the active site of SmSOD. Furthermore, ALS-31 also inhibited the activity of other SODs. Gel-filtration of SmSOD in the presence of ALS-31 showed that the compound provoked the dissociation of the SmSOD homodimer in two monomers, thus compromising the catalytic activity of the enzyme. A docking model, showing the binding mode of ALS-31 at the dimer interface of SmSOD, is presented. Cell viability of the fibroblast cell line BJ5-ta was not affected up to 100 µM ALS-31. A preliminary lead optimization program allowed the identification of one derivative, ALS-31-9, endowed with a 2.5-fold improved inhibition power. Interestingly, below this concentration, planktonic growth and biofilm formation of S. mutans cultures were inhibited by ALS-31, and even more by its derivative, thus opening the perspective of future drug design studies to fight against dental caries.
Collapse
|
45
|
Tran P, Kopel J, Ray C, Reed J, Reid TW. Organo-selenium containing dental sealant inhibits biofilm formation by oral bacteria. Dent Mater 2022; 38:848-857. [DOI: 10.1016/j.dental.2022.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/17/2022]
|
46
|
Santos HSDB, Do T, Parolo CCF, Poloni JDF, Maltz M, Arthur RA, Damé-Teixeira N. Streptococcus mutans gene expression and functional profile in root caries: an RNA-seq study. Caries Res 2022; 56:116-128. [DOI: 10.1159/000524196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/20/2022] [Indexed: 11/19/2022] Open
Abstract
The literature is still scarce on studies describing S. mutans global gene expression under clinical conditions such as those found on complex biofilms from sound root surfaces (SRS) and carious root surfaces (RC). This study aimed to investigate the S. mutans gene expression and functional profile within the metatranscriptome of biofilms from SRS and from RC in an attempt to identify enriched functional signatures potentially associated with healthy to disease transitioning process. Total RNA was extracted, and prepared libraries (SRS=10 and RC=9) were paired-end sequenced using the Illumina HiSeq2500. Read count assigned to each gene of the S. mutans UA159 strain were obtained. Differentially expressed genes (DEG) between SRS and RC were identified using the DESeq2 R package and weighted gene co-expression network analysis (WGCNA) was performed to explore and identify functional modules related to SRS and RC. We found seventeen DEG between SRS and RC samples, with three overexpressed in RC and related to membrane protein, alanyl-tRNA synthetase and GTP-binding protein with the remaining ones overexpressed in SRS samples and related to hypothetical protein, transposon integrase, histidine kinase, putative transporter, bacteriocin immunity protein, response regulator, 6-phospho-beta-galactosidase, purine metabolism and to transcriptional regulator. Key-functional modules were identified for SRS and RC conditions based on WCGNA, being 139 hub genes found on SRS key-module and 17 genes on RC key-module. Functional analysis of S. mutans within the metatranscriptome of biofilms from sound root and from carious root revealed a similar pattern of gene expression, and only a few genes have been differentially expressed between biofilms from sound root surfaces and from root carious lesions. However, S. mutans presented a greater functional abundance in the lesion samples. Some functional patterns related to sugar (starch, sucrose, fructose, mannose and lactose) and heterofermentative metabolisms, to cell-wall biosynthesis and to acid tolerance stress seem to be enriched on carious root surfaces conferring ecological advantages to S. mutans. Altogether, the present data suggest that a functional signature may be associated with carious root lesions.
Collapse
|
47
|
Peng X, Han Q, Zhou X, Chen Y, Huang X, Guo X, Peng R, Wang H, Peng X, Cheng L. Effect of pH-sensitive nanoparticles on inhibiting oral biofilms. Drug Deliv 2022; 29:561-573. [PMID: 35156501 PMCID: PMC8856036 DOI: 10.1080/10717544.2022.2037788] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Dental caries is a biofilm-related preventable infectious disease caused by interactions between the oral bacteria and the host’s dietary sugars. As the microenvironments in cariogenic biofilms are often acidic, pH-sensitive drug delivery systems have become innovative materials for dental caries prevention in recent years. In the present study, poly(DMAEMA-co-HEMA) was used as a pH-sensitive carrier to synthesize a chlorhexidine (CHX)-loaded nanomaterial (p(DH)@CHX). In vitro, p(DH)@CHX exhibited good pH sensitivity and a sustained and high CHX release rate in the acidic environment. It also exhibited lower cytotoxicity against human oral keratinocytes (HOKs) compared to free CHX. Besides, compared with free CHX, p(DH)@CHX showed the same antibacterial effects on S. mutans biofilms. In addition, it had no effect on eradicating healthy saliva-derived biofilm, while free CHX exhibited an inhibitory effect. Furthermore, the 16s rDNA sequencing results showed that p(DH)@CHX had the potential to alter oral microbiota composition and possibly reduce caries risk. In conclusion, the present study presents an alternative option to design an intelligent material to prevent and treat dental caries.
Collapse
Affiliation(s)
- Xinyu Peng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Qi Han
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Oral Pathology, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yanyan Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoyu Huang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xiao Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Ruiting Peng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Haohao Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
48
|
Lemaire C, Le Gallou B, Lanotte P, Mereghetti L, Pastuszka A. Distribution, Diversity and Roles of CRISPR-Cas Systems in Human and Animal Pathogenic Streptococci. Front Microbiol 2022; 13:828031. [PMID: 35173702 PMCID: PMC8841824 DOI: 10.3389/fmicb.2022.828031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/10/2022] [Indexed: 12/26/2022] Open
Abstract
Streptococci form a wide group of bacteria and are involved in both human and animal pathologies. Among pathogenic isolates, differences have been highlighted especially concerning their adaptation and virulence profiles. CRISPR-Cas systems have been identified in bacteria and many streptococci harbor one or more systems, particularly subtypes I-C, II-A, and III-A. Since the demonstration that CRISPR-Cas act as an adaptive immune system in Streptococcus thermophilus, a lactic bacteria, the diversity and role of CRISPR-Cas were extended to many germs and functions were enlarged. Among those, the genome editing tool based on the properties of Cas endonucleases is used worldwide, and the recent attribution of the Nobel Prize illustrates the importance of this tool in the scientific world. Another application is CRISPR loci analysis, which allows to easily characterize isolates in order to understand the interactions of bacteria with their environment and visualize species evolution. In this review, we focused on the distribution, diversity and roles of CRISPR-Cas systems in the main pathogenic streptococci.
Collapse
Affiliation(s)
- Coralie Lemaire
- Université de Tours, INRAE, Infectiologie et Santé Publique, BRMF, Tours, France
- Service de Bactériologie-Virologie, Centre Hospitalier Régional Universitaire de Tours, Tours, France
| | - Brice Le Gallou
- Université de Tours, INRAE, Infectiologie et Santé Publique, BRMF, Tours, France
- Service de Bactériologie-Virologie, Centre Hospitalier Régional Universitaire de Tours, Tours, France
| | - Philippe Lanotte
- Université de Tours, INRAE, Infectiologie et Santé Publique, BRMF, Tours, France
- Service de Bactériologie-Virologie, Centre Hospitalier Régional Universitaire de Tours, Tours, France
- *Correspondence: Philippe Lanotte,
| | - Laurent Mereghetti
- Université de Tours, INRAE, Infectiologie et Santé Publique, BRMF, Tours, France
- Service de Bactériologie-Virologie, Centre Hospitalier Régional Universitaire de Tours, Tours, France
| | - Adeline Pastuszka
- Université de Tours, INRAE, Infectiologie et Santé Publique, BRMF, Tours, France
- Service de Bactériologie-Virologie, Centre Hospitalier Régional Universitaire de Tours, Tours, France
| |
Collapse
|
49
|
Regulatory Effect of Irresistin-16 on Competitive Dual-Species Biofilms Composed of Streptococcus mutans and Streptococcus sanguinis. Pathogens 2022; 11:pathogens11010070. [PMID: 35056018 PMCID: PMC8779588 DOI: 10.3390/pathogens11010070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/01/2022] [Accepted: 01/02/2022] [Indexed: 02/04/2023] Open
Abstract
Based on the ecological plaque hypothesis, suppressing opportunistic pathogens within biofilms, rather than killing microbes indiscriminately, could be a biofilm control strategy for managing dental caries. The present study aimed to evaluate the effects of irresistin-16 (IRS-16) on competitive dual-species biofilms, which consisted of the conditional cariogenic agent Streptococcus mutans (S. mutans) and oral commensal bacteria Streptococcus sanguinis (S. sanguinis). Bacterial growth and biofilm formation were monitored using growth curve and crystal violet staining, respectively. The microbial proportion was determined using fluorescence in situ hybridization. A 2, 5-diphenyltetrazolium bromide assay was used to measure the metabolic activity of biofilms. Bacterial/extracellular polysaccharide (EPS) dyeing, together with water-insoluble EPS measurements, were used to estimate EPS synthesis. A lactic acid assay was performed to detect lactic acid generation in biofilms. The cytotoxicity of IRS-16 was evaluated in mouse fibroblast L929 cells using a live/dead cell viability assay and cell counting kit-8 assay. Our results showed that IRS-16 exhibited selective anti-biofilm activity, leading to a remarkable survival disadvantage of S. mutans within competitive dual-species biofilms. In addition, the metabolic activity, EPS synthesis, and acid generation of dual-species biofilms were significantly reduced by IRS-16. Moreover, IRS-16 showed minimal cytotoxicity against mouse fibroblast L929 cells. In conclusion, IRS-16 exhibited remarkable regulatory effects on dual-species biofilms composed of S. mutans and S. sanguinis with low cytotoxicity, suggesting that it may have potential for use in caries management through ecological biofilm control.
Collapse
|
50
|
Wang T, Ishikawa T, Sasaki M, Chiba T. Oral and Gut Microbial Dysbiosis and Non-alcoholic Fatty Liver Disease: The Central Role of Porphyromonas gingivalis. Front Med (Lausanne) 2022; 9:822190. [PMID: 35308549 PMCID: PMC8924514 DOI: 10.3389/fmed.2022.822190] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/19/2022] [Indexed: 02/05/2023] Open
Abstract
Gut microbiota play many important roles, such as the regulation of immunity and barrier function in the intestine, and are crucial for maintaining homeostasis in living organisms. The disruption in microbiota is called dysbiosis, which has been associated with various chronic inflammatory conditions, food allergies, colorectal cancer, etc. The gut microbiota is also affected by several other factors such as diet, antibiotics and other medications, or bacterial and viral infections. Moreover, there are some reports on the oral-gut-liver axis indicating that the disruption of oral microbiota affects the intestinal biota. Non-alcoholic fatty liver disease (NAFLD) is one of the systemic diseases caused due to the dysregulation of the oral-gut-liver axis. NAFLD is the most common liver disease reported in the developed countries. It includes liver damage ranging from simple steatosis to nonalcoholic steatohepatitis (NASH), cirrhosis, and cancer. Recently, accumulating evidence supports an association between NAFLD and dysbiosis of oral and gut microbiota. Periodontopathic bacteria, especially Porphyromonas gingivalis, have been correlated with the pathogenesis and development of NAFLD based on the clinical and basic research, and immunology. P. gingivalis was detected in the liver, and lipopolysaccharide from this bacteria has been shown to be involved in the progression of NAFLD, thereby indicating a direct role of P. gingivalis in NAFLD. Moreover, P. gingivalis induces dysbiosis of gut microbiota, which promotes the progression of NAFLD, through disrupting both metabolic and immunologic pathways. Here, we review the roles of microbial dysbiosis in NAFLD. Focusing on P. gingivalis, we evaluate and summarize the most recent advances in our understanding of the relationship between oral-gut microbiome symbiosis and the pathogenesis and progression of non-alcoholic fatty liver disease, as well as discuss novel strategies targeting both P. gingivalis and microbial dysbiosis.
Collapse
Affiliation(s)
- Ting Wang
- Division of Internal Medicine, Department of Oral Medicine, Iwate Medical University, Morioka, Japan
- Ting Wang
| | - Taichi Ishikawa
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, Morioka, Japan
| | - Minoru Sasaki
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, Morioka, Japan
| | - Toshimi Chiba
- Division of Internal Medicine, Department of Oral Medicine, Iwate Medical University, Morioka, Japan
- *Correspondence: Toshimi Chiba
| |
Collapse
|