1
|
Mariner BL, Rodriguez AS, Heath OC, McCormick MA. Induction of proteasomal activity in mammalian cells by lifespan-extending tRNA synthetase inhibitors. GeroScience 2024; 46:1755-1773. [PMID: 37749371 PMCID: PMC10828360 DOI: 10.1007/s11357-023-00938-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/04/2023] [Indexed: 09/27/2023] Open
Abstract
We have recently shown that multiple tRNA synthetase inhibitors can greatly increase lifespan in multiple models by acting through the conserved transcription factor ATF4. Here, we show that these compounds, and several others of the same class, can greatly upregulate mammalian ATF4 in cells in vitro, in a dose dependent manner. Further, RNASeq analysis of these cells pointed toward changes in protein turnover. In subsequent experiments here we show that multiple tRNA synthetase inhibitors can greatly upregulate activity of the ubiquitin proteasome system (UPS) in cells in an ATF4-dependent manner. The UPS plays an important role in the turnover of many damaged or dysfunctional proteins in an organism. Increasing UPS activity has been shown to enhance the survival of Huntington's disease cell models, but there are few known pharmacological enhancers of the UPS. Additionally, we see separate ATF4 dependent upregulation of macroautophagy upon treatment with tRNA synthetase inhibitors. Protein degradation is an essential cellular process linked to many important human diseases of aging such as Alzheimer's disease and Huntington's disease. These drugs' ability to enhance proteostasis more broadly could have wide-ranging implications in the treatment of important age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Blaise L Mariner
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM, 87131, USA
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, Albuquerque, NM, 87131, USA
| | - Antonio S Rodriguez
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Olivia C Heath
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Mark A McCormick
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA.
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, Albuquerque, NM, 87131, USA.
| |
Collapse
|
2
|
Batista JM, Neves MJ, Menezes HC, Cardeal ZL. Evaluation of amino acid profile by targeted metabolomics in the eukaryotic model under exposure of benzo[a]pyrene as the exclusive stressor. Talanta 2023; 265:124859. [PMID: 37393711 DOI: 10.1016/j.talanta.2023.124859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/09/2023] [Accepted: 06/20/2023] [Indexed: 07/04/2023]
Abstract
Amino acids (AAs) are a class of important metabolites in metabolomics methodology that investigates metabolite changes in a cell, tissue, or organism for early diagnosis of diseases. Benzo[a]pyrene (BaP) is considered a priority contaminant by different environmental control agencies because it is a proven carcinogenic compound for humans. Therefore, it is important to evaluate the BaP interference in the metabolism of amino acids. In this work, a new amino acid extraction procedure (derivatized with propyl chloroformate/propanol) using functionalized magnetic carbon nanotubes was developed and optimized. A hybrid nanotube was used followed by desorption without heating, and excellent extraction of analytes was obtained. After exposure of Saccharomyces cerevisiae, the BaP concentration of 25.0 μmol L-1 caused changes in cell viability, indicating metabolic changes. A fast and efficient GC/MS method using a Phenomenex ZB-AAA column was optimized, enabling the determination of 16 AAs in yeasts exposed or not to BaP. A comparison of AA concentrations obtained in the two experimental groups showed that glycine (Gly), serine (Ser), phenylalanine (Phe), proline (Pro), asparagine (Asn), aspartic acid (Asp), glutamic acid (Glu), tyrosine (Tyr), and leucine (Leu) statistically differentiated, after subsequent application of ANOVA with Bonferroni post-hoc test, with a confidence level of 95%. This amino acid pathway analysis confirmed previous studies that revealed the potential of these AAs as toxicity biomarker candidates.
Collapse
Affiliation(s)
- Josimar M Batista
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, 31270901, Belo Horizonte, MG, Brazil
| | - Maria J Neves
- Nuclear Technology Development Center/National Nuclear Energy Commission (CDTN/CNEN), Belo Horizonte, MG, Brazil
| | - Helvécio C Menezes
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, 31270901, Belo Horizonte, MG, Brazil
| | - Zenilda L Cardeal
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, 31270901, Belo Horizonte, MG, Brazil.
| |
Collapse
|
3
|
Mariner BL, Felker DP, Cantergiani RJ, Peterson J, McCormick MA. Multiomics of GCN4-Dependent Replicative Lifespan Extension Models Reveals Gcn4 as a Regulator of Protein Turnover in Yeast. Int J Mol Sci 2023; 24:16163. [PMID: 38003352 PMCID: PMC10671045 DOI: 10.3390/ijms242216163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
We have shown that multiple tRNA synthetase inhibitors can increase lifespan in both the nematode C. elegans and the budding yeast S. cerevisiae by acting through the conserved transcription factor Gcn4 (yeast)/ATF-4 (worms). To further understand the biology downstream from this conserved transcription factor in the yeast model system, we looked at two different yeast models known to have upregulated Gcn4 and GCN4-dependent increased replicative lifespan. These two models were rpl31aΔ yeast and yeast treated with the tRNA synthetase inhibitor borrelidin. We used both proteomic and RNAseq analysis of a block experimental design that included both of these models to identify GCN4-dependent changes in these two long-lived strains of yeast. Proteomic analysis of these yeast indicate that the long-lived yeast have increased abundances of proteins involved in amino acid biosynthesis. The RNAseq of these same yeast uncovered further regulation of protein degradation, identifying the differential expression of genes associated with autophagy and the ubiquitin-proteasome system (UPS). The data presented here further underscore the important role that GCN4 plays in the maintenance of protein homeostasis, which itself is an important hallmark of aging. In particular, the changes in autophagy and UPS-related gene expression that we have observed could also have wide-ranging implications for the understanding and treatment of diseases of aging that are associated with protein aggregation.
Collapse
Affiliation(s)
- Blaise L. Mariner
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA (D.P.F.); (R.J.C.)
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131, USA
| | - Daniel P. Felker
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA (D.P.F.); (R.J.C.)
| | - Ryla J. Cantergiani
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA (D.P.F.); (R.J.C.)
| | - Jack Peterson
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA (D.P.F.); (R.J.C.)
| | - Mark A. McCormick
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA (D.P.F.); (R.J.C.)
- Autophagy, Inflammation, and Metabolism Center of Biomedical Research Excellence, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
4
|
Khari A, Biswas B, Gangwar G, Thakur A, Puria R. Candida auris biofilm: a review on model to mechanism conservation. Expert Rev Anti Infect Ther 2023; 21:295-308. [PMID: 36755419 DOI: 10.1080/14787210.2023.2179036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
INTRODUCTION Candida auris is included in the fungal infection category 'critical' by WHO because of associated high drug tolerance and spread at an alarming rate which if remains untouched may result in serious outbreaks. Since its discovery in 2009, several assiduous efforts by mycologists across the world have deciphered its biology including growth physiology, drug tolerance, biofilm formation, etc. The differential response of various strains from different clades poses a hurdle in drawing a final conclusion. AREAS COVERED This review provides brief insights into the understanding of C. auris biofilm. It includes information on various models developed to understand the biofilms and conservation of different signaling pathways. Significant development has been made in the recent past with the generation of relevant in vivo and ex vivo models. The role of signaling pathways in the development of biofilm is largely unknown. EXPERT OPINION The selection of an appropriate model system is a must for the accuracy and reproducibility of results. The conservation of major signaling pathways in C. auris with respect to C. albicans and S. cerevisiae highlights that initial inputs acquired from orthologs will be valuable in getting insights into the mechanism of biofilm formation and associated pathogenesis.
Collapse
Affiliation(s)
- Arsha Khari
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | | | | | - Anil Thakur
- Regional Centre for Biotechnology, Faridabad, India
| | - Rekha Puria
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| |
Collapse
|
5
|
Analysis of Pneumocystis Transcription Factor Evolution and Implications for Biology and Lifestyle. mBio 2023; 14:e0271122. [PMID: 36651897 PMCID: PMC9973273 DOI: 10.1128/mbio.02711-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Pneumocystis jirovecii kills hundreds of thousands of immunocompromised patients each year. Yet many aspects of the biology of this obligate pathogen remain obscure because it is not possible to culture the fungus in vitro independently of its host. Consequently, our understanding of Pneumocystis pathobiology is heavily reliant upon bioinformatic inferences. We have exploited a powerful combination of genomic and phylogenetic approaches to examine the evolution of transcription factors in Pneumocystis species. We selected protein families (Pfam families) that correspond to transcriptional regulators and used bioinformatic approaches to compare these families in the seven Pneumocystis species that have been sequenced to date with those from other yeasts, other human and plant pathogens, and other obligate parasites. Some Pfam families of transcription factors have undergone significant reduction during their evolution in the Pneumocystis genus, and other Pfam families have been lost or appear to be in the process of being lost. Meanwhile, other transcription factor families have been retained in Pneumocystis species, and some even appear to have undergone expansion. On this basis, Pneumocystis species seem to have retained transcriptional regulators that control chromosome maintenance, ribosomal gene regulation, RNA processing and modification, and respiration. Meanwhile, regulators that promote the assimilation of alternative carbon sources, amino acid, lipid, and sterol biosynthesis, and iron sensing and homeostasis appear to have been lost. Our analyses of transcription factor retention, loss, and gain provide important insights into the biology and lifestyle of Pneumocystis. IMPORTANCE Pneumocystis jirovecii is a major fungal pathogen of humans that infects healthy individuals, colonizing the lungs of infants. In immunocompromised and transplant patients, this fungus causes life-threatening pneumonia, and these Pneumocystis infections remain among the most common and serious infections in HIV/AIDS patients. Yet we remain remarkably ignorant about the biology and epidemiology of Pneumocystis due to the inability to culture this fungus in vitro. Our analyses of transcription factor retentions, losses, and gains in sequenced Pneumocystis species provide valuable new views of their specialized biology, suggesting the retention of many metabolic and stress regulators and the loss of others that are essential in free-living fungi. Given the lack of in vitro culture methods for Pneumocystis, this powerful bioinformatic approach has advanced our understanding of the lifestyle of P. jirovecii and the nature of its dependence on the host for survival.
Collapse
|
6
|
Zhao C, Guo H, Hou Y, Lei T, Wei D, Zhao Y. Multiple Roles of the Stress Sensor GCN2 in Immune Cells. Int J Mol Sci 2023; 24:ijms24054285. [PMID: 36901714 PMCID: PMC10002013 DOI: 10.3390/ijms24054285] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
The serine/threonine-protein kinase general control nonderepressible 2 (GCN2) is a well-known stress sensor that responds to amino acid starvation and other stresses, making it critical to the maintenance of cellular and organismal homeostasis. More than 20 years of research has revealed the molecular structure/complex, inducers/regulators, intracellular signaling pathways and bio-functions of GCN2 in various biological processes, across an organism's lifespan, and in many diseases. Accumulated studies have demonstrated that the GCN2 kinase is also closely involved in the immune system and in various immune-related diseases, such as GCN2 acts as an important regulatory molecule to control macrophage functional polarization and CD4+ T cell subset differentiation. Herein, we comprehensively summarize the biological functions of GCN2 and discuss its roles in the immune system, including innate and adaptive immune cells. We also discuss the antagonism of GCN2 and mTOR pathways in immune cells. A better understanding of GCN2's functions and signaling pathways in the immune system under physiological, stressful, and pathological situations will be beneficial to the development of potential therapies for many immune-relevant diseases.
Collapse
Affiliation(s)
- Chenxu Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Han Guo
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangxiao Hou
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Lei
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Wei
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Correspondence: ; Tel.: +86-10-64807302
| |
Collapse
|
7
|
Martín-Marcos P, Gil-Hernández Á, Tamame M. Wide mutational analysis to ascertain the functional roles of eL33 in ribosome biogenesis and translation initiation. Curr Genet 2022; 68:619-644. [PMID: 35994100 DOI: 10.1007/s00294-022-01251-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/06/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022]
Abstract
An extensive mutational analysis of RPL33A, encoding the yeast ribosomal protein L33A (eL33) allowed us to identify several novel rpl33a mutants with different translational phenotypes. Most of the rpl33a mutants are defective in the processing of 35S and 27S pre-rRNA precursors and the production of mature rRNAs, exhibiting reductions in the amounts of ribosomal subunits and altered polysome profiles. Some of the rpl33a mutants exhibit a Gcd- phenotype of constitutive derepression of GCN4 translation and strong slow growth phenotypes at several temperatures. Interestingly, some of the later mutants also show a detectable increase in the UUG/AUG translation initiation ratio that can be suppressed by eIF1 overexpression, suggesting a requirement for eL33 and a correct 60S/40S subunit ratio for the proper recognition of the AUG start codon. In addition to producing differential reductions in the rates of pre-rRNA maturation and perhaps in r-protein assembly, most of the point rpl33a mutations alter specific molecular interactions of eL33 with the rRNAs and other r-proteins in the 60S structure. Thus, rpl33a mutations cause distinctive effects on the abundance and/or functionality of 60S subunits, leading to more or less pronounced defects in the rates and fidelity of mRNA translation.
Collapse
Affiliation(s)
- Pilar Martín-Marcos
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-Universidad de Salamanca, Zacarías González 2, 37007, Salamanca, Spain.
| | - Álvaro Gil-Hernández
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-Universidad de Salamanca, Zacarías González 2, 37007, Salamanca, Spain
| | - Mercedes Tamame
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-Universidad de Salamanca, Zacarías González 2, 37007, Salamanca, Spain.
| |
Collapse
|
8
|
Lokdarshi A, von Arnim AG. Review: Emerging roles of the signaling network of the protein kinase GCN2 in the plant stress response. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 320:111280. [PMID: 35643606 PMCID: PMC9197246 DOI: 10.1016/j.plantsci.2022.111280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/07/2022] [Accepted: 03/30/2022] [Indexed: 06/15/2023]
Abstract
The pan-eukaryotic protein kinase GCN2 (General Control Nonderepressible2) regulates the translation of mRNAs in response to external and metabolic conditions. Although GCN2 and its substrate, translation initiation factor 2 (eIF2) α, and several partner proteins are substantially conserved in plants, this kinase has assumed novel functions in plants, including in innate immunity and retrograde signaling between the chloroplast and cytosol. How exactly some of the biochemical paradigms of the GCN2 system have diverged in the green plant lineage is only partially resolved. Specifically, conflicting data underscore and cast doubt on whether GCN2 regulates amino acid biosynthesis; also whether phosphorylation of eIF2α can in fact repress global translation or activate mRNA specific translation via upstream open reading frames; and whether GCN2 is controlled in vivo by the level of uncharged tRNA. This review examines the status of research on the eIF2α kinase, GCN2, its function in the response to xenobiotics, pathogens, and abiotic stress conditions, and its rather tenuous role in the translational control of mRNAs.
Collapse
Affiliation(s)
- Ansul Lokdarshi
- Department of Biology, Valdosta State University, Valdosta, GA 31698, USA.
| | - Albrecht G von Arnim
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996-1939, USA; UT-ORNL Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN 37996-1939, USA.
| |
Collapse
|
9
|
Bruner J, Marcus A, Fox G. Changes in Diacetyl and Amino Acid Concentration during the Fermentation of Dry-Hopped Beer: A Look at Twelve Saccharomyces Species and Strains. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2022. [DOI: 10.1080/03610470.2022.2078946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- James Bruner
- Food Science and Technology Department, University of California, Davis, CA, U.S.A
- Creature Comforts Brewing Company, Los Angeles, CA, U.S.A
| | - Andrew Marcus
- Food Science and Technology Department, University of California, Davis, CA, U.S.A
| | - Glen Fox
- Food Science and Technology Department, University of California, Davis, CA, U.S.A
| |
Collapse
|
10
|
The role of eIF2 phosphorylation in cell and organismal physiology: new roles for well-known actors. Biochem J 2022; 479:1059-1082. [PMID: 35604373 DOI: 10.1042/bcj20220068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 02/06/2023]
Abstract
Control of protein synthesis (mRNA translation) plays key roles in shaping the proteome and in many physiological, including homeostatic, responses. One long-known translational control mechanism involves phosphorylation of initiation factor, eIF2, which is catalysed by any one of four protein kinases, which are generally activated in response to stresses. They form a key arm of the integrated stress response (ISR). Phosphorylated eIF2 inhibits eIF2B (the protein that promotes exchange of eIF2-bound GDP for GTP) and thus impairs general protein synthesis. However, this mechanism actually promotes translation of certain mRNAs by virtue of specific features they possess. Recent work has uncovered many previously unknown features of this regulatory system. Several studies have yielded crucial insights into the structure and control of eIF2, including that eIF2B is regulated by several metabolites. Recent studies also reveal that control of eIF2 and the ISR helps determine organismal lifespan and surprising roles in sensing mitochondrial stresses and in controlling the mammalian target of rapamycin (mTOR). The latter effect involves an unexpected role for one of the eIF2 kinases, HRI. Phosphoproteomic analysis identified new substrates for another eIF2 kinase, Gcn2, which senses the availability of amino acids. Several genetic disorders arise from mutations in genes for eIF2α kinases or eIF2B (i.e. vanishing white matter disease, VWM and microcephaly, epileptic seizures, microcephaly, hypogenitalism, diabetes and obesity, MEHMO). Furthermore, the eIF2-mediated ISR plays roles in cognitive decline associated with Alzheimer's disease. New findings suggest potential therapeutic value in interfering with the ISR in certain settings, including VWM, for example by using compounds that promote eIF2B activity.
Collapse
|
11
|
Tate JJ, Marsikova J, Vachova L, Palkova Z, Cooper TG. Effects of abolishing Whi2 on the proteome and nitrogen catabolite repression-sensitive protein production. G3 (BETHESDA, MD.) 2022; 12:jkab432. [PMID: 35100365 PMCID: PMC9210300 DOI: 10.1093/g3journal/jkab432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022]
Abstract
In yeast physiology, a commonly used reference condition for many experiments, including those involving nitrogen catabolite repression (NCR), is growth in synthetic complete (SC) medium. Four SC formulations, SCCSH,1990, SCCSH,1994, SCCSH,2005, and SCME, have been used interchangeably as the nitrogen-rich medium of choice [Cold Spring Harbor Yeast Course Manuals (SCCSH) and a formulation in the methods in enzymology (SCME)]. It has been tacitly presumed that all of these formulations support equivalent responses. However, a recent report concluded that (i) TorC1 activity is downregulated by the lower concentration of primarily leucine in SCME relative to SCCSH. (ii) The Whi2-Psr1/2 complex is responsible for this downregulation. TorC1 is a primary nitrogen-responsive regulator in yeast. Among its downstream targets is control of NCR-sensitive transcription activators Gln3 and Gat1. They in turn control production of catabolic transporters and enzymes needed to scavenge poor nitrogen sources (e.g., Proline) and activate autophagy (ATG14). One of the reporters used in Chen et al. was an NCR-sensitive DAL80-GFP promoter fusion. This intrigued us because we expected minimal if any DAL80 expression in SC medium. Therefore, we investigated the source of the Dal80-GFP production and the proteomes of wild-type and whi2Δ cells cultured in SCCSH and SCME. We found a massive and equivalent reorientation of amino acid biosynthetic proteins in both wild-type and whi2Δ cells even though both media contained high overall concentrations of amino acids. Gcn2 appears to play a significant regulatory role in this reorientation. NCR-sensitive DAL80 expression and overall NCR-sensitive protein production were only marginally affected by the whi2Δ. In contrast, the levels of 58 proteins changed by an absolute value of log2 between 3 and 8 when Whi2 was abolished relative to wild type. Surprisingly, with only two exceptions could those proteins be related in GO analyses, i.e., GO terms associated with carbohydrate metabolism and oxidative stress after shifting a whi2Δ from SCCSH to SCME for 6 h. What was conspicuously missing were proteins related by TorC1- and NCR-associated GO terms.
Collapse
Affiliation(s)
- Jennifer J Tate
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jana Marsikova
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 128 00 Prague, Czech Republic
| | - Libuse Vachova
- Institute of Microbiology of the Czech Academy of Sciences, BIOCEV, 142 20 Prague, Czech Republic
| | - Zdena Palkova
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 128 00 Prague, Czech Republic
| | - Terrance G Cooper
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
12
|
The role of upstream open reading frames in translation regulation in the apicomplexan parasites Plasmodium falciparum and Toxoplasma gondii. Parasitology 2021; 148:1277-1287. [PMID: 34099078 PMCID: PMC8383288 DOI: 10.1017/s0031182021000937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During their complex life cycles, the Apicomplexan parasites Plasmodium falciparum and Toxoplasma gondii employ several layers of regulation of their gene expression. One such layer is mediated at the level of translation through upstream open reading frames (uORFs). As uORFs are found in the upstream regions of a majority of transcripts in both the parasites, it is essential that their roles in translational regulation be appreciated to a greater extent. This review provides a comprehensive summary of studies that show uORF-mediated gene regulation in these parasites and highlights examples of clinically and physiologically relevant genes, including var2csa in P. falciparum, and ApiAT1 in T. gondii, that exhibit uORF-mediated regulation. In addition to these examples, several studies that use bioinformatics, transcriptomics, proteomics and ribosome profiling also indicate the possibility of widespread translational regulation by uORFs. Further analysis of these genome-wide datasets, taking into account uORFs associated with each gene, will reveal novel genes involved in key biological pathways such as cell-cycle progression, stress-response and pathogenicity. The cumulative evidence from studies presented in this review suggests that uORFs will play crucial roles in regulating gene expression during clinical disease caused by these important human pathogens.
Collapse
|
13
|
Thakre PK, Sahu RK, Tomar RS. Substitution of histone H3 arginine 72 to alanine leads to deregulation of isoleucine biosynthesis in budding yeast Saccharomyces cerevisiae. Biochem Cell Biol 2021; 99:636-644. [PMID: 33843274 DOI: 10.1139/bcb-2020-0651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Histone residues play an essential role in the regulation of various biological processes. In the present study, we have utilized the H3/H4 histone mutant library to probe functional aspects of histone residues in amino acid biosynthesis. We found that histone residue H3R72 plays a crucial role in the regulation of isoleucine biosynthesis. Substitution of arginine residue (H3R72) of histone H3 to alanine (H3R72A) renders yeast cells unable to grow in the minimal media. Histone mutant H3R72A requires the external supplementation of either isoleucine, serine, or threonine for the growth in minimal media. We also observed that H3R72 residue and leucine amino acid in synthetic complete media might play a crucial role in determining the intake of isoleucine and threonine in yeast. Further, gene deletion analysis of ILV1 and CHA1 in H3R72A mutant confirmed that isoleucine is the sole requirement for growth in minimal medium. Altogether, we have identified that histone H3R72 residue may be crucial for yeast growth in the minimal medium by regulating isoleucine biosynthesis through the Ilv1 enzyme in budding yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Pilendra Kumar Thakre
- Indian Institute of Science Education and Research Bhopal, 189785, Biological Sciences, Bhopal, Madhya Pradesh, India;
| | - Rakesh Kumar Sahu
- Indian Institute of Science Education and Research Bhopal, 189785, Bhopal, Madhya Pradesh, India;
| | | |
Collapse
|
14
|
Yu YH, Pan HY, Guo LQ, Lin JF, Liao HL, Li HY. Successful biosynthesis of natural antioxidant ergothioneine in Saccharomyces cerevisiae required only two genes from Grifola frondosa. Microb Cell Fact 2020; 19:164. [PMID: 32811496 PMCID: PMC7437059 DOI: 10.1186/s12934-020-01421-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022] Open
Abstract
Background Ergothioneine (EGT) has a unique antioxidant ability and diverse beneficial effects on human health. But the content of EGT is very low in its natural producing organisms such as Mycobacterium smegmatis and mushrooms. Therefore, it is necessary to highly efficient heterologous production of EGT in food-grade yeasts such as Saccharomyces cerevisiae. Results Two EGT biosynthetic genes were cloned from the mushroom Grifola frondosa and successfully heterologously expressed in Saccharomyces cerevisiae EC1118 strain in this study. By optimization of the fermentation conditions of the engineered strain S. cerevisiae EC1118, the 11.80 mg/L of EGT production was obtained. With daily addition of 1% glycerol to the culture medium in the fermentation process, the EGT production of the engineered strain S. cerevisiae EC1118 can reach up to 20.61 mg/L. Conclusion A successful EGT de novo biosynthetic system of S. cerevisiae containing only two genes from mushroom Grifola frondosa was developed in this study. This system provides promising prospects for the large scales production of EGT for human health.
Collapse
Affiliation(s)
- Ying-Hao Yu
- Department of Bioengineering, College of Food Science and Institute of Food Biotechnology, South China Agricultural University, Guangzhou, 510640, China.,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, 510640, China
| | - Hong-Yu Pan
- Department of Bioengineering, College of Food Science and Institute of Food Biotechnology, South China Agricultural University, Guangzhou, 510640, China.,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, 510640, China
| | - Li-Qiong Guo
- Department of Bioengineering, College of Food Science and Institute of Food Biotechnology, South China Agricultural University, Guangzhou, 510640, China. .,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, 510640, China.
| | - Jun-Fang Lin
- Department of Bioengineering, College of Food Science and Institute of Food Biotechnology, South China Agricultural University, Guangzhou, 510640, China. .,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, 510640, China.
| | - Han-Lu Liao
- Department of Bioengineering, College of Food Science and Institute of Food Biotechnology, South China Agricultural University, Guangzhou, 510640, China
| | - Hao-Ying Li
- Department of Bioengineering, College of Food Science and Institute of Food Biotechnology, South China Agricultural University, Guangzhou, 510640, China
| |
Collapse
|
15
|
du Mee DJM, Bak M, Østergaard E, Rasmussen LJ. Mitochondrial dysfunction induced by variation in the non-coding genome - A proposed workflow to improve diagnostics. Mitochondrion 2020; 53:255-259. [PMID: 32497723 DOI: 10.1016/j.mito.2020.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/26/2020] [Indexed: 11/18/2022]
Abstract
Mitochondrial disorders are one of the most common inherited metabolic disorders and are caused by variants in nuclear genes or the mitochondrial genome. Additionally, there is a large group of patients displaying clinical symptoms, where the genetic background is unknown. Mitochondrial disorders have a huge variety in their clinical presentation, making diagnostics challenging. Genomes of higher organisms contain around 95% non-protein-coding DNA. Recently, non-protein-coding sequences have been shown to affect gene expression in many cellular processes, including mitochondrial functioning. As these insights are not frequently incorporated in diagnostics we propose a workflow utilizing this knowledge for faster diagnostics of patients lacking a molecular diagnosis.
Collapse
Affiliation(s)
- Dorine Jeanne Mariëtte du Mee
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Frederiksberg, Denmark
| | - Mads Bak
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Elsebet Østergaard
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lene Juel Rasmussen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark.
| |
Collapse
|
16
|
Cao W, Wang G, Lu H, Ouyang L, Chu J, Sui Y, Zhuang Y. Improving cytosolic aspartate biosynthesis increases glucoamylase production in Aspergillus niger under oxygen limitation. Microb Cell Fact 2020; 19:81. [PMID: 32245432 PMCID: PMC7118866 DOI: 10.1186/s12934-020-01340-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/24/2020] [Indexed: 01/27/2023] Open
Abstract
Background Glucoamylase is one of the most industrially applied enzymes, produced by Aspergillus species, like Aspergillus niger. Compared to the traditional ways of process optimization, the metabolic engineering strategies to improve glucoamylase production are relatively scarce. Results In the previous study combined multi-omics integrative analysis and amino acid supplementation experiment, we predicted four amino acids (alanine, glutamate, glycine and aspartate) as the limited precursors for glucoamylase production in A. niger. To further verify this, five mutants namely OE-ala, OE-glu, OE-gly, OE-asp1 and OE-asp2, derived from the parental strain A. niger CBS 513.88, were constructed respectively for the overexpression of five genes responsible for the biosynthesis of the four kinds of amino acids (An11g02620, An04g00990, An05g00410, An04g06380 and An16g05570). Real-time quantitative PCR revealed that all these genes were successfully overexpressed at the mRNA level while the five mutants exhibited different performance in glucoamylase production in shake flask cultivation. Notably, the results demonstrated that mutant OE-asp2 which was constructed for reinforcing cytosolic aspartate synthetic pathway, exhibited significantly increased glucoamylase activity by 23.5% and 60.3% compared to CBS 513.88 in the cultivation of shake flask and the 5 L fermentor, respectively. Compared to A. niger CBS 513.88, mutant OE-asp2 has a higher intracellular amino acid pool, in particular, alanine, leucine, glycine and glutamine, while the pool of glutamate was decreased. Conclusion Our study combines the target prediction from multi-omics analysis with the experimental validation and proves the possibility of increasing glucoamylase production by enhancing limited amino acid biosynthesis. In short, this systematically conducted study will surely deepen the understanding of resources allocation in cell factory and provide new strategies for the rational design of enzyme production strains.
Collapse
Affiliation(s)
- Weiqiang Cao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Guan Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Hongzhong Lu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Liming Ouyang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China.
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Yufei Sui
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China.
| |
Collapse
|
17
|
Cao M, Gao M, Suástegui M, Mei Y, Shao Z. Building microbial factories for the production of aromatic amino acid pathway derivatives: From commodity chemicals to plant-sourced natural products. Metab Eng 2020; 58:94-132. [DOI: 10.1016/j.ymben.2019.08.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/03/2019] [Accepted: 08/07/2019] [Indexed: 01/23/2023]
|
18
|
van der Hoek SA, Darbani B, Zugaj KE, Prabhala BK, Biron MB, Randelovic M, Medina JB, Kell DB, Borodina I. Engineering the Yeast Saccharomyces cerevisiae for the Production of L-(+)-Ergothioneine. Front Bioeng Biotechnol 2019; 7:262. [PMID: 31681742 PMCID: PMC6797849 DOI: 10.3389/fbioe.2019.00262] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/26/2019] [Indexed: 01/08/2023] Open
Abstract
L-(+)-Ergothioneine (ERG) is an unusual, naturally occurring antioxidant nutraceutical that has been shown to help reduce cellular oxidative damage. Humans do not biosynthesise ERG, but acquire it from their diet; it exploits a specific transporter (SLC22A4) for its uptake. ERG is considered to be a nutraceutical and possible vitamin that is involved in the maintenance of health, and seems to be at too low a concentration in several diseases in vivo. Ergothioneine is thus a potentially useful dietary supplement. Present methods of commercial production rely on extraction from natural sources or on chemical synthesis. Here we describe the engineering of the baker's yeast Saccharomyces cerevisiae to produce ergothioneine by fermentation in defined media. After integrating combinations of ERG biosynthetic pathways from different organisms, we screened yeast strains for their production of ERG. The highest-producing strain was also engineered with known ergothioneine transporters. The effect of amino acid supplementation of the medium was investigated and the nitrogen metabolism of S. cerevisiae was altered by knock-out of TOR1 or YIH1. We also optimized the media composition using fractional factorial methods. Our optimal strategy led to a titer of 598 ± 18 mg/L ergothioneine in fed-batch culture in 1 L bioreactors. Because S. cerevisiae is a GRAS ("generally recognized as safe") organism that is widely used for nutraceutical production, this work provides a promising process for the biosynthetic production of ERG.
Collapse
Affiliation(s)
- Steven A. van der Hoek
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Behrooz Darbani
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Karolina E. Zugaj
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Bala Krishna Prabhala
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mathias Bernfried Biron
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Milica Randelovic
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jacqueline B. Medina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Douglas B. Kell
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
19
|
Lee YT, Fang YY, Sun YW, Hsu HC, Weng SM, Tseng TL, Lin TH, Shieh JC. THR1 mediates GCN4 and CDC4 to link morphogenesis with nutrient sensing and the stress response in Candida albicans. Int J Mol Med 2018; 42:3193-3208. [PMID: 30320368 PMCID: PMC6202100 DOI: 10.3892/ijmm.2018.3930] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/08/2018] [Indexed: 12/31/2022] Open
Abstract
Candida albicans (C. albicans) CDC4 (CaCDC4), encoding the F-box protein for the substrate specificity of the Skp1-cullin-F-box E3 ubiquitin ligase complex, suppresses the yeast-to-filament transition in C. albicans. In our previous study, Thr1 was identified as a CaCdc4-associated protein using affinity purification. THR1 encodes a homoserine kinase, which is involved in the threonine biosynthesis pathway. The present study generated a strain with repressible CaCDC4 expression and continuous THR1 expression. Colony and cell morphology analyses, as well as immunoblotting, revealed that the Thr1 protein was detectable under conditions in which the expression of CaCDC4 was repressed and that the filaments resulting from the repressed expression of CaCDC4 were suppressed by the constitutive expression of THR1 in C. albicans. Additionally, by using the CaSAT1-flipper method, the present study produced null mutants of THR1, GCN4, and CaCDC4. The phenotypic consequences were evaluated by growth curves, spotting assays, microscopic analysis, reverse transcription-polymerase chain reaction and XTT-based biofilm formation ability. The results revealed that fewer cells lacking THR1 entered the stationary phase but had no apparent morphological alteration. It was observed that the expression of THR1 was upregulated concurrently with GCN4 during nutrient depletion and that cells lacking GCN4 rescued the lethality of cells in the absence of THR1 in conditions accumulating homoserine in the threonine biosynthesis pathway. Of note, it was found that cells with either CaCDC4 or THR1 loss were sensitive to oxidative stress and osmotic stress, with those with THR1 loss being more sensitive. In addition, it was observed that cells with loss of either CaCDC4 or THR1 exhibited the ability to increase biofilm formation, with those lacking CaCDC4 exhibiting a greater extent of enhancement. It was concluded that CaCDC4 is important in the coordination of morphogenesis, nutrient sensing, and the stress response through THR1 in C. albicans.
Collapse
Affiliation(s)
- Yuan-Ti Lee
- Institute of Medicine and School of Medicine, Chung Shan Medical University, Taichung City 40201, Taiwan, R.O.C
| | - Yi-Ya Fang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan, R.O.C
| | - Yu Wen Sun
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan, R.O.C
| | - Hsiao-Chi Hsu
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan, R.O.C
| | - Shan-Mei Weng
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan, R.O.C
| | - Tzu-Ling Tseng
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan, R.O.C
| | - Ting-Hui Lin
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan, R.O.C
| | - Jia-Ching Shieh
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan, R.O.C
| |
Collapse
|
20
|
Charles Antony A, Alone PV. Fidelity of HIS4 start codon selection influences 3-amino-1,2,4-triazole sensitivity in GTPase activating protein function defective eIF5. J Genet 2018; 97:953-964. [PMID: 30262708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The eIF5 protein plays an important role in the fidelity of AUG start codon selection. However, the hyper GTPase eIF5G31R mutation in yeast causes preferential utilization of UUG as initiation codon and is termed as suppressor of initiation codon (Sui-) phenotype. The eIF5G31R mutant recognizes upUUG initiation codon from the 5' regulatory leader region of GCN4 transcript and dominantly represses GCN4 expression thereby conferring sensitivity to 3-amino-1,2,4-triazole (3AT)-induced starvation. The 3AT sensitivity was rescued by supplementing HIS4UUG allele. The eIF5G31R mutant has a better efficiency of UUG codon recognition from the HIS4UUG allele under starvation conditions. Moreover, the expression of HIS4UUG allele was significantly lower than the critical level causing additional derepression of GCN4 expression in eIF5G31R mutant to rescue its 3AT sensitivity. The overexpression of eIF1 improved expression of HIS4AUG allele and GCN4 transcript causing 3AT resistance, whereas overexpression of eIF1 resulted in diminished UUG codon recognition of HIS4UUG allele causing 3AT sensitivity, despite having higher GCN4 expression. This paper reports the critical role of HIS4 expression necessary in response to 3AT-induced starvation in the eIF5G31R mutant which is ostensibly not a direct target of 3AT inhibition.
Collapse
Affiliation(s)
- A Charles Antony
- School of Biological Sciences, National Institute of Science Education and Research, P.O. Jatni, Bhubaneswar, Khurda 752 050, India.
| | | |
Collapse
|
21
|
Trunk K, Peltier J, Liu YC, Dill BD, Walker L, Gow NAR, Stark MJR, Quinn J, Strahl H, Trost M, Coulthurst SJ. The type VI secretion system deploys antifungal effectors against microbial competitors. Nat Microbiol 2018; 3:920-931. [PMID: 30038307 PMCID: PMC6071859 DOI: 10.1038/s41564-018-0191-x] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 06/07/2018] [Indexed: 12/28/2022]
Abstract
Interactions between bacterial and fungal cells shape many polymicrobial communities. Bacteria elaborate diverse strategies to interact and compete with other organisms, including the deployment of protein secretion systems. The type VI secretion system (T6SS) delivers toxic effector proteins into host eukaryotic cells and competitor bacterial cells, but, surprisingly, T6SS-delivered effectors targeting fungal cells have not been reported. Here we show that the 'antibacterial' T6SS of Serratia marcescens can act against fungal cells, including pathogenic Candida species, and identify the previously undescribed effector proteins responsible. These antifungal effectors, Tfe1 and Tfe2, have distinct impacts on the target cell, but both can ultimately cause fungal cell death. 'In competition' proteomics analysis revealed that T6SS-mediated delivery of Tfe2 disrupts nutrient uptake and amino acid metabolism in fungal cells, and leads to the induction of autophagy. Intoxication by Tfe1, in contrast, causes a loss of plasma membrane potential. Our findings extend the repertoire of the T6SS and suggest that antifungal T6SSs represent widespread and important determinants of the outcome of bacterial-fungal interactions.
Collapse
Affiliation(s)
- Katharina Trunk
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Julien Peltier
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - Yi-Chia Liu
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Brian D Dill
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Louise Walker
- Aberdeen Fungal Group, Institute of Medical Sciences, MRC Centre for Medical Mycology at the University of Aberdeen, Aberdeen, UK
| | - Neil A R Gow
- Aberdeen Fungal Group, Institute of Medical Sciences, MRC Centre for Medical Mycology at the University of Aberdeen, Aberdeen, UK
| | - Michael J R Stark
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Janet Quinn
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - Henrik Strahl
- Centre for Bacterial Cell Biology, Newcastle University, Newcastle-upon-Tyne, UK
| | - Matthias Trost
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK.
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne, UK.
| | - Sarah J Coulthurst
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
22
|
Castilho-Valavicius B, Thompson GM, Donahue TF. Mutation analysis of the Cys-X2-Cys-X19-Cys-X2-Cys motif in the beta subunit of eukaryotic translation initiation factor 2. Gene Expr 2018; 2:297-309. [PMID: 1450666 PMCID: PMC6057382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Recessive lethal mutations in the beta subunit of eIF-2 that restore HIS4 expression in the absence of an AUG start codon were isolated from diploid Saccharomyces cerevisiae strains. DNA sequence analysis of these alleles and of eIF-2 beta suppressor alleles isolated from haploid strains, identified point mutations that altered one of six amino acids that map to a Cys-X2-Cys-X19-Cys-X2-Cys "zinc finger" motif and immediately adjacent residues. Five of the affected amino acids are identical in the human and yeast eIF-2 beta protein. Together with earlier studies (Donahue et al., 1988), these point mutations implicate the zinc finger domain of eIF-2 beta in start-site selection during the scanning process. We have supplemented the mutations obtained by genetic selection with an additional set of constructed mutations in this region. Our studies indicate that the cysteine residues and the intervening amino acids of this motif are essential for eIF-2 beta function in translation initiation in vivo. However, the effects observed in cells containing a copy of eIF-2 beta with a deletion of this motif suggest that this mutated form is still able to associate with other components of the initiation complex, imparting defects on translation initiation. Thus, this motif may be required only for later events that lead to initiator codon recognition. Alterations in defined positions, as found in our suppressor alleles, could lead to recognition of non-AUG codons.
Collapse
Affiliation(s)
- B Castilho-Valavicius
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, São Paulo, Brazil
| | | | | |
Collapse
|
23
|
Bogorad AM, Lin KY, Marintchev A. Novel mechanisms of eIF2B action and regulation by eIF2α phosphorylation. Nucleic Acids Res 2017; 45:11962-11979. [PMID: 29036434 PMCID: PMC5714165 DOI: 10.1093/nar/gkx845] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 09/13/2017] [Indexed: 12/15/2022] Open
Abstract
Eukaryotic translation initiation factor 2 (eIF2) is a heterotrimeric GTPase, which plays a critical role in protein synthesis regulation. eIF2-GTP binds Met-tRNAi to form the eIF2-GTP•Met-tRNAi ternary complex (TC), which is recruited to the 40S ribosomal subunit. Following GTP hydrolysis, eIF2-GDP is recycled back to TC by its guanine nucleotide exchange factor (GEF), eIF2B. Phosphorylation of the eIF2α subunit in response to various cellular stresses converts eIF2 into a competitive inhibitor of eIF2B, which triggers the integrated stress response (ISR). Dysregulation of eIF2B activity is associated with a number of pathologies, including neurodegenerative diseases, metabolic disorders, and cancer. However, despite decades of research, the underlying molecular mechanisms of eIF2B action and regulation remain unknown. Here we employ a combination of NMR, fluorescence spectroscopy, site-directed mutagenesis, and thermodynamics to elucidate the mechanisms of eIF2B action and its regulation by phosphorylation of the substrate eIF2. We present: (i) a novel mechanism for the inhibition of eIF2B activity, whereby eIF2α phosphorylation destabilizes an autoregulatory intramolecular interaction within eIF2α; and (ii) the first structural model for the complex of eIF2B with its substrate, eIF2-GDP, reaction intermediates, apo-eIF2 and eIF2-GTP, and product, TC, with direct implications for the eIF2B catalytic mechanism.
Collapse
Affiliation(s)
- Andrew M Bogorad
- Boston University School of Medicine, Department of Physiology & Biophysics, Boston, MA 02118, USA
| | - Kai Ying Lin
- Boston University School of Medicine, Department of Physiology & Biophysics, Boston, MA 02118, USA
| | - Assen Marintchev
- Boston University School of Medicine, Department of Physiology & Biophysics, Boston, MA 02118, USA
| |
Collapse
|
24
|
Antony A C, Alone PV. Defect in the GTPase activating protein (GAP) function of eIF5 causes repression of GCN4 translation. Biochem Biophys Res Commun 2017; 486:1110-1115. [PMID: 28385532 DOI: 10.1016/j.bbrc.2017.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 04/01/2017] [Indexed: 10/19/2022]
Abstract
In eukaryotes, the eIF5 protein plays an important role in translation start site selection by providing the GAP (GTPase activating protein) function. However, in yeast translation initiation fidelity defective eIF5G31R mutant causes preferential utilization of UUG as initiation codon and is termed as Suppressor of initiation codon (Sui-) phenotype due to its hyper GTPase activity. The eIF5G31R mutant dominantly represses GCN4 expression and confers sensitivity to 3-Amino-1,2,4-Trizole (3AT) induced starvation. The down-regulation of the GCN4 expression (Gcn- phenotype) in the eIF5G31R mutant was not because of leaky scanning defects; rather was due to the utilization of upUUG initiation codons at the 5' regulatory region present between uORF1 and the main GCN4 ORF.
Collapse
Affiliation(s)
- Charles Antony A
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, Constituent Institutes of Homi Bhabha National Institute (HBNI), P.O Jatni, Khurda 752050 India
| | - Pankaj V Alone
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, Constituent Institutes of Homi Bhabha National Institute (HBNI), P.O Jatni, Khurda 752050 India.
| |
Collapse
|
25
|
Suástegui M, Shao Z. Yeast factories for the production of aromatic compounds: from building blocks to plant secondary metabolites. J Ind Microbiol Biotechnol 2016; 43:1611-1624. [PMID: 27581441 DOI: 10.1007/s10295-016-1824-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/02/2016] [Indexed: 12/23/2022]
Abstract
The aromatic amino acid biosynthesis pathway is a source to a plethora of commercially relevant chemicals with very diverse industrial applications. Tremendous efforts in microbial engineering have led to the production of compounds ranging from small aromatic molecular building blocks all the way to intricate plant secondary metabolites. Particularly, the yeast Saccharomyces cerevisiae has been a great model organism given its superior capability to heterologously express long metabolic pathways, especially the ones containing cytochrome P450 enzymes. This review contains a collection of state-of-the-art metabolic engineering work devoted towards unraveling the mechanisms for enhancing the flux of carbon into the aromatic pathway. Some of the molecules discussed include the polymer precursor muconic acid, as well as important nutraceuticals (flavonoids and stilbenoids), and opium-derived drugs (benzylisoquinoline alkaloids).
Collapse
Affiliation(s)
- Miguel Suástegui
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50010, USA.,NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, 50010, USA
| | - Zengyi Shao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50010, USA. .,Microbiology Interdisciplinary Program, Iowa State University, Ames, IA, 50010, USA. .,NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, 50010, USA.
| |
Collapse
|
26
|
Liu Y, Xie S, Yu J. Genome-Wide Analysis of the Lysine Biosynthesis Pathway Network during Maize Seed Development. PLoS One 2016; 11:e0148287. [PMID: 26829553 PMCID: PMC4734768 DOI: 10.1371/journal.pone.0148287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/16/2016] [Indexed: 11/30/2022] Open
Abstract
Lysine is one of the most limiting essential amino acids for humans and livestock. The nutritional value of maize (Zea mays L.) is reduced by its poor lysine content. To better understand the lysine biosynthesis pathway in maize seed, we conducted a genome-wide analysis of the genes involved in lysine biosynthesis. We identified lysine biosynthesis pathway genes (LBPGs) and investigated whether a diaminopimelate pathway variant exists in maize. We analyzed two genes encoding the key enzyme dihydrodipicolinate synthase, and determined that they contribute differently to lysine synthesis during maize seed development. A coexpression network of LBPGs was constructed using RNA-sequencing data from 21 developmental stages of B73 maize seed. We found a large set of genes encoding ribosomal proteins, elongation factors and zein proteins that were coexpressed with LBPGs. The coexpressed genes were enriched in cellular metabolism terms and protein related terms. A phylogenetic analysis of the LBPGs from different plant species revealed different relationships. Additionally, six transcription factor (TF) families containing 13 TFs were identified as the Hub TFs of the LBPGs modules. Several expression quantitative trait loci of LBPGs were also identified. Our results should help to elucidate the lysine biosynthesis pathway network in maize seed.
Collapse
Affiliation(s)
- Yuwei Liu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Shaojun Xie
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Jingjuan Yu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| |
Collapse
|
27
|
Peguero-Sanchez E, Pardo-Lopez L, Merino E. IRES-dependent translated genes in fungi: computational prediction, phylogenetic conservation and functional association. BMC Genomics 2015; 16:1059. [PMID: 26666532 PMCID: PMC4678720 DOI: 10.1186/s12864-015-2266-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/01/2015] [Indexed: 01/17/2023] Open
Abstract
Background The initiation of translation via cellular internal ribosome entry sites plays an important role in the stress response and certain physiological conditions in which canonical cap-dependent translation initiation is compromised. Currently, only a limited number of these regulatory elements have been experimentally identified. Notably, cellular internal ribosome entry sites lack conservation of both the primary sequence and mRNA secondary structure, rendering their identification difficult. Despite their biological importance, the currently available computational strategies to predict them have had limited success. We developed a bioinformatic method based on a support vector machine for the prediction of internal ribosome entry sites in fungi using the 5’-UTR sequences of 20 non-redundant fungal organisms. Additionally, we performed a comparative analysis and characterization of the functional relationships among the gene products predicted to be translated by this cap-independent mechanism. Results Using our method, we predicted 6,532 internal ribosome entry sites in 20 non-redundant fungal organisms. Some orthologous groups were enriched with our positive predictions. This is the case of the HSP70 chaperone family, which remarkably has two verified internal ribosome entry sites, one in humans and the other in flies. A second example is the orthologous group of the eIF4G repression protein Sbp1p, which has two homologous genes known to be translated by this cap-independent mechanism, one in mice and the other in yeast. These examples emphasize the wide conservation of these regulatory elements as a result of selective pressure. In addition, we performed a protein-protein interaction network characterization of the gene products of our positive predictions using Saccharomyces cerevisiae as a model, which revealed a highly connected and modular topology, suggesting a functional association. A remarkable example of this functional association is our prediction of internal ribosome entry sites elements in three components of the RNA polymerase II mediator complex. Conclusions We developed a method for the prediction of cellular internal ribosome entry sites that may guide experimental and bioinformatic analyses to increase our understanding of protein translation regulation. Our analysis suggests that fungi show evolutionary conservation and functional association of proteins translated by this cap-independent mechanism. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2266-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Esteban Peguero-Sanchez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Cuernavaca, Morelos, CP 62210, Mexico.
| | - Liliana Pardo-Lopez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Cuernavaca, Morelos, CP 62210, Mexico.
| | - Enrique Merino
- Departamento de Microbiología Molecular, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Cuernavaca, Morelos, CP 62210, Mexico.
| |
Collapse
|
28
|
Chantranupong L, Wolfson RL, Sabatini DM. Nutrient-sensing mechanisms across evolution. Cell 2015; 161:67-83. [PMID: 25815986 DOI: 10.1016/j.cell.2015.02.041] [Citation(s) in RCA: 237] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Indexed: 12/11/2022]
Abstract
For organisms to coordinate their growth and development with nutrient availability, they must be able to sense nutrient levels in their environment. Here, we review select nutrient-sensing mechanisms in a few diverse organisms. We discuss how these mechanisms reflect the nutrient requirements of specific species and how they have adapted to the emergence of multicellularity in eukaryotes.
Collapse
Affiliation(s)
- Lynne Chantranupong
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Rachel L Wolfson
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - David M Sabatini
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
29
|
Warner JR. A little less leads to lots more. Nat Struct Mol Biol 2015; 22:350-1. [PMID: 25945882 DOI: 10.1038/nsmb.3023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jonathan R Warner
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
30
|
Abstract
Fungal pathogens must assimilate local nutrients to establish an infection in their mammalian host. We focus on carbon, nitrogen, and micronutrient assimilation mechanisms, discussing how these influence host-fungus interactions during infection. We highlight several emerging trends based on the available data. First, the perturbation of carbon, nitrogen, or micronutrient assimilation attenuates fungal pathogenicity. Second, the contrasting evolutionary pressures exerted on facultative versus obligatory pathogens have led to contemporary pathogenic fungal species that display differing degrees of metabolic flexibility. The evolutionarily ancient metabolic pathways are conserved in most fungal pathogen, but interesting gaps exist in some species (e.g., Candida glabrata). Third, metabolic flexibility is generally essential for fungal pathogenicity, and in particular, for the adaptation to contrasting host microenvironments such as the gastrointestinal tract, mucosal surfaces, bloodstream, and internal organs. Fourth, this metabolic flexibility relies on complex regulatory networks, some of which are conserved across lineages, whereas others have undergone significant evolutionary rewiring. Fifth, metabolic adaptation affects fungal susceptibility to antifungal drugs and also presents exciting opportunities for the development of novel therapies.
Collapse
Affiliation(s)
- Iuliana V Ene
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, 07745 Jena, Germany
| | - Alistair J P Brown
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, 07745 Jena, Germany Friedrich Schiller University, 07743 Jena, Germany Center for Sepsis Control and Care, Universitätsklinikum Jena, 07747 Jena, Germany
| |
Collapse
|
31
|
Rawal Y, Qiu H, Hinnebusch AG. Accumulation of a threonine biosynthetic intermediate attenuates general amino acid control by accelerating degradation of Gcn4 via Pho85 and Cdk8. PLoS Genet 2014; 10:e1004534. [PMID: 25079372 PMCID: PMC4117449 DOI: 10.1371/journal.pgen.1004534] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 06/11/2014] [Indexed: 11/19/2022] Open
Abstract
Gcn4 is a master transcriptional regulator of amino acid and vitamin biosynthetic enzymes subject to the general amino acid control (GAAC), whose expression is upregulated in response to amino acid starvation in Saccharomyces cerevisiae. We found that accumulation of the threonine pathway intermediate β-aspartate semialdehyde (ASA), substrate of homoserine dehydrogenase (Hom6), attenuates the GAAC transcriptional response by accelerating degradation of Gcn4, already an exceedingly unstable protein, in cells starved for isoleucine and valine. The reduction in Gcn4 abundance on ASA accumulation requires Cdk8/Srb10 and Pho85, cyclin-dependent kinases (CDKs) known to mediate rapid turnover of Gcn4 by the proteasome via phosphorylation of the Gcn4 activation domain under nonstarvation conditions. Interestingly, rescue of Gcn4 abundance in hom6 cells by elimination of SRB10 is not accompanied by recovery of transcriptional activation, while equivalent rescue of UAS-bound Gcn4 in hom6 pho85 cells restores greater than wild-type activation of Gcn4 target genes. These and other findings suggest that the two CDKs target different populations of Gcn4 on ASA accumulation, with Srb10 clearing mostly inactive Gcn4 molecules at the promoter that are enriched for sumoylation of the activation domain, and Pho85 clearing molecules unbound to the UAS that include both fully functional and inactive Gcn4 species. Transcriptional activator Gcn4 maintains amino acid homeostasis in budding yeast by inducing multiple amino acid biosynthetic pathways in response to starvation for any amino acid—the general amino acid control. Gcn4 abundance is tightly regulated by the interplay between an intricate translational control mechanism, which induces Gcn4 synthesis in starved cells, and a pathway of phosphorylation and ubiquitylation that mediates its rapid degradation by the proteasome. Here, we discovered that accumulation of a threonine biosynthetic pathway intermediate, β-aspartate semialdehyde (ASA), in hom6Δ mutant cells impairs general amino acid control in cells starved for isoleucine and valine by accelerating the already rapid degradation of Gcn4, in a manner requiring its phosphorylation by cyclin-dependent kinases Cdk8/Srb10 and Pho85. Interestingly, our results unveil a division of labor between these two kinases wherein Srb10 primarily targets inactive Gcn4 molecules—presumably damaged under conditions of ASA excess—while Pho85 clears a greater proportion of functional Gcn4 species from the cell. The ability of ASA to inhibit transcriptional induction of threonine pathway enzymes by Gcn4, dampening ASA accumulation and its toxic effects on cell physiology, should be adaptive in the wild when yeast encounters natural antibiotics that target Hom6 enzymatic activity.
Collapse
Affiliation(s)
- Yashpal Rawal
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hongfang Qiu
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alan G. Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
32
|
Gunišová S, Valášek LS. Fail-safe mechanism of GCN4 translational control--uORF2 promotes reinitiation by analogous mechanism to uORF1 and thus secures its key role in GCN4 expression. Nucleic Acids Res 2014; 42:5880-93. [PMID: 24623812 PMCID: PMC4027193 DOI: 10.1093/nar/gku204] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
One of the extensively studied mechanisms of gene-specific translational regulation is reinitiation. It takes place on messenger RNAs (mRNAs) where main ORF is preceded by upstream ORF (uORF). Even though uORFs generally down-regulate main ORF expression, specific uORFs exist that allow high level of downstream ORF expression. The key is their ability to retain 40S subunits on mRNA upon termination of their translation to resume scanning for the next AUG. Here, we took advantage of the exemplary model system of reinitiation, the mRNA of yeast transcriptional activator GCN4 containing four short uORFs, and show that contrary to previous reports, not only the first but the first two of its uORFs allow efficient reinitiation. Strikingly, we demonstrate that they utilize a similar molecular mechanism relying on several cis-acting 5' reinitiation-promoting elements, one of which they share, and the interaction with the a/TIF32 subunit of translation initiation factor eIF3. Since a similar mechanism operates also on YAP1 uORF, our findings strongly suggest that basic principles of reinitiation are conserved. Furthermore, presence of two consecutive reinitiation-permissive uORFs followed by two reinitiation-non-permissive uORFs suggests that tightness of GCN4 translational control is ensured by a fail-safe mechanism that effectively prevents or triggers GCN4 expression under nutrient replete or deplete conditions, respectively.
Collapse
Affiliation(s)
- Stanislava Gunišová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, 142 20 Prague, the Czech Republic
| | - Leoš Shivaya Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, 142 20 Prague, the Czech Republic
| |
Collapse
|
33
|
Xiao H, Zhao H. Genome-wide RNAi screen reveals the E3 SUMO-protein ligase gene SIZ1 as a novel determinant of furfural tolerance in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:78. [PMID: 24904688 PMCID: PMC4045865 DOI: 10.1186/1754-6834-7-78] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/12/2014] [Indexed: 05/15/2023]
Abstract
BACKGROUND Furfural is a major growth inhibitor in lignocellulosic hydrolysates and improving furfural tolerance of microorganisms is critical for rapid and efficient fermentation of lignocellulosic biomass. In this study, we used the RNAi-Assisted Genome Evolution (RAGE) method to select for furfural resistant mutants of Saccharomyces cerevisiae, and identified a new determinant of furfural tolerance. RESULTS By using a genome-wide RNAi (RNA-interference) screen in S. cerevisiae for genes involved in furfural tolerance, we identified SIZ1, a gene encoding an E3 SUMO-protein ligase. Disruption of SIZ1 gene function by knockdown or deletion conferred significantly higher furfural tolerance compared to other previously reported metabolic engineering strategies in S. cerevisiae. This improved furfural tolerance of siz1Δ cells is accompanied by rapid furfural reduction to furfuryl alcohol and leads to higher ethanol productivity in the presence of furfural. In addition, the siz1Δ mutant also exhibited tolerance towards oxidative stress, suggesting that oxidative stress tolerance related proteins may be under the SUMO regulation of SIZ1p and responsible for furfural tolerance. CONCLUSIONS Using a genome-wide approach, we identified a novel determinant for furfural tolerance, providing valuable insights into the design of recombinant microbes for efficient lignocellulose fermentation.
Collapse
Affiliation(s)
- Han Xiao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Departments of Chemistry, Biochemistry, and Bioengineering, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
34
|
Genome-wide investigation of the role of the tRNA nuclear-cytoplasmic trafficking pathway in regulation of the yeast Saccharomyces cerevisiae transcriptome and proteome. Mol Cell Biol 2013; 33:4241-54. [PMID: 23979602 DOI: 10.1128/mcb.00785-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In eukaryotic cells, tRNAs are transcribed and partially processed in the nucleus before they are exported to the cytoplasm, where they have an essential role in protein synthesis. Surprisingly, mature cytoplasmic tRNAs shuttle between nucleus and cytoplasm, and tRNA subcellular distribution is nutrient dependent. At least three members of the β-importin family, Los1, Mtr10, and Msn5, function in tRNA nuclear-cytoplasmic intracellular movement. To test the hypothesis that the tRNA retrograde pathway regulates the translation of particular transcripts, we compared the expression profiles from nontranslating mRNAs and polyribosome-associated translating mRNAs collected from msn5Δ, mtr10Δ, and wild-type cells under fed or acute amino acid depletion conditions. Our microarray data revealed that the methionine, arginine, and leucine biosynthesis pathways are targets of the tRNA retrograde process. We confirmed the microarray data by Northern and Western blot analyses. The levels of some of the particular target mRNAs were reduced, while others appeared not to be affected. However, the protein levels of all tested targets in these pathways were greatly decreased when tRNA nuclear import or reexport to the cytoplasm was disrupted. This study provides information that tRNA nuclear-cytoplasmic dynamics is connected to the biogenesis of proteins involved in amino acid biosynthesis.
Collapse
|
35
|
Kroll K, Pähtz V, Kniemeyer O. Elucidating the fungal stress response by proteomics. J Proteomics 2013; 97:151-63. [PMID: 23756228 DOI: 10.1016/j.jprot.2013.06.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/09/2013] [Accepted: 06/01/2013] [Indexed: 10/26/2022]
Abstract
Fungal species need to cope with stress, both in the natural environment and during interaction of human- or plant pathogenic fungi with their host. Many regulatory circuits governing the fungal stress response have already been discovered. However, there are still large gaps in the knowledge concerning the changes of the proteome during adaptation to environmental stress conditions. With the application of proteomic methods, particularly 2D-gel and gel-free, LC/MS-based methods, first insights into the composition and dynamic changes of the fungal stress proteome could be obtained. Here, we review the recent proteome data generated for filamentous fungi and yeasts. This article is part of a Special Issue entitled: Trends in Microbial Proteomics.
Collapse
Affiliation(s)
- Kristin Kroll
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstrasse 11a, 07745 Jena, Germany; Friedrich Schiller University, Institute of Microbiology, Philosophenweg 12, 07743 Jena, Germany
| | - Vera Pähtz
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstrasse 11a, 07745 Jena, Germany; Friedrich Schiller University, Institute of Microbiology, Philosophenweg 12, 07743 Jena, Germany; Integrated Research and Treatment Center, Center for Sepsis Control and Care Jena, University Hospital (CSCC), 07747 Jena, Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstrasse 11a, 07745 Jena, Germany; Friedrich Schiller University, Institute of Microbiology, Philosophenweg 12, 07743 Jena, Germany; Integrated Research and Treatment Center, Center for Sepsis Control and Care Jena, University Hospital (CSCC), 07747 Jena, Germany.
| |
Collapse
|
36
|
Paf1 restricts Gcn4 occupancy and antisense transcription at the ARG1 promoter. Mol Cell Biol 2012; 32:1150-63. [PMID: 22252319 DOI: 10.1128/mcb.06262-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The conserved Paf1 complex negatively regulates the expression of numerous genes, yet the mechanisms by which it represses gene expression are not well understood. In this study, we use the ARG1 gene as a model to investigate the repressive functions of the Paf1 complex in Saccharomyces cerevisiae. Our results indicate that Paf1 mediates repression of the ARG1 gene independently of the gene-specific repressor, ArgR/Mcm1. Rather, by promoting histone H2B lysine 123 ubiquitylation, Paf1 represses the ARG1 gene by negatively affecting Gcn4 occupancy at the promoter. Consistent with this observation, Gcn5 and its acetylation sites on histone H3 are required for full ARG1 derepression in paf1Δ cells, and the repressive effect of Paf1 is largely maintained when the ARG1 promoter directs transcription of a heterologous coding region. Derepression of the ARG1 gene in paf1Δ cells is accompanied by small changes in nucleosome occupancy, although these changes are subtle in comparison to those that accompany gene activation through amino acid starvation. Additionally, conditions that stimulate ARG1 transcription, including PAF1 deletion, lead to increased antisense transcription across the ARG1 promoter. This promoter-associated antisense transcription positively correlates with ARG1 sense transcription. Finally, our results indicate that Paf1 represses other genes through mechanisms similar to those used at the ARG1 gene.
Collapse
|
37
|
Morin N, Cescut J, Beopoulos A, Lelandais G, Le Berre V, Uribelarrea JL, Molina-Jouve C, Nicaud JM. Transcriptomic analyses during the transition from biomass production to lipid accumulation in the oleaginous yeast Yarrowia lipolytica. PLoS One 2011; 6:e27966. [PMID: 22132183 PMCID: PMC3222671 DOI: 10.1371/journal.pone.0027966] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 10/28/2011] [Indexed: 12/12/2022] Open
Abstract
We previously developed a fermentation protocol for lipid accumulation in the oleaginous yeast Y. lipolytica. This process was used to perform transcriptomic time-course analyses to explore gene expression in Y. lipolytica during the transition from biomass production to lipid accumulation. In this experiment, a biomass concentration of 54.6 g(CDW)/l, with 0.18 g/g(CDW) lipid was obtained in ca. 32 h, with low citric acid production. A transcriptomic profiling was performed on 11 samples throughout the fermentation. Through statistical analyses, 569 genes were highlighted as differentially expressed at one point during the time course of the experiment. These genes were classified into 9 clusters, according to their expression profiles. The combination of macroscopic and transcriptomic profiles highlighted 4 major steps in the culture: (i) a growth phase, (ii) a transition phase, (iii) an early lipid accumulation phase, characterized by an increase in nitrogen metabolism, together with strong repression of protein production and activity; (iv) a late lipid accumulation phase, characterized by the rerouting of carbon fluxes within cells. This study explores the potential of Y. lipolytica as an alternative oil producer, by identifying, at the transcriptomic level, the genes potentially involved in the metabolism of oleaginous species.
Collapse
Affiliation(s)
| | - Julien Cescut
- Université de Toulouse, INSA, UPS, INP, LISBP, Toulouse, France
- INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France
- CNRS, UMR5504, Toulouse, France
| | | | - Gaëlle Lelandais
- Dynamique des Structures et Interactions des Macromolécules Biologiques, UMR-S 665 - Université Paris 7, INTS, Paris, France
| | - Veronique Le Berre
- Université de Toulouse, INSA, UPS, INP, LISBP, Toulouse, France
- INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France
- CNRS, UMR5504, Toulouse, France
- Plateforme Biopuces de la Génopole de Toulouse Midi Pyrénées, INSA/DGBA 135, Toulouse, France
| | - Jean-Louis Uribelarrea
- Université de Toulouse, INSA, UPS, INP, LISBP, Toulouse, France
- INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France
- CNRS, UMR5504, Toulouse, France
| | - Carole Molina-Jouve
- Université de Toulouse, INSA, UPS, INP, LISBP, Toulouse, France
- INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France
- CNRS, UMR5504, Toulouse, France
| | - Jean-Marc Nicaud
- INRA, UMR1319 Micalis, Jouy-en-Josas, France
- CNRS, Micalis, Jouy-en-Josas, France
| |
Collapse
|
38
|
Ancín-Azpilicueta C, Nieto-Rojo R, Gómez-Cordón J. Influence of fertilisation with foliar urea on the content of amines in wine. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2011; 28:877-84. [DOI: 10.1080/19440049.2011.572293] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- C. Ancín-Azpilicueta
- a Department of Applied Chemistry , Universidad Pública de Navarra , Campus Arrosadía s/n, 31006 Pamplona , Spain
| | - R. Nieto-Rojo
- a Department of Applied Chemistry , Universidad Pública de Navarra , Campus Arrosadía s/n, 31006 Pamplona , Spain
| | - J. Gómez-Cordón
- b Avanzare Innovación Tecnológica , C/ Antonio de Nebrija 8, 26006 Logroño , Spain
| |
Collapse
|
39
|
Tian C, Kasiborski B, Koul R, Lammers PJ, Bücking H, Shachar-Hill Y. Regulation of the nitrogen transfer pathway in the arbuscular mycorrhizal symbiosis: gene characterization and the coordination of expression with nitrogen flux. PLANT PHYSIOLOGY 2010; 153:1175-87. [PMID: 20448102 PMCID: PMC2899933 DOI: 10.1104/pp.110.156430] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 05/05/2010] [Indexed: 05/19/2023]
Abstract
The arbuscular mycorrhiza (AM) brings together the roots of over 80% of land plant species and fungi of the phylum Glomeromycota and greatly benefits plants through improved uptake of mineral nutrients. AM fungi can take up both nitrate and ammonium from the soil and transfer nitrogen (N) to host roots in nutritionally substantial quantities. The current model of N handling in the AM symbiosis includes the synthesis of arginine in the extraradical mycelium and the transfer of arginine to the intraradical mycelium, where it is broken down to release N for transfer to the host plant. To understand the mechanisms and regulation of N transfer from the fungus to the plant, 11 fungal genes putatively involved in the pathway were identified from Glomus intraradices, and for six of them the full-length coding sequence was functionally characterized by yeast complementation. Two glutamine synthetase isoforms were found to have different substrate affinities and expression patterns, suggesting different roles in N assimilation. The spatial and temporal expression of plant and fungal N metabolism genes were followed after nitrate was added to the extraradical mycelium under N-limited growth conditions using hairy root cultures. In parallel experiments with (15)N, the levels and labeling of free amino acids were measured to follow transport and metabolism. The gene expression pattern and profiling of metabolites involved in the N pathway support the idea that the rapid uptake, translocation, and transfer of N by the fungus successively trigger metabolic gene expression responses in the extraradical mycelium, intraradical mycelium, and host plant.
Collapse
Affiliation(s)
- Chunjie Tian
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Zhang Y, Smith AD, Renfrow MB, Schneider DA. The RNA polymerase-associated factor 1 complex (Paf1C) directly increases the elongation rate of RNA polymerase I and is required for efficient regulation of rRNA synthesis. J Biol Chem 2010; 285:14152-9. [PMID: 20299458 DOI: 10.1074/jbc.m110.115220] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The rate of ribosome synthesis is proportional to the rate of cell proliferation; thus, transcription of rRNA by RNA polymerase I (Pol I) is an important target for the regulation of this process. Most previous investigations into mechanisms that regulate the rate of ribosome synthesis have focused on the initiation step of transcription by Pol I; however, recent studies in yeast and mammals have identified factors that influence transcription elongation by Pol I. The RNA polymerase-associated factor 1 complex (Paf1C) is a transcription elongation factor with known roles in Pol II transcription. We previously identified a role for Paf1C in transcription elongation by Pol I. In this study, genetic interactions between genes for Paf1C and Pol I subunits confirm this conclusion. In vitro studies demonstrate that purified Paf1C directly increases the rate of transcription elongation by Pol I. Finally, we show that Paf1C function is required for efficient control of Pol I transcription in response to target of rapamycin (TOR) signaling or amino acid limitation. These studies demonstrate that Paf1C plays an important direct role in cellular control of rRNA expression.
Collapse
Affiliation(s)
- Yinfeng Zhang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294-0024, USA
| | | | | | | |
Collapse
|
41
|
Okada S, Ota K, Ito T. Circular permutation of ligand-binding module improves dynamic range of genetically encoded FRET-based nanosensor. Protein Sci 2010; 18:2518-27. [PMID: 19827096 DOI: 10.1002/pro.266] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Quantitative measurement of small molecules with high spatiotemporal resolution provides a solid basis for correct understanding and accurate modeling of metabolic regulation. A promising approach toward this goal is the FLIP (fluorescent indicator protein) nanosensor based on bacterial periplasmic binding proteins (PBPs) and fluorescence resonance energy transfer (FRET) between the yellow and cyan variants of green fluorescent protein (GFP). Each FLIP has a PBP module that specifically binds its ligand to induce a conformation change, leading to a change in FRET between the two GFP variant modules attached to the N- and C-termini of the PBP. The larger is the dynamic range the more reliable is the measurement. Thus, we attempted to expand the dynamic range of FLIP by introducing a circular permutation with a hinge loop deletion to the PBP module. All the six circularly permutated PBPs tested, including structurally distinct Type I and Type II PBPs, showed larger dynamic ranges than their respective native forms when used for FLIP. Notably, the circular permutation made three PBPs, which totally failed to show FRET change when used as their native forms, fully capable of functioning as a ligand binding module of FLIP. These FLIPs were successfully used for the determination of amino acid concentration in complex solutions as well as real-time measurement of amino acid influx in living yeast cells. Thus, the circular permutation strategy would not only improve the performance of each nanosensor but also expand the repertoire of metabolites that can be measured by the FLIP nanosensor technology.
Collapse
Affiliation(s)
- Satoshi Okada
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
| | | | | |
Collapse
|
42
|
Motlekar N, de Almeida RA, Pavitt GD, Diamond SL, Napper AD. Discovery of chemical modulators of a conserved translational control pathway by parallel screening in yeast. Assay Drug Dev Technol 2010; 7:479-94. [PMID: 19715453 DOI: 10.1089/adt.2009.0198] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Eukaryotic initiation factor 2 (eIF2) B is a guanine nucleotide exchange factor that plays a central role in translation initiation and its control, especially in response to diverse cellular stresses. In addition, inherited mutations in human eIF2B subunits cause a fatal brain disorder commonly called childhood ataxia with central nervous system hypomyelination or leukoencephalopathy with vanishing white matter. In yeast, inhibiting activity of eIF2B up-regulates expression of the transcriptional activator general control nondepressible (GCN) 4. We report here evaluation of high-throughput screening (HTS) using a yeast-based reporter gene assay, in which strains containing either wild-type or a mutant eIF2B were screened in parallel to identify compounds modifying eIF2B-dependent responses. The goals of the HTS were twofold: first, to discover compounds that restore normal function to mutant eIF2B, which may have therapeutic utility for the fatal human disease; and second, to identify compounds that activate a GCN4 response, which might be useful experimental tools. The HTS assay measured cell growth by absorbance, and activation of gene expression via a beta-galactosidase reporter gene fusion. Because mutant eIF2B activates GCN4 in the absence of stress inducers, the mutant strain was screened for reduction in GCN4 activation. HTS revealed apparent mutant-selective inhibitors but did not reliably predict selectivity as these hits affected both wild-type and mutant strains equally on dose-response confirmation. Wild-type strain results from the HTS identified two GCN4 response activators, both of which were confirmed to be wild-type selective in dose-response testing, suggesting that these compounds may activate GCN4 by a mechanism that down-regulates eIF2B activity.
Collapse
Affiliation(s)
- Nuzhat Motlekar
- Penn Center for Molecular Discovery, Institute for Medicine and Engineering, and Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
43
|
Peiró-Chova L, Estruch F. The yeast RNA polymerase II-associated factor Iwr1p is involved in the basal and regulated transcription of specific genes. J Biol Chem 2009; 284:28958-67. [PMID: 19679657 DOI: 10.1074/jbc.m109.012153] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNA polymerase II (RNA pol II) is a multisubunit enzyme that requires many auxiliary factors for its activity. Over the years, these factors have been identified using both biochemical and genetic approaches. Recently, the systematic characterization of protein complexes by tandem affinity purification and mass spectroscopy has allowed the identification of new components of well established complexes, including the RNA pol II holoenzyme. Using this approach, a novel and highly conserved factor, Iwr1p, that physically interacts with most of the RNA pol II subunits has been described in yeast. Here we show that Iwr1p genetically interacts with components of the basal transcription machinery and plays a role in both basal and regulated transcription. We report that mutation of the IWR1 gene is able to bypass the otherwise essential requirement for the transcriptional regulator negative cofactor 2, which occurs with different components of the basal transcription machinery, including TFIIA and subunits of the mediator complex. Deletion of the IWR1 gene leads to an altered expression of specific genes, including phosphate-responsive genes and SUC2. Our results show that Iwr1p is a nucleocytoplasmic shuttling protein and suggest that Iwr1p acts early in the formation of the pre-initiation complex by mediating the interaction of certain activators with the basal transcription apparatus.
Collapse
Affiliation(s)
- Lorena Peiró-Chova
- Department of Biochemistry and Molecular Biology, Universitat de València, 46100 Burjassot, Spain
| | | |
Collapse
|
44
|
Lu W, László CF, Miao Z, Chen H, Wu S. The role of nitric-oxide synthase in the regulation of UVB light-induced phosphorylation of the alpha subunit of eukaryotic initiation factor 2. J Biol Chem 2009; 284:24281-8. [PMID: 19586904 DOI: 10.1074/jbc.m109.008821] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UV light induces phosphorylation of the alpha subunit of the eukaryotic initiation factor 2 (eIF2alpha) and inhibits global protein synthesis. Both eIF2 kinases, protein kinase-like endoplasmic reticulum kinase (PERK) and general control of nonderepressible protein kinase 2 (GCN2), have been shown to phosphorylate eIF2alpha in response to UV irradiation. However, the roles of PERK and GCN2 in UV-induced eIF2alpha phosphorylation are controversial. The one or more upstream signaling pathways that lead to the activation of PERK or GCN2 remain unknown. In this report we provide data showing that both PERK and GCN2 contribute to UV-induced eIF2alpha phosphorylation in human keratinocyte (HaCaT) and mouse embryonic fibroblast cells. Reduction of expression of PERK or GCN2 by small interfering RNA decreases phosphorylation of eIF2alpha after UV irradiation. These data also show that nitric-oxide synthase (NOS)-mediated oxidative stress plays a role in regulation of eIF2alpha phosphorylation upon UV irradiation. Treating the cells with the broad NOS inhibitor N(G)-methyl-l-arginine, the free radical scavenger N-acetyl-l-cysteine, or the NOS substrate l-arginine partially inhibits UV-induced eIF2alpha phosphorylation. The results presented above led us to propose that NOS mediates UV-induced eIF2alpha phosphorylation by activation of both PERK and GCN2 via oxidative stress and l-arginine starvation signaling pathways.
Collapse
Affiliation(s)
- Wei Lu
- Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701, USA
| | | | | | | | | |
Collapse
|
45
|
Linking high-resolution metabolic flux phenotypes and transcriptional regulation in yeast modulated by the global regulator Gcn4p. Proc Natl Acad Sci U S A 2009; 106:6477-82. [PMID: 19346491 DOI: 10.1073/pnas.0811091106] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Genome sequencing dramatically increased our ability to understand cellular response to perturbation. Integrating system-wide measurements such as gene expression with networks of protein-protein interactions and transcription factor binding revealed critical insights into cellular behavior. However, the potential of systems biology approaches is limited by difficulties in integrating metabolic measurements across the functional levels of the cell despite their being most closely linked to cellular phenotype. To address this limitation, we developed a model-based approach to correlate mRNA and metabolic flux data that combines information from both interaction network models and flux determination models. We started by quantifying 5,764 mRNAs, 54 metabolites, and 83 experimental (13)C-based reaction fluxes in continuous cultures of yeast under stress in the absence or presence of global regulator Gcn4p. Although mRNA expression alone did not directly predict metabolic response, this correlation improved through incorporating a network-based model of amino acid biosynthesis (from r = 0.07 to 0.80 for mRNA-flux agreement). The model provides evidence of general biological principles: rewiring of metabolic flux (i.e., use of different reaction pathways) by transcriptional regulation and metabolite interaction density (i.e., level of pairwise metabolite-protein interactions) as a key biosynthetic control determinant. Furthermore, this model predicted flux rewiring in studies of follow-on transcriptional regulators that were experimentally validated with additional (13)C-based flux measurements. As a first step in linking metabolic control and genetic regulatory networks, this model underscores the importance of integrating diverse data types in large-scale cellular models. We anticipate that an integrated approach focusing on metabolic measurements will facilitate construction of more realistic models of cellular regulation for understanding diseases and constructing strains for industrial applications.
Collapse
|
46
|
Depletion of the cullin Cdc53p induces morphogenetic changes in Candida albicans. EUKARYOTIC CELL 2009; 8:756-67. [PMID: 19270112 DOI: 10.1128/ec.00332-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Candida albicans is an important opportunistic human fungal pathogen that can cause both mucosal and systemic infections in immunocompromised patients. Critical for the virulence of C. albicans is its ability to undergo a morphological transition from yeast to hyphal growth mode. Proper induction of filamentation is dependent on the ubiquitination pathway, which targets proteins for proteasome-mediated protein degradation or activates them for signaling events. In the present study, we evaluated the role of ubiquitination in C. albicans by impairing the function of the major ubiquitin-ligase complex SCF. This was done by depleting its backbone, the cullin Cdc53p (orf19.1674), using a tetracycline downregulatable promoter system. Cdc53p-depleted cells displayed an invasive phenotype and constitutive filamentation under conditions favoring yeast growth mode, both on solid and in liquid media. In addition, these cells exhibited an early onset of cell death, as judged from propidium iodide staining, suggesting that CDC53 is an essential gene in C. albicans. To identify Cdc53p-dependent pathways in C. albicans, a genome-wide expression analysis was carried out that revealed a total of 425 differentially expressed genes (fold change, >or=2; P <or= 0.05) with 192 up- and 233 downregulated genes in the CDC53-repressed mutant compared to the control strain. GO term analysis identified biological processes significantly affected by Cdc53p depletion, including amino acid starvation response, with 14 genes being targets of the transcriptional regulator Gcn4p, and reductive iron transport. These results indicate that Cdc53p enables C. albicans to adequately respond to environmental signals.
Collapse
|
47
|
Ingolia NT, Ghaemmaghami S, Newman JRS, Weissman JS. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 2009; 324:218-23. [PMID: 19213877 DOI: 10.1126/science.1168978] [Citation(s) in RCA: 2774] [Impact Index Per Article: 173.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Techniques for systematically monitoring protein translation have lagged far behind methods for measuring messenger RNA (mRNA) levels. Here, we present a ribosome-profiling strategy that is based on the deep sequencing of ribosome-protected mRNA fragments and enables genome-wide investigation of translation with subcodon resolution. We used this technique to monitor translation in budding yeast under both rich and starvation conditions. These studies defined the protein sequences being translated and found extensive translational control in both determining absolute protein abundance and responding to environmental stress. We also observed distinct phases during translation that involve a large decrease in ribosome density going from early to late peptide elongation as well as widespread regulated initiation at non-adenine-uracil-guanine (AUG) codons. Ribosome profiling is readily adaptable to other organisms, making high-precision investigation of protein translation experimentally accessible.
Collapse
Affiliation(s)
- Nicholas T Ingolia
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, and California Institute for Quantitative Biosciences, San Francisco, CA 94158, USA.
| | | | | | | |
Collapse
|
48
|
Chin CS, Chubukov V, Jolly ER, DeRisi J, Li H. Dynamics and design principles of a basic regulatory architecture controlling metabolic pathways. PLoS Biol 2008; 6:e146. [PMID: 18563967 PMCID: PMC2429954 DOI: 10.1371/journal.pbio.0060146] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 04/30/2008] [Indexed: 11/19/2022] Open
Abstract
The dynamic features of a genetic network's response to environmental fluctuations represent essential functional specifications and thus may constrain the possible choices of network architecture and kinetic parameters. To explore the connection between dynamics and network design, we have analyzed a general regulatory architecture that is commonly found in many metabolic pathways. Such architecture is characterized by a dual control mechanism, with end product feedback inhibition and transcriptional regulation mediated by an intermediate metabolite. As a case study, we measured with high temporal resolution the induction profiles of the enzymes in the leucine biosynthetic pathway in response to leucine depletion, using an automated system for monitoring protein expression levels in single cells. All the genes in the pathway are known to be coregulated by the same transcription factors, but we observed drastically different dynamic responses for enzymes upstream and immediately downstream of the key control point—the intermediate metabolite α-isopropylmalate (αIPM), which couples metabolic activity to transcriptional regulation. Analysis based on genetic perturbations suggests that the observed dynamics are due to differential regulation by the leucine branch-specific transcription factor Leu3, and that the downstream enzymes are strictly controlled and highly expressed only when αIPM is available. These observations allow us to build a simplified mathematical model that accounts for the observed dynamics and can correctly predict the pathway's response to new perturbations. Our model also suggests that transient dynamics and steady state can be separately tuned and that the high induction levels of the downstream enzymes are necessary for fast leucine recovery. It is likely that principles emerging from this work can reveal how gene regulation has evolved to optimize performance in other metabolic pathways with similar architecture. Single-cell organisms must constantly adjust their gene expression programs to survive in a changing environment. Interactions between different molecules form a regulatory network to mediate these changes. While the network connections are often known, figuring out how the network responds dynamically by looking at a static picture of its structure presents a significant challenge. Measuring the response at a finer time scales could reveal the link between the network's function and its structure. The architecture of the system we studied in this work—the leucine biosynthesis pathway in yeast—is shared by other metabolic pathways: a metabolic intermediate binds to a transcription factor to activate the pathway genes, creating an intricate feedback structure that links metabolism with gene expression. We measured protein abundance at high temporal resolution for genes in this pathway in response to leucine depletion and studied the effects of various genetic perturbations on gene expression dynamics. Our measurements and theoretical modeling show that only the genes immediately downstream from the intermediate are highly regulated by the metabolite, a feature that is essential to fast recovery from leucine depletion. Since the architecture we studied is common, we believe that our work may lead to general principles governing the dynamics of gene expression in other metabolic pathways. A quantitative, high-temporal resolution study of gene induction in a metabolic pathway reveals an intricate connection between the regulatory architecture and the dynamic response of the system, pointing to possible principles underlying the design of these pathways.
Collapse
Affiliation(s)
- Chen-Shan Chin
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, United States of America
| | - Victor Chubukov
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, United States of America
- Joint Graduate Group in Bioengineering, University of California, Berkeley, and University of California, San Francisco, San Francisco, California, United States of America
| | - Emmitt R Jolly
- Department of Pathology, University of California, San Francisco, San Francisco, California, United States of America
| | - Joe DeRisi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, United States of America
| | - Hao Li
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, United States of America
- Joint Graduate Group in Bioengineering, University of California, Berkeley, and University of California, San Francisco, San Francisco, California, United States of America
- Center for Theoretical Biology, Peking University, Beijing, China
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
49
|
Biswas S, Van Dijck P, Datta A. Environmental sensing and signal transduction pathways regulating morphopathogenic determinants of Candida albicans. Microbiol Mol Biol Rev 2007; 71:348-76. [PMID: 17554048 PMCID: PMC1899878 DOI: 10.1128/mmbr.00009-06] [Citation(s) in RCA: 406] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Candida albicans is an opportunistic fungal pathogen that is found in the normal gastrointestinal flora of most healthy humans. However, under certain environmental conditions, it can become a life-threatening pathogen. The shift from commensal organism to pathogen is often correlated with the capacity to undergo morphogenesis. Indeed, under certain conditions, including growth at ambient temperature, the presence of serum or N-acetylglucosamine, neutral pH, and nutrient starvation, C. albicans can undergo reversible transitions from the yeast form to the mycelial form. This morphological plasticity reflects the interplay of various signal transduction pathways, either stimulating or repressing hyphal formation. In this review, we provide an overview of the different sensing and signaling pathways involved in the morphogenesis and pathogenesis of C. albicans. Where appropriate, we compare the analogous pathways/genes in Saccharomyces cerevisiae in an attempt to highlight the evolution of the different components of the two organisms. The downstream components of these pathways, some of which may be interesting antifungal targets, are also discussed.
Collapse
Affiliation(s)
- Subhrajit Biswas
- National Centre for Plant Genome Research, New Delhi 110 067, India
| | | | | |
Collapse
|
50
|
Martín-Marcos P, Hinnebusch AG, Tamame M. Ribosomal protein L33 is required for ribosome biogenesis, subunit joining, and repression of GCN4 translation. Mol Cell Biol 2007; 27:5968-85. [PMID: 17548477 PMCID: PMC1952170 DOI: 10.1128/mcb.00019-07] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We identified a mutation in the 60S ribosomal protein L33A (rpl33a-G76R) that elicits derepression of GCN4 translation (Gcd- phenotype) by allowing scanning preinitiation complexes to bypass inhibitory upstream open reading frame 4 (uORF4) independently of prior uORF1 translation and reinitiation. At 37 degrees C, rpl33a-G76R confers defects in 60S biogenesis comparable to those produced by the deletion of RPL33A (DeltaA). At 28 degrees C, however, the 60S biogenesis defect is less severe in rpl33a-G76R than in DeltaA cells, yet rpl33a-G76R confers greater derepression of GCN4 and a larger reduction in general translation. Hence, it appears that rpl33a-G76R has a stronger effect on ribosomal-subunit joining than does a comparable reduction of wild-type 60S levels conferred by DeltaA. We suggest that rpl33a-G76R alters the 60S subunit in a way that impedes ribosomal-subunit joining and thereby allows 48S rRNA complexes to abort initiation at uORF4, resume scanning, and initiate downstream at GCN4. Because overexpressing tRNAiMet suppresses the Gcd- phenotype of rpl33a-G76R cells, dissociation of tRNAiMet from the 40S subunit may be responsible for abortive initiation at uORF4 in this mutant. We further demonstrate that rpl33a-G76R impairs the efficient processing of 35S and 27S pre-rRNAs and reduces the accumulation of all four mature rRNAs, indicating an important role for L33 in the biogenesis of both ribosomal subunits.
Collapse
Affiliation(s)
- Pilar Martín-Marcos
- Instituto de Microbiología Bioquímica, CSIC/Universidad de Salamanca, Edificio Departamental de Biología, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | | | | |
Collapse
|