1
|
Jha A, Barsola B, Pathania D, Sonu, Raizada P, Thakur P, Singh P, Rustagi S, Khosla A, Chaudhary V. Nano-biogenic heavy metals adsorptive remediation for enhanced soil health and sustainable agricultural production. ENVIRONMENTAL RESEARCH 2024; 252:118926. [PMID: 38657848 DOI: 10.1016/j.envres.2024.118926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
Hazardous heavy metal (HM) pollution constitutes a pervasive global challenge, posing substantial risks to ecosystems and human health. The exigency for expeditious detection, meticulous monitoring, and efficacious remediation of HM within ecosystems is indisputable. Soil contamination, stemming from a myriad of anthropogenic activities, emerges as a principal conduit for HM ingress into the food chain. Traditional soil remediation modalities for HM elimination, while effective are labor-intensive, susceptible to secondary contamination, and exhibit limited efficacy in regions characterized by low metal toxicity. In response to these exigencies, the eco-friendly paradigm of bioremediation has garnered prominence as a financially judicious and sustainable remedial strategy. This approach entails the utilization of hyperaccumulators, Genetically Modified Microorganisms (GMM), and advantageous microbes. The current review offers a comprehensive elucidation of cutting-edge phyto/microbe-based bioremediation techniques, with a specific emphasis on their amalgamation with nanotechnology. Accentuating their pivotal role in advancing sustainable agricultural practices, the review meticulously dissects the synergistic interplay between plants and microbes, underscoring their adeptness in HM remediation sans secondary contamination. Moreover, the review scrutinizes the challenges intrinsic to implementing bioremediation-nanotechnology interface techniques and propounds innovative resolutions. These discernments proffer auspicious trajectories for the future of agriculture. Through the environmentally conscientious marvels of phyto/microbe bioremediation, an optimistic outlook emerges for environmental preservation and the cultivation of a sustainable, salubrious planet via the conduit of cleaner agricultural production.
Collapse
Affiliation(s)
- Ayush Jha
- University Institute of Biotechnology, Chandigarh University, Gharuan, Punjab, 140413, India
| | - Bindiya Barsola
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Diksha Pathania
- Department of Biosciences and Technology, MMEC, Maharishi Markandeshwar University, Mullana (Ambala), Haryana,133203, India
| | - Sonu
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Pankaj Thakur
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Ajit Khosla
- Department of Applied Chemistry, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126, PR China.
| | - Vishal Chaudhary
- Physics Department, Bhagini Nivedita College, University of Delhi, Delhi, India; Centre for Research Impact & Outcome, Chitkara University, Punjab, 140401, India.
| |
Collapse
|
2
|
Rajapaksha N, Yao H, Cook A, Seibold S, Liu L, Battaile KP, Fontenot L, Donnarumma F, Lovell S, Rivera M. Pseudomonas aeruginosa gene PA4880 encodes a Dps-like protein with a Dps fold, bacterioferritin-type ferroxidase centers, and endonuclease activity. Front Mol Biosci 2024; 11:1390745. [PMID: 38841187 PMCID: PMC11150526 DOI: 10.3389/fmolb.2024.1390745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/22/2024] [Indexed: 06/07/2024] Open
Abstract
We report the biochemical, structural, and functional characterization of the protein coded by gene PA4880 in the P. aeruginosa PAO1 genome. The PA4880 gene had been annotated as coding a probable bacterioferritin. Our structural work shows that the product of gene PA4880 is a protein that adopts the Dps subunit fold, which oligomerizes into a 12-mer quaternary structure. Unlike Dps, however, the ferroxidase di-iron centers and iron coordinating ligands are buried within each subunit, in a manner identical to that observed in the ferroxidase center of P. aeruginosa bacterioferritin. Since these structural characteristics correspond to Dps-like proteins, we term the protein as P. aeruginosa Dps-like, or Pa DpsL. The ferroxidase centers in Pa DpsL catalyze the oxidation of Fe2+ utilizing O2 or H2O2 as oxidant, and the resultant Fe3+ is compartmentalized in the interior cavity. Interestingly, incubating Pa DpsL with plasmid DNA results in efficient nicking of the DNA and at higher concentrations of Pa DpsL the DNA is linearized and eventually degraded. The nickase and endonuclease activities suggest that Pa DpsL, in addition to participating in the defense of P. aeruginosa cells against iron-induced toxicity, may also participate in the innate immune mechanisms consisting of restriction endonucleases and cognate methyl transferases.
Collapse
Affiliation(s)
- Nimesha Rajapaksha
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, United States
| | - Huili Yao
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, United States
| | - Aisha Cook
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, United States
| | - Steve Seibold
- Protein Structure & X-ray Crystallography Laboratory, University of Kansas, Lawrence, KS, United States
| | - Lijun Liu
- Protein Structure & X-ray Crystallography Laboratory, University of Kansas, Lawrence, KS, United States
| | | | - Leo Fontenot
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, United States
| | - Fabrizio Donnarumma
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, United States
| | - Scott Lovell
- Protein Structure & X-ray Crystallography Laboratory, University of Kansas, Lawrence, KS, United States
| | - Mario Rivera
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
3
|
Wang S, Sun L, Narsing Rao MP, Fang B, Li W. Comparative Genome Analysis of a Novel Alkaliphilic Actinobacterial Species Nesterenkonia haasae. Pol J Microbiol 2022; 71:453-461. [PMID: 36185029 PMCID: PMC9608169 DOI: 10.33073/pjm-2022-040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/31/2022] [Indexed: 11/24/2022] Open
Abstract
In the present study, a comparative genome analysis of the novel alkaliphilic actinobacterial Nesterenkonia haasae with other members of the genus Nesterenkonia was performed. The genome size of Nesterenkonia members ranged from 2,188,008 to 3,676,111 bp. N. haasae and Nesterenkonia members of the present study encode the essential glycolysis and pentose phosphate pathway genes. In addition, some Nesterenkonia members encode the crucial genes for Entner-Doudoroff pathways. Some Nesterenkonia members possess the genes responsible for sulfate/thiosulfate transport system permease protein/ ATP-binding protein and conversion of sulfate to sulfite. Nesterenkonia members also encode the genes for assimilatory nitrate reduction, nitrite reductase, and the urea cycle. All Nesterenkonia members have the genes to overcome environmental stress and produce secondary metabolites. The present study helps to understand N. haasae and Nesterenkonia members' environmental adaptation and niches specificity based on their specific metabolic properties. Further, based on genome analysis, we propose reclassifying Nesterenkonia jeotgali as a later heterotypic synonym of Nesterenkonia sandarakina.
Collapse
Affiliation(s)
- Shuang Wang
- Heilongjiang Academy of Black Soil Conservation and Utilization, BeijingPeople’s Republic of China,State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, BeijingPeople’s Republic of China, S. Wang, Heilongjiang Academy of Black Soil Conservation and Utilization, Heilongjiang Academy of Agricultural Sciences, People’s Republic of China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, People’s Republic of China
| | - Lei Sun
- Heilongjiang Academy of Black Soil Conservation and Utilization, BeijingPeople’s Republic of China
| | - Manik Prabhu Narsing Rao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, GuangzhouPeople’s Republic of China
| | - Bao‑zhu Fang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, BeijingPeople’s Republic of China,State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, GuangzhouPeople’s Republic of China
| | - Wen‑jun Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, BeijingPeople’s Republic of China,State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, GuangzhouPeople’s Republic of China
| |
Collapse
|
4
|
Cai Y, Zhu K, Shen L, Ma J, Bao L, Chen D, Wei L, Wei N, Liu B, Wu Y, Chen S. Evolved Biosensor with High Sensitivity and Specificity for Measuring Cadmium in Actual Environmental Samples. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10062-10071. [PMID: 35762704 DOI: 10.1021/acs.est.2c00627] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bacterial biosensors have great potential in contaminant detection for sensitivity, specificity, cost-effectiveness, and easy operation. However, the existing cadmium-responsive bacterial biosensors cannot meet the real-world detection requirements due to lack of sensitivity, specificity, and anti-interference capability. This study aimed to develop a bacterial biosensor for detecting the total and extractable cadmium in actual environmental samples. We constructed the cadmium-responsive biosensor with the regulatory element (cadmium resistance transcriptional regulatory, CadR) and the reporting element (GFP) and improved its performance by directed evolution. The mutant libraries of biosensors were generated by error-prone PCR and screened by continuous five-round fluorescence-activated cell sorting (FACS), and a bacteria variant epCadR5 with higher performance was finally isolated. Biosensor fluorescence intensity was measured by a microplate reader, and results showed that the evolved cadmium-responsive bacterial biosensor was of high sensitivity and specificity in detecting trace cadmium, with a detection limit of 0.45 μg/L, which is 6.8 times more specific to cadmium than that of the wild-type. Furthermore, microscopic qualitative analysis results showed that the bacteria could produce fluorescence response in a cadmium-contaminated soil matrix, and quantitative analysis results showed that the values of cadmium from epCadR5 bacteria were close to that from inductively coupled plasma-mass spectrometry. These results suggest that the biosensor may have a broad application prospect in the detection of cadmium-contaminated soil and water.
Collapse
Affiliation(s)
- Yeshen Cai
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Kaili Zhu
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Liang Shen
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Jie Ma
- School of Public Health, Wannan Medical College, Wuhu 241002, China
| | - Lingzhi Bao
- School of Public Health, Wannan Medical College, Wuhu 241002, China
| | - Dongdong Chen
- Institute of Environmental Physics and Technology, Anhui University, Hefei 230039, China
| | - Liangchen Wei
- School of Public Health, Wannan Medical College, Wuhu 241002, China
| | - Nan Wei
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Binmei Liu
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Yuejin Wu
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Shaopeng Chen
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
- School of Public Health, Wannan Medical College, Wuhu 241002, China
| |
Collapse
|
5
|
Importance of RpoD- and Non-RpoD-Dependent Expression of Horizontally Acquired Genes in Cupriavidus metallidurans. Microbiol Spectr 2022; 10:e0012122. [PMID: 35311568 PMCID: PMC9045368 DOI: 10.1128/spectrum.00121-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of the metal-resistant, hydrogen-oxidizing bacterium Cupriavidus metallidurans contains a large number of horizontally acquired plasmids and genomic islands that were integrated into its chromosome or chromid. For the C. metallidurans CH34 wild-type strain growing under nonchallenging conditions, 5,763 transcriptional starting sequences (TSSs) were determined. Using a custom-built motif discovery software based on hidden Markov models, patterns upstream of the TSSs were identified. The pattern TTGACA, −35.6 ± 1.6 bp upstream of the TSSs, in combination with a TATAAT sequence 15.8 ± 1.4 bp upstream occurred frequently, especially upstream of the TSSs for 48 housekeeping genes, and these were assigned to promoters used by RNA polymerase containing the main housekeeping sigma factor RpoD. From patterns upstream of the housekeeping genes, a score for RpoD-dependent promoters in C. metallidurans was derived and applied to all 5,763 TSSs. Among these, 2,572 TSSs could be associated with RpoD with high probability, 373 with low probability, and 2,818 with no probability. In a detailed analysis of horizontally acquired genes involved in metal resistance and not involved in this process, the TSSs responsible for the expression of these genes under nonchallenging conditions were assigned to RpoD- or non-RpoD-dependent promoters. RpoD-dependent promoters occurred frequently in horizontally acquired metal resistance and other determinants, which should allow their initial expression in a new host. However, other sigma factors and sense/antisense effects also contribute—maybe to mold in subsequent adaptation steps the assimilated gene into the regulatory network of the cell. IMPORTANCE In their natural environment, bacteria are constantly acquiring genes by horizontal gene transfer. To be of any benefit, these genes should be expressed. We show here that the main housekeeping sigma factor RpoD plays an important role in the expression of horizontally acquired genes in the metal-resistant hydrogen-oxidizing bacterium C. metallidurans. By conservation of the RpoD recognition consensus sequence, a newly arriving gene has a high probability to be expressed in the new host cell. In addition to integrons and genes travelling together with that for their sigma factor, conservation of the RpoD consensus sequence may be an important contributor to the overall evolutionary success of horizontal gene transfer in bacteria. Using C. metallidurans as an example, this publication sheds some light on the fate and function of horizontally acquired genes in bacteria.
Collapse
|
6
|
Identification and Genome Analysis of an Arsenic-Metabolizing Strain of Citrobacter youngae IITK SM2 in Middle Indo-Gangetic Plain Groundwater. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6384742. [PMID: 35309170 PMCID: PMC8930248 DOI: 10.1155/2022/6384742] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 11/17/2022]
Abstract
Whole-genome sequencing (WGS) data of a bacterial strain IITK SM2 isolated from an aquifer located in the middle Indo-Gangetic plain is reported here, along with its physiological, morphological, biochemical, and redox-transformation characteristics in the presence of dissolved arsenic (As). The aquifer exhibits oxidizing conditions relative to As speciation. Analyses based on 16S rRNA and recN sequences indicate that IITK SM2 was clustered with C. youngae NCTC 13708T and C. pasteuri NCTC UMH17T. However, WGS analyses using the digital DNA-DNA hybridization and Rapid Annotations using Subsystems Technology suggest that IITK SM2 belongs to a strain of C. youngae. This strain can effectively reduce As(V) to As(III) but cannot oxidize As(III) to As(V). It exhibited high resistance to As(V) [32,000 mg L-1] and As(III) [1,100 mg L-1], along with certain other heavy metals typically found in contaminated groundwater. WGS analysis also indicates the presence of As-metabolizing genes such as arsC, arsB, arsA, arsD, arsR, and arsH in this strain. Although these genes have been identified in several As(V)-reducers, the clustering of these genes in the forms of arsACBADR, arsCBRH, and an independent arsC gene has not been observed in any other Citrobacter species or other selected As(V)-reducing strains of Enterobacteriaceae family. Moreover, there were differences in the number of genes corresponding to membrane transporters, virulence and defense, motility, protein metabolism, phages, prophages, and transposable elements in IITK SM2 when compared to other strains. This genomic dataset will facilitate subsequent molecular and biochemical analyses of strain IITK SM2 to identify the reasons for high arsenic resistance in Citrobacter youngae and understand its role in As mobilization in middle Indo-Gangetic plain aquifers.
Collapse
|
7
|
Csitári B, Bedics A, Felföldi T, Boros E, Nagy H, Máthé I, Székely AJ. Anion-type modulates the effect of salt stress on saline lake bacteria. Extremophiles 2022; 26:12. [PMID: 35137260 PMCID: PMC8825391 DOI: 10.1007/s00792-022-01260-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/10/2022] [Indexed: 11/29/2022]
Abstract
Beside sodium chloride, inland saline aquatic systems often contain other anions than chloride such as hydrogen carbonate and sulfate. Our understanding of the biological effects of salt composition diversity is limited; therefore, the aim of this study was to examine the effect of different anions on the growth of halophilic bacteria. Accordingly, the salt composition and concentration preference of 172 strains isolated from saline and soda lakes that differed in ionic composition was tested using media containing either carbonate, chloride or sulfate as anion in concentration values ranging from 0 to 0.40 mol/L. Differences in salt-type preference among bacterial strains were observed in relationship to the salt composition of the natural habitat they were isolated from indicating specific salt-type adaptation. Sodium carbonate represented the strongest selective force, while majority of strains was well-adapted to growth even at high concentrations of sodium sulfate. Salt preference was to some extent associated with taxonomy, although variations even within the same bacterial species were also identified. Our results suggest that the extent of the effect of dissolved salts in saline lakes is not limited to their concentration but the type of anion also substantially impacts the growth and survival of individual microorganisms.
Collapse
Affiliation(s)
- Bianka Csitári
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c, 1117, Budapest, Hungary
- Department of Ecology and Genetics/Limnology, Uppsala University EBC, Norbyvägen 18D, 75236, Uppsala, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, 17165, Stockholm, Sweden
| | - Anna Bedics
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c, 1117, Budapest, Hungary
- Depatment of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly utca 1, 2100, Gödöllő, Hungary
| | - Tamás Felföldi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c, 1117, Budapest, Hungary
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina u. 29, 1113, Budapest, Hungary
| | - Emil Boros
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina u. 29, 1113, Budapest, Hungary
| | - Hajnalka Nagy
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c, 1117, Budapest, Hungary
| | - István Máthé
- Department of Bioengineering, Sapientia Hungarian University of Transylvania, Piaţa Libertăţii 1, 530104, Miercurea Ciuc, Romania
| | - Anna J Székely
- Department of Ecology and Genetics/Limnology, Uppsala University EBC, Norbyvägen 18D, 75236, Uppsala, Sweden.
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, 75007, Uppsala, Sweden.
| |
Collapse
|
8
|
Singh S, Hiranmai RY. Monitoring and molecular characterization of bacterial species in heavy metals contaminated roadside soil of selected region along NH 8A, Gujarat. Heliyon 2021; 7:e08284. [PMID: 34778577 PMCID: PMC8577108 DOI: 10.1016/j.heliyon.2021.e08284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/04/2021] [Accepted: 10/26/2021] [Indexed: 11/18/2022] Open
Abstract
Heavy metal contamination is a universal concern due to health risks associated with metal pollution. Soil contamination by heavy metals is known to affect microbial activities at elevated concentrations adversely. However, indigenous soil bacterial populations' response to added heavy metal and metal combinations is poorly understood. Microbes prevailing in the soil are the driving factors. Their properties are recognized as sensitive indicators of soil quality and health. Moreover, these microscopic organisms are accountable for the fertility and aeration of the soil that forms fundamental aspects of soil function. The current study was performed to explore the diversity of bacterial species in heavy metal polluted roadside soil. The roadside soil samples were collected from diverse sites and processed for physicochemical properties, microbial characterization, and heavy metals distribution in the selected locations. Serial dilution and spread plate techniques were used for the isolation of bacterial species. The 16S-rRNA gene sequencing identified bacterial species in roadside soil as Bacillus drentensis (MK217088), Bacillus safensis (MK774729), Bacillus haynesii (MK192808), Bacillus subtilis (MK217089), and Bacillus cereus (MK801278). In addition, the 16S rRNA sequences of isolated bacterial strains were aligned to generate a phylogenetic tree. Thus, the current research study provides a platform for efficiently investigating roadside soils by microbial profiling that may discover novel microbes of scientific significance and improved potential.
Collapse
Affiliation(s)
- Snigdha Singh
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, Gujarat, 382030, India
| | - R Y Hiranmai
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, Gujarat, 382030, India
| |
Collapse
|
9
|
Hwang CY, Cho ES, Yoon DJ, Seo MJ. Halobellus ruber sp. nov., a deep red-pigmented extremely halophilic archaeon isolated from a Korean solar saltern. Antonie van Leeuwenhoek 2021; 114:997-1011. [PMID: 33864546 DOI: 10.1007/s10482-021-01571-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/01/2021] [Indexed: 11/26/2022]
Abstract
A novel halophilic archaeon, strain MBLA0160T, was isolated from a solar saltern in Sorae, Republic of Korea. The cells are deep-red pigmented, Gram-negative, rod shaped, motile, and lysed in distilled water. The strain MBLA0160T grew at 25-45 °C (optimum 37 °C), in 15-30% (w/v) NaCl (optimum 20%) and 0.1-1.0 M MgCl2 (optimum 0.3-0.5 M) at pH 5.0-9.0 (optimum 7.0). Phylogenetic analysis based on the 16S rRNA sequence showed that this strain was related to two species within the genus Halobellus (Hbs.), with 98.4% and 95.8% similarity to Hbs. salinus CSW2.24.4 T and Hbs. clavatus TNN18T, respectively. The major polar lipids of the strain MBLA160T were phosphatidylglycerol, phosphatidylglycerol sulfate, and phosphatidylglycerol phosphate methyl ester. The genome size, G + C content, and N50 value of MBLA0160T were 3.49 Mb, 66.5 mol%, and 620,127 bp, respectively. According to predicted functional proteins of strain MBLA0160T, the highest category was amino acid transport and metabolism. Genome rapid annotation showed that amino acid and derivatives was the most subsystem feature counts. Pan-genomic analysis showed that strain MBLA0160T had 97 annotated unique KEGG, which were mainly included metabolism and environmental information processing. Ortholog average nucleotide identities (OrthoANI) and in silico DNA-DNA hybridization (isDDH) values between the strain MBLA0160T and other strains of the genus Halobellus were under 84,4% and 28.1%, respectively. The genome of strain MBLA0160T also contain the biosynthetic gene cluster for C50 carotenoid as secondary metabolite. Based on the phylogenetic, phenotypic, chemotaxonomic properties, and comparative genomic analyses, strain MBLA0160T is considered to represent a novel species of the genus Halobellus, for which the name Halobellus ruber sp. nov. is proposed. The type strain is MBLA0160T (= KCTC 4291 T = JCM 34172 T).
Collapse
Affiliation(s)
- Chi Young Hwang
- Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University, Incheon, 22012, Republic of Korea
| | - Eui-Sang Cho
- Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University, Incheon, 22012, Republic of Korea
| | - Deok Jun Yoon
- Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University, Incheon, 22012, Republic of Korea
| | - Myung-Ji Seo
- Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University, Incheon, 22012, Republic of Korea.
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea.
- Institute for New Drug Development, Incheon National University, Incheon, 22012, Republic of Korea.
| |
Collapse
|
10
|
Wang M, Ma J, Wang X, Wang Z, Tang L, Chen H, Li Z. Detoxification of Cu(II) by the red yeast Rhodotorula mucilaginosa: from extracellular to intracellular. Appl Microbiol Biotechnol 2020; 104:10181-10190. [PMID: 33043391 DOI: 10.1007/s00253-020-10952-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/26/2020] [Accepted: 10/05/2020] [Indexed: 01/17/2023]
Abstract
The red yeast (Rhodotorula mucilaginosa: Rho) has abundant extracellular polymeric substances (EPS) and intracellular vesicles (Ves). This study explored the mechanisms of Rho to resist Cu toxicity from extracellular to intracellular, i.e., EPS, membrane, and Ves. The Cu2+ concentrations were set from 0 to 200 mg/L. In contrast to other heavy metals (e.g., Pb2+), low Cu2+ stress has no evident stimulation to EPS production. In particular, GSH content in EPS did not show significant changes. The Cu removal was decreased from ~ 35 to ~ 0% as Cu stress raised from 0 to 200 mg/L, which confirmed the low binding of Cu cations to EPS. Moreover, redox peaks at - 0.35 V (reduction) and - 0.02 V (oxidation) in EPS were observed based on electrochemical analysis. Subsequently, the potential Haber-Weiss reaction in EPS lowered fungal ability to shield against the Cu toxicity. Then, the contrast of Cu concentration between the extracellular and intracellular regions was enlarged. Moreover, the thickness of cell membrane decreased from 450 to 116 nm during the elevation of Cu stress. These accelerated the transport of Cu cations into intracellular, but the redox reaction in both cell membrane and intracellular region was limited. Under transmission electron microscopy, the intracellular Ves showed evident sorption of Cu cations (100 mg/L). However, the Ves started to deform and gradually lost their activity at 200 mg/L. Therefore, this study successfully elucidated the correlated extracellular and intracellular mechanisms of metal detoxification by yeast. KEY POINTS: •This study provides a comprehensive explanation for the invasion of Cu2+ into fungal (Rhodotorula mucilaginosa) cells based on microbial physiological and biochemical analysis, electrochemical analysis, and transmitted electron microscopy. •Cu nanoparticles are involved in redox reactions in the EPS, thus greatly reducing the prophase protection for fungal cells by EPS. •At 200 mg/L Cu2+ stress, deformation of cell membrane intensifies the contrast of Cu concentrations between extra- and intracellular regions. This further suppresses the transportation of Cu2+ by intracellular vesicles. Graphical abstract.
Collapse
Affiliation(s)
- Mengxiao Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jingxuan Ma
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xuewei Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Zhijun Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Lingyi Tang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Haoming Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China. .,School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Zhen Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China. .,Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
11
|
Foligné B, George F, Standaert A, Garat A, Poiret S, Peucelle V, Ferreira S, Sobry H, Muharram G, Lucau‐Danila A, Daniel C. High‐dose dietary supplementation with zinc prevents gut inflammation: Investigation of the role of metallothioneins and beyond by transcriptomic and metagenomic studies. FASEB J 2020; 34:12615-12633. [DOI: 10.1096/fj.202000562rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Benoît Foligné
- Univ. Lille, INSERM, CHU Lille, U1286 ‐ Infinite ‐ Institute for Translational Research in Inflammation Lille France
| | - Fanny George
- Univ. Lille, INSERM, CHU Lille, U1286 ‐ Infinite ‐ Institute for Translational Research in Inflammation Lille France
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483‐IMPECS‐IMPact de l'Environnement Chimique sur la Santé humaine Lille France
| | - Annie Standaert
- Univ. Lille, INSERM, CHU Lille, U1286 ‐ Infinite ‐ Institute for Translational Research in Inflammation Lille France
| | - Anne Garat
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483‐IMPECS‐IMPact de l'Environnement Chimique sur la Santé humaine Lille France
- CHU Lille, Unité Fonctionnelle de Toxicologie Lille France
| | - Sabine Poiret
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 ‐ CIIL ‐ Center for Infection and Immunity of Lille Lille France
| | - Véronique Peucelle
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 ‐ CIIL ‐ Center for Infection and Immunity of Lille Lille France
| | | | - Hélène Sobry
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 ‐ CIIL ‐ Center for Infection and Immunity of Lille Lille France
| | - Ghaffar Muharram
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 ‐ CIIL ‐ Center for Infection and Immunity of Lille Lille France
| | - Anca Lucau‐Danila
- BIOECOAGRO INRAe, UArtois, ULiege, ULille, ULCO, UPJV, YNCREA, Institut Charles Viollette Lille France
| | - Catherine Daniel
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 ‐ CIIL ‐ Center for Infection and Immunity of Lille Lille France
| |
Collapse
|
12
|
Salam LB. Unravelling the antibiotic and heavy metal resistome of a chronically polluted soil. 3 Biotech 2020; 10:238. [PMID: 32405442 PMCID: PMC7205953 DOI: 10.1007/s13205-020-02219-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/24/2020] [Indexed: 12/14/2022] Open
Abstract
The antibiotic and heavy metal resistome of a chronically polluted soil (3S) obtained from an automobile workshop in Ilorin, Kwara State, Nigeria was deciphered via functional annotation of putative ORFs (open reading frames). Functional annotation of antibiotic and heavy metal resistance genes in 3S metagenome was conducted using the Comprehensive Antibiotic Resistance Database (CARD), Antibiotic Resistance Gene-annotation (ARG-ANNOT) and Antibacterial Biocide and Metal Resistance Gene Database (BacMet). Annotation revealed detection of resistance genes for 15 antibiotic classes with the preponderance of beta lactamases, mobilized colistin resistance determinant (mcr), glycopepetide and tetracycline resistance genes, the OqxBgb and OqxA RND-type multidrug efflux pumps, among others. The dominance of resistance genes for antibiotics effective against members of the Enterobacteriaceae indicate possible contamination with faecal materials. Annotation of heavy metal resistance genes revealed diverse resistance genes responsible for the uptake, transport, detoxification, efflux and regulation of copper, zinc, cadmium, nickel, chromium, cobalt, mercury, arsenic, iron, molybdenum and several others. Majority of the antibiotic and heavy metal resistance genes detected in this study are borne on mobile genetic elements, which facilitate their spread and dissemination in the polluted soil. The presence of the heavy metal resistance genes is strongly believed to play a major role in the proliferation of antibiotic resistance genes. This study has established that soil is a huge repertoire of antibiotic and heavy metal resistome and due to the intricate link between human, animals and the soil environment, it may be a major contributor to the proliferation of multidrug-resistant clinical pathogens.
Collapse
Affiliation(s)
- Lateef Babatunde Salam
- Microbiology Unit, Department of Biological Sciences, Summit University, Offa, Kwara Nigeria
| |
Collapse
|
13
|
Suzuki Y, Nishijima S, Furuta Y, Yoshimura J, Suda W, Oshima K, Hattori M, Morishita S. Long-read metagenomic exploration of extrachromosomal mobile genetic elements in the human gut. MICROBIOME 2019; 7:119. [PMID: 31455406 PMCID: PMC6712665 DOI: 10.1186/s40168-019-0737-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 08/16/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND Elucidating the ecological and biological identity of extrachromosomal mobile genetic elements (eMGEs), such as plasmids and bacteriophages, in the human gut remains challenging due to their high complexity and diversity. RESULTS Here, we show efficient identification of eMGEs as complete circular or linear contigs from PacBio long-read metagenomic data. De novo assembly of PacBio long reads from 12 faecal samples generated 82 eMGE contigs (2.5~666.7-kb), which were classified as 71 plasmids and 11 bacteriophages, including 58 novel plasmids and six bacteriophages, and complete genomes of five diverse crAssphages with terminal direct repeats. In a dataset of 413 gut metagenomes from five countries, many of the identified plasmids were highly abundant and prevalent. The ratio of gut plasmids by our plasmid data is more than twice that in the public database. Plasmids outnumbered bacterial chromosomes three to one on average in this metagenomic dataset. Host prediction suggested that Bacteroidetes-associated plasmids predominated, regardless of microbial abundance. The analysis found several plasmid-enriched functions, such as inorganic ion transport, while antibiotic resistance genes were harboured mostly in low-abundance Proteobacteria-associated plasmids. CONCLUSIONS Overall, long-read metagenomics provided an efficient approach for unravelling the complete structure of human gut eMGEs, particularly plasmids.
Collapse
Affiliation(s)
- Yoshihiko Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8568 Japan
| | - Suguru Nishijima
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8568 Japan
- AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory, Tokyo, 169-8555 Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555 Japan
| | - Yoshikazu Furuta
- Division of Infection and Immunity, Research Center for Zoonosis Control, Hokkaido University, Sapporo, 001-0020 Japan
| | - Jun Yoshimura
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8568 Japan
| | - Wataru Suda
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8568 Japan
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045 Japan
| | - Kenshiro Oshima
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8568 Japan
| | - Masahira Hattori
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8568 Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555 Japan
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045 Japan
| | - Shinichi Morishita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8568 Japan
| |
Collapse
|
14
|
Nanda M, Kumar V, Sharma DK. Multimetal tolerance mechanisms in bacteria: The resistance strategies acquired by bacteria that can be exploited to 'clean-up' heavy metal contaminants from water. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 212:1-10. [PMID: 31022608 DOI: 10.1016/j.aquatox.2019.04.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 05/27/2023]
Abstract
Heavy metal pollution is one of the major environmental concerns worldwide. Toxic heavy metals when untreated get accumulated in environment and can pose severe threats to living organisms. It is well known that metals play a major role either directly or indirectly in different metabolic processes of bacteria. This allows bacterial cells to grow even in the presence of some toxic heavy metals. Microbial biotechnology has thus emerged as an effective and eco friendly solution in recent years for bioremediation of heavy metals. Therefore, this review is focused on summarising bacterial adaptation mechanisms for various heavy metals. It also shares some applications of have metal tolerant bacteria in bioremediation. Bacteria have evolved a number of processes for heavy metal tolerance viz., transportation across cell membrane, accumulation on cell wall, intra as well as extracellular entrapment, formation of complexes and redox reactions which form the basis of different bioremediation strategies. The genetic determinants for most of these resistances are located on plasmids however some may be chromosomal as well. Bacterial cells can uptake heavy by both ATP dependent and ATP independent processes. Bacterial cell wall also plays a very important role in accumulating heavy metals by bacterial cells. Gram-positive bacteria accumulate much higher concentrations of heavy metals on their cell walls than that of metals gram -ve bacteria. The role of bacterial metallothioneins (MTs) in heavy metal has also been reported. Thus, heavy metal tolerant bacteria are important for bioremediation of heavy metal pollutants from areas containing high concentrations of particular heavy metals.
Collapse
Affiliation(s)
- Manisha Nanda
- Department of Biotechnology, Dolphin (PG) Institute of Biomedical and Natural Sciences, Dehradun, 248007, India.
| | - Vinod Kumar
- Department of Chemistry, Uttaranchal University, Dehradun, 248007, India.
| | - D K Sharma
- Department of Zoology and Biotechnology, H.N.B. Garhwal Central University, SRT Campus, Badshahi Thaul, Tehri, Uttarakhand, India
| |
Collapse
|
15
|
Synergistic Toxicity of Copper and Gold Compounds in Cupriavidus metallidurans. Appl Environ Microbiol 2017; 83:AEM.01679-17. [PMID: 28939602 DOI: 10.1128/aem.01679-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/12/2017] [Indexed: 11/20/2022] Open
Abstract
The bacterium Cupriavidus metallidurans can reduce toxic gold(I/III) complexes and biomineralize them into metallic gold (Au) nanoparticles, thereby mediating the (trans)formation of Au nuggets. In Au-rich soils, most transition metals do not interfere with the resistance of this bacterium to toxic mobile Au complexes and can be removed from the cell by plasmid-encoded metal efflux systems. Copper is a noticeable exception: the presence of Au complexes and Cu ions results in synergistic toxicity, which is accompanied by an increased cytoplasmic Cu content and formation of Au nanoparticles in the periplasm. The periplasmic Cu-oxidase CopA was not essential for formation of the periplasmic Au nanoparticles. As shown with the purified and reconstituted Cu efflux system CupA, Au complexes block Cu-dependent release of phosphate from ATP by CupA, indicating inhibition of Cu transport. Moreover, Cu resistance of Au-inhibited cells was similar to that of mutants carrying deletions in the genes for the Cu-exporting PIB1-type ATPases. Consequently, Au complexes inhibit export of cytoplasmic Cu ions, leading to an increased cellular Cu content and decreased Cu and Au resistance. Uncovering the biochemical mechanisms of synergistic Au and Cu toxicity in C. metallidurans explains the issues this bacterium has to face in auriferous environments, where it is an important contributor to the environmental Au cycle.IMPORTANCE C. metallidurans lives in metal-rich environments, including auriferous soils that contain a mixture of toxic transition metal cations. We demonstrate here that copper ions and gold complexes exert synergistic toxicity because gold ions inhibit the copper-exporting P-type ATPase CupA, which is central to copper resistance in this bacterium. Such a situation should occur in soils overlying Au deposits, in which Cu/Au ratios usually are ≫1. Appreciating how C. metallidurans solves the problem of living in environments that contain both Au and Cu is a prerequisite to understand the molecular mechanisms underlying gold cycling in the environment, and the significance and opportunities of microbiota for specific targeting to Au in mineral exploration and ore processing.
Collapse
|
16
|
Resistance of Permafrost and Modern Acinetobacter lwoffii Strains to Heavy Metals and Arsenic Revealed by Genome Analysis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3970831. [PMID: 27795957 PMCID: PMC5067307 DOI: 10.1155/2016/3970831] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/14/2016] [Accepted: 09/07/2016] [Indexed: 12/23/2022]
Abstract
We performed whole-genome sequencing of five permafrost strains of Acinetobacter lwoffii (frozen for 15–3000 thousand years) and analyzed their resistance genes found in plasmids and chromosomes. Four strains contained multiple plasmids (8–12), which varied significantly in size (from 4,135 to 287,630 bp) and genetic structure; the fifth strain contained only two plasmids. All large plasmids and some medium-size and small plasmids contained genes encoding resistance to various heavy metals, including mercury, cobalt, zinc, cadmium, copper, chromium, and arsenic compounds. Most resistance genes found in the ancient strains of A. lwoffii had their closely related counterparts in modern clinical A. lwoffii strains that were also located on plasmids. The vast majority of the chromosomal resistance determinants did not possess complete sets of the resistance genes or contained truncated genes. Comparative analysis of various A. lwoffii and of A. baumannii strains discovered a number of differences between them: (i) chromosome sizes in A. baumannii exceeded those in A. lwoffii by about 20%; (ii) on the contrary, the number of plasmids in A. lwoffii and their total size were much higher than those in A. baumannii; (iii) heavy metal resistance genes in the environmental A. lwoffii strains surpassed those in A. baumannii strains in the number and diversity and were predominantly located on plasmids. Possible reasons for these differences are discussed.
Collapse
|
17
|
Fosso-Kankeu E, Mulaba-Bafubiandi AF, Piater LA, Tlou MG. Cloning of the cnr operon into a strain of Bacillaceae bacterium for the development of a suitable biosorbent. World J Microbiol Biotechnol 2016; 32:114. [PMID: 27263009 DOI: 10.1007/s11274-016-2069-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 04/22/2016] [Indexed: 10/21/2022]
Abstract
In this study, a potential microbial biosorbent was engineered to improve its capacity to remediate heavy metal contaminated water resources. A Bacillaceae bacterium isolated from a mining area was transformed with a plasmid carrying the (pECD312)-based cnr operon that encodes nickel and cobalt resistance. The bioadsorption ability of the transformed strain was evaluated for removal of nickel from metallurgical water relative to the wildtype strain. Results showed that transformation improved the adsorption capacity of the bacterium by 37 % at nickel concentrations equivalent to 150 mg/L. Furthermore it was possible to apply prediction modelling to study the bioadsorption behaviour of the transformed strain. As such, this work may be extended to the design of a nickel bioremediation plant utilising the newly developed Bacillaceae bacterium as a biosorbent.
Collapse
Affiliation(s)
- Elvis Fosso-Kankeu
- School of Chemical and Minerals Engineering, Faculty of Engineering, North-West University, Potchefstroom, South Africa.
| | - Antoine F Mulaba-Bafubiandi
- Minerals Processing and Technology Research Center, Department of Extraction Metallurgy, School of Mining, Metallurgy and Chemical Engineering, Faculty of Engineering and the Built Environment, University of Johannesburg, PO Box 17011, Doornfontein, 2028, South Africa
| | - Lizelle A Piater
- Department of Biochemistry, Faculty of Science, University of Johannesburg, PO Box 524, Auckland Park, 2006, South Africa
| | - Matsobane G Tlou
- Department of Biochemistry, Faculty of Science, University of Johannesburg, PO Box 524, Auckland Park, 2006, South Africa
| |
Collapse
|
18
|
Fadeev E, De Pascale F, Vezzi A, Hübner S, Aharonovich D, Sher D. Why Close a Bacterial Genome? The Plasmid of Alteromonas Macleodii HOT1A3 is a Vector for Inter-Specific Transfer of a Flexible Genomic Island. Front Microbiol 2016; 7:248. [PMID: 27014193 PMCID: PMC4781885 DOI: 10.3389/fmicb.2016.00248] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/15/2016] [Indexed: 12/20/2022] Open
Abstract
Genome sequencing is rapidly becoming a staple technique in environmental and clinical microbiology, yet computational challenges still remain, leading to many draft genomes which are typically fragmented into many contigs. We sequenced and completely assembled the genome of a marine heterotrophic bacterium, Alteromonas macleodii HOT1A3, and compared its full genome to several draft genomes obtained using different reference-based and de novo methods. In general, the de novo assemblies clearly outperformed the reference-based or hybrid ones, covering >99% of the genes and representing essentially all of the gene functions. However, only the fully closed genome (∼4.5 Mbp) allowed us to identify the presence of a large, 148 kbp plasmid, pAM1A3. While HOT1A3 belongs to A. macleodii, typically found in surface waters (“surface ecotype”), this plasmid consists of an almost complete flexible genomic island (fGI), containing many genes involved in metal resistance previously identified in the genomes of Alteromonas mediterranea (“deep ecotype”). Indeed, similar to A. mediterranea, A. macleodii HOT1A3 grows at concentrations of zinc, mercury, and copper that are inhibitory for other A. macleodii strains. The presence of a plasmid encoding almost an entire fGI suggests that wholesale genomic exchange between heterotrophic marine bacteria belonging to related but ecologically different populations is not uncommon.
Collapse
Affiliation(s)
- Eduard Fadeev
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa Haifa, Israel
| | - Fabio De Pascale
- Department of Biology and CRIBI Biotechnology Centre, University of Padua Padova, Italy
| | - Alessandro Vezzi
- Department of Biology and CRIBI Biotechnology Centre, University of Padua Padova, Italy
| | - Sariel Hübner
- Department of Botany and Biodiversity Research Centre, University of British ColumbiaVancouver, Canada; The Department of Evolutionary and Environmental Biology, University of HaifaHaifa, Israel
| | - Dikla Aharonovich
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa Haifa, Israel
| | - Daniel Sher
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa Haifa, Israel
| |
Collapse
|
19
|
Haley KP, Gaddy JA. Metalloregulation of Helicobacter pylori physiology and pathogenesis. Front Microbiol 2015; 6:911. [PMID: 26388855 PMCID: PMC4557348 DOI: 10.3389/fmicb.2015.00911] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/19/2015] [Indexed: 12/23/2022] Open
Abstract
Helicobacter pylori is a Gram-negative spiral-shaped bacterium that colonizes over half of the world's population. Chronic H. pylori infection is associated with increased risk for numerous disease outcomes including gastritis, dysplasia, neoplasia, B-cell lymphoma of mucosal-associated lymphoid tissue (MALT lymphoma), and invasive adenocarcinoma. The complex interactions that occur between pathogen and host are dynamic and exquisitely regulated, and the relationship between H. pylori and its human host are no exception. To successfully colonize, and subsequently persist, within the human stomach H. pylori must temporally regulate numerous genes to ensure localization to the gastric lumen and coordinated expression of virulence factors to subvert the host's innate and adaptive immune response. H. pylori achieves this precise gene regulation by sensing subtle environmental changes including host-mediated alterations in nutrient availability and responding with dramatic global changes in gene expression. Recent studies revealed that the presence or absence of numerous metal ions encountered in the lumen of the stomach, or within host tissues, including nickel, iron, copper and zinc, can influence regulatory networks to alter gene expression in H. pylori. These expression changes modulate the deployment of bacterial virulence factors that can ultimately influence disease outcome. In this review we will discuss the environmental stimuli that are detected by H. pylori as well as the trans regulatory elements, specifically the transcription regulators and transcription factors, that allow for these significant transcriptional shifts.
Collapse
Affiliation(s)
- Kathryn P Haley
- Tennessee Valley Healthcare Services, Department of Veterans Affairs Nashville, TN, USA
| | - Jennifer A Gaddy
- Department of Medicine, Vanderbilt University School of Medicine Nashville, TN, USA ; Tennessee Valley Healthcare Services, Department of Veterans Affairs Nashville, TN, USA
| |
Collapse
|
20
|
Mappley LJ, Black ML, AbuOun M, Darby AC, Woodward MJ, Parkhill J, Turner AK, Bellgard MI, La T, Phillips ND, La Ragione RM, Hampson DJ. Comparative genomics of Brachyspira pilosicoli strains: genome rearrangements, reductions and correlation of genetic compliment with phenotypic diversity. BMC Genomics 2012; 13:454. [PMID: 22947175 PMCID: PMC3532143 DOI: 10.1186/1471-2164-13-454] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 08/22/2012] [Indexed: 11/12/2022] Open
Abstract
Background The anaerobic spirochaete Brachyspira pilosicoli causes enteric disease in avian, porcine and human hosts, amongst others. To date, the only available genome sequence of B. pilosicoli is that of strain 95/1000, a porcine isolate. In the first intra-species genome comparison within the Brachyspira genus, we report the whole genome sequence of B. pilosicoli B2904, an avian isolate, the incomplete genome sequence of B. pilosicoli WesB, a human isolate, and the comparisons with B. pilosicoli 95/1000. We also draw on incomplete genome sequences from three other Brachyspira species. Finally we report the first application of the high-throughput Biolog phenotype screening tool on the B. pilosicoli strains for detailed comparisons between genotype and phenotype. Results Feature and sequence genome comparisons revealed a high degree of similarity between the three B. pilosicoli strains, although the genomes of B2904 and WesB were larger than that of 95/1000 (~2,765, 2.890 and 2.596 Mb, respectively). Genome rearrangements were observed which correlated largely with the positions of mobile genetic elements. Through comparison of the B2904 and WesB genomes with the 95/1000 genome, features that we propose are non-essential due to their absence from 95/1000 include a peptidase, glycine reductase complex components and transposases. Novel bacteriophages were detected in the newly-sequenced genomes, which appeared to have involvement in intra- and inter-species horizontal gene transfer. Phenotypic differences predicted from genome analysis, such as the lack of genes for glucuronate catabolism in 95/1000, were confirmed by phenotyping. Conclusions The availability of multiple B. pilosicoli genome sequences has allowed us to demonstrate the substantial genomic variation that exists between these strains, and provides an insight into genetic events that are shaping the species. In addition, phenotype screening allowed determination of how genotypic differences translated to phenotype. Further application of such comparisons will improve understanding of the metabolic capabilities of Brachyspira species.
Collapse
Affiliation(s)
- Luke J Mappley
- Department of Bacteriology, Animal Health and Veterinary Laboratories Agency, Reading University, Addlestone, Surrey, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Zhang R, Pan L, Zhao Z, Gu JD. High incidence of plasmids in marine Vibrio species isolated from Mai Po Nature Reserve of Hong Kong. ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:1661-1668. [PMID: 22684730 PMCID: PMC3399079 DOI: 10.1007/s10646-012-0939-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/24/2012] [Indexed: 06/01/2023]
Abstract
Mai Po Nature Reserve is the largest mangrove ecosystem and the most polluted coastal water body in Hong Kong. Plasmids screening of 100 Vibrio isolates randomly showed 45 % of them contained 1-3 plasmids. These plasmid(s)-bearing isolates could be divided into 12 groups based on their plasmid profiles. Phylogenetic analysis of the partial 16S rRNA gene sequences confirmed that all plasmid(s)-bearing isolates belonged to Vibrio cholerae. Full DNA sequences of the plasmids in Groups I (pVCG1.1 and pVCG1.2), II (pVCG2.1), III (pVCG3.2) and IV (pVCG4.1) have been determined and the results showed that pVCG1.1, pVCG2.1 and pVCG3.2 were almost identical. Plasmids pVCG1.1, pVCG1.2 and pVCG4.1 are comprised of 4,439, 2,357 and 2,163 bp with the overall G+C content of 45.57, 53.54 and 43.09 %, respectively. pVCG1.1 is a novel plasmid, and plasmids pVCG1.2 and pVCG4.1 showed homology of replication initiation proteins to that of the theta type replicons. Attempts to cure the plasmids from their hosts were unsuccessful. These data suggest that plasmids of Vibrio spp. are a significant gene reservoir in the marine ecosystem.
Collapse
Affiliation(s)
- Ruifu Zhang
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong SAR, People’s Republic of China
- Jiangsu Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Li Pan
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong SAR, People’s Republic of China
| | - Zhenye Zhao
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong SAR, People’s Republic of China
- Shenzhen-Hong Kong Institution of Industry, Education, Research Environment Engineering Technique Co., Ltd, Shenzhen, Guangdong China
| | - Ji-Dong Gu
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong SAR, People’s Republic of China
- The Swire Institute of Marine Science, The University of Hong Kong, Shek O, Cape d’Aguilar, Hong Kong SAR, People’s Republic of China
| |
Collapse
|
22
|
Sochor J, Zitka O, Hynek D, Jilkova E, Krejcova L, Trnkova L, Adam V, Hubalek J, Kynicky J, Vrba R, Kizek R. Bio-sensing of cadmium(II) ions using Staphylococcus aureus. SENSORS 2011; 11:10638-63. [PMID: 22346664 PMCID: PMC3274306 DOI: 10.3390/s111110638] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 10/31/2011] [Accepted: 11/07/2011] [Indexed: 12/17/2022]
Abstract
Cadmium, as a hazardous pollutant commonly present in the living environment, represents an important risk to human health due to its undesirable effects (oxidative stress, changes in activities of many enzymes, interactions with biomolecules including DNA and RNA) and consequent potential risk, making its detection very important. New and unique technological and biotechnological approaches for solving this problems are intensely sought. In this study, we used the commonly occurring potential pathogenic microorganism Staphylococcus aureus for the determination of markers which could be used for sensing of cadmium(II) ions. We were focused on monitoring the effects of different cadmium(II) ion concentrations (0, 1.25, 2.5, 5, 10, 15, 25 and 50 μg mL(-1)) on the growth and energetic metabolism of Staphylococcus aureus. Highly significant changes have been detected in the metabolism of thiol compounds-specifically the protein metallothionein (0.79-26.82 mmol/mg of protein), the enzyme glutathione S-transferase (190-5,827 μmol/min/mg of protein), and sulfhydryl groups (9.6-274.3 μmol cysteine/mg of protein). The ratio of reduced and oxidized glutathione indicated marked oxidative stress. In addition, dramatic changes in urease activity, which is connected with resistance of bacteria, were determined. Further, the effects of cadmium(II) ions on the metabolic pathways of arginine, β-glucosidase, phosphatase, N-acetyl β-d-glucosamine, sucrose, trehalose, mannitol, maltose, lactose, fructose and total proteins were demonstrated. A metabolomic profile of Staphylococcus aureus under cadmium(II) ion treatment conditions was completed seeking data about the possibility of cadmium(II) ion accumulation in cells. The results demonstrate potential in the application of microorganisms as modern biosensor systems based on biological components.
Collapse
Affiliation(s)
- Jiri Sochor
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (J.S.); (O.Z.); (D.H.); (E.J.); (L.K.); (L.T.); (V.A.); (J.H.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; E-Mail: (R.V.)
- Lead and Cadmium Initiatives, United Nations Environment Program, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (J.S.); (O.Z.); (D.H.); (E.J.); (L.K.); (L.T.); (V.A.); (J.H.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; E-Mail: (R.V.)
- Lead and Cadmium Initiatives, United Nations Environment Program, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - David Hynek
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (J.S.); (O.Z.); (D.H.); (E.J.); (L.K.); (L.T.); (V.A.); (J.H.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; E-Mail: (R.V.)
- Lead and Cadmium Initiatives, United Nations Environment Program, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Eva Jilkova
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (J.S.); (O.Z.); (D.H.); (E.J.); (L.K.); (L.T.); (V.A.); (J.H.)
| | - Ludmila Krejcova
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (J.S.); (O.Z.); (D.H.); (E.J.); (L.K.); (L.T.); (V.A.); (J.H.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; E-Mail: (R.V.)
- Lead and Cadmium Initiatives, United Nations Environment Program, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Libuse Trnkova
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (J.S.); (O.Z.); (D.H.); (E.J.); (L.K.); (L.T.); (V.A.); (J.H.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; E-Mail: (R.V.)
- Lead and Cadmium Initiatives, United Nations Environment Program, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, CZ-611 37 Brno, Czech Republic
- Research Centre for Environmental Chemistry and Ecotoxicology, Faculty of Science, Masaryk University, Kotlarska 2, CZ-611 37 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (J.S.); (O.Z.); (D.H.); (E.J.); (L.K.); (L.T.); (V.A.); (J.H.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; E-Mail: (R.V.)
- Lead and Cadmium Initiatives, United Nations Environment Program, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Jaromir Hubalek
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (J.S.); (O.Z.); (D.H.); (E.J.); (L.K.); (L.T.); (V.A.); (J.H.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; E-Mail: (R.V.)
- Lead and Cadmium Initiatives, United Nations Environment Program, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Department of Microelectronics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 10, CZ-616 00 Brno, Czech Republic
| | - Jindrich Kynicky
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mail: (J.K.)
| | - Radimir Vrba
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; E-Mail: (R.V.)
| | - Rene Kizek
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (J.S.); (O.Z.); (D.H.); (E.J.); (L.K.); (L.T.); (V.A.); (J.H.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; E-Mail: (R.V.)
- Lead and Cadmium Initiatives, United Nations Environment Program, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Research Centre for Environmental Chemistry and Ecotoxicology, Faculty of Science, Masaryk University, Kotlarska 2, CZ-611 37 Brno, Czech Republic
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +420-545-133-350; Fax: +420-545-212-044
| |
Collapse
|
23
|
Bar-coded pyrosequencing of 16S rRNA gene amplicons reveals changes in ileal porcine bacterial communities due to high dietary zinc intake. Appl Environ Microbiol 2010; 76:6689-91. [PMID: 20709843 DOI: 10.1128/aem.03075-09] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Feeding high levels of zinc oxide to piglets significantly increased the relative abundance of ileal Weissella spp., Leuconostoc spp., and Streptococcus spp., reduced the occurrence of Sarcina spp. and Neisseria spp., and led to numerical increases of all Gram-negative facultative anaerobic genera. High dietary zinc oxide intake has a major impact on the porcine ileal bacterial composition.
Collapse
|
24
|
Abstract
Multiresistance plasmids and transposons, the integrons, the co-amplification of several resistance genes or finally the accumulation of independent mutations can lead to microorganisms resistant to multiple drugs. On the other hand multidrug resistance is due to an efflux pump conferring resistance to unrelated drugs. These microbial efflux pumps are belonging to various transporter families and are often encoded in microbial genomes. There is mounting evidence that these efflux systems are responsible for clinical multidrug resistance in bacteria, yeasts and parasites.
Collapse
Affiliation(s)
- M Ouellette
- Centre de Recherche en Infectiologie du Centre de Recherche du CHUL, Québec, Canada
| | | |
Collapse
|
25
|
Bruce KD. Analysis of mer Gene Subclasses within Bacterial Communities in Soils and Sediments Resolved by Fluorescent-PCR-Restriction Fragment Length Polymorphism Profiling. Appl Environ Microbiol 2010; 63:4914-9. [PMID: 16535754 PMCID: PMC1389310 DOI: 10.1128/aem.63.12.4914-4919.1997] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial mer (mercury resistance) gene subclasses in mercury-polluted and pristine natural environments have been profiled by Fluorescent-PCR-restriction fragment length polymorphism (FluRFLP). For FluRFLP, PCR products were amplified from individual mer operons in mercury-resistant bacteria and from DNA isolated directly from bacteria in soil and sediment samples. The primers used to amplify DNA were designed from consensus sequences of the major subclasses of archetypal gram-negative mer operons within Tn501, Tn21, pDU1358, and pKLH2. Two independent PCRs were used to amplify two regions of different lengths (merRT(Delta)P [ca. 1 kb] and merR [ca. 0.4 kb]) starting at the same position in merR. The oligonucleotide primer common to both reactions (FluRX) was labelled at the 5(prm1) end with green (TET) fluorescent dye. Analysis of the mer sequences within databases indicated that the major subclasses could be differentiated on the basis of the length from FluRX to the first FokI restriction endonuclease site. The amplified PCR products were digested with FokI restriction endonuclease, with the restriction digest fragments resolved on an automated DNA sequencing machine which detected only those bands labelled with the fluorescent dye. For each of the individual mer operon sources examined, this single peak (in bases) position was observed in separate digests of either amplified region. These peak positions were as predicted on the basis of DNA sequence. mer PCR products amplified from DNA extracted directly from soil and sediment bacteria were studied in order to determine the profiles of the major mer subclasses present in each natural environment. In addition to peaks of the expected sizes, extra peaks were observed which were not predicted on the basis of DNA sequence. Those appearing in the restriction endonuclease digests of both study regions were presumed to be novel mer types. Genetic heterogeneity within and between mercury-polluted and pristine sites has been studied by this technique. Profiles generated were highly similar for samples taken within the same soil type. The profiles, however, changed markedly on crossing from one soil type to another, with gradients of the different groupings of mer genes identified.
Collapse
|
26
|
Kim B, McBride MB, Hay AG. Urease activity in aged copper and zinc-spiked soils: relationship to CaCl2-extractable metals and Cu2+ activity. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2008; 27:2469-2475. [PMID: 18693775 DOI: 10.1897/08-023.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Accepted: 06/19/2008] [Indexed: 05/26/2023]
Abstract
In the present study, the utilization of dilute CaCl2 extraction and free metal ion activity was tested for its ability to predict urease activity in soils that was measured by a simple and rapid urease assay. Two soil series (an Arkport sandy loam and a Hudson silty clay loam) were spiked with Cu and Zn, both singly and in combination, and then field aged for over a year prior to use. For both the metal-spiked Arkport and Hudson soils, much of the inhibition in measured urease activity was explained by increased CaCl2-extractable Cu, with a lesser effect from increased Zn extractability. A positive but weak interaction between Cu and Zn suggested by regression analysis indicates the toxicity of Cu-Zn mixtures to soil urease is slightly less than additive (antagonistic). Copper extractability using CaCl2 was able to predict urease activity in only one of the tested soils. By contrast, measurements of Cu2+ activity were predictive of reduced urease activity in both soils (R2adj = 0.726, p < 0.0001), indicating that Cu2+ activity is a more useful predictor of urease inhibition in soils than CaCl2-extractable Cu. The present study also highlighted the importance that clay mineral content had on controlling the availability of added metals in soils over time since a greater aging effect on Cu toxicity was found for the fine-textured Hudson than the coarse-textured Arkport soil.
Collapse
Affiliation(s)
- Bojeong Kim
- Center for NanoBioEarth, Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, USA
| | | | | |
Collapse
|
27
|
Affiliation(s)
- Andrea K. White
- Department of Biological Sciences, California State University, Chico, California 95928-0515;
| | - William W. Metcalf
- Department of Microbiology and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801;
| |
Collapse
|
28
|
Gikas P. Kinetic responses of activated sludge to individual and joint nickel (Ni(II)) and cobalt (Co(II)): An isobolographic approach. JOURNAL OF HAZARDOUS MATERIALS 2007; 143:246-56. [PMID: 17045395 DOI: 10.1016/j.jhazmat.2006.09.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 09/02/2006] [Accepted: 09/07/2006] [Indexed: 05/12/2023]
Abstract
The effects of Ni(II) and Co(II) on the activated sludge growth rate have been assessed for a batch growth system, for a range of concentrations between 0 and 320 mg L(-1). The activated sludge was not acclimatized to the above metallic species, while a synthetic rich growth medium was used as substrate throughout out the experimental trials. Ni(II) and Co(II) have been found to stimulate microbial growth at concentrations approximately below 27 and 19 mg L(-1), with maximum stimulation concentrations 10 and 5 mg L(-1), respectively. The lethal concentrations (zero growth) for both species have been found to lie between 160 and 320 mg L(-1), with Co(II) identified as more potent growth inhibitor compared to Ni(II). The behaviour of activated sludge was also tested at the presence of three Ni(II) and Co(II) quotas, at various concentrations (75%Ni-25%Co (w/w), 50%Ni-50%Co (w/w) and 25%Ni-75%Co (w/w)). All the mixtures stimulated more drastically the activated sludge growth at relatively small concentrations, compared with the stimulation of equal concentrations of single species, whilst they also acted as more potent inhibitors at relatively high concentrations. Based on the isobole method, the data indicated that Ni(II) and Co(II) acted synergistically at the increasing stimulation and at the intoxication zones, whilst an antagonistic relation determined at the decreasing stimulation zone. Under the light of the present study, it is obvious that interactions (particularly synergism) between different metallic species should be taken into account in the methodologies used to establish criteria for tolerance levels in the environment.
Collapse
Affiliation(s)
- Petros Gikas
- Ministry of Environmental Planning and Public Works, General Secretariat of Public Works, Special Service of Public Works for Greater Athens Sewerage and Sewage Treatment, Varvaki 12, Athens 11474, Greece.
| |
Collapse
|
29
|
Caroppo C, Stabili L, Aresta M, Corinaldesi C, Danovaro R. Impact of heavy metals and PCBs on marine picoplankton. ENVIRONMENTAL TOXICOLOGY 2006; 21:541-51. [PMID: 17091498 DOI: 10.1002/tox.20215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Synergistic/antagonistic effects of multiple contaminants in marine environments are almost completely unexplored. In the present study, we investigated the effects of heavy metals (Zn and Pb) and PCBs on picoplankton abundance, biomass, cell size distribution, and bacterial C production. Natural picoplankton assemblages were exposed to heavy metals (Zn or Pb), organic contaminants (PCBs, Aroclor 1260), and to a mixture of different contaminants. The results of the present study indicate that Zn addition stimulated heterotrophic growth, whereas Pb has a negative impact on heterotrophic picoplankton, particularly significant in the first 24 h. Heavy metals had no effects on the autotrophic component. The addition of Aroclor 1260 had a significant impact on abundance, biomass, and cell size of autotrophic and heterotrophic picoplankton, and reduced significantly bacterial secondary production. Three weeks after PCB treatment, heterotrophic bacteria displayed a clear resilience, both in terms of abundance and biomass, reaching values comparable to those of the controls, but not in terms of bacterial C production. Our results indicate that picoplankton can be sensitive indicators of impact determined by heavy metals and PCBs in coastal marine systems.
Collapse
Affiliation(s)
- Carmela Caroppo
- Istituto Ambiente Marino Costiero - CNR, Sede Talassografico A. Cerruti -Via Roma 3, 74100 Taranto, Italy.
| | | | | | | | | |
Collapse
|
30
|
Abstract
The biotransformation of Hg(II) by cyanobacteria was investigated under aerobic and pH-controlled culture conditions. Mercury was supplied as HgCl(2) in amounts emulating those found under heavily impacted environmental conditions where bioremediation would be appropriate. The analytical procedures used to measure mercury within the culture solution, including that in the cyanobacterial cells, used reduction under both acid and alkaline conditions in the presence of SnCl(2). Acid reduction detected free Hg(II) ions and its complexes, whereas alkaline reduction revealed that meta-cinnabar (beta-HgS) constituted the major biotransformed and cellularly associated mercury pool. This was true for all investigated species of cyanobacteria: Limnothrix planctonica (Lemm.), Synechococcus leopoldiensis (Racib.) Komarek, and Phormidium limnetica (Lemm.). From the outset of mercury exposure, there was rapid synthesis of beta-HgS and Hg(0); however, the production rate for the latter decreased quickly. Inhibitory studies using dimethylfumarate and iodoacetamide to modify intra- and extracellular thiols, respectively, revealed that the former thiol pool was required for the conversion of Hg(II) into beta-HgS. In addition, increasing the temperature enhanced the amount of beta-HgS produced, with a concomitant decrease in Hg(0) volatilization. These findings suggest that in the environment, cyanobacteria at the air-water interface could act to convert substantial amounts of Hg(II) into beta-HgS. Furthermore, the efficiency of conversion into beta-HgS by cyanobacteria may lead to the development of applications in the bioremediation of mercury.
Collapse
Affiliation(s)
- Daniel D Lefebvre
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada.
| | | | | |
Collapse
|
31
|
Zhang R, Wang Y, Gu JD. Identification of environmental plasmid-bearing Vibrio species isolated from polluted and pristine marine reserves of Hong Kong, and resistance to antibiotics and mercury. Antonie van Leeuwenhoek 2006; 89:307-15. [PMID: 16779626 DOI: 10.1007/s10482-005-9032-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/21/2005] [Indexed: 10/24/2022]
Abstract
Fifty environmental isolates of Vibrio species were isolated from water samples of Mai Po Nature Reserve and the Cape d'Aguilar Marine Reserve in Hong Kong and screened for the presence of plasmid. Mai Po is a wastewater-impacted area while the Cape d'Aguilar Marine Reserve is pristine natural marine water. Plasmid was found in Vibrio isolates from both sites at similar frequencies and each site showed distinctive plasmid profiles. These plasmid-bearing Vibrio isolates were identified as different species of the Vibrio genus by both biochemical test and subsequently full-length 16S rRNA sequences. Antibiotic resistance test showed that all these plasmid-bearing Vibrio isolates showed multiple resistance to 21 antibiotics tested. In addition, selective isolates also showed tolerance to 10 microM Hg 2+ in culture medium and they generally harbored large plasmid(s) (>30 kb). Our results show that the high frequency of plasmid in Vibrio species of both polluted and pristine environments may be ecologically important to the survival of these bacteria in the environment. The specific functioning of the cryptic plasmids remains the focus of current investigations.
Collapse
Affiliation(s)
- Ruifu Zhang
- Laboratory of Environmental Microbiology and Toxicology, Department of Ecology & Biodiversity, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong SAR, P.R. China
| | | | | |
Collapse
|
32
|
Kelly D, Budd K, Lefebvre DD. Mercury analysis of acid- and alkaline-reduced biological samples: identification of meta-cinnabar as the major biotransformed compound in algae. Appl Environ Microbiol 2006; 72:361-7. [PMID: 16391065 PMCID: PMC1352238 DOI: 10.1128/aem.72.1.361-367.2006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The biotransformation of Hg(II) in pH-controlled and aerated algal cultures was investigated. Previous researchers have observed losses in Hg detection in vitro with the addition of cysteine under acid reduction conditions in the presence of SnCl2. They proposed that this was the effect of Hg-thiol complexing. The present study found that cysteine-Hg, protein and nonprotein thiol chelates, and nucleoside chelates of Hg were all fully detectable under acid reduction conditions without previous digestion. Furthermore, organic (R-Hg) mercury compounds could not be detected under either the acid or alkaline reduction conditions, and only beta-HgS was detected under alkaline and not under acid SnCl2 reduction conditions. The blue-green alga Limnothrix planctonica biotransformed the bulk of Hg(II) applied as HgCl2 into a form with the analytical properties of beta-HgS. Similar results were obtained for the eukaryotic alga Selenastrum minutum. No evidence for the synthesis of organomercurials such as CH3Hg+ was obtained from analysis of either airstream or biomass samples under the aerobic conditions of the study. An analytical procedure that involved both acid and alkaline reduction was developed. It provides the first selective method for the determination of beta-HgS in biological samples. Under aerobic conditions, Hg(II) is biotransformed mainly into beta-HgS (meta-cinnabar), and this occurs in both prokaryotic and eukaryotic algae. This has important implications with respect to identification of mercury species and cycling in aquatic habitats.
Collapse
Affiliation(s)
- David Kelly
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | |
Collapse
|
33
|
Ducey TF, Carson MB, Orvis J, Stintzi AP, Dyer DW. Identification of the iron-responsive genes of Neisseria gonorrhoeae by microarray analysis in defined medium. J Bacteriol 2005; 187:4865-74. [PMID: 15995201 PMCID: PMC1169496 DOI: 10.1128/jb.187.14.4865-4874.2005] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Accepted: 04/11/2005] [Indexed: 11/20/2022] Open
Abstract
To ensure survival, most bacteria must acquire iron, a resource that is sequestered by mammalian hosts. Pathogenic bacteria have therefore evolved intricate systems to sense iron limitation and regulate gene expression appropriately. We used a pan-Neisseria microarray to examine genes regulated in Neisseria gonorrhoeae in response to iron availability in defined medium. Overall, 203 genes varied in expression, 109 up-regulated and 94 down-regulated by iron deprivation. In iron-replete medium, genes essential to rapid bacterial growth were preferentially expressed, while iron transport functions, and predominantly genes of unknown function, were expressed in low-iron medium. Of those TonB-dependent proteins encoded in the FA1090 genome with unknown ligand specificity, expression of three was not controlled by iron availability, suggesting that these receptors may not be high-affinity transporters for iron-containing ligands. Approximately 30% of the operons regulated by iron appeared to be directly under control of Fur. Our data suggest a regulatory cascade where Fur indirectly controls gene expression by affecting the transcription of three secondary regulators. Our data also suggest that a second MerR-like regulator may be directly responding to iron availability and controlling transcription independent of the Fur protein. Comparison of our data with those recently published for Neisseria meningitidis revealed that only a small portion of genes were found to be similarly regulated in these closely related pathogens, while a large number of genes derepressed during iron starvation were unique to each organism.
Collapse
Affiliation(s)
- Thomas F Ducey
- Laboratory for Genomics and Bioinformatics, Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Biomedical Research Center, Oklahoma City, 73104, USA.
| | | | | | | | | |
Collapse
|
34
|
Takeuchi F, Negishi A, Nakamura S, Kanao T, Kamimura K, Sugio T. Existence of an iron-oxidizing bacterium Acidithiobacillus ferrooxidans resistant to organomercurial compounds. J Biosci Bioeng 2005; 99:586-91. [PMID: 16233835 DOI: 10.1263/jbb.99.586] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Accepted: 03/13/2005] [Indexed: 11/17/2022]
Abstract
Acidithiobacillus ferrooxidans MON-1 which is highly resistant to Hg2+ could grow in a ferrous sulfate medium (pH 2.5) with 0.1 microM p-chloromercuribenzoic acid (PCMB) with a lag time of 2 d. In contrast, A. ferrooxidans AP19-3 which is sensitive to Hg2+ did not grow in the medium. Nine strains of A. ferrooxidans, including seven strains of the American Type Culture Collection grew in the medium with a lag time ranging from 5 to 12 d. The resting cells of MON-1, which has NADPH-dependent mercuric reductase activity, could volatilize Hg0 when incubated in acidic water (pH 3.0) containing 0.1 microM PCMB. However, the resting cells of AP19-3, which has a similar level of NADPH-dependent mercuric reductase activity compared with MON-1, did not volatilize Hg0 from the reaction mixture with 0.1 microM PCMB. The activity level of the 11 strains of A. ferrooxidans to volatilize Hg0 from PCMB corresponded well with the level of growth inhibition by PCMB observed in the growth experiments. The resting cells of MON-1 volatilized Hg0 from phenylmercury acetate (PMA) and methylmercury chloride (MMC) as well as PCMB. The cytosol prepared from MON-1 could volatilize Hg0 from PCMB (0.015 nmol mg(-1) h(-1)), PMA (0.33 nmol mg(-1) h(-1)) and MMC (0.005 nmol mg(-1) h(-1)) in the presence of NADPH and beta-mercaptoethanol.
Collapse
Affiliation(s)
- Fumiaki Takeuchi
- Environmental Management and Safety Section, Health and Environment Center, Okayama University, 3-1-1 Tsushima-naka, Okayama 700-8530, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Pathak SP, Gopal K. Occurrence of antibiotic and metal resistance in bacteria from organs of river fish. ENVIRONMENTAL RESEARCH 2005; 98:100-103. [PMID: 15721889 DOI: 10.1016/j.envres.2004.05.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Revised: 05/13/2004] [Accepted: 05/18/2004] [Indexed: 05/24/2023]
Abstract
Bacterial populations in some organs, viz., liver, spleen, kidney, gill, and arborescent organ of the catfish Clarias batrachus were enumerated followed by determination of resistance for antibiotics and metals. The total viable counts in these organs, observed, were 2.24x10(4), 2.08x10(4), 1.44x10(4), 1.23x10(4), and 6.40x10(3) colony-forming units/mL, respectively. The random bacterial isolates from these fish organs showed resistance in decreasing order for colistin (98%), ampicillin (82%), gentamycin (34%), carbenicillin (28%), tetracyline (20%), streptomycin (12%), and ciprofloxacin (02%). Most of the isolates exhibited an increasing order of tolerance for the metals (microg/mL) copper (100), lead (200), manganese (400), cadmium (200), and chromium (50), with minimum inhibitory concentration (MIC) ranging from <50 to 1600 microg/mL. These observations indicate that the significant occurrence of bacterial population in organs of fish with high incidence of resistance for antibiotics and metals may pose risk to fish fauna and public health.
Collapse
Affiliation(s)
- S P Pathak
- Aquatic Toxicology Division, Industrial Toxicology Research Centre, Post Box-80, M.G. Marg, Lucknow 226001, India.
| | | |
Collapse
|
36
|
Adaikkalam V, Swarup S. Characterization ofcopABCDoperon from a copper-sensitivePseudomonasputidastrain. Can J Microbiol 2005; 51:209-16. [PMID: 15920618 DOI: 10.1139/w04-135] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We describe an operon, copABCD, that encodes copper-binding and sequestering proteins for copper homeostasis in the copper-sensitive strain Pseudomonas putida PNL-MK25. This is the second operon characterized as being involved in copper homeostasis, in addition to a P1-type ATPase encoded by cueAR, which was previously shown to be active in the same strain. In this study, 3 copper-responsive mutants were obtained through mini-Tn5::gfp mutagenesis and were found to exhibit reduced tolerance to copper. Sequencing analysis of the transposon-tagged region in the 3 mutants revealed insertions in 2 genes of an operon homologous to the copABCD of P. syringae and pcoABCD of Escherichia coli. Gene expression studies demonstrated that the P. putida copABCD is inducible starting from 3 µmol/L copper levels. Copper-sensitivity studies revealed that the tolerance of the mutant strains was reduced only marginally (only 0.16-fold) in comparison to a 6-fold reduced tolerance of the cueAR mutant. Thus, the cop operon in this strain has a minimal role when compared with its role both in other copper-resistant strains, such as P. syringae pv. syringae, and in the cueAR operon of the same strain. We propose that the reduced function of the copABCD operon is likely to be due to the presence of fewer metal-binding domains in the encoded proteins.Key words: cop operon, copper-binding proteins, mini-Tn5::gfp mutagenesis, transition metal.
Collapse
|
37
|
Hikuma M, Hirai T, Matsuoka H. Respiratory response of cell-based sensors to toxicants measured by using pseudo-random signals. Biosens Bioelectron 2005; 20:1648-51. [PMID: 15626622 DOI: 10.1016/j.bios.2004.06.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Revised: 06/29/2004] [Accepted: 06/30/2004] [Indexed: 11/30/2022]
Abstract
Cell-based sensors using such as Pseudomonas putida and Bacillus subtilis were applied to examine the toxicity of chemicals. Both toxicant and substrate solutions were introduced into the sensor system according to M-series and anti-symmetric M-series pseudo-random binary signals, Xn (n=15, minimal pulse width 4 min, period 60 min) and Yn (n=30, minimal pulse width 4 min, period 120 min). Toxicants such as Ag+, formaldehyde, azide, and hypo-chlorite were used to demonstrate the proposed method. The individual responses of substrate and toxicant were obtained at a time by calculating the cross-correlation function between the input and the output signals. Effects of toxicant on the response of substrate and the response of toxicant itself can be observed at a time, so that the method appears to be useful in studying the behavior of microorganisms in the presence of toxicants.
Collapse
Affiliation(s)
- Motohiko Hikuma
- Department of Bioengineering, Teikyo University of Science and Technology, 2525 Yatsusawa, Uenohara, Yamanashi 409-0193, Japan.
| | | | | |
Collapse
|
38
|
Moy TI, Mylonakis E, Calderwood SB, Ausubel FM. Cytotoxicity of hydrogen peroxide produced by Enterococcus faecium. Infect Immun 2004; 72:4512-20. [PMID: 15271910 PMCID: PMC470665 DOI: 10.1128/iai.72.8.4512-4520.2004] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the opportunistic bacterial pathogen Enterococcus faecium is a leading source of nosocomial infections, it appears to lack many of the overt virulence factors produced by other bacterial pathogens, and the underlying mechanism of pathogenesis is not clear. Using E. faecium-mediated killing of the nematode worm Caenorhabditis elegans as an indicator of toxicity, we determined that E. faecium produces hydrogen peroxide at levels that cause cellular damage. We identified E. faecium transposon insertion mutants with altered C. elegans killing activity, and these mutants were altered in hydrogen peroxide production. Mutation of an NADH oxidase-encoding gene eliminated nearly all NADH oxidase activity and reduced hydrogen peroxide production. Mutation of an NADH peroxidase-encoding gene resulted in the enhanced accumulation of hydrogen peroxide. E. faecium is able to produce hydrogen peroxide by using glycerol-3-phosphate oxidase, and addition of glycerol to the culture medium enhanced the killing of C. elegans. Conversely, addition of glucose, which leads to the down-regulation of glycerol metabolism, prevented both C. elegans killing and hydrogen peroxide production. Lastly, detoxification of hydrogen peroxide either by exogenously added catalase or by a C. elegans transgenic strain overproducing catalase prevented E. faecium-mediated killing. These results suggest that hydrogen peroxide produced by E. faecium has cytotoxic effects and highlight the utility of C. elegans pathogenicity models for identifying bacterial virulence factors.
Collapse
Affiliation(s)
- Terence I Moy
- Department of Genetics, Harvard Medical School, and Department of Molecular Biology, Massachusetts General Hospital, Boston, 02114, USA
| | | | | | | |
Collapse
|
39
|
Affiliation(s)
- Lawrence P Wackett
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, St. Paul, Minnesota 55108, USA.
| | | | | |
Collapse
|
40
|
Rusk JA, Hamon RE, Stevens DP, McLaughlin MJ. Adaptation of soil biological nitrification to heavy metals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2004; 38:3092-3097. [PMID: 15224740 DOI: 10.1021/es035278g] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The adaptive response of soil biological nitrification to Zn and Pb was assessed using an in situ method we have developed. The method is based on reinoculating a sterilized metal contaminated soil with the same soil that is either uncontaminated or has been incubated with metal. This approach excludes the potentially confounding effects of metal aging reactions in soils. We found added Zn concentrations which gave rise to a decrease in nitrification to 50% that of the uncontaminated soil (i.e. EC50) of 210 mg/kg for communities not previously exposed to Zn and 850 mg/kg for communities exposed to Zn for 17 months, indicating that significant adaptation of the community to Zn had occurred. Similarly, this protocol was able to demonstrate adaptation of soil biological nitrification to Pb, with EC50 values of 1960 and 3150 mg/kg for the unexposed and exposed treatments, respectively. Exposure of unadapted and adapted microbial communities to a combination of Zn and Cd showed that the presence of Cd did not lead to greater toxicity in either community. Adapted communities were not more sensitive to decreases in soil pH than unadapted communities. Prior exposure to Zn was found to confer significantly greater tolerance of the community to Pb. Prior exposure to Pb similarly conferred significantly greater tolerance of the community to Zn. Implications of the adaptive capacity of soil microbes to the development of critical threshold values for heavy metals in soil based on ecotoxicity assessments are discussed.
Collapse
Affiliation(s)
- James A Rusk
- School of Earth and Environmental Sciences, Faculty of Sciences, University of Adelaide, Waite Campus, South Australia, Australia 5005
| | | | | | | |
Collapse
|
41
|
Abstract
A heavy-metal-resistant bacterium Bacillus sp., strain EB1 was isolated from heavy-metal-contaminated soil in the southeast region of Turkey. Based on 16S ribosomal DNA sequencing, the microorganism was closely related to Bacillus circulans. Minimal inhibitory concentrations of metals (MICs) for the bacterium were determined. Bacillus EB1 exhibited high MIC values for metals and a large spectrum of antibiotic resistance. The order of toxicity of the metals to the bacterium was Cd=Co>Cu>Ni>Zn>Mn in solid media. The effects of increasing metal concentrations to the growth rate were determined in order to obtain precise patterns of resistance in liquid cultures. From the results of heavy metal toxicity, inhibitory concentrations in solid media were higher than those in liquid media. Metal biosorption was determined during the course of growth. B. circulans strain EB1 was capable of removing 90% of Mn, 68% of Zn, 65% of Cu, 45% of Ni and 40% of Co during the active growth cycle with a specific biosorption capacity of 25, 22, 20, 13 and 12 mg/l, respectively. Since Bacillus cells could grow in the presence of significant concentrations of metals and due to high metal biosorption capacity in aerobic conditions, this bacterium may be potentially applicable in in situ bioremediation of heavy-metal-contaminated aqueous systems.
Collapse
Affiliation(s)
- E Ince Yilmaz
- University of Dicle, Faculty of Sciences, Department of Biology, 21280 Diyarbakir, Turkey.
| |
Collapse
|
42
|
Smiejan A, Wilkinson KJ, Rossier C. Cd bioaccumulation by a freshwater bacterium, Rhodospirillum rubrum. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2003; 37:701-706. [PMID: 12636267 DOI: 10.1021/es025901h] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cd bioaccumulation by Rhodospirillum rubrum, a Gram-negative freshwater bacterium, was studied in a synthetic medium. The free ion (Cd2+) was the best predictor of the Cd internalization fluxes. Representation of the short-term uptake fluxes as a function of [Cd2+] in the medium demonstrated a linear relationship, as would be expected for a rate-limiting, first-order internalization with a single transporter. Nonetheless, several different accumulation profiles were observed, depending on the Cd concentration. Cd uptake was regulated differently for concentrations above and below 10(-6) M (or was regulated only above [Cd2+] = 10(-6) M). Short-and long-term studies revealed that regulation was rapidly initiated for the highest Cd concentrations examined, effectively decreasing both adsorbed and internalized Cd. Anodic stripping voltammetry demonstrated that a Cd complexing ligand was produced within minutes upon exposure to 5 x 10(-6) M Cd2+ and that an extracellular sequestration of Cd was one mechanism regulating Cd uptake. Competition studies with other cations revealed a competitive inhibition of Cd uptake by Zn and an uptake enhancement in the presence of Mn and Cu.
Collapse
Affiliation(s)
- A Smiejan
- Laboratory of Bacteriology and Microbial Ecology, Department of Botany and Plant Biology, University of Geneva (Bastions), 3 Place de l'Université, 1211 Geneva 4, Switzerland
| | | | | |
Collapse
|
43
|
Tsai KJ, Lin YF, Wong MD, Yang HHC, Fu HL, Rosen BP. Membrane topology of the p1258 CadA Cd(II)/Pb(II)/Zn(II)-translocating P-type ATPase. J Bioenerg Biomembr 2002; 34:147-56. [PMID: 12171064 DOI: 10.1023/a:1016085301323] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Plasmid p1258 carries the cadA gene that confers resistance to cadmium, lead, and zinc. CadA catalyzes ATP-dependent cadmium efflux from cells of Staphylococcus aureus. It is a member of the superfamily of P-type ATPases and belongs to the subfamily of soft metal ion pumps. In this study the membrane topology of this P-type ATPase was determined by constructing fusions with the topological reporter genes phoA or lacZ. A series of 44 C-terminal truncated CadAs were fused with one or the other reporter gene, and the activity of each chimeric protein was determined. In addition, the location of the first transmembrane segment was determined by immunoblot analysis. The results are consistent with the p1258 CadA ATPase having eight transmembrane segments. The first 109 residues is a cytosolic domain that includes the Cys(X)2Cys motif that distinguishes soft metal ion-translocating P-type ATPases from their hard metal ion-translocating homologues. Another feature of soft metal ion P-type ATPases is the CysProCys motif, which is found in the sixth transmembrane segment of CadA. The phosphorylation site and ATP binding domain conserved in all P-type ATPases are situated within the large cytoplasmic loop between the sixth and seventh transmembrane segments.
Collapse
Affiliation(s)
- Kan-Jen Tsai
- School of Medical Technology, Chung Shan Medical University, Taichung, Taiwan, Republic of China.
| | | | | | | | | | | |
Collapse
|
44
|
Kjaergaard K, Schembri MA, Klemm P. Novel Zn(2+)-chelating peptides selected from a fimbria-displayed random peptide library. Appl Environ Microbiol 2001; 67:5467-73. [PMID: 11722894 PMCID: PMC93331 DOI: 10.1128/aem.67.12.5467-5473.2001] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The display of peptide sequences on the surface of bacteria is a technology that offers exciting applications in biotechnology and medical research. Type 1 fimbriae are surface organelles of Escherichia coli which mediate D-mannose-sensitive binding to different host surfaces by virtue of the FimH adhesin. FimH is a component of the fimbrial organelle that can accommodate and display a diverse range of peptide sequences on the E. coli cell surface. In this study we have constructed a random peptide library in FimH. The library, consisting of approximately 40 million individual clones, was screened for peptide sequences that conferred on recombinant cells the ability to bind Zn(2+). By serial selection, sequences that exhibited various degrees of binding affinity and specificity toward Zn(2+) were enriched. None of the isolated sequences showed similarity to known Zn(2+)-binding proteins, indicating that completely novel Zn(2+)-binding peptide sequences had been isolated. By changing the protein scaffold system, we demonstrated that the Zn(2+)-binding seems to be uniquely mediated by the peptide insert and to be independent of the sequence of the carrier protein. These findings might be applied in the design of biomatrices for bioremediation purposes or in the development of sensors for detection of heavy metals.
Collapse
Affiliation(s)
- K Kjaergaard
- Microbial Adhesion Group, Section of Molecular Microbiology, BioCentrum-DTU, Technical University of Denmark, Lyngby
| | | | | |
Collapse
|
45
|
Sarin J, Aggarwal S, Chaba R, Varshney GC, Chakraborti PK. B-subunit of phosphate-specific transporter from Mycobacterium tuberculosis is a thermostable ATPase. J Biol Chem 2001; 276:44590-7. [PMID: 11567022 DOI: 10.1074/jbc.m105401200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The B-subunit of phosphate-specific transporter (PstB) is an ABC protein. pstB was polymerase chain reaction-amplified from Mycobacterium tuberculosis and overexpressed in Escherichia coli. The overexpressed protein was found to be in inclusion bodies. The protein was solubilized using 1.5% N-lauroylsarcosine and was purified by gel permeation chromatography. The molecular mass of the protein was approximately 31 kDa. The eluted protein showed ATP-binding ability and exhibited ATPase activity. Among different nucleotide triphosphates, ATP was found to be the preferred substrate for M. tuberculosis PstB-ATPase. The study of the kinetics of ATP hydrolysis yielded K(m) of approximately 72 microm and V(max) of approximately 0.12 micromol/min/mg of protein. Divalent cation like manganese was inhibitory to the ATPase activity. Magnesium or calcium, on the other hand, had no influence on the functionality of the enzyme. The classical ATPase inhibitors like sodium azide, sodium vanadate, and N-ethylmaleimide were without any effect but an ATP analogue, 5'-p-fluorosulfonylbenzoyl adenosine, inhibited the ATPase function of the recombinant protein with a K(i) of approximately 0.40 mm. Furthermore, there was hardly any ATP hydrolyzing ability of the PstB as a result of mutation of the conserved aspartic acid residue to lysine in the Walker motif B, confirming the recombinant protein is an ATPase. Interestingly, analysis of the recombinant PstB revealed that it is a thermostable ATPase; thus, our results highlight for the first time the presence of such an enzyme in any mesophilic bacteria.
Collapse
Affiliation(s)
- J Sarin
- Institute of Microbial Technology, Sector 39A, Chandigarh 160 036, India
| | | | | | | | | |
Collapse
|
46
|
Lee SW, Glickmann E, Cooksey DA. Chromosomal locus for cadmium resistance in Pseudomonas putida consisting of a cadmium-transporting ATPase and a MerR family response regulator. Appl Environ Microbiol 2001; 67:1437-44. [PMID: 11282588 PMCID: PMC92752 DOI: 10.1128/aem.67.4.1437-1444.2001] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2000] [Accepted: 01/09/2001] [Indexed: 11/20/2022] Open
Abstract
Pseudomonads from environmental sources vary widely in their sensitivity to cadmium, but the basis for this resistance is largely uncharacterized. A chromosomal fragment encoding cadmium resistance was cloned from Pseudomonas putida 06909, a rhizosphere bacterium, and sequence analysis revealed two divergently transcribed genes, cadA and cadR. CadA was similar to cadmium-transporting ATPases known mostly from gram-positive bacteria, and to ZntA, a lead-, zinc-, and cadmium-transporting ATPase from Escherichia coli. CadR was related to the MerR family of response regulators that normally control mercury detoxification in other bacterial systems. A related gene, zntR, regulates zntA in E. coli, but it is not contiguous with zntA in the E. coli genome as cadA and cadR were in P. putida. In addition, unlike ZntA and other CadA homologs, but similar to the predicted product of gene PA3690 in the P. aeruginosa genome, the P. putida CadA sequence had a histidine-rich N-terminal extension. CadR and the product of PA3689 of P. aeruginosa also had histidine-rich C-terminal extensions not found in other MerR family response regulators. Mutational analysis indicated that cadA and cadR are fully responsible for cadmium resistance and partially for zinc resistance. However, unlike zntA, they did not confer significant levels of lead resistance. The cadA promoter was responsive to Cd(II), Pb(II), and Zn(II), while the cadR promoter was only induced by Cd(II). CadR apparently represses its own expression at the transcriptional level. However, CadR apparently does not repress cadA. Homologs of the cadmium-transporting ATPase were detected in many other Pseudomonas species.
Collapse
Affiliation(s)
- S W Lee
- Department of Plant Pathology, University of California, Riverside, CA 92521-0122, USA
| | | | | |
Collapse
|
47
|
Kuroda K, Yoshida K, Yasukawa A, Wanibuchi H, Fukushima S, Endo G. Enteric bacteria may play a role in mammalian arsenic metabolism. Appl Organomet Chem 2001. [DOI: 10.1002/aoc.193] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Takahashi A, Kawakami H, Iwakiri K, Matsuto S. Some characteristics of arsenate transport in a marine cyanobacterium,Synechococcus sp. Appl Organomet Chem 2001. [DOI: 10.1002/aoc.144] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
49
|
Dyllick-Brenzinger M, Liu M, Winstone TL, Taylor DE, Turner RJ. The role of cysteine residues in tellurite resistance mediated by the TehAB determinant. Biochem Biophys Res Commun 2000; 277:394-400. [PMID: 11032735 DOI: 10.1006/bbrc.2000.3686] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
TehATehB is a tellurite (TeO(2-)(3)) resistance determinant found on the Escherichia coli chromosome. Normally silent, it specifies a minimal inhibitory concentration (MIC) of 2 microg K(2)TeO(3)/ml unless upregulated or present on a multicopy plasmid which results in an MIC of 128 microg/ml. Both TehA and TehB have three cysteine residues. Oligonucleotide site-directed mutagenesis was carried out to systematically replace all six cysteine residues by alaninies. The results showed that cysteine residues in both TehA and TehB play a role in tellurite resistance: A single cysteine change had no effect, however increasing combinations of two or three cysteine substitutions demonstrated strong phenotypic effects with minimal inhibitory concentrations ranging from 16-64 microg K(2)TeO(3)/ml. A cysteine-free mutant in which all six cysteine residues were replaced by alanines maintained a MIC of 16 microg/ml. Further investigations on the role of cysteines in resistance were studied using thiol reactive reagents on the soluble subunit TehB. These studies confirmed that TehB is a dimer and undergoes a conformational change with tellurite and S-adenosyl-l-methionine binding. Studies using native and SDS denaturing PAGE under reducing and oxidizing conditions suggested that a cysteine in TehB is involved in binding tellurite.
Collapse
Affiliation(s)
- M Dyllick-Brenzinger
- Structural Biology Research Group, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | | | | | | | | |
Collapse
|
50
|
Daunert S, Barrett G, Feliciano JS, Shetty RS, Shrestha S, Smith-Spencer W. Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes. Chem Rev 2000; 100:2705-38. [PMID: 11749302 DOI: 10.1021/cr990115p] [Citation(s) in RCA: 339] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- S Daunert
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055
| | | | | | | | | | | |
Collapse
|