1
|
Łopusińska A, Farhat M, Cieśla M. Functional suppression of a yeast maf1 deletion mutant by overdose of the N-terminal fragment of the largest RNA polymerase III subunit, C160. Gene 2024; 930:148839. [PMID: 39142551 DOI: 10.1016/j.gene.2024.148839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/20/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Maf1 is a general and global negative regulator of RNA polymerase III (Pol III) transcription. Under repressive conditions, Maf1 binds directly to the Pol III complex and sequesters Pol III elements that are involved in transcription initiation. To further understand Pol III regulation, we searched for genetic bypass suppressors of a maf1 deletion mutant (maf1Δ) of Saccharomyces cerevisiae. Strains that carried maf1Δ were temperature-sensitive on media that contained nonfermentable carbon sources and showed the antisuppressor phenotype. Suppressors allowed colonies to grow at the restrictive temperature on glycerol media and partially complemented the antisuppressor phenotype of maf1Δ. DNA plasmids that were identified as overdose suppressors encoded N-terminal fragments of the largest Pol III subunit, C160 of various lengths. The shortest fragment, 372 amino acids long, the overdose of which partially complemented the antisuppressor phenotype and temperature-sensitive respiratory growth of maf1Δ, was named C160-NTF. In this study, we showed that the expression of HA-tagged C160-NTF resulted in accumulation of approximately 40 kDa protein that was distributed throughout the yeast cell, in the cytoplasm and nucleus. The overdose of C160-NTF led to decrease of tRNA transcription in maf1Δ mutant cells, demonstrating functional suppression. Levels of newly synthesized individual tRNAs and Pol III occupancies on tRNA genes were decreased by C160-NTF in the maf1Δ mutant. Additionally, we analyzed the effect of C160-NTF overproduction and the presence of Maf1 on the associations among Pol III subunits. Previous structural analyzes of Pol III have indicated that the N-terminal region of C160 interacts with the C82-34-31 heterotrimeric Pol III subcomplex. We suggest that the negative effect of C160-NTF overdose on tRNA transcription is related to defective Pol III assembly, because overproduction of C160-NTF altered C160 interactions with C34 and C82 in the maf1Δ mutant.
Collapse
Affiliation(s)
- Aleksandra Łopusińska
- Laboratory of tRNA Transcription, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Malak Farhat
- Laboratory of tRNA Transcription, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Małgorzata Cieśla
- Laboratory of tRNA Transcription, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
2
|
Cohen Y, Hershberg R. Rapid Adaptation Often Occurs through Mutations to the Most Highly Conserved Positions of the RNA Polymerase Core Enzyme. Genome Biol Evol 2022; 14:evac105. [PMID: 35876137 PMCID: PMC9459352 DOI: 10.1093/gbe/evac105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2022] [Indexed: 11/17/2022] Open
Abstract
Mutations to the genes encoding the RNA polymerase core enzyme (RNAPC) and additional housekeeping regulatory genes were found to be involved in adaptation, in the context of numerous evolutionary experiments, in which bacteria were exposed to diverse selective pressures. This provides a conundrum, as the housekeeping genes that were so often mutated in response to these diverse selective pressures tend to be among the genes that are most conserved in their sequences across the bacterial phylogeny. In order to further examine this apparent discrepancy, we characterized the precise positions of the RNAPC involved in adaptation to a large variety of selective pressures. We found that RNAPC lab adaptations tended to occur at positions displaying traits associated with higher selective constraint. Specifically, compared to other RNAPC positions, positions involved in adaptation tended to be more conserved in their sequences within bacteria, were more often located within defined protein domains, and were located closer to the complex's active site. Higher sequence conservation was also found for resource exhaustion adaptations occurring within additional housekeeping genes. Combined, our results demonstrate that the positions that change most readily in response to well-defined selective pressures exerted in lab environments are often also those that evolve most slowly in nature.
Collapse
Affiliation(s)
- Yasmin Cohen
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, the Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Ruth Hershberg
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, the Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| |
Collapse
|
3
|
Kirsch SH, Haeckl FPJ, Müller R. Beyond the approved: target sites and inhibitors of bacterial RNA polymerase from bacteria and fungi. Nat Prod Rep 2022; 39:1226-1263. [PMID: 35507039 DOI: 10.1039/d1np00067e] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: 2016 to 2022RNA polymerase (RNAP) is the central enzyme in bacterial gene expression representing an attractive and validated target for antibiotics. Two well-known and clinically approved classes of natural product RNAP inhibitors are the rifamycins and the fidaxomycins. Rifampicin (Rif), a semi-synthetic derivative of rifamycin, plays a crucial role as a first line antibiotic in the treatment of tuberculosis and a broad range of bacterial infections. However, more and more pathogens such as Mycobacterium tuberculosis develop resistance, not only against Rif and other RNAP inhibitors. To overcome this problem, novel RNAP inhibitors exhibiting different target sites are urgently needed. This review includes recent developments published between 2016 and today. Particular focus is placed on novel findings concerning already known bacterial RNAP inhibitors, the characterization and development of new compounds isolated from bacteria and fungi, and providing brief insights into promising new synthetic compounds.
Collapse
Affiliation(s)
- Susanne H Kirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany. .,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - F P Jake Haeckl
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany. .,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany. .,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.,Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
4
|
Transcriptomic analysis reveals process of autolysis of Kluyveromyces marxianus in vacuum negative pressure and the higher temperature. Int Microbiol 2022; 25:515-529. [DOI: 10.1007/s10123-022-00240-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 01/23/2022] [Accepted: 02/07/2022] [Indexed: 10/19/2022]
|
5
|
Shin Y, Murakami KS. Watching the bacterial RNA polymerase transcription reaction by time-dependent soak-trigger-freeze X-ray crystallography. Enzymes 2021; 49:305-314. [PMID: 34696836 DOI: 10.1016/bs.enz.2021.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RNA polymerase (RNAP) is the central enzyme of gene expression, which transcribes DNA to RNA. All cellular organisms synthesize RNA with highly conserved multi-subunit DNA-dependent RNAPs, except mitochondrial RNA transcription, which is carried out by a single-subunit RNAP. Over 60 years of extensive research has elucidated the structures and functions of cellular RNAPs. In this review, we introduce a brief structural feature of bacterial RNAP, the most well characterized model enzyme, and a novel experimental approach known as "Time-dependent soak-trigger-freeze X-ray crystallography" which can be used to observe the RNA synthesis reaction at atomic resolution in real time. This principle methodology can be used for elucidating fundamental mechanisms of cellular RNAP transcription.
Collapse
Affiliation(s)
- Yeonoh Shin
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA, United States
| | - Katsuhiko S Murakami
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA, United States.
| |
Collapse
|
6
|
Reprogramming mRNA Expression in Response to Defect in RNA Polymerase III Assembly in the Yeast Saccharomyces cerevisiae. Int J Mol Sci 2021; 22:ijms22147298. [PMID: 34298922 PMCID: PMC8306304 DOI: 10.3390/ijms22147298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 07/03/2021] [Indexed: 12/18/2022] Open
Abstract
The coordinated transcription of the genome is the fundamental mechanism in molecular biology. Transcription in eukaryotes is carried out by three main RNA polymerases: Pol I, II, and III. One basic problem is how a decrease in tRNA levels, by downregulating Pol III efficiency, influences the expression pattern of protein-coding genes. The purpose of this study was to determine the mRNA levels in the yeast mutant rpc128-1007 and its overdose suppressors, RBS1 and PRT1. The rpc128-1007 mutant prevents assembly of the Pol III complex and functionally mimics similar mutations in human Pol III, which cause hypomyelinating leukodystrophies. We applied RNAseq followed by the hierarchical clustering of our complete RNA-seq transcriptome and functional analysis of genes from the clusters. mRNA upregulation in rpc128-1007 cells was generally stronger than downregulation. The observed induction of mRNA expression was mostly indirect and resulted from the derepression of general transcription factor Gcn4, differently modulated by suppressor genes. rpc128-1007 mutation, regardless of the presence of suppressors, also resulted in a weak increase in the expression of ribosome biogenesis genes. mRNA genes that were downregulated by the reduction of Pol III assembly comprise the proteasome complex. In summary, our results provide the regulatory links affected by Pol III assembly that contribute differently to cellular fitness.
Collapse
|
7
|
Ascencio D, Diss G, Gagnon-Arsenault I, Dubé AK, DeLuna A, Landry CR. Expression attenuation as a mechanism of robustness against gene duplication. Proc Natl Acad Sci U S A 2021; 118:e2014345118. [PMID: 33526669 PMCID: PMC7970654 DOI: 10.1073/pnas.2014345118] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Gene duplication is ubiquitous and a major driver of phenotypic diversity across the tree of life, but its immediate consequences are not fully understood. Deleterious effects would decrease the probability of retention of duplicates and prevent their contribution to long-term evolution. One possible detrimental effect of duplication is the perturbation of the stoichiometry of protein complexes. Here, we measured the fitness effects of the duplication of 899 essential genes in the budding yeast using high-resolution competition assays. At least 10% of genes caused a fitness disadvantage when duplicated. Intriguingly, the duplication of most protein complex subunits had small to nondetectable effects on fitness, with few exceptions. We selected four complexes with subunits that had an impact on fitness when duplicated and measured the impact of individual gene duplications on their protein-protein interactions. We found that very few duplications affect both fitness and interactions. Furthermore, large complexes such as the 26S proteasome are protected from gene duplication by attenuation of protein abundance. Regulatory mechanisms that maintain the stoichiometric balance of protein complexes may protect from the immediate effects of gene duplication. Our results show that a better understanding of protein regulation and assembly in complexes is required for the refinement of current models of gene duplication.
Collapse
Affiliation(s)
- Diana Ascencio
- Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, Québec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada
- Centre de Recherche en Données Massives de l'Université Laval, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Biologie, Université Laval, Québec, QC G1V 0A6, Canada
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados, 36824 Irapuato, Guanajuato, Mexico
| | - Guillaume Diss
- Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, Québec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada
- Centre de Recherche en Données Massives de l'Université Laval, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Biologie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Isabelle Gagnon-Arsenault
- Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, Québec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada
- Centre de Recherche en Données Massives de l'Université Laval, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Biologie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Alexandre K Dubé
- Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, Québec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada
- Centre de Recherche en Données Massives de l'Université Laval, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Biologie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Alexander DeLuna
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados, 36824 Irapuato, Guanajuato, Mexico
| | - Christian R Landry
- Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, Québec, QC G1V 0A6, Canada;
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada
- Centre de Recherche en Données Massives de l'Université Laval, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Biologie, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
8
|
Jacobs RQ, Ingram ZM, Lucius AL, Schneider DA. Defining the divergent enzymatic properties of RNA polymerases I and II. J Biol Chem 2021; 296:100051. [PMID: 33168625 PMCID: PMC7948988 DOI: 10.1074/jbc.ra120.015904] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/26/2020] [Accepted: 11/09/2020] [Indexed: 01/22/2023] Open
Abstract
Eukaryotes express at least three nuclear DNA-dependent RNA polymerases (Pols) responsible for synthesizing all RNA required by the cell. Despite sharing structural homology, they have functionally diverged to suit their distinct cellular roles. Although the Pols have been studied extensively, direct comparison of their enzymatic properties is difficult because studies are often conducted under disparate experimental conditions and techniques. Here, we directly compare and reveal functional differences between Saccharomyces cerevisiae Pols I and II using a series of quantitative in vitro transcription assays. We find that Pol I single-nucleotide and multinucleotide addition rate constants are faster than those of Pol II. Pol I elongation complexes are less stable than Pol II elongation complexes, and Pol I is more error prone than Pol II. Collectively, these data show that the enzymatic properties of the Pols have diverged over the course of evolution, optimizing these enzymes for their unique cellular responsibilities.
Collapse
Affiliation(s)
- Ruth Q Jacobs
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Zachariah M Ingram
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Aaron L Lucius
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
9
|
Cieśla M, Turowski TW, Nowotny M, Tollervey D, Boguta M. The expression of Rpb10, a small subunit common to RNA polymerases, is modulated by the R3H domain-containing Rbs1 protein and the Upf1 helicase. Nucleic Acids Res 2020; 48:12252-12268. [PMID: 33231687 PMCID: PMC7708074 DOI: 10.1093/nar/gkaa1069] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 10/05/2020] [Accepted: 10/22/2020] [Indexed: 01/07/2023] Open
Abstract
The biogenesis of eukaryotic RNA polymerases is poorly understood. The present study used a combination of genetic and molecular approaches to explore the assembly of RNA polymerase III (Pol III) in yeast. We identified a regulatory link between Rbs1, a Pol III assembly factor, and Rpb10, a small subunit that is common to three RNA polymerases. Overexpression of Rbs1 increased the abundance of both RPB10 mRNA and the Rpb10 protein, which correlated with suppression of Pol III assembly defects. Rbs1 is a poly(A)mRNA-binding protein and mutational analysis identified R3H domain to be required for mRNA interactions and genetic enhancement of Pol III biogenesis. Rbs1 also binds to Upf1 protein, a key component in nonsense-mediated mRNA decay (NMD) and levels of RPB10 mRNA were increased in a upf1Δ strain. Genome-wide RNA binding by Rbs1 was characterized by UV cross-linking based approach. We demonstrated that Rbs1 directly binds to the 3' untranslated regions (3'UTRs) of many mRNAs including transcripts encoding Pol III subunits, Rpb10 and Rpc19. We propose that Rbs1 functions by opposing mRNA degradation, at least in part mediated by NMD pathway. Orthologues of Rbs1 protein are present in other eukaryotes, including humans, suggesting that this is a conserved regulatory mechanism.
Collapse
Affiliation(s)
- Małgorzata Cieśla
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Tomasz W Turowski
- Wellcome Centre for Cell Biology, The University of Edinburgh, Edinburgh EH9 3BF, Scotland
| | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Ks. Trojdena 4, 02-109 Warsaw, Poland
| | - David Tollervey
- Wellcome Centre for Cell Biology, The University of Edinburgh, Edinburgh EH9 3BF, Scotland
| | - Magdalena Boguta
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland
| |
Collapse
|
10
|
Armstrong L. The Basis of the Transcription Process. Epigenetics 2020. [DOI: 10.1201/9780429258862-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
11
|
Ray A, Khan P, Nag Chaudhuri R. Deacetylation of H4 lysine16 affects acetylation of lysine residues in histone H3 and H4 and promotes transcription of constitutive genes. Epigenetics 2020; 16:597-617. [PMID: 32795161 DOI: 10.1080/15592294.2020.1809896] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Histone modification map of H4 N-terminal tail residues in Saccharomyces cerevisiae reveals the prominence of lysine acetylation. Previous reports have indicated the importance of lysine acetylation in maintaining chromatin structure and function. H4K16, a residue with highly regulated acetylation dynamics has unique functions not overlapping with the other H4 N- terminal acetylable residues. The present work unravels the role of H4K16 acetylation in regulating expression of constitutive genes. H4K16 gets distinctly deacetylated over the coding region of constitutively expressed genes. Deacetylation of H4K16 reduces H3K9 acetylation at the cellular and gene level. Reduced H3K9 acetylation however did not negatively correlate with active gene transcription. Significantly, H4K16 deacetylation was found to be associated with hypoacetylated H4K12 throughout the locus of constitutive genes. H4K16 and K12 deacetylation is known to favour active transcription. Sas2, the HAT mutant showed similar patterns of hypoacetylated H3K9 and H4K12 at the active loci, clearly implying that the modifications were associated with deacetylation state of H4K16. Deacetylation of H4K16 was also concurrent with increased H3K56 acetylation in the promoter region and ORF of the constitutive genes. Combination of all these histone modifications significantly reduced H3 occupancy, increased promoter accessibility and enhanced RNAPII recruitment at the constitutively active loci. Consequently, we found that expression of active genes was higher in H4K16R mutant which mimic deacetylated state, but not in H4K16Q mimicking constitutive acetylation. To summarize, H4K16 deacetylation linked with H4K12 and H3K9 hypoacetylation along with H3K56 hyperacetylation generate a chromatin landscape that is conducive for transcription of constitutive genes.
Collapse
Affiliation(s)
- Anagh Ray
- Department of Biotechnology, St. Xavier's College, Kolkata, India
| | - Preeti Khan
- Department of Biotechnology, St. Xavier's College, Kolkata, India
| | | |
Collapse
|
12
|
Luo ZZ, Sun HM, Guo JW, Luo P, Hu CQ, Huang W, Shu H. Molecular characterization of a RNA polymerase (RNAP) II (DNA directed) polypeptide H (POLR2H) in Pacific white shrimp (Litopenaeus vannamei) and its role in response to high-pH stress. FISH & SHELLFISH IMMUNOLOGY 2020; 96:245-253. [PMID: 31830564 DOI: 10.1016/j.fsi.2019.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/26/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
RNA polymerase (RNAP) II (DNA-directed) (POLR2) genes are essential for cell viability under environmental stress and for the transfer of biological information from DNA to RNA. However, the function and characteristics of POLR2 genes in crustaceans are still unknown. In the present study, a POLR2H cDNA was isolated from Pacific white shrimp (Litopenaeus vannamei) and designated as Lv-POLR2H. The full-length Lv-POLR2H cDNA is 772 bp in length and contains a 32-bp 5'- untranslated region (UTR), a 284-bp 3'- UTR with a poly (A) sequence, and an open reading frame (ORF) of 456 bp encoding an Lv-POLR2H protein of 151 amino acids with a deduced molecular weight of 17.21 kDa. The Lv-POLR2H protein only contains one functional domain, harbors no transmembrane domains and mainly locates in the nucleus. The expression of the Lv-POLR2H mRNA was ubiquitously detected in all selected tissues, with the highest level in the gills. In situ hybridization (ISH) analysis showed that Lv-POLR2H was mainly located in the secondary gill filaments, the transcript levels of Lv-POLR2H in the gills were found to be significantly affected after challenge by pH, low salinity and high concentrations of NO2- and NH4+, indicating that Lv-POLR2H in gill tissues might play roles under various physical stresses. Specifically, under high-pH stress, knockdown of Lv-POLR2H via siRNA significantly decreased the survival rate of the shrimp, indicating its key roles in the response to high-pH stress. Our study may provide the first evidence of the role of POLR2H in shrimp responding to high-pH stress and provides new insight into molecular regulation in response to high pH in crustaceans.
Collapse
Affiliation(s)
- Zhi-Zhan Luo
- School of Life Science/School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Hui-Ming Sun
- School of Life Science/School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jing-Wen Guo
- School of Life Science/School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Peng Luo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB)/Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Institution of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Chao-Qun Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB)/Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Institution of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Wen Huang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB)/Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Institution of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, 510301, China.
| | - Hu Shu
- School of Life Science/School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
13
|
Ferrafiat L, Pflieger D, Singh J, Thieme M, Böhrer M, Himber C, Gerbaud A, Bucher E, Pikaard CS, Blevins T. The NRPD1 N-terminus contains a Pol IV-specific motif that is critical for genome surveillance in Arabidopsis. Nucleic Acids Res 2019; 47:9037-9052. [PMID: 31372633 PMCID: PMC6753494 DOI: 10.1093/nar/gkz618] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 07/03/2019] [Accepted: 07/11/2019] [Indexed: 12/29/2022] Open
Abstract
RNA-guided surveillance systems constrain the activity of transposable elements (TEs) in host genomes. In plants, RNA polymerase IV (Pol IV) transcribes TEs into primary transcripts from which RDR2 synthesizes double-stranded RNA precursors for small interfering RNAs (siRNAs) that guide TE methylation and silencing. How the core subunits of Pol IV, homologs of RNA polymerase II subunits, diverged to support siRNA biogenesis in a TE-rich, repressive chromatin context is not well understood. Here we studied the N-terminus of Pol IV’s largest subunit, NRPD1. Arabidopsis lines harboring missense mutations in this N-terminus produce wild-type (WT) levels of NRPD1, which co-purifies with other Pol IV subunits and RDR2. Our in vitro transcription and genomic analyses reveal that the NRPD1 N-terminus is critical for robust Pol IV-dependent transcription, siRNA production and DNA methylation. However, residual RNA-directed DNA methylation observed in one mutant genotype indicates that Pol IV can operate uncoupled from the high siRNA levels typically observed in WT plants. This mutation disrupts a motif uniquely conserved in Pol IV, crippling the enzyme's ability to inhibit retrotransposon mobilization. We propose that the NRPD1 N-terminus motif evolved to regulate Pol IV function in genome surveillance.
Collapse
Affiliation(s)
- Laura Ferrafiat
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, F-67084 Strasbourg, France
| | - David Pflieger
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, F-67084 Strasbourg, France
| | - Jasleen Singh
- Howard Hughes Medical Institute, Indiana University, Bloomington, IN 47405, USA.,Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Michael Thieme
- Botanisches Institut, Universität Basel, CH-4056 Basel, Switzerland
| | - Marcel Böhrer
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, F-67084 Strasbourg, France
| | - Christophe Himber
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, F-67084 Strasbourg, France
| | - Aude Gerbaud
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, F-67084 Strasbourg, France
| | - Etienne Bucher
- Botanisches Institut, Universität Basel, CH-4056 Basel, Switzerland
| | - Craig S Pikaard
- Howard Hughes Medical Institute, Indiana University, Bloomington, IN 47405, USA.,Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Todd Blevins
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, F-67084 Strasbourg, France
| |
Collapse
|
14
|
Gene silencing in Tribolium castaneum as a tool for the targeted identification of candidate RNAi targets in crop pests. Sci Rep 2018; 8:2061. [PMID: 29391456 PMCID: PMC5794766 DOI: 10.1038/s41598-018-20416-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/12/2018] [Indexed: 01/15/2023] Open
Abstract
RNAi shows potential as an agricultural technology for insect control, yet, a relatively low number of robust lethal RNAi targets have been demonstrated to control insects of agricultural interest. In the current study, a selection of lethal RNAi target genes from the iBeetle (Tribolium castaneum) screen were used to demonstrate efficacy of orthologous targets in the economically important coleopteran pests Diabrotica virgifera virgifera and Meligethes aeneus. Transcript orthologs of 50 selected genes were analyzed in D. v. virgifera diet-based RNAi bioassays; 21 of these RNAi targets showed mortality and 36 showed growth inhibition. Low dose injection- and diet-based dsRNA assays in T. castaneum and D. v. virgifera, respectively, enabled the identification of the four highly potent RNAi target genes: Rop, dre4, ncm, and RpII140. Maize was genetically engineered to express dsRNA directed against these prioritized candidate target genes. T0 plants expressing Rop, dre4, or RpII140 RNA hairpins showed protection from D. v. virgifera larval feeding damage. dsRNA targeting Rop, dre4, ncm, and RpII140 in M. aeneus also caused high levels of mortality both by injection and feeding. In summary, high throughput systems for model organisms can be successfully used to identify potent RNA targets for difficult-to-work with agricultural insect pests.
Collapse
|
15
|
Chrétien AÈ, Gagnon-Arsenault I, Dubé AK, Barbeau X, Després PC, Lamothe C, Dion-Côté AM, Lagüe P, Landry CR. Extended Linkers Improve the Detection of Protein-protein Interactions (PPIs) by Dihydrofolate Reductase Protein-fragment Complementation Assay (DHFR PCA) in Living Cells. Mol Cell Proteomics 2017; 17:373-383. [PMID: 29203496 DOI: 10.1074/mcp.tir117.000385] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Indexed: 01/08/2023] Open
Abstract
Understanding the function of cellular systems requires describing how proteins assemble with each other into transient and stable complexes and to determine their spatial relationships. Among the tools available to perform these analyses on a large scale is Protein-fragment Complementation Assay based on the dihydrofolate reductase (DHFR PCA). Here we test how longer linkers between the fusion proteins and the reporter fragments affect the performance of this assay. We investigate the architecture of the RNA polymerases, the proteasome and the conserved oligomeric Golgi (COG) complexes in living cells and performed large-scale screens with these extended linkers. We show that longer linkers significantly improve the detection of protein-protein interactions and allow to measure interactions further in space than the standard ones. We identify new interactions, for instance between the retromer complex and proteins related to autophagy and endocytosis. Longer linkers thus contribute an enhanced additional tool to the existing toolsets for the detection and measurements of protein-protein interactions and protein proximity in living cells.
Collapse
Affiliation(s)
- Andrée-Ève Chrétien
- From the ‡Institut de Biologie Intégrative et des Systèmes.,§The Quebec Network for Research on Protein Function, Engineering, and Applications.,¶Centre de Recherche en Données Massives de l'Université Laval.,‖Département de biologie
| | - Isabelle Gagnon-Arsenault
- From the ‡Institut de Biologie Intégrative et des Systèmes.,§The Quebec Network for Research on Protein Function, Engineering, and Applications.,¶Centre de Recherche en Données Massives de l'Université Laval.,‖Département de biologie
| | - Alexandre K Dubé
- From the ‡Institut de Biologie Intégrative et des Systèmes.,§The Quebec Network for Research on Protein Function, Engineering, and Applications.,¶Centre de Recherche en Données Massives de l'Université Laval.,‖Département de biologie
| | - Xavier Barbeau
- From the ‡Institut de Biologie Intégrative et des Systèmes.,§The Quebec Network for Research on Protein Function, Engineering, and Applications.,¶Centre de Recherche en Données Massives de l'Université Laval.,**Département de biochimie, microbiologie et bioinformatique. Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Philippe C Després
- From the ‡Institut de Biologie Intégrative et des Systèmes.,§The Quebec Network for Research on Protein Function, Engineering, and Applications.,¶Centre de Recherche en Données Massives de l'Université Laval.,‖Département de biologie.,**Département de biochimie, microbiologie et bioinformatique. Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Claudine Lamothe
- From the ‡Institut de Biologie Intégrative et des Systèmes.,§The Quebec Network for Research on Protein Function, Engineering, and Applications.,¶Centre de Recherche en Données Massives de l'Université Laval.,‖Département de biologie.,**Département de biochimie, microbiologie et bioinformatique. Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Anne-Marie Dion-Côté
- From the ‡Institut de Biologie Intégrative et des Systèmes.,§The Quebec Network for Research on Protein Function, Engineering, and Applications.,¶Centre de Recherche en Données Massives de l'Université Laval.,‖Département de biologie
| | - Patrick Lagüe
- From the ‡Institut de Biologie Intégrative et des Systèmes.,§The Quebec Network for Research on Protein Function, Engineering, and Applications.,¶Centre de Recherche en Données Massives de l'Université Laval.,**Département de biochimie, microbiologie et bioinformatique. Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Christian R Landry
- From the ‡Institut de Biologie Intégrative et des Systèmes; .,§The Quebec Network for Research on Protein Function, Engineering, and Applications.,¶Centre de Recherche en Données Massives de l'Université Laval.,‖Département de biologie.,**Département de biochimie, microbiologie et bioinformatique. Université Laval, Québec, Québec, G1V 0A6, Canada
| |
Collapse
|
16
|
Wang Y, Chen X, Sheng Y, Liu Y, Gao S. N6-adenine DNA methylation is associated with the linker DNA of H2A.Z-containing well-positioned nucleosomes in Pol II-transcribed genes in Tetrahymena. Nucleic Acids Res 2017; 45:11594-11606. [PMID: 29036602 PMCID: PMC5714169 DOI: 10.1093/nar/gkx883] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/12/2017] [Accepted: 09/23/2017] [Indexed: 01/01/2023] Open
Abstract
DNA N6-methyladenine (6mA) is newly rediscovered as a potential epigenetic mark across a more diverse range of eukaryotes than previously realized. As a unicellular model organism, Tetrahymena thermophila is among the first eukaryotes reported to contain 6mA modification. However, lack of comprehensive information about 6mA distribution hinders further investigations into its function and regulatory mechanism. In this study, we provide the first genome-wide, base pair-resolution map of 6mA in Tetrahymena by applying single-molecule real-time (SMRT) sequencing. We provide evidence that 6mA occurs mostly in the AT motif of the linker DNA regions. More strikingly, these linker DNA regions with 6mA are usually flanked by well-positioned nucleosomes and/or H2A.Z-containing nucleosomes. We also find that 6mA is exclusively associated with RNA polymerase II (Pol II)-transcribed genes, but is not an unambiguous mark for active transcription. These results support that 6mA is an integral part of the chromatin landscape shaped by adenosine triphosphate (ATP)-dependent chromatin remodeling and transcription.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Xiao Chen
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Yalan Sheng
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Yifan Liu
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shan Gao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
17
|
Matsutani S. Possible interaction between the bacterial transcription factor ArtA and the eukaryotic RNA polymerase III promoter. Genetica 2016; 144:361-74. [PMID: 27178279 DOI: 10.1007/s10709-016-9905-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 05/07/2016] [Indexed: 11/26/2022]
Abstract
Eukaryotic RNA polymerase III (RNAP III) transcribes tRNA genes and short interspersed elements that have internal promoters consisting of A- and B-blocks. The B-block binding subunit of the transcription initiation factor TFIIIC binds to the B-block. The mobile bacterial insertion sequence (IS) 1 contains a RNAP III promoter-like sequence, which stimulates bacterial transcription along with the bacterial ArtA protein. Here, the DNA-binding ability of ArtA was examined in vitro using a simple, newly developed method. Various DNA fragments, including RNAP III promoter fragments, were separately incubated with purified ArtA, and then loaded onto a polyacrylamide gel. Since DNAs bound by ArtA remain in the gel wells during electrophoresis, SDS was added into the wells at the electrophoresis halfway point. It was hypothesized that SDS would dissociate the DNA-ArtA complexes in the wells, and then the DNAs would begin to migrate. In fact, new bands appeared in all of the lanes at similar intensities, indicating that ArtA binds nonspecifically to DNA. Therefore, labeled wild-type RNAP III promoter fragments were incubated with either the unlabeled wild-type or mutant fragments and ArtA, and electrophoresed. The B-block(-like) sequences of IS1, a human Alu element, and an anuran tRNA gene were important for binding to ArtA. Additionally, in silico analyses revealed the presence of the RNAP III promoter-like structures in the IS1 isoforms and the IS3 family elements. These results suggest the presence of parts of the RNAP III transcription machinery in bacteria, and might imply that its prototype existed in the common ancestor.
Collapse
Affiliation(s)
- Sachiko Matsutani
- Division of Microbiology, National Institute of Health Sciences, Tokyo, 158-8501, Japan.
| |
Collapse
|
18
|
Bacterial Transcription as a Target for Antibacterial Drug Development. Microbiol Mol Biol Rev 2016; 80:139-60. [PMID: 26764017 DOI: 10.1128/mmbr.00055-15] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Transcription, the first step of gene expression, is carried out by the enzyme RNA polymerase (RNAP) and is regulated through interaction with a series of protein transcription factors. RNAP and its associated transcription factors are highly conserved across the bacterial domain and represent excellent targets for broad-spectrum antibacterial agent discovery. Despite the numerous antibiotics on the market, there are only two series currently approved that target transcription. The determination of the three-dimensional structures of RNAP and transcription complexes at high resolution over the last 15 years has led to renewed interest in targeting this essential process for antibiotic development by utilizing rational structure-based approaches. In this review, we describe the inhibition of the bacterial transcription process with respect to structural studies of RNAP, highlight recent progress toward the discovery of novel transcription inhibitors, and suggest additional potential antibacterial targets for rational drug design.
Collapse
|
19
|
Wang Y, Ma H. Step-wise and lineage-specific diversification of plant RNA polymerase genes and origin of the largest plant-specific subunits. THE NEW PHYTOLOGIST 2015; 207:1198-212. [PMID: 25921392 DOI: 10.1111/nph.13432] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 03/24/2015] [Indexed: 05/25/2023]
Abstract
Proteins often function as complexes, yet little is known about the evolution of dissimilar subunits of complexes. DNA-directed RNA polymerases (RNAPs) are multisubunit complexes, with distinct eukaryotic types for different classes of transcripts. In addition to Pol I-III, common in eukaryotes, plants have Pol IV and V for epigenetic regulation. Some RNAP subunits are specific to one type, whereas other subunits are shared by multiple types. We have conducted extensive phylogenetic and sequence analyses, and have placed RNAP gene duplication events in land plant history, thereby reconstructing the subunit compositions of the novel RNAPs during land plant evolution. We found that Pol IV/V have experienced step-wise duplication and diversification of various subunits, with increasingly distinctive subunit compositions. Also, lineage-specific duplications have further increased RNAP complexity with distinct copies in different plant families and varying divergence for subunits of different RNAPs. Further, the largest subunits of Pol IV/V probably originated from a gene fusion in the ancestral land plants. We propose a framework of plant RNAP evolution, providing an excellent model for protein complex evolution.
Collapse
Affiliation(s)
- Yaqiong Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, 200433, China
- Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Fudan University, Shanghai, 200433, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, 200433, China
- Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Fudan University, Shanghai, 200433, China
- Institutes of Biomedical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| |
Collapse
|
20
|
Koo CX, Kobiyama K, Shen YJ, LeBert N, Ahmad S, Khatoo M, Aoshi T, Gasser S, Ishii KJ. RNA polymerase III regulates cytosolic RNA:DNA hybrids and intracellular microRNA expression. J Biol Chem 2015; 290:7463-73. [PMID: 25623070 PMCID: PMC4367256 DOI: 10.1074/jbc.m115.636365] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
RNA:DNA hybrids form in the nuclei and mitochondria of cells as transcription-induced R-loops or G-quadruplexes, but exist only in the cytosol of virus-infected cells. Little is known about the existence of RNA:DNA hybrids in the cytosol of virus-free cells, in particular cancer or transformed cells. Here, we show that cytosolic RNA:DNA hybrids are present in various human cell lines, including transformed cells. Inhibition of RNA polymerase III (Pol III), but not DNA polymerase, abrogated cytosolic RNA:DNA hybrids. Cytosolic RNA:DNA hybrids bind to several components of the microRNA (miRNA) machinery-related proteins, including AGO2 and DDX17. Furthermore, we identified miRNAs that are specifically regulated by Pol III, providing a potential link between RNA:DNA hybrids and the miRNA machinery. One of the target genes, exportin-1, is shown to regulate cytosolic RNA:DNA hybrids. Taken together, we reveal previously unknown mechanism by which Pol III regulates the presence of cytosolic RNA:DNA hybrids and miRNA biogenesis in various human cells.
Collapse
Affiliation(s)
- Christine Xing'er Koo
- From the Immunology Programme and Department of Microbiology, Centre for Life Sciences, and the NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456, the Laboratory of Adjuvant Innovation and
| | - Kouji Kobiyama
- the Laboratory of Adjuvant Innovation and the Laboratory of Vaccine Science, World Premier International Immunology Frontier Research Center (iFREC), Osaka University, Suita, Osaka 565-0871, Japan
| | - Yu J Shen
- From the Immunology Programme and Department of Microbiology, Centre for Life Sciences, and the NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456
| | - Nina LeBert
- From the Immunology Programme and Department of Microbiology, Centre for Life Sciences, and
| | - Shandar Ahmad
- the Laboratory of Bioinformatics, National Institute of Biomedical Innovation (NIBIO), Ibaraki, Osaka 567-0085, Japan, and
| | - Muznah Khatoo
- From the Immunology Programme and Department of Microbiology, Centre for Life Sciences, and
| | - Taiki Aoshi
- the Laboratory of Adjuvant Innovation and the Laboratory of Vaccine Science, World Premier International Immunology Frontier Research Center (iFREC), Osaka University, Suita, Osaka 565-0871, Japan
| | - Stephan Gasser
- From the Immunology Programme and Department of Microbiology, Centre for Life Sciences, and the NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456,
| | - Ken J Ishii
- the Laboratory of Adjuvant Innovation and the Laboratory of Vaccine Science, World Premier International Immunology Frontier Research Center (iFREC), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
21
|
Rbs1, a new protein implicated in RNA polymerase III biogenesis in yeast Saccharomyces cerevisiae. Mol Cell Biol 2015; 35:1169-81. [PMID: 25605335 DOI: 10.1128/mcb.01230-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Little is known about the RNA polymerase III (Pol III) complex assembly and its transport to the nucleus. We demonstrate that a missense cold-sensitive mutation, rpc128-1007, in the sequence encoding the C-terminal part of the second largest Pol III subunit, C128, affects the assembly and stability of the enzyme. The cellular levels and nuclear concentration of selected Pol III subunits were decreased in rpc128-1007 cells, and the association between Pol III subunits as evaluated by coimmunoprecipitation was also reduced. To identify the proteins involved in Pol III assembly, we performed a genetic screen for suppressors of the rpc128-1007 mutation and selected the Rbs1 gene, whose overexpression enhanced de novo tRNA transcription in rpc128-1007 cells, which correlated with increased stability, nuclear concentration, and interaction of Pol III subunits. The rpc128-1007 rbs1Δ double mutant shows a synthetic growth defect, indicating that rpc128-1007 and rbs1Δ function in parallel ways to negatively regulate Pol III assembly. Rbs1 physically interacts with a subset of Pol III subunits, AC19, AC40, and ABC27/Rpb5. Additionally, Rbs1 interacts with the Crm1 exportin and shuttles between the cytoplasm and nucleus. We postulate that Rbs1 binds to the Pol III complex or subcomplex and facilitates its translocation to the nucleus.
Collapse
|
22
|
Feng JM, Tian HF, Wen JF. Origin and evolution of the eukaryotic SSU processome revealed by a comprehensive genomic analysis and implications for the origin of the nucleolus. Genome Biol Evol 2014; 5:2255-67. [PMID: 24214024 PMCID: PMC3879963 DOI: 10.1093/gbe/evt173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
As a nucleolar complex for small-subunit (SSU) ribosomal RNA processing, SSU processome
has been extensively studied mainly in Saccharomyces cerevisiae but not
in diverse organisms, leaving open the question of whether it is a ubiquitous mechanism
across eukaryotes and how it evolved in the course of the evolution of eukaryotes.
Genome-wide survey and identification of SSU processome components showed that the
majority of all 77 yeast SSU processome proteins possess homologs in almost all of the
main eukaryotic lineages, and 14 of them have homologs in archaea but few in bacteria,
suggesting that the complex is ubiquitous in eukaryotes, and its evolutionary history
began with abundant protein homologs being present in archaea and then a fairly complete
form of the complex emerged in the last eukaryotic common ancestor (LECA). Phylogenetic
analysis indicated that ancient gene duplication and functional divergence of the protein
components of the complex occurred frequently during the evolutionary origin of the LECA
from prokaryotes. We found that such duplications not only increased the complex’s
components but also produced some new functional proteins involved in other nucleolar
functions, such as ribosome biogenesis and even some nonnucleolar (but nuclear) proteins
participating in pre-mRNA splicing, implying the evolutionary emergence of the subnuclear
compartment—the nucleolus—has occurred in the LECA. Therefore, the LECA
harbored not only complicated SSU processomes but also a nucleolus. Our analysis also
revealed that gene duplication, innovation, and loss, caused further divergence of the
complex during the divergence of eukaryotes.
Collapse
Affiliation(s)
- Jin-Mei Feng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | | | | |
Collapse
|
23
|
Braberg H, Moehle EA, Shales M, Guthrie C, Krogan NJ. Genetic interaction analysis of point mutations enables interrogation of gene function at a residue-level resolution: exploring the applications of high-resolution genetic interaction mapping of point mutations. Bioessays 2014; 36:706-13. [PMID: 24842270 PMCID: PMC4289610 DOI: 10.1002/bies.201400044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have achieved a residue-level resolution of genetic interaction mapping - a technique that measures how the function of one gene is affected by the alteration of a second gene - by analyzing point mutations. Here, we describe how to interpret point mutant genetic interactions, and outline key applications for the approach, including interrogation of protein interaction interfaces and active sites, and examination of post-translational modifications. Genetic interaction analysis has proven effective for characterizing cellular processes; however, to date, systematic high-throughput genetic interaction screens have relied on gene deletions or knockdowns, which limits the resolution of gene function analysis and poses problems for multifunctional genes. Our point mutant approach addresses these issues, and further provides a tool for in vivo structure-function analysis that complements traditional biophysical methods. We also discuss the potential for genetic interaction mapping of point mutations in human cells and its application to personalized medicine.
Collapse
Affiliation(s)
- Hannes Braberg
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- California Institute for Quantitative Biosciences, QB3, San Francisco, CA, USA
| | - Erica A. Moehle
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Michael Shales
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- California Institute for Quantitative Biosciences, QB3, San Francisco, CA, USA
| | - Christine Guthrie
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Nevan J. Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- California Institute for Quantitative Biosciences, QB3, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
| |
Collapse
|
24
|
From structure to systems: high-resolution, quantitative genetic analysis of RNA polymerase II. Cell 2013; 154:775-88. [PMID: 23932120 DOI: 10.1016/j.cell.2013.07.033] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 05/16/2013] [Accepted: 07/22/2013] [Indexed: 01/22/2023]
Abstract
RNA polymerase II (RNAPII) lies at the core of dynamic control of gene expression. Using 53 RNAPII point mutants, we generated a point mutant epistatic miniarray profile (pE-MAP) comprising ∼60,000 quantitative genetic interactions in Saccharomyces cerevisiae. This analysis enabled functional assignment of RNAPII subdomains and uncovered connections between individual regions and other protein complexes. Using splicing microarrays and mutants that alter elongation rates in vitro, we found an inverse relationship between RNAPII speed and in vivo splicing efficiency. Furthermore, the pE-MAP classified fast and slow mutants that favor upstream and downstream start site selection, respectively. The striking coordination of polymerization rate with transcription initiation and splicing suggests that transcription rate is tuned to regulate multiple gene expression steps. The pE-MAP approach provides a powerful strategy to understand other multifunctional machines at amino acid resolution.
Collapse
|
25
|
Manioudaki ME, Poirazi P. Modeling regulatory cascades using Artificial Neural Networks: the case of transcriptional regulatory networks shaped during the yeast stress response. Front Genet 2013; 4:110. [PMID: 23802010 PMCID: PMC3687159 DOI: 10.3389/fgene.2013.00110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/28/2013] [Indexed: 11/24/2022] Open
Abstract
Over the last decade, numerous computational methods have been developed in order to infer and model biological networks. Transcriptional networks in particular have attracted significant attention due to their critical role in cell survival. The majority of network inference methods use genome-wide experimental data to search for modules of genes with coherent expression profiles and common regulators, often ignoring the multi-layer structure of transcriptional cascades. Modeling methodologies on the other hand assume a given network structure and vary significantly in their algorithmic approach, ranging from over-simplified representations (e.g., Boolean networks) to detailed -but computationally expensive-network simulations (e.g., with differential equations). In this work we use Artificial Neural Networks (ANNs) to model transcriptional regulatory cascades that emerge during the stress response in Saccharomyces cerevisiae and extend in three layers. We confine the structure of the ANNs to match the structure of the biological networks as determined by gene expression, DNA-protein interaction and experimental evidence provided in publicly available databases. Trained ANNs are able to predict the expression profile of 11 target genes across multiple experimental conditions with a correlation coefficient >0.7. When time-dependent interactions between upstream transcription factors (TFs) and their indirect targets are also included in the ANNs, accurate predictions are achieved for 30/34 target genes. Moreover, heterodimer formation is taken into account. We show that ANNs can be used to (1) accurately predict the expression of downstream genes in a 3-layer transcriptional cascade based on the expression of their indirect regulators and (2) infer the condition- and time-dependent activity of various TFs as well as during heterodimer formation. We show that a three-layer regulatory cascade whose structure is determined by co-expressed gene modules and their regulators can successfully be modeled using ANNs with a similar configuration.
Collapse
Affiliation(s)
- Maria E Manioudaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas Heraklion, Crete, Greece ; Department of Chemistry, University of Crete Heraklion, Crete, Greece
| | | |
Collapse
|
26
|
Mujahid H, Tan F, Zhang J, Nallamilli BRR, Pendarvis K, Peng Z. Nuclear proteome response to cell wall removal in rice (Oryza sativa). Proteome Sci 2013; 11:26. [PMID: 23777608 PMCID: PMC3695858 DOI: 10.1186/1477-5956-11-26] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 06/13/2013] [Indexed: 01/31/2023] Open
Abstract
Plant cells are routinely exposed to various pathogens and environmental stresses that cause cell wall perturbations. Little is known of the mechanisms that plant cells use to sense these disturbances and transduce corresponding signals to regulate cellular responses to maintain cell wall integrity. Previous studies in rice have shown that removal of the cell wall leads to substantial chromatin reorganization and histone modification changes concomitant with cell wall re-synthesis. But the genes and proteins that regulate these cellular responses are still largely unknown. Here we present an examination of the nuclear proteome differential expression in response to removal of the cell wall in rice suspension cells using multiple nuclear proteome extraction methods. A total of 382 nuclear proteins were identified with two or more peptides, including 26 transcription factors. Upon removal of the cell wall, 142 nuclear proteins were up regulated and 112 were down regulated. The differentially expressed proteins included transcription factors, histones, histone domain containing proteins, and histone modification enzymes. Gene ontology analysis of the differentially expressed proteins indicates that chromatin & nucleosome assembly, protein-DNA complex assembly, and DNA packaging are tightly associated with cell wall removal. Our results indicate that removal of the cell wall imposes a tremendous challenge to the cells. Consequently, plant cells respond to the removal of the cell wall in the nucleus at every level of the regulatory hierarchy.
Collapse
Affiliation(s)
- Hana Mujahid
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS 39762, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Stump AD, Ostrozhynska K. Selective constraint and the evolution of the RNA polymerase II C-Terminal Domain. Transcription 2013; 4:77-86. [PMID: 23412361 PMCID: PMC3646058 DOI: 10.4161/trns.23305] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The C-Terminal Domain (CTD) of the large subunit (Rpb1) of RNA Polymerase II has a Tyrosine-Serine-Proline-Threonine-Serine-Proline-Serine repeat structure in many eukaryotes. Chemical modifications of these residues play a central role in the regulation and coordination of the events of transcription. However, substantial variability in the presence and regularity of repeat arrays exists between eukaryote taxa. Following a survey of CTD structure from diverse eukaryote species, two hypotheses were tested relating to repeat structure and the action of selection on the CTD. First, it was found that degenerated repeat structure is associated with lower serine and proline frequencies in some eukaryote taxa but not in others. Second, maximum likelihood models of the evolution of Rpb1 in a number of species groups found that purifying selection on the non-repetitive CTD of several Leishmania species was substantially lower than for the rest of Rpb1, whereas purifying selection in a number of species groups containing repeat arrays was usually as high or nearly as high as for the rest of Rpb1. Characterization of CTD structure for a larger number of species than has been completed previously also revealed a greater diversity of CTD structures in eukaryotes than previously known, along with loss of repeat structure in the animals and fungi, two taxa where it has not previously been known. These results suggest that loss of CTD repeat structure has been an important aspect of RNA Polymerase II evolution in diverse eukaryotes.
Collapse
|
28
|
Du YJ, Hou YL, Hou WR. Molecular characterization of a gene POLR2H encoded an essential subunit for RNA polymerase II from the Giant Panda (Ailuropoda Melanoleuca). Mol Biol Rep 2012; 40:1495-8. [PMID: 23070920 DOI: 10.1007/s11033-012-2192-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 10/09/2012] [Indexed: 11/24/2022]
Abstract
The Giant Panda is an endangered and valuable gene pool in genetic, its important functional gene POLR2H encodes an essential shared peptide H of RNA polymerases. The genomic DNA and cDNA sequences were cloned successfully for the first time from the Giant Panda (Ailuropoda melanoleuca) adopting touchdown-PCR and reverse transcription polymerase chain reaction (RT-PCR), respectively. The length of the genomic sequence of the Giant Panda is 3,285 bp, including five exons and four introns. The cDNA fragment cloned is 509 bp in length, containing an open reading frame of 453 bp encoding 150 amino acids. Alignment analysis indicated that both the cDNA and its deduced amino acid sequence were highly conserved. Protein structure prediction showed that there was one protein kinase C phosphorylation site, four casein kinase II phosphorylation sites and one amidation site in the POLR2H protein, further shaping advanced protein structure. The cDNA cloned was expressed in Escherichia coli, which indicated that POLR2H fusion with the N-terminally His-tagged form brought about the accumulation of an expected 20.5 kDa polypeptide in line with the predicted protein. On the basis of what has already been achieved in this study, further deep-in research will be conducted, which has great value in theory and practical significance.
Collapse
Affiliation(s)
- Yu-Jie Du
- Biochemical Department, Basic Education College of Zhanjiang Normal University, 8# Cunjinsiheng Road, Zhanjiang, 524037, China.
| | | | | |
Collapse
|
29
|
Kaplan CD. Basic mechanisms of RNA polymerase II activity and alteration of gene expression in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:39-54. [PMID: 23022618 DOI: 10.1016/j.bbagrm.2012.09.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/18/2012] [Accepted: 09/20/2012] [Indexed: 01/12/2023]
Abstract
Transcription by RNA polymerase II (Pol II), and all RNA polymerases for that matter, may be understood as comprising two cycles. The first cycle relates to the basic mechanism of the transcription process wherein Pol II must select the appropriate nucleoside triphosphate (NTP) substrate complementary to the DNA template, catalyze phosphodiester bond formation, and translocate to the next position on the DNA template. Performing this cycle in an iterative fashion allows the synthesis of RNA chains that can be over one million nucleotides in length in some larger eukaryotes. Overlaid upon this enzymatic cycle, transcription may be divided into another cycle of three phases: initiation, elongation, and termination. Each of these phases has a large number of associated transcription factors that function to promote or regulate the gene expression process. Complicating matters, each phase of the latter transcription cycle are coincident with cotranscriptional RNA processing events. Additionally, transcription takes place within a highly dynamic and regulated chromatin environment. This chromatin environment is radically impacted by active transcription and associated chromatin modifications and remodeling, while also functioning as a major platform for Pol II regulation. This review will focus on our basic knowledge of the Pol II transcription mechanism, and how altered Pol II activity impacts gene expression in vivo in the model eukaryote Saccharomyces cerevisiae. This article is part of a Special Issue entitled: RNA Polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Craig D Kaplan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA.
| |
Collapse
|
30
|
Yang X, Lewis PJ. The interaction between bacterial transcription factors and RNA polymerase during the transition from initiation to elongation. Transcription 2012; 1:66-9. [PMID: 21326893 DOI: 10.4161/trns.1.2.12791] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 06/24/2010] [Accepted: 06/25/2010] [Indexed: 11/19/2022] Open
Abstract
There are three stages of transcription: initiation, elongation and termination, and traditionally there has been a clear distinction between the stages. The specificity factor sigma is completely released from bacterial RNA polymerase after initiation, and then recycled for another round of transcription. Elongation factors then associate with the polymerase followed by termination factors (where necessary). These factors dissociate prior to initiation of a new round of transcription. However, there is growing evidence suggesting that sigma factors can be retained in the elongation complex. The structure of bacterial RNAP in complex with an essential elongation factor NusA has recently been published, which suggested rather than competing for the major σ binding site, NusA binds to a discrete region on RNAP. A model was proposed to help explain the way in which both factors could be associated with RNAP during the transition from transcription initiation to elongation.
Collapse
Affiliation(s)
- Xiao Yang
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | | |
Collapse
|
31
|
Li SS, Xu K, Wilkins MR. Visualization and Analysis of the Complexome Network of Saccharomyces cerevisiae. J Proteome Res 2011; 10:4744-56. [DOI: 10.1021/pr200548c] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Simone S. Li
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
| | - Kai Xu
- National ICT Australia Ltd, Australian Technology Park, Eveleigh, NSW, Australia and Interaction Design Centre, School of Engineering and Information Sciences, Middlesex University, London, United Kingdom
| | - Marc R. Wilkins
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
| |
Collapse
|
32
|
Aeby E, Ullu E, Yepiskoposyan H, Schimanski B, Roditi I, Mühlemann O, Schneider A. tRNASec is transcribed by RNA polymerase II in Trypanosoma brucei but not in humans. Nucleic Acids Res 2010; 38:5833-43. [PMID: 20444878 PMCID: PMC2943599 DOI: 10.1093/nar/gkq345] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nuclear-encoded tRNAs are universally transcribed by RNA polymerase III (Pol-III) and contain intragenic promoters. Transcription of vertebrate tRNASec however requires extragenic promoters similar to Pol-III transcribed U6 snRNA. Here, we present a comparative analysis of tRNASec transcription in humans and the parasitic protozoa Trypanosoma brucei, two evolutionary highly diverged eukaryotes. RNAi-mediated ablation of Pol-II and Pol-III as well as oligo-dT induced transcription termination show that the human tRNASec is a Pol-III transcript. In T. brucei protein-coding genes are polycistronically transcribed by Pol-II and processed by trans-splicing and polyadenylation. tRNA genes are generally clustered in between polycistrons. However, the trypanosomal tRNASec genes are embedded within a polycistron. Their transcription is sensitive to α-amanitin and RNAi-mediated ablation of Pol-II, but not of Pol-III. Ectopic expression of the tRNASec outside but not inside a polycistron requires an added external promoter. These experiments demonstrate that trypanosomal tRNASec, in contrast to its human counterpart, is transcribed by Pol-II. Synteny analysis shows that in trypanosomatids the tRNASec gene can be found in two different polycistrons, suggesting that it has evolved twice independently. Moreover, intron-encoded tRNAs are present in a number of eukaryotic genomes indicating that Pol-II transcription of tRNAs may not be restricted to trypanosomatids.
Collapse
Affiliation(s)
- Eric Aeby
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | | | | | | | | | | | | |
Collapse
|
33
|
Lane WJ, Darst SA. Molecular evolution of multisubunit RNA polymerases: structural analysis. J Mol Biol 2009; 395:686-704. [PMID: 19895816 DOI: 10.1016/j.jmb.2009.10.063] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 10/24/2009] [Accepted: 10/26/2009] [Indexed: 11/17/2022]
Abstract
Comprehensive multiple sequence alignments of the multisubunit DNA-dependent RNA polymerase (RNAP) large subunits, including the bacterial beta and beta' subunits and their homologs from archaebacterial RNAPs, eukaryotic RNAPs I-III, nuclear-cytoplasmic large double-stranded DNA virus RNAPs, and plant plastid RNAPs, were created [Lane, W. J. and Darst, S. A. (2009). Molecular evolution of multisubunit RNA polymerases: sequence analysis. In press]. The alignments were used to delineate sequence regions shared among all classes of multisubunit RNAPs, defining common, fundamental RNAP features as well as identifying highly conserved positions. Here, we present a systematic, detailed structural analysis of these shared regions and highly conserved positions in terms of the RNAP structure, as well as the RNAP structure/function relationship, when known.
Collapse
Affiliation(s)
- William J Lane
- The Rockefeller University, Box 224, 1230 York Avenue, New York, NY 10065, USA
| | | |
Collapse
|
34
|
Abstract
RNA polymerase (RNAP) is a complex molecular machine that governs gene expression and its regulation in all cellular organisms. To accomplish its function of accurately producing a full-length RNA copy of a gene, RNAP performs a plethora of chemical reactions and undergoes multiple conformational changes in response to cellular conditions. At the heart of this machine is the active center, the engine, which is composed of distinct fixed and moving parts that serve as the ultimate acceptor of regulatory signals and as the target of inhibitory drugs. Recent advances in the structural and biochemical characterization of RNAP explain the active center at the atomic level and enable new approaches to understanding the entire transcription mechanism, its exceptional fidelity and control.
Collapse
Affiliation(s)
- Evgeny Nudler
- Department of Biochemistry, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
35
|
WANG JIACHEN, DASGUPTA INDRANI, FOX GEORGEE. Many nonuniversal archaeal ribosomal proteins are found in conserved gene clusters. ARCHAEA (VANCOUVER, B.C.) 2009; 2:241-51. [PMID: 19478915 PMCID: PMC2686390 DOI: 10.1155/2009/971494] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2008] [Accepted: 03/31/2009] [Indexed: 01/08/2023]
Abstract
The genomic associations of the archaeal ribosomal proteins, (r-proteins), were examined in detail. The archaeal versions of the universal r-protein genes are typically in clusters similar or identical and to those found in bacteria. Of the 35 nonuniversal archaeal r-protein genes examined, the gene encoding L18e was found to be associated with the conserved L13 cluster, whereas the genes for S4e, L32e and L19e were found in the archaeal version of the spc operon. Eleven nonuniversal protein genes were not associated with any common genomic context. Of the remaining 19 protein genes, 17 were convincingly assigned to one of 10 previously unrecognized gene clusters. Examination of the gene content of these clusters revealed multiple associations with genes involved in the initiation of protein synthesis, transcription or other cellular processes. The lack of such associations in the universal clusters suggests that initially the ribosome evolved largely independently of other processes. More recently it likely has evolved in concert with other cellular systems. It was also verified that a second copy of the gene encoding L7ae found in some bacteria is actually a homolog of the gene encoding L30e and should be annotated as such.
Collapse
Affiliation(s)
- JIACHEN WANG
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251, USA
| | - INDRANI DASGUPTA
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251, USA
| | - GEORGE E. FOX
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251, USA
| |
Collapse
|
36
|
Kawauchi J, Mischo H, Braglia P, Rondon A, Proudfoot NJ. Budding yeast RNA polymerases I and II employ parallel mechanisms of transcriptional termination. Genes Dev 2008; 22:1082-92. [PMID: 18413718 DOI: 10.1101/gad.463408] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Both RNA polymerase I and II (Pol I and Pol II) in budding yeast employ a functionally homologous "torpedo-like" mechanism to promote transcriptional termination. For two well-defined Pol II-transcribed genes, CYC1 and PMA1, we demonstrate that both Rat1p exonuclease and Sen1p helicase are required for efficient termination by promoting degradation of the nascent transcript associated with Pol II, following mRNA 3' end processing. Similarly, Pol I termination relies on prior Rnt1p cleavage at the 3' end of the pre-rRNA 35S transcript. This is followed by the combined actions of Rat1p and Sen1p to degrade the Pol I-associated nascent transcript that consequently promote termination in the downstream rDNA spacer sequence. Our data suggest that the previously defined in vitro Pol I termination mechanism involving the action of the Reb1p DNA-binding factor to "road-block" Pol I transcription close to the termination region may have overlooked more complex in vivo molecular processes.
Collapse
Affiliation(s)
- Junya Kawauchi
- Sir William Dunn School of Pathology, Oxford OX1 3RE, United Kingdom
| | | | | | | | | |
Collapse
|
37
|
Arnett DR, Jennings JL, Tabb DL, Link AJ, Weil PA. A proteomics analysis of yeast Mot1p protein-protein associations: insights into mechanism. Mol Cell Proteomics 2008; 7:2090-106. [PMID: 18596064 DOI: 10.1074/mcp.m800221-mcp200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Yeast Mot1p, a member of the Snf2 ATPase family of proteins, is a transcriptional regulator that has the unusual ability to both repress and activate mRNA gene transcription. To identify interactions with other proteins that may assist Mot1p in its regulatory processes, Mot1p was purified from replicate yeast cell extracts, and Mot1p-associated proteins were identified by coupled multidimensional liquid chromatography and tandem mass spectrometry. Using this approach we generated a catalog of Mot1p-interacting proteins. Mot1p interacts with a range of transcriptional co-regulators as well as proteins involved in chromatin remodeling. We propose that interaction with such a wide range of proteins may be one mechanism through which Mot1p subserves its roles as a transcriptional activator and repressor.
Collapse
Affiliation(s)
- Diana R Arnett
- Department of Molecular Physiology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615, USA
| | | | | | | | | |
Collapse
|
38
|
Borukhov S, Nudler E. RNA polymerase: the vehicle of transcription. Trends Microbiol 2008; 16:126-34. [DOI: 10.1016/j.tim.2007.12.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 12/06/2007] [Accepted: 12/06/2007] [Indexed: 10/22/2022]
|
39
|
Heinicke S, Livstone MS, Lu C, Oughtred R, Kang F, Angiuoli SV, White O, Botstein D, Dolinski K. The Princeton Protein Orthology Database (P-POD): a comparative genomics analysis tool for biologists. PLoS One 2007; 2:e766. [PMID: 17712414 PMCID: PMC1942082 DOI: 10.1371/journal.pone.0000766] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Accepted: 07/18/2007] [Indexed: 02/07/2023] Open
Abstract
Many biological databases that provide comparative genomics information and tools are now available on the internet. While certainly quite useful, to our knowledge none of the existing databases combine results from multiple comparative genomics methods with manually curated information from the literature. Here we describe the Princeton Protein Orthology Database (P-POD, http://ortholog.princeton.edu), a user-friendly database system that allows users to find and visualize the phylogenetic relationships among predicted orthologs (based on the OrthoMCL method) to a query gene from any of eight eukaryotic organisms, and to see the orthologs in a wider evolutionary context (based on the Jaccard clustering method). In addition to the phylogenetic information, the database contains experimental results manually collected from the literature that can be compared to the computational analyses, as well as links to relevant human disease and gene information via the OMIM, model organism, and sequence databases. Our aim is for the P-POD resource to be extremely useful to typical experimental biologists wanting to learn more about the evolutionary context of their favorite genes. P-POD is based on the commonly used Generic Model Organism Database (GMOD) schema and can be downloaded in its entirety for installation on one's own system. Thus, bioinformaticians and software developers may also find P-POD useful because they can use the P-POD database infrastructure when developing their own comparative genomics resources and database tools.
Collapse
Affiliation(s)
- Sven Heinicke
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Michael S. Livstone
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Charles Lu
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Rose Oughtred
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Fan Kang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Samuel V. Angiuoli
- The Institute for Genomic Research, Rockville, Maryland, United States of America
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
| | - Owen White
- The Institute for Genomic Research, Rockville, Maryland, United States of America
| | - David Botstein
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Kara Dolinski
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
40
|
Heras SR, López MC, Olivares M, Thomas MC. The L1Tc non-LTR retrotransposon of Trypanosoma cruzi contains an internal RNA-pol II-dependent promoter that strongly activates gene transcription and generates unspliced transcripts. Nucleic Acids Res 2007; 35:2199-214. [PMID: 17369274 PMCID: PMC1874656 DOI: 10.1093/nar/gkl1137] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
L1Tc is the best represented autonomous LINE of the Trypanosoma cruzi genome, throughout which several functional copies may exist. In this study, we show that the first 77 bp of L1Tc (Pr77) (also present in the T. cruzi non-autonomous retrotransposon NARTc, in the Trypanosoma brucei RIME/ingi elements, and in the T. cruzi, T. brucei and Leishmania major degenerate L1Tc/ingi-related elements [DIREs]) behave as a promoter element that activates gene transcription. The transcription rate promoted by Pr77 is 10–14-fold higher than that mediated by sequences located upstream from the T. cruzi tandemly repeated genes KMP11 and the GAPDH. The Pr77 promoter-derived mRNAs initiate at nucleotide +1 of L1Tc, are unspliced and translated. L1Tc transcripts show a moderate half life and are RNA pol II dependent. The presence of an internal promoter at the 5′ end of L1Tc favors the production of full-length L1Tc RNAs and reinforces the hypothesis that this mobile element may be naturally autonomous in its transposition.
Collapse
Affiliation(s)
| | - Manuel C. López
- *To whom correspondence should be addressed. +34 958 181 662+34 958 181 632 Correspondence may also be addressed to M. Carmen Thomas. +34 958 181 662+34 958 181
| | | | | |
Collapse
|
41
|
Bobula J, Tomala K, Jez E, Wloch DM, Borts RH, Korona R. Why molecular chaperones buffer mutational damage: a case study with a yeast Hsp40/70 system. Genetics 2006; 174:937-44. [PMID: 16849597 PMCID: PMC1602100 DOI: 10.1534/genetics.106.061564] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Accepted: 07/17/2006] [Indexed: 11/18/2022] Open
Abstract
The malfunctioning of molecular chaperones may result in uncovering genetic variation. The molecular basis of this phenomenon remains largely unknown. Chaperones rescue proteins unfolded by environmental stresses and therefore they might also help to stabilize mutated proteins and thus mask damages. To test this hypothesis, we carried out a genomewide mutagenesis followed by a screen for mutations that were synthetically harmful when the RAC-Ssb1/2 cytosolic chaperones were inactive. Mutants with such a phenotype were found and mapped to single nucleotide substitutions. However, neither the genes identified nor the nature of genetic lesions implied that folding of the mutated proteins was being supported by the chaperones. In a second screen, we identified temperature-sensitive (ts) mutants, a phenotype indicative of structural instability of proteins. We tested these for an association with sensitivity to loss of chaperone activity but found no such correlation as might have been expected if the chaperones assisted the folding of mutant proteins. Thus, molecular chaperones can mask the negative effects of mutations but the mechanism of such buffering need not be direct. A plausible role of chaperones is to stabilize genetic networks, thus making them more tolerant to malfunctioning of their constituents.
Collapse
Affiliation(s)
- Joanna Bobula
- Institute of Environmental Sciences, Jagiellonian University, Poland
| | | | | | | | | | | |
Collapse
|
42
|
Kang X, Hu Y, Li Y, Guo X, Jiang X, Lai L, Xia B, Jin C. Structural, Biochemical, and Dynamic Characterizations of the hRPB8 Subunit of Human RNA Polymerases. J Biol Chem 2006; 281:18216-26. [PMID: 16632472 DOI: 10.1074/jbc.m513241200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RPB8 subunit is present in all three types of eukaryotic RNA polymerases and is highly conserved during evolution. It is an essential subunit required for the transcription of nuclear genes, but the detailed mechanism including its interactions with different subunits and oligonucleotides remains largely unclear. Herein, we report the three-dimensional structure of human RPB8 (hRPB8) at high resolution determined by NMR spectroscopy. The protein fold comprises an eight-stranded beta-barrel, six short helices, and a large unstructured Omega-loop. The overall structure of hRPB8 is similar to that of yRPB8 from Saccharomyces cerevisiae and belongs to the oligonucleotide/oligosaccharide-binding fold. However, several features of the tertiary structures are notably different between the two proteins. In particular, hRPB8 has a more clustered positively charged binding interface with the largest subunit RPB1 of the RNA polymerases. We employed biochemical methods to detect its interactions with different single-stranded DNA sequences. In addition, single-stranded DNA titration experiments were performed to identify the residues involved in nonspecific binding with different DNA sequences. Furthermore, we characterized the millisecond time scale conformational flexibility of hRPB8 upon its binding to single-stranded DNA. The current results demonstrate that hRPB8 interacts with single-stranded DNA nonspecifically and adopts significant conformational changes, and the hRPB8/single-stranded DNA complex is a fast exchanging system. The solution structure in conjunction with the biochemical and dynamic studies reveal new aspects of this subunit in the molecular assembly and the biological function of the human nuclear RNA polymerases.
Collapse
Affiliation(s)
- Xue Kang
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Makarova KS, Wolf YI, Mekhedov SL, Mirkin BG, Koonin EV. Ancestral paralogs and pseudoparalogs and their role in the emergence of the eukaryotic cell. Nucleic Acids Res 2005; 33:4626-38. [PMID: 16106042 PMCID: PMC1187821 DOI: 10.1093/nar/gki775] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gene duplication is a crucial mechanism of evolutionary innovation. A substantial fraction of eukaryotic genomes consists of paralogous gene families. We assess the extent of ancestral paralogy, which dates back to the last common ancestor of all eukaryotes, and examine the origins of the ancestral paralogs and their potential roles in the emergence of the eukaryotic cell complexity. A parsimonious reconstruction of ancestral gene repertoires shows that 4137 orthologous gene sets in the last eukaryotic common ancestor (LECA) map back to 2150 orthologous sets in the hypothetical first eukaryotic common ancestor (FECA) [paralogy quotient (PQ) of 1.92]. Analogous reconstructions show significantly lower levels of paralogy in prokaryotes, 1.19 for archaea and 1.25 for bacteria. The only functional class of eukaryotic proteins with a significant excess of paralogous clusters over the mean includes molecular chaperones and proteins with related functions. Almost all genes in this category underwent multiple duplications during early eukaryotic evolution. In structural terms, the most prominent sets of paralogs are superstructure-forming proteins with repetitive domains, such as WD-40 and TPR. In addition to the true ancestral paralogs which evolved via duplication at the onset of eukaryotic evolution, numerous pseudoparalogs were detected, i.e. homologous genes that apparently were acquired by early eukaryotes via different routes, including horizontal gene transfer (HGT) from diverse bacteria. The results of this study demonstrate a major increase in the level of gene paralogy as a hallmark of the early evolution of eukaryotes.
Collapse
Affiliation(s)
| | | | | | - Boris G. Mirkin
- School of Information Systems and Computer Science, Birkbeck College, University of LondonMalet Street, London WC1E 7HX, UK
| | - Eugene V. Koonin
- To whom correspondence should be addressed. Tel: +1 301 435 5913; Fax: +1 301 497 9077;
| |
Collapse
|
44
|
Bartlett MS, Thomm M, Geiduschek EP. Topography of the euryarchaeal transcription initiation complex. J Biol Chem 2003; 279:5894-903. [PMID: 14617625 DOI: 10.1074/jbc.m311429200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription in the Archaea is carried out by RNA polymerases and transcription factors that are highly homologous to their eukaryotic counterparts, but little is known about the structural organization of the archaeal transcription complex. To address this, transcription initiation complexes have been formed with Pyrococcus furiosus transcription factors (TBP and TFB1), RNA polymerase, and a linear DNA fragment containing a strong promoter. The arrangement of proteins from base pair -35 to +20 (relative to the transcriptional start site) has been analyzed by photochemical protein-DNA cross-linking. TBP cross-links to the TATA box and TFB1 cross-links both upstream and downstream of the TATA box, as expected, but the sites of most prominent TFB1 cross-linking are located well downstream of the TATA box, reaching as far as the start site of transcription, suggesting a role for TFB1 in initiation of transcription that extends beyond polymerase recruitment. These cross-links indicate the transcription factor orientation in the initiation complex. The pattern of cross-linking of four RNA polymerase subunits (B, A', A", and H) to the promoter suggests a path for promoter DNA relative to the RNA polymerase surface in this archaeal transcription initiation complex. In addition, an unidentified protein approximately the size of TBP cross-links to the non-transcribed DNA strand near the upstream edge of the transcription bubble. Cross-linking is specific to the polymerase-containing initiation complex and requires the gdh promoter TATA box. The location of this protein suggests that it, like TFB1, could also have a role in transcription initiation following RNA polymerase recruitment.
Collapse
Affiliation(s)
- Michael S Bartlett
- Division of Biological Sciences, Center for Molecular Genetics, University of California at San Diego, La Jolla, California 92093-0634, USA.
| | | | | |
Collapse
|
45
|
Wu L, Pan J, Thoroddsen V, Wysong DR, Blackman RK, Bulawa CE, Gould AE, Ocain TD, Dick LR, Errada P, Dorr PK, Parkinson T, Wood T, Kornitzer D, Weissman Z, Willis IM, McGovern K. Novel small-molecule inhibitors of RNA polymerase III. EUKARYOTIC CELL 2003; 2:256-64. [PMID: 12684375 PMCID: PMC154847 DOI: 10.1128/ec.2.2.256-264.2003] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2002] [Accepted: 01/15/2003] [Indexed: 11/20/2022]
Abstract
A genetic approach utilizing the yeast Saccharomyces cerevisiae was used to identify the target of antifungal compounds. This analysis led to the identification of small molecule inhibitors of RNA polymerase (Pol) III from Saccharomyces cerevisiae. Three lines of evidence show that UK-118005 inhibits cell growth by targeting RNA Pol III in yeast. First, a dominant mutation in the g domain of Rpo31p, the largest subunit of RNA Pol III, confers resistance to the compound. Second, UK-118005 rapidly inhibits tRNA synthesis in wild-type cells but not in UK-118005 resistant mutants. Third, in biochemical assays, UK-118005 inhibits tRNA gene transcription in vitro by the wild-type but not the mutant Pol III enzyme. By testing analogs of UK-118005 in a template-specific RNA Pol III transcription assay, an inhibitor with significantly higher potency, ML-60218, was identified. Further examination showed that both compounds are broad-spectrum inhibitors, displaying activity against RNA Pol III transcription systems derived from Candida albicans and human cells. The identification of these inhibitors demonstrates that RNA Pol III can be targeted by small synthetic molecules.
Collapse
Affiliation(s)
- Liping Wu
- Millennium Pharmaceuticals, Inc., Cambridge, Massachusetts. Pfizer Global Research and Development, Sandwich, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Murakami KS, Masuda S, Darst SA. Structural basis of transcription initiation: RNA polymerase holoenzyme at 4 A resolution. Science 2002; 296:1280-4. [PMID: 12016306 DOI: 10.1126/science.1069594] [Citation(s) in RCA: 442] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The crystal structure of the initiating form of Thermus aquaticus RNA polymerase, containing core RNA polymerase (alpha2betabeta'omega) and the promoter specificity sigma subunit, has been determined at 4 angstrom resolution. Important structural features of the RNA polymerase and their roles in positioning sigma within the initiation complex are delineated, as well as the role played by sigma in modulating the opening of the RNA polymerase active-site channel. The two carboxyl-terminal domains of sigma are separated by 45 angstroms on the surface of the RNA polymerase, but are linked by an extended loop. The loop winds near the RNA polymerase active site, where it may play a role in initiating nucleotide substrate binding, and out through the RNA exit channel. The advancing RNA transcript must displace the loop, leading to abortive initiation and ultimately to sigma release.
Collapse
MESH Headings
- Amino Acid Motifs
- Binding Sites
- Crystallization
- Crystallography, X-Ray
- DNA, Bacterial/metabolism
- DNA-Directed RNA Polymerases/chemistry
- DNA-Directed RNA Polymerases/metabolism
- Eukaryotic Cells/metabolism
- Holoenzymes/chemistry
- Holoenzymes/metabolism
- Models, Molecular
- Promoter Regions, Genetic
- Protein Conformation
- Protein Structure, Quaternary
- Protein Structure, Secondary
- Protein Structure, Tertiary
- RNA, Bacterial/metabolism
- RNA, Messenger/metabolism
- Sigma Factor/metabolism
- Thermus/enzymology
- Transcription, Genetic
Collapse
|
47
|
Darst SA, Opalka N, Chacon P, Polyakov A, Richter C, Zhang G, Wriggers W. Conformational flexibility of bacterial RNA polymerase. Proc Natl Acad Sci U S A 2002; 99:4296-301. [PMID: 11904365 PMCID: PMC123642 DOI: 10.1073/pnas.052054099] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2001] [Accepted: 01/30/2002] [Indexed: 11/18/2022] Open
Abstract
The structure of Escherichia coli core RNA polymerase (RNAP) was determined by cryo-electron microscopy and image processing of helical crystals to a nominal resolution of 15 A. Because of the high sequence conservation between the core RNAP subunits, we were able to interpret the E. coli structure in relation to the high-resolution x-ray structure of Thermus aquaticus core RNAP. A very large conformational change of the T. aquaticus RNAP x-ray structure, corresponding to opening of the main DNA/RNA channel by nearly 25 A, was required to fit the E. coli map. This finding reveals, at least partially, the range of conformational flexibility of the RNAP, which is likely to have functional implications for the initiation of transcription, where the DNA template must be loaded into the channel.
Collapse
Affiliation(s)
- Seth A Darst
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10021, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Orlicky SM, Tran PT, Sayre MH, Edwards AM. Dissociable Rpb4-Rpb7 subassembly of rna polymerase II binds to single-strand nucleic acid and mediates a post-recruitment step in transcription initiation. J Biol Chem 2001; 276:10097-102. [PMID: 11087726 DOI: 10.1074/jbc.m003165200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Rpb4 and Rpb7 subunits of yeast RNA polymerase II form a heterodimeric complex essential for promoter-directed transcription initiation in a reconstituted system. Results of template competition experiments indicate that the Rpb4-Rpb7 complex is not required for stable recruitment of polymerase to active preinitiation complexes, suggesting that Rpb4-Rpb7 mediates an essential step subsequent to promoter binding. Sequence and structure-based alignments revealed a possible OB-fold single-strand nucleic acid-binding motif in Rpb7. Purified Rpb4-Rpb7 complex exhibited both single-strand DNA- and RNA-binding activities, and a small deletion in the putative OB-fold nucleic acid-binding surface of Rpb7 abolished binding activity without affecting the stability of the Rpb4-Rpb7 complex or its ability to associate with polymerase. The same mutation destroyed the transcription activity of the Rpb4-Rpb7 complex. A separate deletion elsewhere in the OB-fold motif of Rpb7 also blocked transcription but did not affect nucleic acid binding, suggesting that the OB-fold of Rpb7 mediates both DNA-protein and protein-protein interactions required for productive initiation.
Collapse
Affiliation(s)
- S M Orlicky
- Banting and Best Department of Medical Research and Department of Medical Genetics and Microbiology, C. H. Best Institute, University of Toronto, Ontario M5G 1L6, Canada
| | | | | | | |
Collapse
|
49
|
Abstract
The past decade has seen an explosive increase in information about regulation of eukaryotic gene transcription, especially for protein-coding genes. The most striking advances in our knowledge of transcriptional regulation involve the chromatin template, the large complexes recruited by transcriptional activators that regulate chromatin structure and the transcription apparatus, the holoenzyme forms of RNA polymerase II involved in initiation and elongation, and the mechanisms that link mRNA processing with its synthesis. We describe here the major advances in these areas, with particular emphasis on the modular complexes associated with RNA polymerase II that are targeted by activators and other regulators of mRNA biosynthesis.
Collapse
Affiliation(s)
- T I Lee
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
50
|
Minakhin L, Bhagat S, Brunning A, Campbell EA, Darst SA, Ebright RH, Severinov K. Bacterial RNA polymerase subunit omega and eukaryotic RNA polymerase subunit RPB6 are sequence, structural, and functional homologs and promote RNA polymerase assembly. Proc Natl Acad Sci U S A 2001; 98:892-7. [PMID: 11158566 PMCID: PMC14680 DOI: 10.1073/pnas.98.3.892] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial DNA-dependent RNA polymerase (RNAP) has subunit composition beta'betaalpha(I)alpha(II)omega. The role of omega has been unclear. We show that omega is homologous in sequence and structure to RPB6, an essential subunit shared in eukaryotic RNAP I, II, and III. In Escherichia coli, overproduction of omega suppresses the assembly defect caused by substitution of residue 1362 of the largest subunit of RNAP, beta'. In yeast, overproduction of RPB6 suppresses the assembly defect caused by the equivalent substitution in the largest subunit of RNAP II, RPB1. High-resolution structural analysis of the omega-beta' interface in bacterial RNAP, and comparison with the RPB6-RPB1 interface in yeast RNAP II, confirms the structural relationship and suggests a "latching" mechanism for the role of omega and RPB6 in promoting RNAP assembly.
Collapse
Affiliation(s)
- L Minakhin
- Waksman Institute, Department of Genetics, Department of Chemistry and Howard Hughes Medical Institute, Rutgers, The State University, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | |
Collapse
|