1
|
Achterberg T, de Jong A. ProPr54 web server: predicting σ 54 promoters and regulon with a hybrid convolutional and recurrent deep neural network. NAR Genom Bioinform 2025; 7:lqae188. [PMID: 39781509 PMCID: PMC11704786 DOI: 10.1093/nargab/lqae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/19/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025] Open
Abstract
σ54 serves as an unconventional sigma factor with a distinct mechanism of transcription initiation, which depends on the involvement of a transcription activator. This unique sigma factor σ54 is indispensable for orchestrating the transcription of genes crucial to nitrogen regulation, flagella biosynthesis, motility, chemotaxis and various other essential cellular processes. Currently, no comprehensive tools are available to determine σ54 promoters and regulon in bacterial genomes. Here, we report a σ54 promoter prediction method ProPr54, based on a convolutional neural network trained on a set of 446 validated σ54 binding sites derived from 33 bacterial species. Model performance was tested and compared with respect to bacterial intergenic regions, demonstrating robust applicability. ProPr54 exhibits high performance when tested on various bacterial species, highly surpassing other available σ54 regulon identification methods. Furthermore, analysis on bacterial genomes, which have no experimentally validated σ54 binding sites, demonstrates the generalization of the model. ProPr54 is the first reliable in silico method for predicting σ54 binding sites, making it a valuable tool to support experimental studies on σ54. In conclusion, ProPr54 offers a reliable, broadly applicable tool for predicting σ54 promoters and regulon genes in bacterial genome sequences. A web server is freely accessible at http://propr54.molgenrug.nl.
Collapse
Affiliation(s)
- Tristan Achterberg
- Department of Molecular Genetics, Groningen, Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Anne de Jong
- Department of Molecular Genetics, Groningen, Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| |
Collapse
|
2
|
Yu G, Duan Q, Cui T, Jiang C, Li X, Li Y, Fu J, Zhang Y, Wang H, Luan J. Development of a bacterial gene transcription activating strategy based on transcriptional activator positive feedback. J Adv Res 2024; 66:155-164. [PMID: 38123018 PMCID: PMC11674765 DOI: 10.1016/j.jare.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/26/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023] Open
Abstract
INTRODUCTION Transcription of biological nitrogen fixation (nif) genes is activated by the NifA protein which recognizes specific activating sequences upstream of σ54-dependent nif promoters. The large quantities of nitrogenase which can make up 20% of the total proteins in the cell indicates high transcription activating efficiency of NifA and high transcription level of nifHDK nitrogenase genes. OBJECTIVES Development of an efficient gene transcription activating strategy in bacteria based on positive transcription regulatory proteins and their regulating DNA sequences. METHODS We designed a highly efficient gene transcription activating strategy in which the nifA gene was placed directly downstream of its regulating sequences. The NifA protein binds its regulating sequences and stimulates transcription of itself and downstream genes. Overexpressed NifA causes transcription activation by positive reinforcement. RESULTS When this gene transcription activating strategy was used to overexpress NifA in Pseudomonas stutzeri DSM4166 containing the nif gene cluster, the nitrogenase activity was increased by 368 folds which was 16 times higher than that obtained by nifA driven by the strongest endogenous constitutive promoter. When this strategy was used to activate transcription of exogenous biosynthetic genes for the plant auxin indole-3-acetic acid and the antitumor alkaloid pigment prodigiosin in DSM4166, both of them resulted in better performance than the strongest endogenous constitutive promoter and the highest reported productions in heterologous hosts to date. Finally, we demonstrated the universality of this strategy using the positive transcriptional regulator of the psp operon, PspF, in E. coli and the pathway-specific positive transcription regulator of the polyene antibiotic salinomycin biosynthesis, SlnR, in Streptomyces albus. CONCLUSION Many positive transcription regulatory proteins and their regulating DNA sequences have been identified in bacteria. The gene transcription activating strategy developed in this study will have broad applications in molecular biology and biotechnology.
Collapse
Affiliation(s)
- Guangle Yu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, 266237, Qingdao, Shandong, China
| | - Qiuyue Duan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, 266237, Qingdao, Shandong, China
| | - Tianqi Cui
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, 266237, Qingdao, Shandong, China
| | - Chanjuan Jiang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, 266237, Qingdao, Shandong, China
| | - Xiaochen Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, 266237, Qingdao, Shandong, China
| | - Yutong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, 266237, Qingdao, Shandong, China
| | - Jun Fu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, 266237, Qingdao, Shandong, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, 266237, Qingdao, Shandong, China
| | - Hailong Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, 266237, Qingdao, Shandong, China.
| | - Ji Luan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, 266237, Qingdao, Shandong, China.
| |
Collapse
|
3
|
Lyu X, Li P, Jin L, Yang F, Pucker B, Wang C, Liu L, Zhao M, Shi L, Zhang Y, Yang Q, Xu K, Li X, Hu Z, Yang J, Yu J, Zhang M. Tracing the evolutionary and genetic footprints of atmospheric tillandsioids transition from land to air. Nat Commun 2024; 15:9599. [PMID: 39505856 PMCID: PMC11541568 DOI: 10.1038/s41467-024-53756-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
Plant evolution is driven by key innovations of functional traits that enables their survivals in diverse ecological environments. However, plant adaptive evolution from land to atmospheric niches remains poorly understood. In this study, we use the epiphytic Tillandsioideae subfamily of Bromeliaceae as model plants to explore their origin, evolution and diversification. We provide a comprehensive phylogenetic tree based on nuclear transcriptomic sequences, indicating that core tillandsioids originated approximately 11.3 million years ago in the Andes. The geological uplift of the Andes drives the divergence of tillandsioids into tank-forming and atmospheric types. Our genomic and transcriptomic analyses reveal gene variations and losses associated with adaptive traits such as impounding tanks and absorptive trichomes. Furthermore, we uncover specific nitrogen-fixing bacterial communities in the phyllosphere of tillandsioids as potential source of nitrogen acquisition. Collectively, our study provides integrative multi-omics insights into the adaptive evolution of tillandsioids in response to elevated aerial habitats.
Collapse
Affiliation(s)
- Xiaolong Lyu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ping Li
- Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Liang Jin
- Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 311251, China
| | - Feng Yang
- BGI Research, Sanya, 572025, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Boas Pucker
- Institute of Plant Biology, TU Braunschweig, Mendelssohnstraße 4, Braunschweig, 38106, Germany
| | - Chenhao Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Linye Liu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Meng Zhao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Lu Shi
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yutong Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Qinrong Yang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Kuangtian Xu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiao Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhongyuan Hu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Hainan Institute of Zhejiang University, Sanya, 572025, China
| | - Jinghua Yang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Hainan Institute of Zhejiang University, Sanya, 572025, China
| | - Jingquan Yu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
- Hainan Institute of Zhejiang University, Sanya, 572025, China.
| | - Mingfang Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
- Hainan Institute of Zhejiang University, Sanya, 572025, China.
| |
Collapse
|
4
|
Yigit K, Chien P. Proteolytic control of FixT by the Lon protease impacts FixLJ signaling in Caulobacter crescentus. J Bacteriol 2024; 206:e0023724. [PMID: 38940598 PMCID: PMC11270865 DOI: 10.1128/jb.00237-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/29/2024] Open
Abstract
Responding to changes in oxygen levels is critical for aerobic microbes. In Caulobacter crescentus, low oxygen is sensed by the FixL-FixJ two-component system which induces multiple genes, including those involved in heme biosynthesis, to accommodate microaerobic conditions. The FixLJ inhibitor FixT is also induced under low oxygen conditions and is degraded by the Lon protease when the oxygen levels are sufficient, which together provides negative feedback proposed to adjust FixLJ signaling thresholds during changing conditions. Here, we address whether degradation of FixT by the Lon protease contributes to phenotypic defects associated with loss of Lon. We find that ∆lon strains are deficient in FixLJ-dependent heme biosynthesis, consistent with elevated FixT levels as deletion of fixT suppresses this defect. Transcriptomics validate this result as, along with heme biosynthesis, there is diminished expression of many FixL-activated genes in ∆lon. However, stabilization of FixT in ∆lon strains does not contribute to restoring any known Lon-related fitness defect, such as cell morphology defects or stress sensitivity. In fact, cells lacking both FixT and Lon are compromised in viability during growth in standard aerobic conditions. Our work highlights the complexity of protease-dependent regulation of transcription factors and explains the molecular basis of defective heme accumulation in Lon-deficient Caulobacter. IMPORTANCE The Lon protease shapes protein quality control, signaling pathways, and stress responses in many bacteria species. Loss of Lon often results in multiple phenotypic consequences. In this work, we found a connection between the Lon protease and deficiencies in heme accumulation that then led to our finding of a global change in gene expression due in part to degradation of a regulator of the hypoxic response. However, loss of degradation of this regulator did not explain other phenotypes associated with Lon deficiencies demonstrating the complex and multiple pathways that this highly conserved protease can impact.
Collapse
Affiliation(s)
- Kubra Yigit
- Department of Biochemistry and Molecular Biology, Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Peter Chien
- Department of Biochemistry and Molecular Biology, Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
5
|
Jiang L, Yi M, Jiang Z, Wu Y, Cao J, Liu Z, Wang Z, Lu M, Ke X, Wang M. Effect of Pond-Based Rice Floating Bed on the Microbial Community Structure and Quality of Water in Pond of Mandarin Fish Fed Using Artificial Diet. BIOLOGY 2024; 13:549. [PMID: 39056741 PMCID: PMC11274348 DOI: 10.3390/biology13070549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
The culture of mandarin fish using artificial feed has been gaining increasing attention in China. Ensuring good water quality in the ponds is crucial for successful aquaculture. Recently, the trial of pond-based rice floating beds (PRFBs) in aquaculture ponds has shown promising results. This research assessed the impact of PRFBs on the microbial community structure and overall quality of the aquaculture pond, thereby enhancing our understanding of its functions. The results revealed that the PRFB group exhibited lower levels of NH4+-N, NO2--N, NO3--N, TN, TP, and Alk in pond water compared to the control group. The microbial diversity indices in the PRFB group showed a declining trend, while these indices were increasing in the control group. At the phylum level, there was a considerable increase in Proteobacteria abundance in the PRFB group throughout the culture period, suggesting that PRFBs may promote the proliferation of Proteobacteria. In the PRFB group, there was a remarkable decrease in bacterial populations related to carbon, nitrogen, and phosphorus metabolism, including genera Rhodobacter, Rhizorhapis, Dinghuibacter, Candidatus Aquiluna, and Chryseomicrobium as well as the CL500_29_marine_group. Overall, the research findings will provide a basis for the application of aquaculture of mandarin fish fed an artificial diet and rice floating beds.
Collapse
Affiliation(s)
- Lijin Jiang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; (L.J.); (M.Y.); (J.C.); (Z.L.); (Z.W.); (M.L.); (X.K.)
| | - Mengmeng Yi
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; (L.J.); (M.Y.); (J.C.); (Z.L.); (Z.W.); (M.L.); (X.K.)
| | - Zhiyong Jiang
- Guangdong Agricultural Technology Extension Center, Guangzhou 510520, China; (Z.J.); (Y.W.)
| | - Yuli Wu
- Guangdong Agricultural Technology Extension Center, Guangzhou 510520, China; (Z.J.); (Y.W.)
| | - Jianmeng Cao
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; (L.J.); (M.Y.); (J.C.); (Z.L.); (Z.W.); (M.L.); (X.K.)
| | - Zhigang Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; (L.J.); (M.Y.); (J.C.); (Z.L.); (Z.W.); (M.L.); (X.K.)
| | - Zhang Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; (L.J.); (M.Y.); (J.C.); (Z.L.); (Z.W.); (M.L.); (X.K.)
| | - Maixin Lu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; (L.J.); (M.Y.); (J.C.); (Z.L.); (Z.W.); (M.L.); (X.K.)
| | - Xiaoli Ke
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; (L.J.); (M.Y.); (J.C.); (Z.L.); (Z.W.); (M.L.); (X.K.)
| | - Miao Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; (L.J.); (M.Y.); (J.C.); (Z.L.); (Z.W.); (M.L.); (X.K.)
| |
Collapse
|
6
|
Janczarek M, Kozieł M, Adamczyk P, Buczek K, Kalita M, Gromada A, Mordzińska-Rak A, Polakowski C, Bieganowski A. Symbiotic efficiency of Rhizobium leguminosarum sv. trifolii strains originating from the subpolar and temperate climate regions. Sci Rep 2024; 14:6264. [PMID: 38491088 PMCID: PMC10943007 DOI: 10.1038/s41598-024-56988-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/13/2024] [Indexed: 03/18/2024] Open
Abstract
Red clover (Trifolium pratense L.) is a forage legume cultivated worldwide. This plant is capable of establishing a nitrogen-fixing symbiosis with Rhizobium leguminosarum symbiovar trifolii strains. To date, no comparative analysis of the symbiotic properties and heterogeneity of T. pratense microsymbionts derived from two distinct geographic regions has been performed. In this study, the symbiotic properties of strains originating from the subpolar and temperate climate zones in a wide range of temperatures (10-25 °C) have been characterized. Our results indicate that all the studied T. pratense microsymbionts from two geographic regions were highly efficient in host plant nodulation and nitrogen fixation in a wide range of temperatures. However, some differences between the populations and between the strains within the individual population examined were observed. Based on the nodC and nifH sequences, the symbiotic diversity of the strains was estimated. In general, 13 alleles for nodC and for nifH were identified. Moreover, 21 and 61 polymorphic sites in the nodC and nifH sequences were found, respectively, indicating that the latter gene shows higher heterogeneity than the former one. Among the nodC and nifH alleles, three genotypes (I-III) were the most frequent, whereas the other alleles (IV-XIII) proved to be unique for the individual strains. Based on the nodC and nifH allele types, 20 nodC-nifH genotypes were identified. Among them, the most frequent were three genotypes marked as A (6 strains), B (5 strains), and C (3 strains). Type A was exclusively found in the temperate strains, whereas types B and C were identified in the subpolar strains. The remaining 17 genotypes were found in single strains. In conclusion, our data indicate that R. leguminosarum sv. trifolii strains derived from two climatic zones show a high diversity with respect to the symbiotic efficiency and heterogeneity. However, some of the R. leguminosarum sv. trifolii strains exhibit very good symbiotic potential in the wide range of the temperatures tested; hence, they may be used in the future for improvement of legume crop production.
Collapse
Affiliation(s)
- Monika Janczarek
- Department of Industrial and Environmental Microbiology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka, 20-033, Lublin, Poland.
| | - Marta Kozieł
- Department of Industrial and Environmental Microbiology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka, 20-033, Lublin, Poland
| | - Paulina Adamczyk
- Department of Industrial and Environmental Microbiology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka, 20-033, Lublin, Poland
| | - Katarzyna Buczek
- Department of Industrial and Environmental Microbiology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka, 20-033, Lublin, Poland
| | - Michał Kalita
- Department of Genetics and Microbiology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka, 20-033, Lublin, Poland
| | - Anna Gromada
- Department of Industrial and Environmental Microbiology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka, 20-033, Lublin, Poland
| | - Aleksandra Mordzińska-Rak
- Department of Biochemistry and Molecular Biology, Faculty of Medical Studies, Medical University in Lublin, 1 Chodźki, 20-093, Lublin, Poland
| | - Cezary Polakowski
- Department of Natural Environment Biogeochemistry, Institute of Agrophysics, Polish Academy of Sciences, 4 Doświadczalna, 20-290, Lublin, Poland
| | - Andrzej Bieganowski
- Department of Natural Environment Biogeochemistry, Institute of Agrophysics, Polish Academy of Sciences, 4 Doświadczalna, 20-290, Lublin, Poland
| |
Collapse
|
7
|
Han F, Li H, Lyu E, Zhang Q, Gai H, Xu Y, Bai X, He X, Khan AQ, Li X, Xie F, Li F, Fang X, Wei M. Soybean-mediated suppression of BjaI/BjaR 1 quorum sensing in Bradyrhizobium diazoefficiens impacts symbiotic nitrogen fixation. Appl Environ Microbiol 2024; 90:e0137423. [PMID: 38251894 PMCID: PMC10880635 DOI: 10.1128/aem.01374-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/23/2023] [Indexed: 01/23/2024] Open
Abstract
The acyl-homoserine lactones (AHLs)-mediated LuxI/LuxR quorum sensing (QS) system orchestrates diverse bacterial behaviors in response to changes in population density. The role of the BjaI/BjaR1 QS system in Bradyrhizobium diazoefficiens USDA 110, which shares homology with LuxI/LuxR, remains elusive during symbiotic interaction with soybean. Here this genetic system in wild-type (WT) bacteria residing inside nodules exhibited significantly reduced activity compared to free-living cells, potentially attributed to soybean-mediated suppression. The deletion mutant strain ΔbjaR1 showed significantly enhanced nodulation induction and nitrogen fixation ability. Nevertheless, its ultimate symbiotic outcome (plant dry weight) in soybeans was compromised. Furthermore, comparative analysis of the transcriptome, proteome, and promoter activity revealed that the inactivation of BjaR1 systematically activated and inhibited genomic modules associated with nodulation and nitrogen metabolism. The former appeared to be linked to a significant decrease in the expression of NodD2, a key cell-density-dependent repressor of nodulation genes, while the latter conferred bacterial growth and nitrogen fixation insensitivity to environmental nitrogen. In addition, BjaR1 exerted a positive influence on the transcription of multiple genes involved in a so-called central intermediate metabolism within the nodule. In conclusion, our findings highlight the crucial role of the BjaI/BjaR1 QS circuit in positively regulating bacterial nitrogen metabolism and emphasize the significance of the soybean-mediated suppression of this genetic system for promoting efficient symbiotic nitrogen fixation by B. diazoefficiens.IMPORTANCEThe present study demonstrates, for the first time, that the BjaI/BjaR1 QS system of Bradyrhizobium diazoefficiens has a significant impact on its nodulation and nitrogen fixation capability in soybean by positively regulating NodD2 expression and bacterial nitrogen metabolism. Moreover, it provides novel insights into the importance of suppressing the activity of this QS circuit by the soybean host plant in establishing an efficient mutual relationship between the two symbiotic partners. This research expands our understanding of legumes' role in modulating symbiotic nitrogen fixation through rhizobial QS-mediated metabolic functioning, thereby deepening our comprehension of symbiotic coevolution theory. In addition, these findings may hold great promise for developing quorum quenching technology in agriculture.
Collapse
Affiliation(s)
- Fang Han
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Huiquan Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Ermeng Lyu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Qianqian Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Haoyu Gai
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Yunfang Xu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xuemei Bai
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xueqian He
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Abdul Qadir Khan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xiaolin Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Fang Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Fengmin Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xiangwen Fang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Min Wei
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| |
Collapse
|
8
|
Knights HE, Ramachandran VK, Jorrin B, Ledermann R, Parsons JD, Aroney STN, Poole PS. Rhizobium determinants of rhizosphere persistence and root colonization. THE ISME JOURNAL 2024; 18:wrae072. [PMID: 38690786 PMCID: PMC11103875 DOI: 10.1093/ismejo/wrae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
Bacterial persistence in the rhizosphere and colonization of root niches are critical for the establishment of many beneficial plant-bacteria interactions including those between Rhizobium leguminosarum and its host legumes. Despite this, most studies on R. leguminosarum have focused on its symbiotic lifestyle as an endosymbiont in root nodules. Here, we use random barcode transposon sequencing to assay gene contributions of R. leguminosarum during competitive growth in the rhizosphere and colonization of various plant species. This facilitated the identification of 189 genes commonly required for growth in diverse plant rhizospheres, mutation of 111 of which also affected subsequent root colonization (rhizosphere progressive), and a further 119 genes necessary for colonization. Common determinants reveal a need to synthesize essential compounds (amino acids, ribonucleotides, and cofactors), adapt metabolic function, respond to external stimuli, and withstand various stresses (such as changes in osmolarity). Additionally, chemotaxis and flagella-mediated motility are prerequisites for root colonization. Many genes showed plant-specific dependencies highlighting significant adaptation to different plant species. This work provides a greater understanding of factors promoting rhizosphere fitness and root colonization in plant-beneficial bacteria, facilitating their exploitation for agricultural benefit.
Collapse
Affiliation(s)
- Hayley E Knights
- Department of Biology, University of Oxford, Oxford OX1 3RB, United Kingdom
| | | | - Beatriz Jorrin
- Department of Biology, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Raphael Ledermann
- Department of Biology, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Jack D Parsons
- Department of Biology, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Samuel T N Aroney
- Department of Biology, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Philip S Poole
- Department of Biology, University of Oxford, Oxford OX1 3RB, United Kingdom
| |
Collapse
|
9
|
Standke HG, Kim L, Owens CP. Purification and Biochemical Characterization of the DNA Binding Domain of the Nitrogenase Transcriptional Activator NifA from Gluconacetobacter diazotrophicus. Protein J 2023; 42:802-810. [PMID: 37787923 PMCID: PMC10590331 DOI: 10.1007/s10930-023-10158-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 10/04/2023]
Abstract
NifA is a σ54 activator that turns on bacterial nitrogen fixation under reducing conditions and when fixed cellular nitrogen levels are low. The redox sensing mechanism in NifA is poorly understood. In α- and β-proteobacteria, redox sensing involves two pairs of Cys residues within and immediately following the protein's central AAA+ domain. In this work, we examine if an additional Cys pair that is part of a C(X)5 C motif and located immediately upstream of the DNA binding domain of NifA from the α-proteobacterium Gluconacetobacter diazotrophicus (Gd) is involved in redox sensing. We hypothesize that the Cys residues' redox state may directly influence the DNA binding domain's DNA binding affinity and/or alter the protein's oligomeric sate. Two DNA binding domain constructs were generated, a longer construct (2C-DBD), consisting of the DNA binding domain with the upstream Cys pair, and a shorter construct (NC-DBD) that lacks the Cys pair. The Kd of NC-DBD for its cognate DNA sequence (nifH-UAS) is equal to 20.0 µM. The Kd of 2C-DBD for nifH-UAS when the Cys pair is oxidized is 34.5 µM. Reduction of the disulfide bond does not change the DNA binding affinity. Additional experiments indicate that the redox state of the Cys residues does not influence the secondary structure or oligomerization state of the NifA DNA binding domain. Together, these results demonstrate that the Cys pair upstream of the DNA binding domain of Gd-NifA does not regulate DNA binding or domain dimerization in a redox dependent manner.
Collapse
Affiliation(s)
- Heidi G Standke
- Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA, 92866, USA
| | - Lois Kim
- Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA, 92866, USA
| | - Cedric P Owens
- Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA, 92866, USA.
| |
Collapse
|
10
|
Li X, Li Z. What determines symbiotic nitrogen fixation efficiency in rhizobium: recent insights into Rhizobium leguminosarum. Arch Microbiol 2023; 205:300. [PMID: 37542687 DOI: 10.1007/s00203-023-03640-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/07/2023]
Abstract
Symbiotic nitrogen fixation (SNF) by rhizobium, a Gram-negative soil bacterium, is an essential component in the nitrogen cycle and is a sustainable green way to maintain soil fertility without chemical energy consumption. SNF, which results from the processes of nodulation, rhizobial infection, bacteroid differentiation and nitrogen-fixing reaction, requires the expression of various genes from both symbionts with adaptation to the changing environment. To achieve successful nitrogen fixation, rhizobia and their hosts cooperate closely for precise regulation of symbiotic genes, metabolic processes and internal environment homeostasis. Many researches have progressed to reveal the ample information about regulatory aspects of SNF during recent decades, but the major bottlenecks regarding improvement of nitrogen-fixing efficiency has proven to be complex. In this mini-review, we summarize recent advances that have contributed to understanding the rhizobial regulatory aspects that determine SNF efficiency, focusing on the coordinated regulatory mechanism of symbiotic genes, oxygen, carbon metabolism, amino acid metabolism, combined nitrogen, non-coding RNAs and internal environment homeostasis. Unraveling regulatory determinants of SNF in the nitrogen-fixing protagonist rhizobium is expected to promote an improvement of nitrogen-fixing efficiency in crop production.
Collapse
Affiliation(s)
- Xiaofang Li
- Institute of Biopharmaceuticals, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, China.
- School of Pharmaceutical Sciences, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, China.
| | - Zhangqun Li
- School of Pharmaceutical Sciences, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, China
| |
Collapse
|
11
|
Safronova V, Sazanova A, Belimov A, Guro P, Kuznetsova I, Karlov D, Chirak E, Yuzikhin O, Verkhozina A, Afonin A, Tikhonovich I. Synergy between Rhizobial Co-Microsymbionts Leads to an Increase in the Efficiency of Plant-Microbe Interactions. Microorganisms 2023; 11:1206. [PMID: 37317180 DOI: 10.3390/microorganisms11051206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/24/2023] [Accepted: 05/02/2023] [Indexed: 06/16/2023] Open
Abstract
Combined inoculation of legumes with rhizobia and plant growth-promoting rhizobacteria or endophytes is a known technique for increasing the efficiency of nitrogen-fixing symbiosis and plant productivity. The aim of this work was to expand knowledge about the synergistic effects between commercial rhizobia of pasture legumes and root nodule bacteria of relict legume species. Pot experiments were performed on common vetch (Vicia sativa L.) and red clover (Trifolium pratense L.) co-inoculated with the participation of the corresponding commercial rhizobial strains (R. leguminosarum bv. viciae RCAM0626 and R. leguminosarum bv. trifolii RCAM1365) and seven strains isolated from nodules of relict legumes inhabiting the Baikal Lake region and the Altai Republic: Oxytropis popoviana, Astragalus chorinensis, O. tragacanthoides and Vicia costata. The inoculation of plants with combinations of strains (commercial strain plus the isolate from relict legume) had a different effect on symbiosis depending on the plant species: the increase in the number of nodules was mainly observed on vetch, whereas increased acetylene reduction activity was evident on clover. It was shown that the relict isolates differ significantly in the set of genes related to different genetic systems that affect plant-microbe interactions. At the same time, they had additional genes that are involved in the formation of symbiosis and determine its effectiveness, but are absent in the used commercial strains: symbiotic genes fix, nif, nod, noe and nol, as well as genes associated with the hormonal status of the plant and the processes of symbiogenesis (acdRS, genes for gibberellins and auxins biosynthesis, genes of T3SS, T4SS and T6SS secretion systems). It can be expected that the accumulation of knowledge about microbial synergy on the example of the joint use of commercial and relict rhizobia will allow in the future the development of methods for the targeted selection of co-microsymbionts to increase the efficiency of agricultural legume-rhizobia systems.
Collapse
Affiliation(s)
- Vera Safronova
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Sh. Podbelskogo 3, 196608 St. Petersburg, Russia
| | - Anna Sazanova
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Sh. Podbelskogo 3, 196608 St. Petersburg, Russia
| | - Andrey Belimov
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Sh. Podbelskogo 3, 196608 St. Petersburg, Russia
| | - Polina Guro
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Sh. Podbelskogo 3, 196608 St. Petersburg, Russia
| | - Irina Kuznetsova
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Sh. Podbelskogo 3, 196608 St. Petersburg, Russia
| | - Denis Karlov
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Sh. Podbelskogo 3, 196608 St. Petersburg, Russia
| | - Elizaveta Chirak
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Sh. Podbelskogo 3, 196608 St. Petersburg, Russia
| | - Oleg Yuzikhin
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Sh. Podbelskogo 3, 196608 St. Petersburg, Russia
| | - Alla Verkhozina
- Siberian Institute of Plant Physiology and Biochemistry (SIPPB), P.O. Box 1243, 664033 Irkutsk, Russia
| | - Alexey Afonin
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Sh. Podbelskogo 3, 196608 St. Petersburg, Russia
| | - Igor Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Sh. Podbelskogo 3, 196608 St. Petersburg, Russia
- Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 St. Petersburg, Russia
| |
Collapse
|
12
|
Yu G, Li X, Duan Q, Fu J, Zhang Y, Wang H, Luan J. Systematic identification of endogenous strong constitutive promoters from the diazotrophic rhizosphere bacterium Pseudomonas stutzeri DSM4166 to improve its nitrogenase activity. Microb Cell Fact 2023; 22:91. [PMID: 37138314 PMCID: PMC10155442 DOI: 10.1186/s12934-023-02085-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/09/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Biological nitrogen fixation converting atmospheric dinitrogen to ammonia is an important way to provide nitrogen for plants. Pseudomonas stutzeri DSM4166 is a diazotrophic Gram-negative bacterium isolated from the rhizosphere of cereal Sorghum nutans. Endogenous constitutive promoters are important for engineering of the nitrogen fixation pathway, however, they have not been systematically characterized in DSM4166. RESULTS Twenty-six candidate promoters were identified from DSM4166 by RNA-seq analysis. These 26 promoters were cloned and characterized using the firefly luciferase gene. The strengths of nineteen promoters varied from 100 to 959% of the strength of the gentamicin resistance gene promoter. The strongest P12445 promoter was used to overexpress the biological nitrogen fixation pathway-specific positive regulator gene nifA. The transcription level of nitrogen fixation genes in DSM4166 were significantly increased and the nitrogenase activity was enhanced by 4.1 folds determined by the acetylene reduction method. The nifA overexpressed strain produced 359.1 µM of extracellular ammonium which was 25.6 times higher than that produced by the wild-type strain. CONCLUSIONS The endogenous strong constitutive promoters identified in this study will facilitate development of DSM4166 as a microbial cell factory for nitrogen fixation and production of other useful compounds.
Collapse
Affiliation(s)
- Guangle Yu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, Qingdao, Shandong, 266237, China
| | - Xiaochen Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, Qingdao, Shandong, 266237, China
| | - Qiuyue Duan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, Qingdao, Shandong, 266237, China
| | - Jun Fu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, Qingdao, Shandong, 266237, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, Qingdao, Shandong, 266237, China
| | - Hailong Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, Qingdao, Shandong, 266237, China
| | - Ji Luan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, Qingdao, Shandong, 266237, China.
| |
Collapse
|
13
|
Krol E, Werel L, Essen LO, Becker A. Structural and functional diversity of bacterial cyclic nucleotide perception by CRP proteins. MICROLIFE 2023; 4:uqad024. [PMID: 37223727 PMCID: PMC10187061 DOI: 10.1093/femsml/uqad024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/07/2023] [Accepted: 04/28/2023] [Indexed: 05/25/2023]
Abstract
Cyclic AMP (cAMP) is a ubiquitous second messenger synthesized by most living organisms. In bacteria, it plays highly diverse roles in metabolism, host colonization, motility, and many other processes important for optimal fitness. The main route of cAMP perception is through transcription factors from the diverse and versatile CRP-FNR protein superfamily. Since the discovery of the very first CRP protein CAP in Escherichia coli more than four decades ago, its homologs have been characterized in both closely related and distant bacterial species. The cAMP-mediated gene activation for carbon catabolism by a CRP protein in the absence of glucose seems to be restricted to E. coli and its close relatives. In other phyla, the regulatory targets are more diverse. In addition to cAMP, cGMP has recently been identified as a ligand of certain CRP proteins. In a CRP dimer, each of the two cyclic nucleotide molecules makes contacts with both protein subunits and effectuates a conformational change that favors DNA binding. Here, we summarize the current knowledge on structural and physiological aspects of E. coli CAP compared with other cAMP- and cGMP-activated transcription factors, and point to emerging trends in metabolic regulation related to lysine modification and membrane association of CRP proteins.
Collapse
Affiliation(s)
- Elizaveta Krol
- Department of Biology, Philipps-Universität Marburg, Karl-von-Frisch-Straße 8, 35043 Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35043 Marburg, Germany
| | - Laura Werel
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Lars Oliver Essen
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Anke Becker
- Corresponding author. Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35043 Marburg. E-mail:
| |
Collapse
|
14
|
Nitrogen-Fixing Symbiotic Paraburkholderia Species: Current Knowledge and Future Perspectives. NITROGEN 2023. [DOI: 10.3390/nitrogen4010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
A century after the discovery of rhizobia, the first Beta-proteobacteria species (beta-rhizobia) were isolated from legume nodules in South Africa and South America. Since then, numerous species belonging to the Burkholderiaceae family have been isolated. The presence of a highly branching lineage of nodulation genes in beta-rhizobia suggests a long symbiotic history. In this review, we focus on the beta-rhizobial genus Paraburkholderia, which includes two main groups: the South American mimosoid-nodulating Paraburkholderia and the South African predominantly papilionoid-nodulating Paraburkholderia. Here, we discuss the latest knowledge on Paraburkholderia nitrogen-fixing symbionts in each step of the symbiosis, from their survival in the soil, through the first contact with the legumes until the formation of an efficient nitrogen-fixing symbiosis in root nodules. Special attention is given to the strain P. phymatum STM815T that exhibits extraordinary features, such as the ability to: (i) enter into symbiosis with more than 50 legume species, including the agriculturally important common bean, (ii) outcompete other rhizobial species for nodulation of several legumes, and (iii) endure stressful soil conditions (e.g., high salt concentration and low pH) and high temperatures.
Collapse
|
15
|
Chaudhary S, Sindhu SS, Dhanker R, Kumari A. Microbes-mediated sulphur cycling in soil: Impact on soil fertility, crop production and environmental sustainability. Microbiol Res 2023; 271:127340. [PMID: 36889205 DOI: 10.1016/j.micres.2023.127340] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/06/2023] [Accepted: 02/18/2023] [Indexed: 03/08/2023]
Abstract
Reduction in soil fertility and depletion of natural resources due to current intensive agricultural practices along with climate changes are the major constraints for crop productivity and global food security. Diverse microbial populations' inhabiting the soil and rhizosphere participate in biogeochemical cycling of nutrients and thereby, improve soil fertility and plant health, and reduce the adverse impact of synthetic fertilizers on the environment. Sulphur is 4th most common crucial macronutrient required by all organisms including plants, animals, humans and microorganisms. Effective strategies are required to enhance sulphur content in crops for minimizing adverse effects of sulphur deficiency on plants and humans. Various microorganisms are involved in sulphur cycling in soil through oxidation, reduction, mineralization, and immobilization, and volatalization processes of diverse sulphur compounds. Some microorganisms possess the unique ability to oxidize sulphur compounds into plant utilizable sulphate (SO42-) form. Considering the importance of sulphur as a nutrient for crops, many bacteria and fungi involved in sulphur cycling have been characterized from soil and rhizosphere. Some of these microbes have been found to positively affect plant growth and crop yield through multiple mechanisms including the enhanced mobilization of nutrients in soils (i.e., sulphate, phosphorus and nitrogen), production of growth-promoting hormones, inhibition of phytopathogens, protection against oxidative damage and mitigation of abiotic stresses. Application of these beneficial microbes as biofertilizers may reduce the conventional fertilizer application in soils. However, large-scale, well-designed, and long-term field trials are necessary to recommend the use of these microbes for increasing nutrient availability for growth and yield of crop plants. This review discusses the current knowledge regarding sulphur deficiency symptoms in plants, biogeochemical cycling of sulphur and inoculation effects of sulphur oxidizing microbes in improving plant biomass and crop yield in different crops.
Collapse
Affiliation(s)
- Suman Chaudhary
- Research Associate, EBL Laboratory, ICAR-Central Institute of Research on Buffaloes, Hisar 125001, Haryana, India.
| | - Satyavir Singh Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar 125004, Haryana, India.
| | - Rinku Dhanker
- International Institute of Veterinary, Education & Research, Bahuakbarpur, Rohtak 124001, Haryana, India.
| | - Anju Kumari
- Center of Food Science and Technology, CCS Haryana Agricultural University, Hisar 125004, Haryana, India.
| |
Collapse
|
16
|
Li S, Wu C, Liu H, Lyu X, Xiao F, Zhao S, Ma C, Yan C, Liu Z, Li H, Wang X, Gong Z. Systemic regulation of nodule structure and assimilated carbon distribution by nitrate in soybean. FRONTIERS IN PLANT SCIENCE 2023; 14:1101074. [PMID: 36814755 PMCID: PMC9939697 DOI: 10.3389/fpls.2023.1101074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The nitrate regulates soybean nodulation and nitrogen fixation systemically, mainly in inhibiting nodule growth and reducing nodule nitrogenase activity, but the reason for its inhibition is still inconclusive. METHODS The systemic effect of nitrate on nodule structure, function, and carbon distribution in soybean (Glycine max (L.) Merr.) was studied in a dual-root growth system, with both sides inoculated with rhizobia and only one side subjected to nitrate treatment for four days. The non-nodulating side was genetically devoid of the ability to form nodules. Nutrient solutions with nitrogen concentrations of 0, 100, and 200 mg L-1 were applied as KNO3 to the non-nodulating side, while the nodulating side received a nitrogen-free nutrient solution. Carbon partitioning in roots and nodules was monitored using 13C-labelled CO2. Other nodule responses were measured via the estimation of the nitrogenase activity and the microscopic observation of nodule ultrastructure. RESULTS Elevated concentrations of nitrate applied on the non-nodulating side caused a decrease in the number of bacteroids, fusion of symbiosomes, enlargement of the peribacteroid spaces, and onset of degradation of poly-β-hydroxybutyrate granules, which is a form of carbon storage in bacteroids. These microscopic observations were associated with a strong decrease in the nitrogenase activity of nodules. Furthermore, our data demonstrate that the assimilated carbon is more likely to be allocated to the non-nodulating roots, as follows from the competition for carbon between the symbiotic and non-symbiotic sides of the dual-root system. CONCLUSION We propose that there is no carbon competition between roots and nodules when they are indirectly supplied with nitrate, and that the reduction of carbon fluxes to nodules and roots on the nodulating side is the mechanism by which the plant systemically suppresses nodulation under nitrogen-replete conditions.
Collapse
Affiliation(s)
- Sha Li
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Chengbin Wu
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Hao Liu
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Xiaochen Lyu
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Fengsheng Xiao
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Shuhong Zhao
- College of Engineering, Northeast Agricultural University, Harbin, China
| | - Chunmei Ma
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Chao Yan
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Zhilei Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Hongyu Li
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Xuelai Wang
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Zhenping Gong
- College of Agriculture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
17
|
Molecular Mechanism and Agricultural Application of the NifA-NifL System for Nitrogen Fixation. Int J Mol Sci 2023; 24:ijms24020907. [PMID: 36674420 PMCID: PMC9866876 DOI: 10.3390/ijms24020907] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Nitrogen-fixing bacteria execute biological nitrogen fixation through nitrogenase, converting inert dinitrogen (N2) in the atmosphere into bioavailable nitrogen. Elaborating the molecular mechanisms of orderly and efficient biological nitrogen fixation and applying them to agricultural production can alleviate the "nitrogen problem". Azotobacter vinelandii is a well-established model bacterium for studying nitrogen fixation, utilizing nitrogenase encoded by the nif gene cluster to fix nitrogen. In Azotobacter vinelandii, the NifA-NifL system fine-tunes the nif gene cluster transcription by sensing the redox signals and energy status, then modulating nitrogen fixation. In this manuscript, we investigate the transcriptional regulation mechanism of the nif gene in autogenous nitrogen-fixing bacteria. We discuss how autogenous nitrogen fixation can better be integrated into agriculture, providing preliminary comprehensive data for the study of autogenous nitrogen-fixing regulation.
Collapse
|
18
|
Schmautz Z, Walser JC, Espinal CA, Gartmann F, Scott B, Pothier JF, Frossard E, Junge R, Smits THM. Microbial diversity across compartments in an aquaponic system and its connection to the nitrogen cycle. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158426. [PMID: 36055492 DOI: 10.1016/j.scitotenv.2022.158426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Aquaponics combines hydroponic crop production with recirculating aquaculture. These systems comprise various compartments (fish tank, biofilter, sump, hydroponic table, radial flow settler and anaerobic digester), each with their own specific environmental pressures, which trigger the formation of unique microbial communities. Triplicated aquaponic systems were used to investigate the microbial community composition during three lettuce growing cycles. The sampling of individual compartments allowed community patterns to be generated using amplicon sequencing of bacterial and archaeal 16S rRNA genes. Nitrifying bacteria were identified in the hydroponic compartments, indicating that these compartments may play a larger role than previously thought in the system's nitrogen cycle. In addition to the observed temporal changes in community compositions within the anaerobic compartment, more archaeal reads were obtained from sludge samples than from the aerobic part of the system. Lower bacterial diversity was observed in fresh fish feces, where a highly discrete gut flora composition was seen. Finally, the most pronounced differences in microbial community compositions were observed between the aerobic and anaerobic loops of the system, with unique bacterial compositions in each individual compartment.
Collapse
Affiliation(s)
- Zala Schmautz
- Ecological Engineering Centre, Institute of Natural Resource Sciences, Zurich University of Applied Sciences, Wädenswil, Switzerland; Group of Plant Nutrition, Institute of Agricultural Sciences, ETH Zurich, Lindau, Switzerland..
| | | | | | - Florentina Gartmann
- Ecological Engineering Centre, Institute of Natural Resource Sciences, Zurich University of Applied Sciences, Wädenswil, Switzerland
| | - Ben Scott
- Ecological Engineering Centre, Institute of Natural Resource Sciences, Zurich University of Applied Sciences, Wädenswil, Switzerland
| | - Joël F Pothier
- Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zurich University of Applied Sciences, Wädenswil, Switzerland
| | - Emmanuel Frossard
- Group of Plant Nutrition, Institute of Agricultural Sciences, ETH Zurich, Lindau, Switzerland
| | - Ranka Junge
- Ecological Engineering Centre, Institute of Natural Resource Sciences, Zurich University of Applied Sciences, Wädenswil, Switzerland
| | - Theo H M Smits
- Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zurich University of Applied Sciences, Wädenswil, Switzerland
| |
Collapse
|
19
|
Taboada-Castro H, Gil J, Gómez-Caudillo L, Escorcia-Rodríguez JM, Freyre-González JA, Encarnación-Guevara S. Rhizobium etli CFN42 proteomes showed isoenzymes in free-living and symbiosis with a different transcriptional regulation inferred from a transcriptional regulatory network. Front Microbiol 2022; 13:947678. [PMID: 36312930 PMCID: PMC9611204 DOI: 10.3389/fmicb.2022.947678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
A comparative proteomic study at 6 h of growth in minimal medium (MM) and bacteroids at 18 days of symbiosis of Rhizobium etli CFN42 with the Phaseolus vulgaris leguminous plant was performed. A gene ontology classification of proteins in MM and bacteroid, showed 31 and 10 pathways with higher or equal than 30 and 20% of proteins with respect to genome content per pathway, respectively. These pathways were for energy and environmental compound metabolism, contributing to understand how Rhizobium is adapted to the different conditions. Metabolic maps based on orthology of the protein profiles, showed 101 and 74 functional homologous proteins in the MM and bacteroid profiles, respectively, which were grouped in 34 different isoenzymes showing a great impact in metabolism by covering 60 metabolic pathways in MM and symbiosis. Taking advantage of co-expression of transcriptional regulators (TF’s) in the profiles, by selection of genes whose matrices were clustered with matrices of TF’s, Transcriptional Regulatory networks (TRN´s) were deduced by the first time for these metabolic stages. In these clustered TF-MM and clustered TF-bacteroid networks, containing 654 and 246 proteins, including 93 and 46 TFs, respectively, showing valuable information of the TF’s and their regulated genes with high stringency. Isoenzymes were specific for adaptation to the different conditions and a different transcriptional regulation for MM and bacteroid was deduced. The parameters of the TRNs of these expected biological networks and biological networks of E. coli and B. subtilis segregate from the random theoretical networks. These are useful data to design experiments on TF gene–target relationships for bases to construct a TRN.
Collapse
Affiliation(s)
- Hermenegildo Taboada-Castro
- Proteomics Laboratory, Program of Functional Genomics of Prokaryotes, Center for Genomic Sciences, National Autonomous University of Mexico, Cuernavaca, Morelos, Mexico
| | - Jeovanis Gil
- Division of Oncology, Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Lund, Sweden
| | - Leopoldo Gómez-Caudillo
- Proteomics Laboratory, Program of Functional Genomics of Prokaryotes, Center for Genomic Sciences, National Autonomous University of Mexico, Cuernavaca, Morelos, Mexico
| | - Juan Miguel Escorcia-Rodríguez
- Regulatory Systems Biology Research Group, Program of Systems Biology, Center for Genomic Sciences, National Autonomous University of Mexico, Mexico City, Mexico
| | - Julio Augusto Freyre-González
- Regulatory Systems Biology Research Group, Program of Systems Biology, Center for Genomic Sciences, National Autonomous University of Mexico, Mexico City, Mexico
| | - Sergio Encarnación-Guevara
- Proteomics Laboratory, Program of Functional Genomics of Prokaryotes, Center for Genomic Sciences, National Autonomous University of Mexico, Cuernavaca, Morelos, Mexico
- *Correspondence: Sergio Encarnacion Guevara,
| |
Collapse
|
20
|
Baymiev AK, Akimova ES, Koryakov IS, Vladimirova AA, Baymiev AK. The Composition of Lotus corniculatus Root Nodule Bacteria Depending on the Host Plant Vegetation Stage. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722601154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
21
|
Zhukova M, Sapountzis P, Schiøtt M, Boomsma JJ. Phylogenomic analysis and metabolic role reconstruction of mutualistic Rhizobiales hindgut symbionts of Acromyrmex leaf-cutting ants. FEMS Microbiol Ecol 2022; 98:6652133. [PMID: 35906195 DOI: 10.1093/femsec/fiac084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/03/2022] [Accepted: 07/27/2022] [Indexed: 11/12/2022] Open
Abstract
Rhizobiales are well-known plant-root nitrogen-fixing symbionts, but the functions of insect-associated Rhizobiales are poorly understood. We obtained genomes of three strains associated with Acromyrmex leaf-cutting ants and show that, in spite of being extracellular gut symbionts, they lost all pathways for essential amino acid biosynthesis, making them fully dependent on their hosts. Comparison with 54 Rhizobiales genomes showed that all insect-associated Rhizobiales lost the ability to fix nitrogen and that the Acromyrmex symbionts had exceptionally also lost the urease genes. However, the Acromyrmex strains share biosynthesis pathways for riboflavin vitamin, queuosine and a wide range of antioxidant enzymes likely to be beneficial for the ant fungus-farming symbiosis. We infer that the Rhizobiales symbionts catabolize excess of fungus-garden-derived arginine to urea, supplementing complementary Mollicutes symbionts that turn arginine into ammonia and infer that these combined symbiont activities stabilize the fungus-farming mutualism. Similar to the Mollicutes symbionts, the Rhizobiales species have fully functional CRISPR/Cas and R-M phage defenses, suggesting that these symbionts are important enough for the ant hosts to have precluded the evolution of metabolically cheaper defenseless strains.
Collapse
Affiliation(s)
- Mariya Zhukova
- Centre for Social Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Panagiotis Sapountzis
- Centre for Social Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Morten Schiøtt
- Centre for Social Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Jacobus J Boomsma
- Centre for Social Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
22
|
Wekesa C, Jalloh AA, Muoma JO, Korir H, Omenge KM, Maingi JM, Furch ACU, Oelmüller R. Distribution, Characterization and the Commercialization of Elite Rhizobia Strains in Africa. Int J Mol Sci 2022; 23:ijms23126599. [PMID: 35743041 PMCID: PMC9223902 DOI: 10.3390/ijms23126599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 02/04/2023] Open
Abstract
Grain legumes play a significant role in smallholder farming systems in Africa because of their contribution to nutrition and income security and their role in fixing nitrogen. Biological Nitrogen Fixation (BNF) serves a critical role in improving soil fertility for legumes. Although much research has been conducted on rhizobia in nitrogen fixation and their contribution to soil fertility, much less is known about the distribution and diversity of the bacteria strains in different areas of the world and which of the strains achieve optimal benefits for the host plants under specific soil and environmental conditions. This paper reviews the distribution, characterization, and commercialization of elite rhizobia strains in Africa.
Collapse
Affiliation(s)
- Clabe Wekesa
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany; (C.W.); (K.M.O.); (A.C.U.F.)
| | - Abdul A. Jalloh
- International Centre of Insect Physiology and Ecology, P.O. Box 30772, Nairobi 00100, Kenya;
| | - John O. Muoma
- Department of Biological Sciences, Masinde Muliro University of Science and Technology, P.O. Box 190, Kakamega 50100, Kenya;
| | - Hezekiah Korir
- Crops, Horticulture and Soils Department, Egerton University, P.O. Box 536, Egerton 20115, Kenya;
| | - Keziah M. Omenge
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany; (C.W.); (K.M.O.); (A.C.U.F.)
| | - John M. Maingi
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P.O. Box 43844, Nairobi 00100, Kenya;
| | - Alexandra C. U. Furch
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany; (C.W.); (K.M.O.); (A.C.U.F.)
| | - Ralf Oelmüller
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany; (C.W.); (K.M.O.); (A.C.U.F.)
- Correspondence: ; Tel.: +49-3641949232
| |
Collapse
|
23
|
Eardly B, Meor Osman WA, Ardley J, Zandberg J, Gollagher M, van Berkum P, Elia P, Marinova D, Seshadri R, Reddy TBK, Ivanova N, Pati A, Woyke T, Kyrpides N, Loedolff M, Laird DW, Reeve W. The Genome of the Acid Soil-Adapted Strain Rhizobium favelukesii OR191 Encodes Determinants for Effective Symbiotic Interaction With Both an Inverted Repeat Lacking Clade and a Phaseoloid Legume Host. Front Microbiol 2022; 13:735911. [PMID: 35495676 PMCID: PMC9048898 DOI: 10.3389/fmicb.2022.735911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 02/10/2022] [Indexed: 11/15/2022] Open
Abstract
Although Medicago sativa forms highly effective symbioses with the comparatively acid-sensitive genus Ensifer, its introduction into acid soils appears to have selected for symbiotic interactions with acid-tolerant R. favelukesii strains. Rhizobium favelukesii has the unusual ability of being able to nodulate and fix nitrogen, albeit sub-optimally, not only with M. sativa but also with the promiscuous host Phaseolus vulgaris. Here we describe the genome of R. favelukesii OR191 and genomic features important for the symbiotic interaction with both of these hosts. The OR191 draft genome contained acid adaptation loci, including the highly acid-inducible lpiA/acvB operon and olsC, required for production of lysine- and ornithine-containing membrane lipids, respectively. The olsC gene was also present in other acid-tolerant Rhizobium strains but absent from the more acid-sensitive Ensifer microsymbionts. The OR191 symbiotic genes were in general more closely related to those found in Medicago microsymbionts. OR191 contained the nodA, nodEF, nodHPQ, and nodL genes for synthesis of polyunsaturated, sulfated and acetylated Nod factors that are important for symbiosis with Medicago, but contained a truncated nodG, which may decrease nodulation efficiency with M. sativa. OR191 contained an E. meliloti type BacA, which has been shown to specifically protect Ensifer microsymbionts from Medicago nodule-specific cysteine-rich peptides. The nitrogen fixation genes nifQWZS were present in OR191 and P. vulgaris microsymbionts but absent from E. meliloti-Medicago microsymbionts. The ability of OR191 to nodulate and fix nitrogen symbiotically with P. vulgaris indicates that this host has less stringent requirements for nodulation than M. sativa but may need rhizobial strains that possess nifQWZS for N2-fixation to occur. OR191 possessed the exo genes required for the biosynthesis of succinoglycan, which is required for the Ensifer-Medicago symbiosis. However, 1H-NMR spectra revealed that, in the conditions tested, OR191 exopolysaccharide did not contain a succinyl substituent but instead contained a 3-hydroxybutyrate moiety, which may affect its symbiotic performance with Medicago hosts. These findings provide a foundation for the genetic basis of nodulation requirements and symbiotic effectiveness with different hosts.
Collapse
Affiliation(s)
- Bertrand Eardly
- Berks College, Penn State University, Reading, PA, United States
| | - Wan Adnawani Meor Osman
- Centre for Crop and Food Innovation, College of Science, Health, Engineering and Education, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Julie Ardley
- Centre for Crop and Food Innovation, College of Science, Health, Engineering and Education, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Jaco Zandberg
- Centre for Crop and Food Innovation, College of Science, Health, Engineering and Education, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Margaret Gollagher
- Murdoch University Associate, Murdoch, WA, Australia.,Sustainability and Biosecurity, Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Peter van Berkum
- Soybean Genomics and Improvement Laboratory, United States Department of Agriculture, Beltsville, MD, United States
| | - Patrick Elia
- Soybean Genomics and Improvement Laboratory, United States Department of Agriculture, Beltsville, MD, United States
| | - Dora Marinova
- Curtin University Sustainability Policy Institute, Curtin University, Bentley, WA, Australia
| | - Rekha Seshadri
- Department of Energy (DOE) Joint Genome Institute, Berkeley, CA, United States
| | - T B K Reddy
- Department of Energy (DOE) Joint Genome Institute, Berkeley, CA, United States
| | - Natalia Ivanova
- Department of Energy (DOE) Joint Genome Institute, Berkeley, CA, United States
| | - Amrita Pati
- Department of Energy (DOE) Joint Genome Institute, Berkeley, CA, United States
| | - Tanja Woyke
- Department of Energy (DOE) Joint Genome Institute, Berkeley, CA, United States
| | - Nikos Kyrpides
- Department of Energy (DOE) Joint Genome Institute, Berkeley, CA, United States
| | - Matthys Loedolff
- Centre for Crop and Food Innovation, College of Science, Health, Engineering and Education, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Damian W Laird
- Centre for Water Energy and Waste, Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Wayne Reeve
- Centre for Crop and Food Innovation, College of Science, Health, Engineering and Education, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
24
|
NoiD, a DedA membrane protein required for homeostasis maintaining of Rhizobium leguminosarum biovar viciae during symbiosis with Pisum sativum. Symbiosis 2022. [DOI: 10.1007/s13199-021-00827-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Kumar S, Diksha, Sindhu SS, Kumar R. Biofertilizers: An ecofriendly technology for nutrient recycling and environmental sustainability. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 3:100094. [PMID: 35024641 PMCID: PMC8724949 DOI: 10.1016/j.crmicr.2021.100094] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 01/02/2023] Open
Abstract
Modern intensive agricultural practices face numerous challenges that pose major threats to global food security. In order to address the nutritional requirements of the ever-increasing world population, chemical fertilizers and pesticides are applied on large scale to increase crop production. However, the injudicious use of agrochemicals has resulted in environmental pollution leading to public health hazards. Moreover, agriculture soils are continuously losing their quality and physical properties as well as their chemical (imbalance of nutrients) and biological health. Plant-associated microbes with their plant growth- promoting traits have enormous potential to solve these challenges and play a crucial role in enhancing plant biomass and crop yield. The beneficial mechanisms of plant growth improvement include enhanced nutrient availability, phytohormone modulation, biocontrol of phytopathogens and amelioration of biotic and abiotic stresses. Solid-based or liquid bioinoculant formulation comprises inoculum preparation, addition of cell protectants such as glycerol, lactose, starch, a good carrier material, proper packaging and best delivery methods. Recent developments of formulation include entrapment/microencapsulation, nano-immobilization of microbial bioinoculants and biofilm-based biofertilizers. This review critically examines the current state-of-art on use of microbial strains as biofertilizers and the important roles performed by these beneficial microbes in maintaining soil fertility and enhancing crop productivity.
Collapse
Key Words
- ABA, Abscisic acid
- ACC, 1-aminocyclopropane-1-carboxylic acid
- AM, Arbuscular mycorrhiza
- APX, Ascorbate peroxidase
- BGA, Blue green algae
- BNF, Biological nitrogen fixation
- Beneficial microorganisms
- Biofertilizers
- CAT, Catalase
- Crop production
- DAPG, 2, 4-diacetyl phloroglucinol
- DRB, Deleterious rhizospheric bacteria
- GA, Gibberellic acid
- GPX, Glutathione/thioredoxin peroxidase
- HCN, Hydrogen cyanide
- IAA, Indole acetic acid
- IAR, Intrinsic antibiotic resistance
- ISR, Induced systemic resistance
- KMB, Potassium mobilizing bacteria
- KSMs, Potassium-solubilizing microbes
- MAMPs, Microbes associated molecular patterns
- PAMPs, Pathogen associated molecular patterns
- PCA, Phenazine-1-carboxylic acid
- PGP, Plant growth-promoting
- PGPR, Plant growth-promoting rhizobacteria
- POD, Peroxidase
- PSB, Phosphate-solubilizing bacteria
- Rhizosphere
- SAR, Systemic acquired resistance
- SOB, Sulphur oxidizing bacteria
- Soil fertility
- Sustainable agriculture
Collapse
Affiliation(s)
- Satish Kumar
- Department of Microbiology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Diksha
- Department of Microbiology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Satyavir S. Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Rakesh Kumar
- Department of Microbiology, CCS Haryana Agricultural University, Hisar 125004, India
| |
Collapse
|
26
|
Nouwen N, Chaintreuil C, Fardoux J, Giraud E. A glutamate synthase mutant of Bradyrhizobium sp. strain ORS285 is unable to induce nodules on Nod factor-independent Aeschynomene species. Sci Rep 2021; 11:20910. [PMID: 34686745 PMCID: PMC8536739 DOI: 10.1038/s41598-021-00480-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/11/2021] [Indexed: 11/09/2022] Open
Abstract
The Bradyrhizobium sp. strain ORS285 is able to establish a nitrogen-fixing symbiosis with both Nod factor (NF) dependent and NF-independent Aeschynomene species. Here, we have studied the growth characteristics and symbiotic interaction of a glutamate synthase (GOGAT; gltD::Tn5) mutant of Bradyrhizobium ORS285. We show that the ORS285 gltD::Tn5 mutant is unable to use ammonium, nitrate and many amino acids as nitrogen source for growth and is unable to fix nitrogen under free-living conditions. Moreover, on several nitrogen sources, the growth rate of the gltB::Tn5 mutant was faster and/or the production of the carotenoid spirilloxanthin was much higher as compared to the wild-type strain. The absence of GOGAT activity has a drastic impact on the symbiotic interaction with NF-independent Aeschynomene species. With these species, inoculation with the ORS285 gltD::Tn5 mutant does not result in the formation of nodules. In contrast, the ORS285 gltD::Tn5 mutant is capable to induce nodules on NF-dependent Aeschynomene species, but these nodules were ineffective for nitrogen fixation. Interestingly, in NF-dependent and NF-independent Aeschynomene species inoculation with the ORS285 gltD::Tn5 mutant results in browning of the plant tissue at the site of the infection suggesting that the mutant bacteria induce plant defence responses.
Collapse
Affiliation(s)
- Nico Nouwen
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRAE/Université de Montpellier/CIRAD - Campus de Baillarguet, Montpellier, France.
| | - Clémence Chaintreuil
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRAE/Université de Montpellier/CIRAD - Campus de Baillarguet, Montpellier, France
| | - Joel Fardoux
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRAE/Université de Montpellier/CIRAD - Campus de Baillarguet, Montpellier, France
| | - Eric Giraud
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRAE/Université de Montpellier/CIRAD - Campus de Baillarguet, Montpellier, France
| |
Collapse
|
27
|
Wolff D, Helmholz L, Castronovo S, Ghattas AK, Ternes TA, Wick A. Micropollutant transformation and taxonomic composition in hybrid MBBR - A comparison of carrier-attached biofilm and suspended sludge. WATER RESEARCH 2021; 202:117441. [PMID: 34343873 DOI: 10.1016/j.watres.2021.117441] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/24/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
The suspended sludge and carrier-attached biofilms of three different hybrid moving bed biofilm reactor (MBBR) systems were investigated with respect to their transformation potential for a broad range of micropollutants (MPs) as well as their microbial community composition. For this purpose, laboratory-scale batch experiments were conducted with the separated suspended sludge and the carrier-attached biofilm of every system in triplicate. For all batches the removal of 31 MPs as well as the composition of the microbial community were analyzed. The carrier-attached biofilms from two hybrid MBBR systems showed a significant higher overall transformation potential in comparison to the respective suspended sludge. Especially for the MPs trimethoprim, diclofenac, mecoprop, climbazole and the human metabolite 10,11-dihydro-10-hydroxycarbamazepine consistently higher pseudo-first-order transformation rates could be observed in all three systems. The analysis of the taxonomic composition revealed taxa showing higher relative abundances in the carrier-attached biofilms (e. g. Nitrospirae and Chloroflexi) and in the suspended biomasses (e. g. Bacteroidetes and Betaproteobacteria). Correlations of the biodiversity indices and the MP biotransformation rates resulted in significant positive associations for 11 compounds in suspended sludge, but mostly negative associations for the carrier-attached biofilms. The distinct differences in MP removal between suspended sludge and carrier-attached biofilm of the three different MBBR systems were also reflected by a statistically significant link between the occurrence of specific bacterial taxa (Acidibacter, Nitrospira and Rhizomicrobium) and MP transformation rates of certain MPs. Even though the identified correlations might not necessarily be of causal nature, some of the identified taxa might serve as suitable indicators for the transformation potential of suspended sludge or carrier-attached biofilms.
Collapse
Affiliation(s)
- David Wolff
- Federal Institute of Hydrology (BfG), D-56068 Koblenz, Am Mainzer Tor 1, Germany
| | - Lissa Helmholz
- Federal Institute of Hydrology (BfG), D-56068 Koblenz, Am Mainzer Tor 1, Germany
| | - Sandro Castronovo
- Federal Institute of Hydrology (BfG), D-56068 Koblenz, Am Mainzer Tor 1, Germany
| | - Ann-Kathrin Ghattas
- Federal Institute of Hydrology (BfG), D-56068 Koblenz, Am Mainzer Tor 1, Germany
| | - Thomas A Ternes
- Federal Institute of Hydrology (BfG), D-56068 Koblenz, Am Mainzer Tor 1, Germany
| | - Arne Wick
- Federal Institute of Hydrology (BfG), D-56068 Koblenz, Am Mainzer Tor 1, Germany.
| |
Collapse
|
28
|
Endophytic bacterial strains modulated synthesis of lycopene and bioactive compounds in Solanum lycopersicum L. fruit. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Bellés-Sancho P, Lardi M, Liu Y, Eberl L, Zamboni N, Bailly A, Pessi G. Metabolomics and Dual RNA-Sequencing on Root Nodules Revealed New Cellular Functions Controlled by Paraburkholderia phymatum NifA. Metabolites 2021; 11:metabo11070455. [PMID: 34357349 PMCID: PMC8305402 DOI: 10.3390/metabo11070455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/02/2021] [Accepted: 07/12/2021] [Indexed: 01/25/2023] Open
Abstract
Paraburkholderia phymatum STM815 is a nitrogen-fixing endosymbiont that nodulate the agriculturally important Phaseolus vulgaris and several other host plants. We previously showed that the nodules induced by a STM815 mutant of the gene encoding the master regulator of nitrogen fixation NifA showed no nitrogenase activity (Fix−) and increased in number compared to P. vulgaris plants infected with the wild-type strain. To further investigate the role of NifA during symbiosis, nodules from P. phymatum wild-type and nifA mutants were collected and analyzed by metabolomics and dual RNA-Sequencing, allowing us to investigate both host and symbiont transcriptome. Using this approach, several metabolites’ changes could be assigned to bacterial or plant responses. While the amount of the C4-dicarboxylic acid succinate and of several amino acids was lower in Fix− nodules, the level of indole-acetamide (IAM) and brassinosteroids increased. Transcriptome analysis identified P. phymatum genes involved in transport of C4-dicarboxylic acids, carbon metabolism, auxin metabolism and stress response to be differentially expressed in absence of NifA. Furthermore, P. vulgaris genes involved in autoregulation of nodulation (AON) are repressed in nodules in absence of NifA potentially explaining the hypernodulation phenotype of the nifA mutant. These results and additional validation experiments suggest that P. phymatum STM815 NifA is not only important to control expression of nitrogenase and related enzymes but is also involved in regulating its own auxin production and stress response. Finally, our data indicate that P. vulgaris does sanction the nifA nodules by depleting the local carbon allocation rather than by mounting a strong systemic immune response to the Fix− rhizobia.
Collapse
Affiliation(s)
- Paula Bellés-Sancho
- Department of Plant and Microbial Biology, University of Zürich, CH-8057 Zürich, Switzerland; (P.B.-S.); (M.L.); (Y.L.); (L.E.)
| | - Martina Lardi
- Department of Plant and Microbial Biology, University of Zürich, CH-8057 Zürich, Switzerland; (P.B.-S.); (M.L.); (Y.L.); (L.E.)
| | - Yilei Liu
- Department of Plant and Microbial Biology, University of Zürich, CH-8057 Zürich, Switzerland; (P.B.-S.); (M.L.); (Y.L.); (L.E.)
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zürich, CH-8057 Zürich, Switzerland; (P.B.-S.); (M.L.); (Y.L.); (L.E.)
| | - Nicola Zamboni
- ETH Zürich, Institute of Molecular Systems Biology, CH-8093 Zürich, Switzerland;
| | - Aurélien Bailly
- Department of Plant and Microbial Biology, University of Zürich, CH-8057 Zürich, Switzerland; (P.B.-S.); (M.L.); (Y.L.); (L.E.)
- Correspondence: (A.B.); (G.P.)
| | - Gabriella Pessi
- Department of Plant and Microbial Biology, University of Zürich, CH-8057 Zürich, Switzerland; (P.B.-S.); (M.L.); (Y.L.); (L.E.)
- Correspondence: (A.B.); (G.P.)
| |
Collapse
|
30
|
Hernández VM, Arteaga A, Dunn MF. Diversity, properties and functions of bacterial arginases. FEMS Microbiol Rev 2021; 45:6308370. [PMID: 34160574 DOI: 10.1093/femsre/fuab034] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023] Open
Abstract
The metalloenzyme arginase hydrolyzes L-arginine to produce L-ornithine and urea. In bacteria, arginase has important functions in basic nitrogen metabolism and redistribution, production of the key metabolic precursor L-ornithine, stress resistance and pathogenesis. We describe the regulation and specific functions of the arginase pathway as well as summarize key characteristics of related arginine catabolic pathways. The use of arginase-derived ornithine as a precursor molecule is reviewed. We discuss the biochemical and transcriptional regulation of arginine metabolism, including arginase, with the latter topic focusing on the RocR and AhrC transcriptional regulators in the model organism Bacillus subtilis. Finally, we consider similarities and contrasts in the structure and catalytic mechanism of the arginases from Bacillus caldovelox and Helicobacter pylori. The overall aim of this review is to provide a panorama of the diversity of physiological functions, regulation, and biochemical features of arginases in a variety of bacterial species.
Collapse
Affiliation(s)
- Victor M Hernández
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas-Universidad Nacional Autonoma de México, Cuernavaca, Morelos, C.P. 62210, Mexico
| | - Alejandra Arteaga
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas-Universidad Nacional Autonoma de México, Cuernavaca, Morelos, C.P. 62210, Mexico
| | - Michael F Dunn
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas-Universidad Nacional Autonoma de México, Cuernavaca, Morelos, C.P. 62210, Mexico
| |
Collapse
|
31
|
Yamawaki T, Mizuno M, Ishikawa H, Takemura K, Kitao A, Shiro Y, Mizutani Y. Regulatory Switching by Concerted Motions on the Microsecond Time Scale of the Oxygen Sensor Protein FixL. J Phys Chem B 2021; 125:6847-6856. [PMID: 34133147 DOI: 10.1021/acs.jpcb.1c01885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Signal transduction proteins perceive external stimuli in their sensor module and regulate the biological activities of the effector module, allowing cellular adaptation in response to environmental changes. FixL is a dimeric heme protein kinase that senses the oxygen level in plant root nodules to regulate the transcription of nitrogen fixation genes via the phosphorylation of its cognate transcriptional activator. Dissociation of oxygen from the heme induces conformational changes in the protein, converting it from the inactive form for phosphorylation to the active form. However, how FixL undergoes conformational change to regulate kinase activity upon oxygen dissociation remains poorly understood. Here we report time-resolved ultraviolet resonance Raman spectra showing conformational changes for FixL from Sinorhizobium meliloti. We observed spectral changes with a time constant of about 3 μs, which were oxygen-specific. Furthermore, we found that the conformational changes in the sensor and kinase domains are coupled, enabling allosteric control of kinase activity. Our results demonstrate that concerted structural changes on the microsecond time scale serve as the regulatory switch in FixL.
Collapse
Affiliation(s)
- Takeo Yamawaki
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Misao Mizuno
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Haruto Ishikawa
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Kazuhiro Takemura
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Akio Kitao
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Yoshitsugu Shiro
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
32
|
Salas A, Cabrera JJ, Jiménez-Leiva A, Mesa S, Bedmar EJ, Richardson DJ, Gates AJ, Delgado MJ. Bacterial nitric oxide metabolism: Recent insights in rhizobia. Adv Microb Physiol 2021; 78:259-315. [PMID: 34147187 DOI: 10.1016/bs.ampbs.2021.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nitric oxide (NO) is a reactive gaseous molecule that has several functions in biological systems depending on its concentration. At low concentrations, NO acts as a signaling molecule, while at high concentrations, it becomes very toxic due to its ability to react with multiple cellular targets. Soil bacteria, commonly known as rhizobia, have the capacity to establish a N2-fixing symbiosis with legumes inducing the formation of nodules in their roots. Several reports have shown NO production in the nodules where this gas acts either as a signaling molecule which regulates gene expression, or as a potent inhibitor of nitrogenase and other plant and bacteria enzymes. A better understanding of the sinks and sources of NO in rhizobia is essential to protect symbiotic nitrogen fixation from nitrosative stress. In nodules, both the plant and the microsymbiont contribute to the production of NO. From the bacterial perspective, the main source of NO reported in rhizobia is the denitrification pathway that varies significantly depending on the species. In addition to denitrification, nitrate assimilation is emerging as a new source of NO in rhizobia. To control NO accumulation in the nodules, in addition to plant haemoglobins, bacteroids also contribute to NO detoxification through the expression of a NorBC-type nitric oxide reductase as well as rhizobial haemoglobins. In the present review, updated knowledge about the NO metabolism in legume-associated endosymbiotic bacteria is summarized.
Collapse
Affiliation(s)
- Ana Salas
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Juan J Cabrera
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain; School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Andrea Jiménez-Leiva
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Socorro Mesa
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Eulogio J Bedmar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - David J Richardson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Andrew J Gates
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - María J Delgado
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain.
| |
Collapse
|
33
|
Knežević M, Berić T, Buntić A, Delić D, Nikolić I, Stanković S, Stajković-Srbinović O. Potential of root nodule nonrhizobial endophytic bacteria for growth promotion of Lotus corniculatus L. and Dactylis glomerata L. J Appl Microbiol 2021; 131:2929-2940. [PMID: 34003543 DOI: 10.1111/jam.15152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 11/29/2022]
Abstract
AIMS This research aimed to isolate and characterize nonrhizobial endophytic bacteria from root nodules of Medicago sativa L. and Lotus corniculatus L. with plant growth-promoting characteristics and to test its activity in a pot experiment with acid soil. METHODS AND RESULTS Out of 44 nonrhizobial isolates, the majority exhibited indole-3-acetic acid (IAA) production; 29 produced siderophores, few isolates performed phosphate solubilization and/or produced lytic enzymes, while 30% of isolates showed notable antifungal activity. The most promising strains were identified as members of Bacillus, Pseudomonas and Serratia genera, based on 16S rRNA. Bacillus megaterium DZK1BH exhibited the overall best attributes for plant growth promotion and positively influenced the growth of L. corniculatus and Dactylis glomerata. CONCLUSIONS Root nodule endophytic B. megaterium DZK1BH could potentially be used as a biofertilizer for growing L. corniculatus L. and D. glomerata L. in acid soils, while Bacillus mojavensis L3 is a candidate for further antifungal potential investigation. SIGNIFICANCE OF IMPACT OF THE STUDY The use of root nodule endophytic bacteria with PGP traits may find its future application in organic agriculture, as their utilization could decrease the use of chemical fertilizers and pesticides and simultaneously promote plant growth, especially in soils with low production quality.
Collapse
Affiliation(s)
- M Knežević
- Department of Microbiology, Institute of Soil Science, Belgrade, Serbia
| | - T Berić
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - A Buntić
- Department of Microbiology, Institute of Soil Science, Belgrade, Serbia
| | - D Delić
- Department of Microbiology, Institute of Soil Science, Belgrade, Serbia
| | - I Nikolić
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - S Stanković
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
34
|
Guerrieri MC, Fiorini A, Fanfoni E, Tabaglio V, Cocconcelli PS, Trevisan M, Puglisi E. Integrated Genomic and Greenhouse Assessment of a Novel Plant Growth-Promoting Rhizobacterium for Tomato Plant. FRONTIERS IN PLANT SCIENCE 2021; 12:660620. [PMID: 33859664 PMCID: PMC8042378 DOI: 10.3389/fpls.2021.660620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/05/2021] [Indexed: 06/07/2023]
Abstract
Plant growth promoting rhizobacteria (PGPR) can display several plant-beneficial properties, including support to plant nutrition, regulation of plant growth, and biocontrol of pests. Mechanisms behind these effects are directly related to the presence and expression of specific genes, and different PGPR strains can be differentiated by the presence of different genes. In this study we reported a comprehensive evaluation of a novel PGPR Klebsiella variicola UC4115 from the field to the lab, and from the lab to the plant. The isolate from tomato field was screened in-vitro for different activities related to plant nutrition and growth regulation as well as for antifungal traits. We performed a functional annotation of genes contributing to plant-beneficial functions previously tested in-vitro. Furthermore, the in-vitro characterization, the whole genome sequencing and annotation of K. variicola UC4115, were compared with the well-known PGPR Azospirillum brasilense strain Sp7. This novel comparative analysis revealed different accumulation of plant-beneficial functions contributing genes, and the presence of different genes that accomplished the same functions. Greenhouse assays on tomato seedlings from BBCH 11-12 to BBCH > 14 were performed under either organic or conventional management. In each of them, three PGPR inoculations (control, K. variicola UC4115, A. brasilense Sp7) were applied at either seed-, root-, and seed plus root level. Results confirmed the PGP potential of K. variicola UC4115; in particular, its high value potential as indole-3-acetic acid producer was observed in increasing of root length density and diameter class length parameters. While, in general, A. brasilense Sp7 had a greater effect on biomass, probably due to its high ability as nitrogen-fixing bacteria. For K. variicola UC4115, the most consistent data were noticed under organic management, with application at seed level. While, A. brasilense Sp7 showed the greatest performance under conventional management. Our data highlight the necessity to tailor the selected PGPR, with the mode of inoculation and the crop-soil combination.
Collapse
Affiliation(s)
- Maria Chiara Guerrieri
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Andrea Fiorini
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Elisabetta Fanfoni
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Vincenzo Tabaglio
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Pier Sandro Cocconcelli
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Marco Trevisan
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Edoardo Puglisi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
35
|
Medina MS, Bretzing KO, Aviles RA, Chong KM, Espinoza A, Garcia CNG, Katz BB, Kharwa RN, Hernandez A, Lee JL, Lee TM, Lo Verde C, Strul MW, Wong EY, Owens CP. CowN sustains nitrogenase turnover in the presence of the inhibitor carbon monoxide. J Biol Chem 2021; 296:100501. [PMID: 33667548 PMCID: PMC8047169 DOI: 10.1016/j.jbc.2021.100501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 01/28/2021] [Accepted: 03/01/2021] [Indexed: 11/28/2022] Open
Abstract
Nitrogenase is the only enzyme capable of catalyzing nitrogen fixation, the reduction of dinitrogen gas (N2) to ammonia (NH3). Nitrogenase is tightly inhibited by the environmental gas carbon monoxide (CO). Nitrogen-fixing bacteria rely on the protein CowN to grow in the presence of CO. However, the mechanism by which CowN operates is unknown. Here, we present the biochemical characterization of CowN and examine how CowN protects nitrogenase from CO. We determine that CowN interacts directly with nitrogenase and that CowN protection observes hyperbolic kinetics with respect to CowN concentration. At a CO concentration of 0.001 atm, CowN restores nearly full nitrogenase activity. Our results further indicate that CowN's protection mechanism involves decreasing the binding affinity of CO to nitrogenase's active site approximately tenfold without interrupting substrate turnover. Taken together, our work suggests CowN is an important auxiliary protein in nitrogen fixation that engenders CO tolerance to nitrogenase.
Collapse
Affiliation(s)
- Michael S Medina
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Kevin O Bretzing
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Richard A Aviles
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Kiersten M Chong
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Alejandro Espinoza
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Chloe Nicole G Garcia
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Benjamin B Katz
- Department of Chemistry, University of California, Irvine, Irvine, California, USA
| | - Ruchita N Kharwa
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Andrea Hernandez
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Justin L Lee
- Department of Chemistry, University of California, Irvine, Irvine, California, USA
| | - Terrence M Lee
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Christine Lo Verde
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Max W Strul
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Emily Y Wong
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Cedric P Owens
- Schmid College of Science and Technology, Chapman University, Orange, California, USA.
| |
Collapse
|
36
|
Multiple sensors provide spatiotemporal oxygen regulation of gene expression in a Rhizobium-legume symbiosis. PLoS Genet 2021; 17:e1009099. [PMID: 33539353 PMCID: PMC7888657 DOI: 10.1371/journal.pgen.1009099] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/17/2021] [Accepted: 12/04/2020] [Indexed: 01/04/2023] Open
Abstract
Regulation by oxygen (O2) in rhizobia is essential for their symbioses with plants and involves multiple O2 sensing proteins. Three sensors exist in the pea microsymbiont Rhizobium leguminosarum Rlv3841: hFixL, FnrN and NifA. At low O2 concentrations (1%) hFixL signals via FxkR to induce expression of the FixK transcription factor, which activates transcription of downstream genes. These include fixNOQP, encoding the high-affinity cbb3-type terminal oxidase used in symbiosis. In free-living Rlv3841, the hFixL-FxkR-FixK pathway was active at 1% O2, and confocal microscopy showed hFixL-FxkR-FixK activity in the earliest stages of Rlv3841 differentiation in nodules (zones I and II). Work on Rlv3841 inside and outside nodules showed that the hFixL-FxkR-FixK pathway also induces transcription of fnrN at 1% O2 and in the earliest stages of Rlv3841 differentiation in nodules. We confirmed past findings suggesting a role for FnrN in fixNOQP expression. However, unlike hFixL-FxkR-FixK, Rlv3841 FnrN was only active in the near-anaerobic zones III and IV of pea nodules. Quantification of fixNOQP expression in nodules showed this was driven primarily by FnrN, with minimal direct hFixL-FxkR-FixK induction. Thus, FnrN is key for full symbiotic expression of fixNOQP. Without FnrN, nitrogen fixation was reduced by 85% in Rlv3841, while eliminating hFixL only reduced fixation by 25%. The hFixL-FxkR-FixK pathway effectively primes the O2 response by increasing fnrN expression in early differentiation (zones I-II). In zone III of mature nodules, near-anaerobic conditions activate FnrN, which induces fixNOQP transcription to the level required for wild-type nitrogen fixation activity. Modelling and transcriptional analysis indicates that the different O2 sensitivities of hFixL and FnrN lead to a nuanced spatiotemporal pattern of gene regulation in different nodule zones in response to changing O2 concentration. Multi-sensor O2 regulation is prevalent in rhizobia, suggesting the fine-tuned control this enables is common and maximizes the effectiveness of the symbioses. Rhizobia are soil bacteria that form a symbiosis with legume plants. In exchange for shelter from the plant, rhizobia provide nitrogen fertilizer, produced by nitrogen fixation. Fixation is catalysed by the nitrogenase enzyme, which is inactivated by oxygen. To prevent this, plants house rhizobia in root nodules, which create a low oxygen environment. However, rhizobia need oxygen, and must adapt to survive the low oxygen concentration in the nodule. Key to this is regulating their genes based on oxygen concentration. We studied one Rhizobium species which uses three different protein sensors of oxygen, each turning on at a different oxygen concentration. As the bacteria get deeper inside the plant nodule and the oxygen concentration drops, each sensor switches on in turn. Our results also show that the first sensor to turn on, hFixL, primes the second sensor, FnrN. This prepares the rhizobia for the core region of the nodule where oxygen concentration is lowest and most nitrogen fixation takes place. If both sensors are removed, the bacteria cannot fix nitrogen. Many rhizobia have several oxygen sensing proteins, so using multiple sensors is likely a common strategy enabling rhizobia to adapt to low oxygen precisely and in stages during symbiosis.
Collapse
|
37
|
Abstract
Rhizobia are a phylogenetically diverse group of soil bacteria that engage in mutualistic interactions with legume plants. Although specifics of the symbioses differ between strains and plants, all symbioses ultimately result in the formation of specialized root nodule organs which host the nitrogen-fixing microsymbionts called bacteroids. Inside nodules, bacteroids encounter unique conditions that necessitate global reprogramming of physiological processes and rerouting of their metabolism. Decades of research have addressed these questions using genetics, omics approaches, and more recently computational modelling. Here we discuss the common adaptations of rhizobia to the nodule environment that define the core principles of bacteroid functioning. All bacteroids are growth-arrested and perform energy-intensive nitrogen fixation fueled by plant-provided C4-dicarboxylates at nanomolar oxygen levels. At the same time, bacteroids are subject to host control and sanctioning that ultimately determine their fitness and have fundamental importance for the evolution of a stable mutualistic relationship.
Collapse
|
38
|
Goyal RK, Schmidt MA, Hynes MF. Molecular Biology in the Improvement of Biological Nitrogen Fixation by Rhizobia and Extending the Scope to Cereals. Microorganisms 2021; 9:microorganisms9010125. [PMID: 33430332 PMCID: PMC7825764 DOI: 10.3390/microorganisms9010125] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/29/2020] [Accepted: 01/06/2021] [Indexed: 11/16/2022] Open
Abstract
The contribution of biological nitrogen fixation to the total N requirement of food and feed crops diminished in importance with the advent of synthetic N fertilizers, which fueled the “green revolution”. Despite being environmentally unfriendly, the synthetic versions gained prominence primarily due to their low cost, and the fact that most important staple crops never evolved symbiotic associations with bacteria. In the recent past, advances in our knowledge of symbiosis and nitrogen fixation and the development and application of recombinant DNA technology have created opportunities that could help increase the share of symbiotically-driven nitrogen in global consumption. With the availability of molecular biology tools, rapid improvements in symbiotic characteristics of rhizobial strains became possible. Further, the technology allowed probing the possibility of establishing a symbiotic dialogue between rhizobia and cereals. Because the evolutionary process did not forge a symbiotic relationship with the latter, the potential of molecular manipulations has been tested to incorporate a functional mechanism of nitrogen reduction independent of microbes. In this review, we discuss various strategies applied to improve rhizobial strains for higher nitrogen fixation efficiency, more competitiveness and enhanced fitness under unfavorable environments. The challenges and progress made towards nitrogen self-sufficiency of cereals are also reviewed. An approach to integrate the genetically modified elite rhizobia strains in crop production systems is highlighted.
Collapse
Affiliation(s)
- Ravinder K. Goyal
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB T4L 1W1, Canada;
- Correspondence:
| | - Maria Augusta Schmidt
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB T4L 1W1, Canada;
- Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada;
| | - Michael F. Hynes
- Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada;
| |
Collapse
|
39
|
Rodríguez S, Correa-Galeote D, Sánchez-Pérez M, Ramírez M, Isidra-Arellano MC, Reyero-Saavedra MDR, Zamorano-Sánchez D, Hernández G, Valdés-López O, Girard L. A Novel OmpR-Type Response Regulator Controls Multiple Stages of the Rhizobium etli - Phaseolus vulgaris N 2-Fixing Symbiosis. Front Microbiol 2021; 11:615775. [PMID: 33384681 PMCID: PMC7769827 DOI: 10.3389/fmicb.2020.615775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/26/2020] [Indexed: 11/22/2022] Open
Abstract
OmpR, is one of the best characterized response regulators families, which includes transcriptional regulators with a variety of physiological roles including the control of symbiotic nitrogen fixation (SNF). The Rhizobium etli CE3 genome encodes 18 OmpR-type regulators; the function of the majority of these regulators during the SNF in common bean, remains elusive. In this work, we demonstrated that a R. etli mutant strain lacking the OmpR-type regulator RetPC57 (ΔRetPC57), formed less nodules when used as inoculum for common bean. Furthermore, we observed reduced expression level of bacterial genes involved in Nod Factors production (nodA and nodB) and of plant early-nodulation genes (NSP2, NIN, NF-YA and ENOD40), in plants inoculated with ΔRetPC57. RetPC57 also contributes to the appropriate expression of genes which products are part of the multidrug efflux pumps family (MDR). Interestingly, nodules elicited by ΔRetPC57 showed increased expression of genes relevant for Carbon/Nitrogen nodule metabolism (PEPC and GOGAT) and ΔRetPC57 bacteroids showed higher nitrogen fixation activity as well as increased expression of key genes directly involved in SNF (hfixL, fixKf, fnrN, fixN, nifA and nifH). Taken together, our data show that the previously uncharacterized regulator RetPC57 is a key player in the development of the R. etli - P. vulgaris symbiosis.
Collapse
Affiliation(s)
- Susana Rodríguez
- Programa de Biología de Sistemas y Biología Sintética, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - David Correa-Galeote
- Programa de Biología de Sistemas y Biología Sintética, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Mishael Sánchez-Pérez
- Programa de Biología de Sistemas y Biología Sintética, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico.,Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Mario Ramírez
- Programa de Genómica Funcional de Eucariontes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Mariel C Isidra-Arellano
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Mexico
| | - María Del Rocío Reyero-Saavedra
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Mexico
| | - David Zamorano-Sánchez
- Programa de Biología de Sistemas y Biología Sintética, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Georgina Hernández
- Programa de Genómica Funcional de Eucariontes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Oswaldo Valdés-López
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Mexico
| | - Lourdes Girard
- Programa de Biología de Sistemas y Biología Sintética, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
40
|
Swarnalakshmi K, Yadav V, Tyagi D, Dhar DW, Kannepalli A, Kumar S. Significance of Plant Growth Promoting Rhizobacteria in Grain Legumes: Growth Promotion and Crop Production. PLANTS 2020; 9:plants9111596. [PMID: 33213067 PMCID: PMC7698556 DOI: 10.3390/plants9111596] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/24/2020] [Accepted: 10/28/2020] [Indexed: 02/01/2023]
Abstract
Grain legumes are an important component of sustainable agri-food systems. They establish symbiotic association with rhizobia and arbuscular mycorrhizal fungi, thus reducing the use of chemical fertilizers. Several other free-living microbial communities (PGPR—plant growth promoting rhizobacteria) residing in the soil-root interface are also known to influence biogeochemical cycles and improve legume productivity. The growth and function of these microorganisms are affected by root exudate molecules secreted in the rhizosphere region. PGPRs produce the chemicals which stimulate growth and functions of leguminous crops at different growth stages. They promote plant growth by nitrogen fixation, solubilization as well as mineralization of phosphorus, and production of phytohormone(s). The co-inoculation of PGPRs along with rhizobia has shown to enhance nodulation and symbiotic interaction. The recent molecular tools are helpful to understand and predict the establishment and function of PGPRs and plant response. In this review, we provide an overview of various growth promoting mechanisms of PGPR inoculations in the production of leguminous crops.
Collapse
Affiliation(s)
| | - Vandana Yadav
- Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - Deepti Tyagi
- Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - Dolly Wattal Dhar
- Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - Annapurna Kannepalli
- Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - Shiv Kumar
- International Centre for Agricultural Research in the Dry Areas (ICARDA), Rabat 10112, Morocco
| |
Collapse
|
41
|
Abstract
By analyzing successive lifestyle stages of a model Rhizobium-legume symbiosis using mariner-based transposon insertion sequencing (INSeq), we have defined the genes required for rhizosphere growth, root colonization, bacterial infection, N2-fixing bacteroids, and release from legume (pea) nodules. While only 27 genes are annotated as nif and fix in Rhizobium leguminosarum, we show 603 genetic regions (593 genes, 5 transfer RNAs, and 5 RNA features) are required for the competitive ability to nodulate pea and fix N2 Of these, 146 are common to rhizosphere growth through to bacteroids. This large number of genes, defined as rhizosphere-progressive, highlights how critical successful competition in the rhizosphere is to subsequent infection and nodulation. As expected, there is also a large group (211) specific for nodule bacteria and bacteroid function. Nodule infection and bacteroid formation require genes for motility, cell envelope restructuring, nodulation signaling, N2 fixation, and metabolic adaptation. Metabolic adaptation includes urea, erythritol and aldehyde metabolism, glycogen synthesis, dicarboxylate metabolism, and glutamine synthesis (GlnII). There are 17 separate lifestyle adaptations specific to rhizosphere growth and 23 to root colonization, distinct from infection and nodule formation. These results dramatically highlight the importance of competition at multiple stages of a Rhizobium-legume symbiosis.
Collapse
|
42
|
Lindström K, Mousavi SA. Effectiveness of nitrogen fixation in rhizobia. Microb Biotechnol 2020; 13:1314-1335. [PMID: 31797528 PMCID: PMC7415380 DOI: 10.1111/1751-7915.13517] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 12/01/2022] Open
Abstract
Biological nitrogen fixation in rhizobia occurs primarily in root or stem nodules and is induced by the bacteria present in legume plants. This symbiotic process has fascinated researchers for over a century, and the positive effects of legumes on soils and their food and feed value have been recognized for thousands of years. Symbiotic nitrogen fixation uses solar energy to reduce the inert N2 gas to ammonia at normal temperature and pressure, and is thus today, especially, important for sustainable food production. Increased productivity through improved effectiveness of the process is seen as a major research and development goal. The interaction between rhizobia and their legume hosts has thus been dissected at agronomic, plant physiological, microbiological and molecular levels to produce ample information about processes involved, but identification of major bottlenecks regarding efficiency of nitrogen fixation has proven to be complex. We review processes and results that contributed to the current understanding of this fascinating system, with focus on effectiveness of nitrogen fixation in rhizobia.
Collapse
Affiliation(s)
- Kristina Lindström
- Faculty of Biological and Environmental Sciences and Helsinki Institute of Sustainability Science (HELSUS)University of HelsinkiFI‐00014HelsinkiFinland
| | - Seyed Abdollah Mousavi
- Faculty of Biological and Environmental Sciences and Helsinki Institute of Sustainability Science (HELSUS)University of HelsinkiFI‐00014HelsinkiFinland
| |
Collapse
|
43
|
Zhou J, Li P, Meng D, Gu Y, Zheng Z, Yin H, Zhou Q, Li J. Isolation, characterization and inoculation of Cd tolerant rice endophytes and their impacts on rice under Cd contaminated environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:113990. [PMID: 32018197 DOI: 10.1016/j.envpol.2020.113990] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/10/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) contamination in paddy soil becomes increasingly prominent in recent years, which endangers the safe production of food crops. Cd-tolerant endophytes are ideal mediators for decreasing Cd content in rice plants, but their effects on the rice endophytic microbial community and gene expression profile have not yet been well elucidated. In this study, 58 endophytic bacteria from rice seeds were isolated and characterized. Five strains of them were selected based on their potential growth-promoting traits and strong Cd tolerance that could grow well under 4 mM Cd2+. By 16S ribosomal RNA (rRNA) identification, these five strains were designated as Enterobacter tabaci R2-7, Pantoea agglomerans R3-3, Stenotrophomonas maltophilia R5-5, Sphingomonas sanguinis R7-3 and Enterobacter tabaci R3-2. Pot experiments in relieving Cd stress in rice plants showed that the S. maltophilia R5-5 performed the strongest potential for reducing the Cd content in root and blade by 81.33% and 77.78%, respectively. The endophytic microbial community diversity, richness and composition were significantly altered in S. maltophilia R5-5 inoculated rice plants. Reverse-transcription qPCR (RT-qPCR) showed that the expression of Cd transporters, OsNramp5 and OsHMA2, were down-regulated in S. maltophilia R5-5-innoculated rice roots. The results indicate that the inoculation of endophytic bacteria S. maltophilia R5-5 provides a reference for alleviating the heavy metal contamination in paddy fields and can be a better alternative for guaranteeing the safe production of crops. Changes in the relative abundance of Cd-resistant microorganisms and the expression of Cd transporters might be the intrinsic factors affecting cadmium content in rice.
Collapse
Affiliation(s)
- Jieyi Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha, China
| | - Peng Li
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha, China
| | - Yabing Gu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha, China
| | - Zhongyi Zheng
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha, China
| | - Qingming Zhou
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Juan Li
- College of Agronomy, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
44
|
Demtröder L, Pfänder Y, Masepohl B. Rhodobacter capsulatus AnfA is essential for production of Fe-nitrogenase proteins but dispensable for cofactor biosynthesis and electron supply. Microbiologyopen 2020; 9:1234-1246. [PMID: 32207246 PMCID: PMC7294313 DOI: 10.1002/mbo3.1033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 01/07/2023] Open
Abstract
The photosynthetic α‐proteobacterium Rhodobacter capsulatus reduces and thereby fixes atmospheric dinitrogen (N2) by a molybdenum (Mo)‐nitrogenase and an iron‐only (Fe)‐nitrogenase. Differential expression of the structural genes of Mo‐nitrogenase (nifHDK) and Fe‐nitrogenase (anfHDGK) is strictly controlled and activated by NifA and AnfA, respectively. In contrast to NifA‐binding sites, AnfA‐binding sites are poorly defined. Here, we identified two highly similar AnfA‐binding sites in the R. capsulatus anfH promoter by studying the effects of promoter mutations on in vivo anfH expression and in vitro promoter binding by AnfA. Comparison of the experimentally determined R. capsulatus AnfA‐binding sites and presumed AnfA‐binding sites from other α‐proteobacteria revealed a consensus sequence of dyad symmetry, TAC–N6–GTA, suggesting that AnfA proteins bind their target promoters as dimers. Chromosomal replacement of the anfH promoter by the nifH promoter restored anfHDGK expression and Fe‐nitrogenase activity in an R. capsulatus strain lacking AnfA suggesting that AnfA is required for AnfHDGK production, but dispensable for biosynthesis of the iron‐only cofactor and electron delivery to Fe‐nitrogenase, pathways activated by NifA. These observations strengthen our model, in which the Fe‐nitrogenase system in R. capsulatus is largely integrated into the Mo‐nitrogenase system.
Collapse
Affiliation(s)
- Lisa Demtröder
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Yvonne Pfänder
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Bernd Masepohl
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
45
|
Stein BJ, Fiebig A, Crosson S. Feedback Control of a Two-Component Signaling System by an Fe-S-Binding Receiver Domain. mBio 2020; 11:e03383-19. [PMID: 32184258 PMCID: PMC7078487 DOI: 10.1128/mbio.03383-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/05/2020] [Indexed: 01/19/2023] Open
Abstract
Two-component signaling systems (TCSs) function to detect environmental cues and transduce this information into a change in transcription. In its simplest form, TCS-dependent regulation of transcription entails phosphoryl-transfer from a sensory histidine kinase to its cognate DNA-binding receiver protein. However, in certain cases, auxiliary proteins may modulate TCSs in response to secondary environmental cues. Caulobacter crescentus FixT is one such auxiliary regulator. FixT is composed of a single receiver domain and functions as a feedback inhibitor of the FixL-FixJ (FixLJ) TCS, which regulates the transcription of genes involved in adaptation to microaerobiosis. We sought to define the impact of fixT on Caulobacter cell physiology and to understand the molecular mechanism by which FixT represses FixLJ signaling. fixT deletion results in excess production of porphyrins and premature entry into stationary phase, demonstrating the importance of feedback inhibition of the FixLJ signaling system. Although FixT is a receiver domain, it does not affect dephosphorylation of the oxygen sensor kinase FixL or phosphoryl-transfer from FixL to its cognate receiver FixJ. Rather, FixT represses FixLJ signaling by inhibiting the FixL autophosphorylation reaction. We have further identified a 4-cysteine motif in Caulobacter FixT that binds an Fe-S cluster and protects the protein from degradation by the Lon protease. Our data support a model in which the oxidation of this Fe-S cluster promotes the degradation of FixT in vivo This proteolytic mechanism facilitates clearance of the FixT feedback inhibitor from the cell under normoxia and resets the FixLJ system for a future microaerobic signaling event.IMPORTANCE Two-component signal transduction systems (TCSs) are broadly conserved in the bacterial kingdom and generally contain two molecular components, a sensor histidine kinase and a receiver protein. Sensor histidine kinases alter their phosphorylation state in direct response to a physical or chemical cue, whereas receiver proteins "receive" the phosphoryl group from the kinase to regulate a change in cell physiology. We have discovered that a single-domain receiver protein, FixT, binds an Fe-S cluster and controls Caulobacter heme homeostasis though its function as a negative-feedback regulator of the oxygen sensor kinase FixL. We provide evidence that the Fe-S cluster protects FixT from Lon-dependent proteolysis in the cell and endows FixT with the ability to function as a second, autonomous oxygen/redox sensor in the FixL-FixJ signaling pathway. This study introduces a novel mechanism of regulated TCS feedback control by an Fe-S-binding receiver domain.
Collapse
Affiliation(s)
- Benjamin J Stein
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Aretha Fiebig
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Sean Crosson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
46
|
Stefanello AA, Oliveira MASD, Souza EM, Pedrosa FO, Chubatsu LS, Huergo LF, Dixon R, Monteiro RA. Regulation of Herbaspirillum seropedicae NifA by the GlnK PII signal transduction protein is mediated by effectors binding to allosteric sites. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1868:140348. [PMID: 31866507 DOI: 10.1016/j.bbapap.2019.140348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/19/2019] [Accepted: 12/17/2019] [Indexed: 10/25/2022]
Abstract
Herbaspirillum seropedicae is a plant growth promoting bacterium that is able to fix nitrogen and to colonize the surface and internal tissues of important crops. Nitrogen fixation in H. seropedicae is regulated at the transcriptional level by the prokaryotic enhancer binding protein NifA. The activity of NifA is negatively affected by oxygen and positively stimulated by interaction with GlnK, a PII signaling protein that monitors intracellular levels of the key metabolite 2-oxoglutarate (2-OG) and functions as an indirect sensor of the intracellular nitrogen status. GlnK is also subjected to a cycle of reversible uridylylation in response to intracellular levels of glutamine. Previous studies have established the role of the N-terminal GAF domain of NifA in intramolecular repression of NifA activity and the role of GlnK in relieving this inhibition under nitrogen-limiting conditions. However, the mechanism of this control of NifA activity is not fully understood. Here, we constructed a series of GlnK variants to elucidate the role of uridylylation and effector binding during the process of NifA activation. Our data support a model whereby GlnK uridylylation is not necessary to activate NifA. On the other hand, binding of 2-OG and MgATP to GlnK are very important for NifA activation and constitute the most important signal of cellular nitrogen status to NifA.
Collapse
Affiliation(s)
- Adriano Alves Stefanello
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CEP 81530-900 Curitiba, PR, Brazil
| | | | - Emanuel Maltempi Souza
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CEP 81530-900 Curitiba, PR, Brazil
| | - Fábio Oliveira Pedrosa
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CEP 81530-900 Curitiba, PR, Brazil
| | - Leda Satie Chubatsu
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CEP 81530-900 Curitiba, PR, Brazil
| | - Luciano Fernandes Huergo
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CEP 81530-900 Curitiba, PR, Brazil; Setor Litoral, Universidade Federal do Paraná, Matinhos, PR, CEP 80060-000, Brazil
| | - Ray Dixon
- Department of Molecular Microbiology, John Innes Centre, NR4 7UH Norwich, UK
| | - Rose Adele Monteiro
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CEP 81530-900 Curitiba, PR, Brazil.
| |
Collapse
|
47
|
Search for Ancestral Features in Genomes of Rhizobium leguminosarum bv. viciae Strains Isolated from the Relict Legume Vavilovia formosa. Genes (Basel) 2019; 10:genes10120990. [PMID: 31805640 PMCID: PMC6969944 DOI: 10.3390/genes10120990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 11/17/2022] Open
Abstract
Vavilovia formosa is a relict leguminous plant growing in hard-to-reach habitats in the rocky highlands of the Caucasus and Middle East, and it is considered as the putative closest living relative of the last common ancestor (LCA) of the Fabeae tribe. Symbionts of Vavilovia belonging to Rhizobium leguminosarum bv. viciae compose a discrete group that differs from the other strains, especially in the nucleotide sequences of the symbiotically specialised (sym) genes. Comparison of the genomes of Vavilovia strains with the reference group composed of R. leguminosarum bv. viciae strains isolated from Pisum and Vicia demonstrated that the vavilovia strains have a set of genomic features, probably indicating the important stages of microevolution of the symbiotic system. Specifically, symbionts of Vavilovia (considered as an ancestral group) demonstrated a scattered arrangement of sym genes (>90 kb cluster on pSym), with the location of nodT gene outside of the other nod operons, the presence of nodX and fixW, and the absence of chromosomal fixNOPQ copies. In contrast, the reference (derived) group harboured sym genes as a compact cluster (<60 kb) on a single pSym, lacking nodX and fixW, with nodT between nodN and nodO, and possessing chromosomal fixNOPQ copies. The TOM strain, obtained from nodules of the primitive “Afghan” peas, occupied an intermediate position because it has the chromosomal fixNOPQ copy, while the other features, the most important of which is presence of nodX and fixW, were similar to the Vavilovia strains. We suggest that genome evolution from the ancestral to the derived R. leguminosarum bv. viciae groups follows the “gain-and-loss of sym genes” and the “compaction of sym cluster” strategies, which are common for the macro-evolutionary and micro-evolutionary processes. The revealed genomic features are in concordance with a relict status of the vavilovia strains, indicating that V. formosa coexists with ancestral microsymbionts, which are presumably close to the LCA of R. leguminosarum bv. viciae.
Collapse
|
48
|
Abstract
Rhizobia are α- and β-proteobacteria that form a symbiotic partnership with legumes, fixing atmospheric dinitrogen to ammonia and providing it to the plant. Oxygen regulation is key in this symbiosis. Fixation is performed by an oxygen-intolerant nitrogenase enzyme but requires respiration to meet its high energy demands. To satisfy these opposing constraints the symbiotic partners cooperate intimately, employing a variety of mechanisms to regulate and respond to oxygen concentration. During symbiosis rhizobia undergo significant changes in gene expression to differentiate into nitrogen-fixing bacteroids. Legumes host these bacteroids in specialized root organs called nodules. These generate a near-anoxic environment using an oxygen diffusion barrier, oxygen-binding leghemoglobin and control of mitochondria localization. Rhizobia sense oxygen using multiple interconnected systems which enable a finely-tuned response to the wide range of oxygen concentrations they experience when transitioning from soil to nodules. The oxygen-sensing FixL-FixJ and hybrid FixL-FxkR two-component systems activate at relatively high oxygen concentration and regulate fixK transcription. FixK activates the fixNOQP and fixGHIS operons producing a high-affinity terminal oxidase required for bacterial respiration in the microaerobic nodule. Additionally or alternatively, some rhizobia regulate expression of these operons by FnrN, an FNR-like oxygen-sensing protein. The final stage of symbiotic establishment is activated by the NifA protein, regulated by oxygen at both the transcriptional and protein level. A cross-species comparison of these systems highlights differences in their roles and interconnections but reveals common regulatory patterns and themes. Future work is needed to establish the complete regulon of these systems and identify other regulatory signals.
Collapse
Affiliation(s)
- Paul J Rutten
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Philip S Poole
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
49
|
Defez R, Andreozzi A, Romano S, Pocsfalvi G, Fiume I, Esposito R, Angelini C, Bianco C. Bacterial IAA-Delivery into Medicago Root Nodules Triggers a Balanced Stimulation of C and N Metabolism Leading to a Biomass Increase. Microorganisms 2019; 7:microorganisms7100403. [PMID: 31569530 PMCID: PMC6843515 DOI: 10.3390/microorganisms7100403] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/17/2019] [Accepted: 09/25/2019] [Indexed: 12/31/2022] Open
Abstract
Indole-3-acetic acid (IAA) is the main auxin acting as a phytohormone in many plant developmental processes. The ability to synthesize IAA is widely associated with plant growth-promoting rhizobacteria (PGPR). Several studies have been published on the potential application of PGPR to improve plant growth through the enhancement of their main metabolic processes. In this study, the IAA-overproducing Ensifer meliloti strain RD64 and its parental strain 1021 were used to inoculate Medicago sativa plants. After verifying that the endogenous biosynthesis of IAA did not lead to genomic changes during the initial phases of the symbiotic process, we analyzed whether the overproduction of bacterial IAA inside root nodules influenced, in a coordinated manner, the activity of the nitrogen-fixing apparatus and the photosynthetic function, which are the two processes playing a key role in legume plant growth and productivity. Higher nitrogen-fixing activity and a greater amount of total nitrogen (N), carbon (C), Rubisco, nitrogen-rich amino acids, soluble sugars, and organic acids were measured for RD64-nodulated plants compared to the plants nodulated by the wild-type strain 1021. Furthermore, the RD64-nodulated plants showed a biomass increase over time, with the highest increment (more than 60%) being reached at six weeks after infection. Our findings show that the RD64-nodulated plants need more substrate derived from photosynthesis to generate the ATP required for their increased nitrogenase activity. This high carbohydrate demand further stimulates the photosynthetic function with the production of molecules that can be used to promote plant growth. We thus speculate that the use of PGPR able to stimulate both C and N metabolism with a balanced C/N ratio represents an efficient strategy to obtain substantial gains in plant productivity.
Collapse
Affiliation(s)
- Roberto Defez
- Institute of Biosciences and BioResources, via P. Castellino 111, 80131 Naples, Italy.
| | - Anna Andreozzi
- Institute of Biosciences and BioResources, via P. Castellino 111, 80131 Naples, Italy.
| | - Silvia Romano
- Institute of Biosciences and BioResources, via P. Castellino 111, 80131 Naples, Italy.
| | - Gabriella Pocsfalvi
- Institute of Biosciences and BioResources, via P. Castellino 111, 80131 Naples, Italy.
| | - Immacolata Fiume
- Institute of Biosciences and BioResources, via P. Castellino 111, 80131 Naples, Italy.
| | - Roberta Esposito
- Institute of Genetics and Biophysics "A.B.T.", CNR, via P. Castellino 111, 80131 Naples, Italy.
| | - Claudia Angelini
- Institute for Applied Mathematics "Mauro Picone" IAC, CNR, via P. Castellino 111, 80131 Naples, Italy.
| | - Carmen Bianco
- Institute of Biosciences and BioResources, via P. Castellino 111, 80131 Naples, Italy.
| |
Collapse
|
50
|
Defez R, Valenti A, Andreozzi A, Romano S, Ciaramella M, Pesaresi P, Forlani S, Bianco C. New Insights into Structural and Functional Roles of Indole-3-acetic acid (IAA): Changes in DNA Topology and Gene Expression in Bacteria. Biomolecules 2019; 9:biom9100522. [PMID: 31547634 PMCID: PMC6843775 DOI: 10.3390/biom9100522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/18/2019] [Accepted: 09/21/2019] [Indexed: 12/11/2022] Open
Abstract
: Indole-3-acetic acid (IAA) is a major plant hormone that affects many cellular processes in plants, bacteria, yeast, and human cells through still unknown mechanisms. In this study, we demonstrated that the IAA-treatment of two unrelated bacteria, the Ensifer meliloti 1021 and Escherichia coli, harboring two different host range plasmids, influences the supercoiled state of the two plasmid DNAs in vivo. Results obtained from in vitro assays show that IAA interacts with DNA, leading to DNA conformational changes commonly induced by intercalating agents. We provide evidence that IAA inhibits the activity of the type IA topoisomerase, which regulates the DNA topological state in bacteria, through the relaxation of the negative supercoiled DNA. In addition, we demonstrate that the treatment of E. meliloti cells with IAA induces the expression of some genes, including the ones related to nitrogen fixation. In contrast, these genes were significantly repressed by the treatment with novobiocin, which reduces the DNA supercoiling in bacterial cells. Taking into account the overall results reported, we hypothesize that the IAA action and the DNA structure/function might be correlated and involved in the regulation of gene expression. This work points out that checking whether IAA influences the DNA topology under physiological conditions could be a useful strategy to clarify the mechanism of action of this hormone, not only in plants but also in other unrelated organisms.
Collapse
Affiliation(s)
- Roberto Defez
- Istituto di Bioscienze e BioRisorse, via P. Castellino 111, 80131 Naples, Italy.
| | - Anna Valenti
- Istituto di Bioscienze e BioRisorse, via P. Castellino 111, 80131 Naples, Italy.
| | - Anna Andreozzi
- Istituto di Bioscienze e BioRisorse, via P. Castellino 111, 80131 Naples, Italy.
| | - Silvia Romano
- Istituto di Bioscienze e BioRisorse, via P. Castellino 111, 80131 Naples, Italy.
| | - Maria Ciaramella
- Istituto di Bioscienze e BioRisorse, via P. Castellino 111, 80131 Naples, Italy.
| | - Paolo Pesaresi
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy.
| | - Sara Forlani
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy.
| | - Carmen Bianco
- Istituto di Bioscienze e BioRisorse, via P. Castellino 111, 80131 Naples, Italy.
| |
Collapse
|