1
|
Cheng Q, Han Y, Xiao Y, Li Z, Qin A, Ji S, Kan B, Liang W. The ArgR-Regulated ADI Pathway Facilitates the Survival of Vibrio fluvialis under Acidic Conditions. Int J Mol Sci 2024; 25:5679. [PMID: 38891866 PMCID: PMC11172107 DOI: 10.3390/ijms25115679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Vibrio fluvialis is an emerging foodborne pathogenic bacterium that can cause severe cholera-like diarrhea and various extraintestinal infections, posing challenges to public health and food safety worldwide. The arginine deiminase (ADI) pathway plays an important role in bacterial environmental adaptation and pathogenicity. However, the biological functions and regulatory mechanisms of the pathway in V. fluvialis remain unclear. In this study, we demonstrate that L-arginine upregulates the expression of the ADI gene cluster and promotes the growth of V. fluvialis. The ADI gene cluster, which we proved to be comprised of two operons, arcD and arcACB, significantly enhances the survival of V. fluvialis in acidic environments both in vitro (in culture medium and in macrophage) and in vivo (in mice). The mRNA level and reporter gene fusion analyses revealed that ArgR, a transcriptional factor, is necessary for the activation of both arcD and arcACB transcriptions. Bioinformatic analysis predicted the existence of multiple potential ArgR binding sites at the arcD and arcACB promoter regions that were further confirmed by electrophoretic mobility shift assay, DNase I footprinting, or point mutation analyses. Together, our study provides insights into the important role of the ArgR-ADI pathway in the survival of V. fluvialis under acidic conditions and the detailed molecular mechanism. These findings will deepen our understanding of how environmental changes and gene expression interact to facilitate bacterial adaptations and virulence.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Biao Kan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Weili Liang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
2
|
Scribani-Rossi C, Molina-Henares MA, Espinosa-Urgel M, Rinaldo S. Exploring the Metabolic Response of Pseudomonas putida to L-arginine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 38429473 DOI: 10.1007/5584_2024_797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Beyond their role as protein-building units, amino acids are modulators of multiple behaviours in different microorganisms. In the root-colonizing beneficial bacterium Pseudomonas putida (recently proposed to be reclassified as alloputida) KT2440, current evidence suggests that arginine functions both as a metabolic indicator and as an environmental signal molecule, modulating processes such as chemotactic responses, siderophore-mediated iron uptake or the levels of the intracellular second messenger cyclic diguanylate (c-di-GMP). Using microcalorimetry and extracellular flux analysis, in this work we have studied the metabolic adaptation of P. putida KT2440 to the presence of L-arginine in the growth medium, and the influence of mutations related to arginine metabolism. Arginine causes rapid changes in the respiratory activity of P. putida, particularly magnified in a mutant lacking the transcriptional regulator ArgR. The metabolic activity of mutants affected in arginine transport and metabolism is also altered during biofilm formation in the presence of the amino acid. The results obtained here further support the role of arginine as a metabolic signal in P. putida and the relevance of ArgR in the adaptation to the amino acid. They also serve as proof of concept on the use of calorimetric and extracellular flux techniques to analyse metabolic responses in bacteria and the impact of different mutant backgrounds on such responses.
Collapse
Affiliation(s)
- Chiara Scribani-Rossi
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - María Antonia Molina-Henares
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidin, CSIC, Granada, Spain
| | - Manuel Espinosa-Urgel
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidin, CSIC, Granada, Spain.
| | - Serena Rinaldo
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
3
|
Liu S, Song Q, Zhang C, Li M, Li Z, Liu Y, Xu L, Xie X, Zhao L, Zhang R, Wang Q, Zeng G, Zhang Y, Zhang K. Saliva microbiome alterations in dental fluorosis population. J Oral Microbiol 2023; 15:2180927. [PMID: 36844898 PMCID: PMC9946311 DOI: 10.1080/20002297.2023.2180927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Background We aimed to explore saliva microbiome alterations in dental fluorosis population. Methods The prevalence of dental fluorosis was examined in 957 college students. Dean's fluorosis index was used to evaluate the dental fluorosis status. Changes in the composition of the salivary microbiome were assessed in a subset of these patients (100 healthy controls, 100 dental fluorosis patients). Results Dental fluorosis affected 47% of the student sample, and incidence was unrelated to gender. Compared with healthy controls, the microbiota of patients with dental fluorosis exhibited increased diversity, with increased abundance of Treponema lecithinolyticum, Vibrio metschnikovii, Cupriavidus pauculus, Pseudomonas, Pseudomonadaceae, Pseudomonadales, and decreased abundance of Streptococcus mutans, Streptococcus sanguinis, Gemella, and Staphylococcales. Function analyses showed increases in arginine biosynthesis in patients affected by dental fluorosis, together with reductions in amino sugar and nucleotide sugar metabolism, fructose and mannose metabolism, and starch and sucrose metabolism. Conclusions These results suggest that there are striking differences in salivary microbiome between healthy controls and dental fluorosis patients. Dental fluorosis may contribute to periodontitis and systemic lung diseases. There is a need for cohort studies to determine whether altering the salivary microbiota in dental fluorosis patients can alter the development of oral or systemic diseases.
Collapse
Affiliation(s)
- Shanshan Liu
- Department of Stomatology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China,Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China,Department of Stomatology, Bengbu Medical College, Bengbu, China
| | - Qiangsheng Song
- Department of Stomatology, Huaiyuan county people’s Hospital, Bengbu, China
| | - Chenchen Zhang
- Department of Stomatology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China,Department of Stomatology, Bengbu Medical College, Bengbu, China
| | - Mengwan Li
- Department of Stomatology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhenzhen Li
- Department of Stomatology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yudong Liu
- Department of Histology and Embryology, Bengbu Medical College, Bengbu, China
| | - Li Xu
- Department of Stomatology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xiaofei Xie
- Department of Stomatology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Lili Zhao
- Department of Stomatology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Rongxiu Zhang
- Department of Stomatology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Qinglong Wang
- Department of Stomatology, Bengbu Medical College, Bengbu, China
| | - Guojin Zeng
- Department of Stomatology, Bengbu Medical College, Bengbu, China
| | - Yifan Zhang
- Department of Stomatology, Bengbu Medical College, Bengbu, China
| | - Kai Zhang
- Department of Stomatology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China,CONTACT Kai Zhang Department of Stomatology, The First Affiliated Hospital of Bengbu Medical College, 287 Chuang Huai Road, Bengbu233004, China
| |
Collapse
|
4
|
Staphylococcus aureus Does Not Synthesize Arginine from Proline under Physiological Conditions. J Bacteriol 2022; 204:e0001822. [PMID: 35546540 DOI: 10.1128/jb.00018-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Gram-positive pathogen Staphylococcus aureus is the only bacterium known to synthesize arginine from proline via the arginine-proline interconversion pathway despite having genes for the well-conserved glutamate pathway. Since the proline-arginine interconversion pathway is repressed by CcpA-mediated carbon catabolite repression (CCR), CCR has been attributed to the arginine auxotrophy of S. aureus. Using ribose as a secondary carbon source, here, we demonstrate that S. aureus arginine auxotrophy is not due to CCR but due to the inadequate concentration of proline degradation product. Proline is degraded by proline dehydrogenase (PutA) into pyrroline-5-carboxylate (P5C). Although the PutA expression was fully induced by ribose, the P5C concentration remained insufficient to support arginine synthesis because P5C was constantly consumed by the P5C reductase ProC. When the P5C concentration was artificially increased by either PutA overexpression or proC deletion, S. aureus could synthesize arginine from proline regardless of carbon source. In contrast, when the P5C concentration was reduced by overexpression of proC, it inhibited the growth of the ccpA deletion mutant without arginine. Intriguingly, the ectopic expression of the glutamate pathway enzymes converted S. aureus into arginine prototroph. In an animal experiment, the arginine-proline interconversion pathway was not required for the survival of S. aureus. Based on these results, we concluded that S. aureus does not synthesize arginine from proline under physiological conditions. We also propose that arginine auxotrophy of S. aureus is not due to the CcpA-mediated CCR but due to the inactivity of the conserved glutamate pathway. IMPORTANCE Staphylococcus aureus is a versatile Gram-positive human pathogen infecting various human organs. The bacterium's versatility is partly due to efficient metabolic regulation via the carbon catabolite repression system (CCR). S. aureus is known to interconvert proline and arginine, and CCR represses the synthesis of both amino acids. However, when CCR is released by a nonpreferred carbon source, S. aureus can synthesize proline but not arginine. In this study, we show that, in S. aureus, the intracellular concentration of pyrroline-5-carboxylate (P5C), the degradation product of proline and the substrate of proline synthesis, is too low to synthesize arginine from proline. These results call into question the notion that S. aureus synthesizes arginine from proline.
Collapse
|
5
|
Li Z, Nees M, Bettenbrock K, Rinas U. Is energy excess the initial trigger of carbon overflow metabolism? Transcriptional network response of carbon-limited Escherichia coli to transient carbon excess. Microb Cell Fact 2022; 21:67. [PMID: 35449049 PMCID: PMC9027384 DOI: 10.1186/s12934-022-01787-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/26/2022] [Indexed: 12/20/2022] Open
Abstract
Background Escherichia coli adapted to carbon-limiting conditions is generally geared for energy-efficient carbon utilization. This includes also the efficient utilization of glucose, which serves as a source for cellular building blocks as well as energy. Thus, catabolic and anabolic functions are balanced under these conditions to minimize wasteful carbon utilization. Exposure to glucose excess interferes with the fine-tuned coupling of anabolism and catabolism leading to the so-called carbon overflow metabolism noticeable through acetate formation and eventually growth inhibition. Results Cellular adaptations towards sudden but timely limited carbon excess conditions were analyzed by exposing slow-growing cells in steady state glucose-limited continuous culture to a single glucose pulse. Concentrations of metabolites as well as time-dependent transcriptome alterations were analyzed and a transcriptional network analysis performed to determine the most relevant transcription and sigma factor combinations which govern these adaptations. Down-regulation of genes related to carbon catabolism is observed mainly at the level of substrate uptake and downstream of pyruvate and not in between in the glycolytic pathway. It is mainly accomplished through the reduced activity of CRP-cAMP and through an increased influence of phosphorylated ArcA. The initiated transcriptomic change is directed towards down-regulation of genes, which contribute to active movement, carbon uptake and catabolic carbon processing, in particular to down-regulation of genes which contribute to efficient energy generation. Long-term changes persisting after glucose depletion and consumption of acetete encompassed reduced expression of genes related to active cell movement and enhanced expression of genes related to acid resistance, in particular acid resistance system 2 (GABA shunt) which can be also considered as an inefficient bypass of the TCA cycle. Conclusions Our analysis revealed that the major part of the trancriptomic response towards the glucose pulse is not directed towards enhanced cell proliferation but towards protection against excessive intracellular accumulation of potentially harmful concentration of metabolites including among others energy rich compounds such as ATP. Thus, resources are mainly utilized to cope with “overfeeding” and not for growth including long-lasting changes which may compromise the cells future ability to perform optimally under carbon-limiting conditions (reduced motility and ineffective substrate utilization). Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01787-4.
Collapse
Affiliation(s)
- Zhaopeng Li
- Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Brunswick, Germany.,Technical Chemistry - Life Science, Leibniz University of Hannover, Callinstr. 5, 30167, Hannover, Germany
| | - Markus Nees
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany
| | - Katja Bettenbrock
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany
| | - Ursula Rinas
- Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Brunswick, Germany. .,Technical Chemistry - Life Science, Leibniz University of Hannover, Callinstr. 5, 30167, Hannover, Germany.
| |
Collapse
|
6
|
Shimizu K, Matsuoka Y. Feedback regulation and coordination of the main metabolism for bacterial growth and metabolic engineering for amino acid fermentation. Biotechnol Adv 2021; 55:107887. [PMID: 34921951 DOI: 10.1016/j.biotechadv.2021.107887] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 12/28/2022]
Abstract
Living organisms such as bacteria are often exposed to continuous changes in the nutrient availability in nature. Therefore, bacteria must constantly monitor the environmental condition, and adjust the metabolism quickly adapting to the change in the growth condition. For this, bacteria must orchestrate (coordinate and integrate) the complex and dynamically changing information on the environmental condition. In particular, the central carbon metabolism (CCM), monomer synthesis, and macromolecular synthesis must be coordinately regulated for the efficient growth. It is a grand challenge in bioscience, biotechnology, and synthetic biology to understand how living organisms coordinate the metabolic regulation systems. Here, we consider the integrated sensing of carbon sources by the phosphotransferase system (PTS), and the feed-forward/feedback regulation systems incorporated in the CCM in relation to the pool sizes of flux-sensing metabolites and αketoacids. We also consider the metabolic regulation of amino acid biosynthesis (as well as purine and pyrimidine biosyntheses) paying attention to the feedback control systems consisting of (fast) enzyme level regulation with (slow) transcriptional regulation. The metabolic engineering for the efficient amino acid production by bacteria such as Escherichia coli and Corynebacterium glutamicum is also discussed (in relation to the regulation mechanisms). The amino acid synthesis is important for determining the rate of ribosome biosynthesis. Thus, the growth rate control (growth law) is further discussed on the relationship between (p)ppGpp level and the ribosomal protein synthesis.
Collapse
Affiliation(s)
- Kazuyuki Shimizu
- Kyushu institute of Technology, Iizuka, Fukuoka 820-8502, Japan; Institute of Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan.
| | - Yu Matsuoka
- Department of Fisheries Distribution and Management, National Fisheries University, Shimonoseki, Yamaguchi 759-6595, Japan
| |
Collapse
|
7
|
Knittel V, Sadana P, Seekircher S, Stolle AS, Körner B, Volk M, Jeffries CM, Svergun DI, Heroven AK, Scrima A, Dersch P. RovC - a novel type of hexameric transcriptional activator promoting type VI secretion gene expression. PLoS Pathog 2020; 16:e1008552. [PMID: 32966346 PMCID: PMC7535981 DOI: 10.1371/journal.ppat.1008552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 10/05/2020] [Accepted: 08/01/2020] [Indexed: 12/05/2022] Open
Abstract
Type VI secretion systems (T6SSs) are complex macromolecular injection machines which are widespread in Gram-negative bacteria. They are involved in host-cell interactions and pathogenesis, required to eliminate competing bacteria, or are important for the adaptation to environmental stress conditions. Here we identified regulatory elements controlling the T6SS4 of Yersinia pseudotuberculosis and found a novel type of hexameric transcription factor, RovC. RovC directly interacts with the T6SS4 promoter region and activates T6SS4 transcription alone or in cooperation with the LysR-type regulator RovM. A higher complexity of regulation was achieved by the nutrient-responsive global regulator CsrA, which controls rovC expression on the transcriptional and post-transcriptional level. In summary, our work unveils a central mechanism in which RovC, a novel key activator, orchestrates the expression of the T6SS weapons together with a global regulator to deploy the system in response to the availability of nutrients in the species' native environment.
Collapse
Affiliation(s)
- Vanessa Knittel
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Pooja Sadana
- Young Investigator Group Structural Biology of Autophagy, Department of Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stephanie Seekircher
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Anne-Sophie Stolle
- Institute for Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Germany
| | - Britta Körner
- Institute for Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Germany
| | - Marcel Volk
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Germany
| | - Cy M. Jeffries
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Dmitri I. Svergun
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Ann Kathrin Heroven
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Andrea Scrima
- Young Investigator Group Structural Biology of Autophagy, Department of Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Germany
- German Center for Infection Research, Baunschweig, Germany
| |
Collapse
|
8
|
Pandey SK, Melichercik M, Řeha D, Ettrich RH, Carey J. Conserved Dynamic Mechanism of Allosteric Response to L-arg in Divergent Bacterial Arginine Repressors. Molecules 2020; 25:molecules25092247. [PMID: 32397647 PMCID: PMC7248756 DOI: 10.3390/molecules25092247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 11/23/2022] Open
Abstract
Hexameric arginine repressor, ArgR, is the feedback regulator of bacterial L-arginine regulons, and sensor of L-arg that controls transcription of genes for its synthesis and catabolism. Although ArgR function, as well as its secondary, tertiary, and quaternary structures, is essentially the same in E. coli and B. subtilis, the two proteins differ significantly in sequence, including residues implicated in the response to L-arg. Molecular dynamics simulations are used here to evaluate the behavior of intact B. subtilis ArgR with and without L-arg, and are compared with prior MD results for a domain fragment of E. coli ArgR. Relative to its crystal structure, B. subtilis ArgR in absence of L-arg undergoes a large-scale rotational shift of its trimeric subassemblies that is very similar to that observed in the E. coli protein, but the residues driving rotation have distinct secondary and tertiary structural locations, and a key residue that drives rotation in E. coli is missing in B. subtilis. The similarity of trimer rotation despite different driving residues suggests that a rotational shift between trimers is integral to ArgR function. This conclusion is supported by phylogenetic analysis of distant ArgR homologs reported here that indicates at least three major groups characterized by distinct sequence motifs but predicted to undergo a common rotational transition. The dynamic consequences of L-arg binding for transcriptional activation of intact ArgR are evaluated here for the first time in two-microsecond simulations of B. subtilis ArgR. L-arg binding to intact B. subtilis ArgR causes a significant further shift in the angle of rotation between trimers that causes the N-terminal DNA-binding domains lose their interactions with the C-terminal domains, and is likely the first step toward adopting DNA-binding-competent conformations. The results aid interpretation of crystal structures of ArgR and ArgR-DNA complexes.
Collapse
Affiliation(s)
- Saurabh Kumar Pandey
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Czech Academy of Sciences, 37333 Nove Hrady, Czechia; (S.K.P.); (M.M.); (D.Ř.)
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics, and Informatics, Comenius University in Bratislava, 84248 Bratislava, Slovakia
- Faculty of Sciences, University of South Bohemia, 37005 Ceske Budejovice, Czechia
| | - Milan Melichercik
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Czech Academy of Sciences, 37333 Nove Hrady, Czechia; (S.K.P.); (M.M.); (D.Ř.)
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics, and Informatics, Comenius University in Bratislava, 84248 Bratislava, Slovakia
| | - David Řeha
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Czech Academy of Sciences, 37333 Nove Hrady, Czechia; (S.K.P.); (M.M.); (D.Ř.)
- Faculty of Sciences, University of South Bohemia, 37005 Ceske Budejovice, Czechia
| | - Rüdiger H. Ettrich
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Czech Academy of Sciences, 37333 Nove Hrady, Czechia; (S.K.P.); (M.M.); (D.Ř.)
- College of Biomedical Sciences, Larkin University, Miami, FL 33169, USA
- Department of Cellular Biology & Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
- Correspondence: (R.H.E.); (J.C.); Tel.: +1-954-682-8347 (R.H.E.); +1-609-258-1631 (J.C.)
| | - Jannette Carey
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Czech Academy of Sciences, 37333 Nove Hrady, Czechia; (S.K.P.); (M.M.); (D.Ř.)
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
- Correspondence: (R.H.E.); (J.C.); Tel.: +1-954-682-8347 (R.H.E.); +1-609-258-1631 (J.C.)
| |
Collapse
|
9
|
Mariutti RB, Hernández-González JE, Nascimento AFZ, de Morais MAB, Murakami MT, Carareto CMA, Arni RK. A single P115Q mutation modulates specificity in the Corynebacterium pseudotuberculosis arginine repressor. Biochim Biophys Acta Gen Subj 2020; 1864:129597. [PMID: 32156582 DOI: 10.1016/j.bbagen.2020.129597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 11/28/2022]
Abstract
The arginine repressor (ArgR) regulates the expression of genes involved in arginine biosynthesis. Upon attaining a threshold concentration of arginine in the cytoplasm, the trimeric C-terminal domain of ArgR binds three arginines in a shallow surface cleft and subsequently hexamerizes forming a dimer of trimers containing six Arg co-repressor molecules which are buried at the subunit interfaces. The N-terminal domains of this complex bind to the DNA promoter thereby interrupting the transcription of the genes related to Arg biosynthesis. The crystal structures of the wild type and mutant Pro115Gln ArgR from Corynebacterium pseudotuberculosis determined at 1.7 Å demonstrate that a single amino acid substitution switches co-repressor specificity from Tyr to Arg. Molecular dynamics simulations indicate that the first step, i.e., the binding of the co-repressor, occurs in the trimeric state and that Pro115Gln ArgR preferentially binds Arg. It was also shown that, in Pro115 ArgR hexamers, the concomitant binding of sodium ions shifts selectivity to Tyr. Structural data combined with phylogenetic analyses of ArgR from C. pseudotuberculosis suggest that substitutions in the binding pocket at position 115 may alter its specificity for amino acids and that the length of the protein interdomain linker can provide further functional flexibility. These results support the existence of alternative ArgR regulatory mechanisms in this pathogenic bacterium.
Collapse
Affiliation(s)
- Ricardo B Mariutti
- Multiuser Center for Biomolecular Innovation, IBILCE/UNESP, São José do Rio Preto, SP, Brazil.
| | | | - Andrey F Z Nascimento
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Mariana A B de Morais
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Mario T Murakami
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Claudia M A Carareto
- Laboratory of Molecular Evolution IBILCE/UNESP, São José do Rio Preto, SP, Brazil
| | - Raghuvir K Arni
- Multiuser Center for Biomolecular Innovation, IBILCE/UNESP, São José do Rio Preto, SP, Brazil; Department of Physics, IBILCE/UNESP, São José do Rio Preto, SP, Brazil
| |
Collapse
|
10
|
Xu D, Zhang L. Increasing Agmatine Production in Escherichia coli through Metabolic Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7908-7915. [PMID: 31268314 DOI: 10.1021/acs.jafc.9b03038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, to obtain higher agmatine yields using the previously developed E. coli strain AUX4 (JM109 ΔspeC ΔspeF ΔspeB ΔargR), the genes encoding glutamate dehydrogenase (gdhA), glutamine synthetase (glnA), phosphoenolpyruvate carboxylase (ppc), aspartate aminotransferase (aspC), transhydrogenase (pntAB), and biosynthetic arginine decarboxylase (speA) were sequentially overexpressed by replacing their native promoters with the heterologous strong trp, core-trc, or 5Ptacs promoters to generate the plasmid-free E. coli strain AUX11. The fermentation results obtained using a 3-L bioreactor showed that AUX11 produced 2.93 g L-1 agmatine with the yield of 0.29 g agmatine g-1 glucose in the batch fermentation, and the fed-batch fermentation of AUX11 allowed the production of 40.43 g L-1 agmatine with the productivity of 1.26 g L-1 h-1 agmatine. The results showed that the engineered E. coli strain AUX11 can be used for the industrial fermentative production of agmatine.
Collapse
Affiliation(s)
- Daqing Xu
- College of Life Sciences , Hebei Agricultural University , Baoding 071000 , China
| | - Lirong Zhang
- College of Plant Protection , Hebei Agricultural University , Baoding 071000 , China
| |
Collapse
|
11
|
Transposition of IS 4 Family Insertion Sequences IS Teha3, IS Teha4, and IS Teha5 into the arc Operon Disrupts Arginine Deiminase System in Tetragenococcus halophilus. Appl Environ Microbiol 2019; 85:AEM.00208-19. [PMID: 30877114 DOI: 10.1128/aem.00208-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/11/2019] [Indexed: 01/10/2023] Open
Abstract
Tetragenococcus halophilus, a halophilic lactic acid bacterium, is often used as a starter culture in the manufacturing of soy sauce. T. halophilus possesses an arginine deiminase system, which is responsible for the accumulation of citrulline, the main precursor of the potential carcinogen ethyl carbamate. In this study, we generated five derivatives lacking arginine deiminase activity from T. halophilus NBRC 12172 by UV irradiation. Using these derivatives as a fermentation starter prevented arginine deimination in soy sauce. DNA sequence analysis of the derivatives revealed that novel IS4 family insertion sequences, designated ISTeha3, ISTeha4, and ISTeha5, were transposed into the region around the arginine deiminase (arc) operon in the mutants. These insertion sequences contain a single open reading frame encoding a putative transposase and 13- to 15-bp inverted repeats at both termini, which are adjacent to 7- to 9-bp duplications of the target sequence. Investigation of wild strains isolated from soy sauce mash incapable of arginine deimination also indicated that insertion sequences are involved in the disruption of the arginine deiminase system in T. halophilus IMPORTANCE Insertion sequences play important roles in bacterial evolution and are frequently utilized in mutagenesis systems. However, the intrinsic insertion sequences of tetragenococci are not well characterized. Here, we identified three active insertion sequences of T. halophilus by transposition into the region around the arc operon. This report provides an example of insertion sequence-mediated generation and evolution of T. halophilus and primary information about their characteristics.
Collapse
|
12
|
Charlier D, Nguyen Le Minh P, Roovers M. Regulation of carbamoylphosphate synthesis in Escherichia coli: an amazing metabolite at the crossroad of arginine and pyrimidine biosynthesis. Amino Acids 2018; 50:1647-1661. [PMID: 30238253 PMCID: PMC6245113 DOI: 10.1007/s00726-018-2654-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/11/2018] [Indexed: 12/17/2022]
Abstract
In all organisms, carbamoylphosphate (CP) is a precursor common to the synthesis of arginine and pyrimidines. In Escherichia coli and most other Gram-negative bacteria, CP is produced by a single enzyme, carbamoylphosphate synthase (CPSase), encoded by the carAB operon. This particular situation poses a question of basic physiological interest: what are the metabolic controls coordinating the synthesis and distribution of this high-energy substance in view of the needs of both pathways? The study of the mechanisms has revealed unexpected moonlighting gene regulatory activities of enzymes and functional links between mechanisms as diverse as gene regulation and site-specific DNA recombination. At the level of enzyme production, various regulatory mechanisms were found to cooperate in a particularly intricate transcriptional control of a pair of tandem promoters. Transcription initiation is modulated by an interplay of several allosteric DNA-binding transcription factors using effector molecules from three different pathways (arginine, pyrimidines, purines), nucleoid-associated factors (NAPs), trigger enzymes (enzymes with a second unlinked gene regulatory function), DNA remodeling (bending and wrapping), UTP-dependent reiterative transcription initiation, and stringent control by the alarmone ppGpp. At the enzyme level, CPSase activity is tightly controlled by allosteric effectors originating from different pathways: an inhibitor (UMP) and two activators (ornithine and IMP) that antagonize the inhibitory effect of UMP. Furthermore, it is worth noticing that all reaction intermediates in the production of CP are extremely reactive and unstable, and protected by tunneling through a 96 Å long internal channel.
Collapse
Affiliation(s)
- Daniel Charlier
- Research Group of Microbiology, Department of Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
| | - Phu Nguyen Le Minh
- Research Group of Microbiology, Department of Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Martine Roovers
- LABIRIS Institut de Recherches, Av. Emile Gryson 1, 1070, Brussels, Belgium
| |
Collapse
|
13
|
Xu D, Zhang L. Metabolic engineering of Escherichia coli for agmatine production. Eng Life Sci 2018; 19:13-20. [PMID: 32624951 DOI: 10.1002/elsc.201800104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/07/2018] [Accepted: 09/25/2018] [Indexed: 01/03/2023] Open
Abstract
Agmatine is a kind of important biogenic amine. The chemical synthesis route is not a desirable choice for industrial production of agmatine. To date, there are no reports on the fermentative production of agmatine by microorganism. In this study, the base Escherichia coli strain AUX4 (JM109 ∆speC ∆speF ∆speB ∆argR) capable of excreting agmatine into the culture medium was first constructed by sequential deletions of the speC and speF genes encoding the ornithine decarboxylase isoenzymes, the speB gene encoding agmatine ureohydrolase and the regulation gene argR responsible for the negative control of the arg regulon. The speA gene encoding arginine decarboxylase harboured by the pKK223-3 plasmid was overexpressed in AUX4, resulting in the engineered strain AUX5. The batch and fed-batch fermentations of the AUX5 strain were conducted in a 3-L bioreactor, and the results showed that the AUX5 strain was able to produce 1.13 g agmatine L-1 with the yield of 0.11 g agmatine g-1 glucose in the batch fermentation and the fed-batch fermentation of AUX5 allowed the production of 15.32 g agmatine L-1 with the productivity of 0.48 g agmatine L-1 h-1, demonstrating the potential of E. coli as an industrial producer of agmatine.
Collapse
Affiliation(s)
- Daqing Xu
- College of Life Sciences Hebei Agricultural University Baoding P. R. China
| | - Lirong Zhang
- College of Plant Protection Hebei Agricultural University Baoding P. R. China
| |
Collapse
|
14
|
Botas A, Pérez-Redondo R, Rodríguez-García A, Álvarez-Álvarez R, Yagüe P, Manteca A, Liras P. ArgR of Streptomyces coelicolor Is a Pleiotropic Transcriptional Regulator: Effect on the Transcriptome, Antibiotic Production, and Differentiation in Liquid Cultures. Front Microbiol 2018; 9:361. [PMID: 29545785 PMCID: PMC5839063 DOI: 10.3389/fmicb.2018.00361] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 02/15/2018] [Indexed: 11/13/2022] Open
Abstract
ArgR is a well-characterized transcriptional repressor controlling the expression of arginine and pyrimidine biosynthetic genes in bacteria. In this work, the biological role of Streptomyces coelicolor ArgR was analyzed by comparing the transcriptomes of S. coelicolor ΔargR and its parental strain, S. coelicolor M145, at five different times over a 66-h period. The effect of S. coelicolor ArgR was more widespread than that of the orthologous protein of Escherichia coli, affecting the expression of 1544 genes along the microarray time series. This S. coelicolor regulator repressed the expression of arginine and pyrimidine biosynthetic genes, but it also modulated the expression of genes not previously described to be regulated by ArgR: genes involved in nitrogen metabolism and nitrate utilization; the act, red, and cpk genes for antibiotic production; genes for the synthesis of the osmotic stress protector ectoine; genes related to hydrophobic cover formation and sporulation (chaplins, rodlins, ramR, and whi genes); all the cwg genes encoding proteins for glycan cell wall biosynthesis; and genes involved in gas vesicle formation. Many of these genes contain ARG boxes for ArgR binding. ArgR binding to seven new ARG boxes, located upstream or near the ectA-ectB, afsS, afsR, glnR, and redH genes, was tested by DNA band-shift assays. These data and those of previously assayed fragments permitted the construction of an improved model of the ArgR binding site. Interestingly, the overexpression of sporulation genes observed in the ΔargR mutant in our culture conditions correlated with a sporulation-like process, an uncommon phenotype.
Collapse
Affiliation(s)
- Alma Botas
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, León, Spain.,Instituto de Biotecnología de León, León, Spain
| | | | - Antonio Rodríguez-García
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, León, Spain.,Instituto de Biotecnología de León, León, Spain
| | - Rubén Álvarez-Álvarez
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, León, Spain
| | - Paula Yagüe
- Área de Microbiología, Departamento de Biología Funcional e IUOPA, Universidad de Oviedo, Oviedo, Spain
| | - Angel Manteca
- Área de Microbiología, Departamento de Biología Funcional e IUOPA, Universidad de Oviedo, Oviedo, Spain
| | - Paloma Liras
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, León, Spain
| |
Collapse
|
15
|
Kuehne A, Mayr U, Sévin DC, Claassen M, Zamboni N. Metabolic network segmentation: A probabilistic graphical modeling approach to identify the sites and sequential order of metabolic regulation from non-targeted metabolomics data. PLoS Comput Biol 2017; 13:e1005577. [PMID: 28598965 PMCID: PMC5482507 DOI: 10.1371/journal.pcbi.1005577] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 06/23/2017] [Accepted: 05/16/2017] [Indexed: 12/30/2022] Open
Abstract
In recent years, the number of large-scale metabolomics studies on various cellular processes in different organisms has increased drastically. However, it remains a major challenge to perform a systematic identification of mechanistic regulatory events that mediate the observed changes in metabolite levels, due to complex interdependencies within metabolic networks. We present the metabolic network segmentation (MNS) algorithm, a probabilistic graphical modeling approach that enables genome-scale, automated prediction of regulated metabolic reactions from differential or serial metabolomics data. The algorithm sections the metabolic network into modules of metabolites with consistent changes. Metabolic reactions that connect different modules are the most likely sites of metabolic regulation. In contrast to most state-of-the-art methods, the MNS algorithm is independent of arbitrary pathway definitions, and its probabilistic nature facilitates assessments of noisy and incomplete measurements. With serial (i.e., time-resolved) data, the MNS algorithm also indicates the sequential order of metabolic regulation. We demonstrated the power and flexibility of the MNS algorithm with three, realistic case studies with bacterial and human cells. Thus, this approach enables the identification of mechanistic regulatory events from large-scale metabolomics data, and contributes to the understanding of metabolic processes and their interplay with cellular signaling and regulation processes. Reciprocal crosstalk between metabolism and cellular signaling pathways plays a crucial role in cellular decision-making. In recent years, this premise has motivated several metabolomics studies that aimed to gain a mechanistic understanding of metabolic phenotypes. However, due to complex interactions within metabolic networks, it remains a challenge to infer mechanisms that underlie metabolome changes. We present the metabolic network segmentation approach, a novel method that aimed to identify the sites and sequential order of metabolic regulatory events, based merely on steady state or dynamic metabolomics data. This method employs probabilistic graphical models to partition the entire metabolic network into modules with correlated metabolites. It identifies fractures between modules (i.e., reactions that connect non-correlated metabolites) as sites of regulation. We performed validation and benchmark analyses in hundreds of E. coli knockout mutants deficient in enzymes and transcription factors. Moreover, we verified the capability of our method for identifying the sequential order of metabolic regulatory events by testing it on fibroblasts exposed to oxidative stress. Our metabolic network segmentation algorithm is widely applicable, and thus, it will enhance our mechanistic understanding of metabolic phenotypes and their connections to cellular signaling and regulatory processes.
Collapse
Affiliation(s)
- Andreas Kuehne
- Institute of Molecular Systems Biology, ETH Zurich, Switzerland.,PhD Program Systems Biology, Life Science Zurich Graduate School, Zurich, Switzerland
| | - Urs Mayr
- Institute of Molecular Systems Biology, ETH Zurich, Switzerland
| | - Daniel C Sévin
- Institute of Molecular Systems Biology, ETH Zurich, Switzerland.,PhD Program Systems Biology, Life Science Zurich Graduate School, Zurich, Switzerland
| | | | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zurich, Switzerland
| |
Collapse
|
16
|
Cheng C, Dong Z, Han X, Sun J, Wang H, Jiang L, Yang Y, Ma T, Chen Z, Yu J, Fang W, Song H. Listeria monocytogenes 10403S Arginine Repressor ArgR Finely Tunes Arginine Metabolism Regulation under Acidic Conditions. Front Microbiol 2017; 8:145. [PMID: 28217122 PMCID: PMC5291005 DOI: 10.3389/fmicb.2017.00145] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/19/2017] [Indexed: 11/13/2022] Open
Abstract
Listeria monocytogenes is able to colonize human and animal intestinal tracts and to subsequently cross the intestinal barrier, causing systemic infection. For successful establishment of infection, L. monocytogenes must survive the low pH environment of the stomach. L. monocytogenes encodes a functional ArgR, a transcriptional regulator belonging to the ArgR/AhrC arginine repressor family. We aimed at clarifying the specific functions of ArgR in arginine metabolism regulation, and more importantly, in acid tolerance of L. monocytogenes. We showed that ArgR in the presence of 10 mM arginine represses transcription and expression of the argGH and argCJBDF operons, indicating that L. monocytogenes ArgR plays the classical role of ArgR/AhrC family proteins in feedback inhibition of the arginine biosynthetic pathway. Notably, transcription and expression of arcA (encoding arginine deiminase) and sigB (encoding an alternative sigma factor B) were also markedly repressed by ArgR when bacteria were exposed to pH 5.5 in the absence of arginine. However, addition of arginine enabled ArgR to derepress the transcription and expression of these two genes. Electrophoretic mobility shift assays showed that ArgR binds to the putative ARG boxes in the promoter regions of argC, argG, arcA, and sigB. Reporter gene analysis with gfp under control of the argG promoter demonstrated that ArgR was able to activate the argG promoter. Unexpectedly, deletion of argR significantly increased bacterial survival in BHI medium adjusted to pH 3.5 with lactic acid. We conclude that this phenomenon is due to activation of arcA and sigB. Collectively, our results show that L. monocytogenes ArgR finely tunes arginine metabolism through negative transcriptional regulation of the arginine biosynthetic operons and of the catabolic arcA gene in an arginine-independent manner during lactic acid-induced acid stress. ArgR also appears to activate catabolism as well as sigB transcription by anti-repression in an arginine-dependent way.
Collapse
Affiliation(s)
- Changyong Cheng
- College of Animal Science and Technology, China-Australia Joint-Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang A&F University Lin'an, China
| | - Zhimei Dong
- College of Animal Science and Technology, China-Australia Joint-Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang A&F University Lin'an, China
| | - Xiao Han
- College of Animal Science and Technology, China-Australia Joint-Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang A&F University Lin'an, China
| | - Jing Sun
- College of Animal Science and Technology, China-Australia Joint-Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang A&F University Lin'an, China
| | - Hang Wang
- College of Animal Science and Technology, China-Australia Joint-Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang A&F University Lin'an, China
| | - Li Jiang
- College of Animal Science and Technology, China-Australia Joint-Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang A&F University Lin'an, China
| | - Yongchun Yang
- College of Animal Science and Technology, China-Australia Joint-Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang A&F University Lin'an, China
| | - Tiantian Ma
- College of Animal Science and Technology, China-Australia Joint-Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang A&F University Lin'an, China
| | - Zhongwei Chen
- College of Animal Science and Technology, China-Australia Joint-Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang A&F University Lin'an, China
| | - Jing Yu
- College of Animal Science and Technology, China-Australia Joint-Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang A&F University Lin'an, China
| | - Weihuan Fang
- College of Animal Science and Technology, China-Australia Joint-Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang A&F UniversityLin'an, China; Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang UniversityHangzhou, China
| | - Houhui Song
- College of Animal Science and Technology, China-Australia Joint-Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang A&F University Lin'an, China
| |
Collapse
|
17
|
Mariutti RB, Ullah A, Araujo GC, Murakami MT, Arni RK. Tyrosine binding and promiscuity in the arginine repressor from the pathogenic bacterium Corynebacterium pseudotuberculosis. Biochem Biophys Res Commun 2016; 475:350-5. [PMID: 27233609 DOI: 10.1016/j.bbrc.2016.05.091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 05/19/2016] [Indexed: 11/17/2022]
Abstract
The arginine repressor (ArgR) regulates arginine biosynthesis in a number of microorganisms and consists of two domains interlinked by a short peptide; the N-terminal domain is involved in DNA binding and the C-terminal domain binds arginine and forms a hexamer made-up of a dimer of trimers. The crystal structure of the C-terminal domain of ArgR from the pathogenic Corynebacterium pseudotuberculosis determined at 1.9 Å resolution contains a tightly bound tyrosine at the arginine-binding site indicating hitherto unobserved promiscuity. Structural analysis of the binding pocket displays clear molecular adaptations to accommodate tyrosine binding suggesting the possible existence of an alternative regulatory process in this pathogenic bacterium.
Collapse
Affiliation(s)
- Ricardo Barros Mariutti
- Multiuser Center for Biomolecular Innovation, IBILCE/UNESP, São José do Rio Preto, SP, 15054-000, Brazil.
| | - Anwar Ullah
- Multiuser Center for Biomolecular Innovation, IBILCE/UNESP, São José do Rio Preto, SP, 15054-000, Brazil; Department of Biosciences, COMSATS Institute of Information Technology, Park Road, Islamabad 45550, Pakistan
| | | | - Mario Tyago Murakami
- Biosciences National Laboratory (LNBio), National Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-100, Brazil
| | - Raghuvir Krishnaswamy Arni
- Multiuser Center for Biomolecular Innovation, IBILCE/UNESP, São José do Rio Preto, SP, 15054-000, Brazil; Department of Physics, IBILCE/UNESP, São José do Rio Preto, SP, 15054-000, Brazil.
| |
Collapse
|
18
|
In Vitro Analysis of Predicted DNA-Binding Sites for the Stl Repressor of the Staphylococcus aureus SaPIBov1 Pathogenicity Island. PLoS One 2016; 11:e0158793. [PMID: 27388898 PMCID: PMC4936726 DOI: 10.1371/journal.pone.0158793] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/22/2016] [Indexed: 12/27/2022] Open
Abstract
The regulation model of the Staphylococcus aureus pathogenicity island SaPIbov1 transfer was recently reported. The repressor protein Stl obstructs the expression of SaPI proteins Str and Xis, latter which is responsible for mobilization initiation. Upon Φ11 phage infection of S. aureus. phage dUTPase activates the SaPI transfer via Stl-dUTPase complex formation. Our aim was to predict the binding sites for the Stl repressor within the S. aureus pathogenicity island DNA sequence. We found that Stl was capable to bind to three 23-mer oligonucleotides, two of those constituting sequence segments in the stl-str, while the other corresponding to sequence segment within the str-xis intergenic region. Within these oligonucleotides, mutational analysis revealed that the predicted binding site for the Stl protein exists as a palindromic segment in both intergenic locations. The palindromes are built as 6-mer repeat sequences involved in Stl binding. The 6-mer repeats are separated by a 5 oligonucleotides long, nonspecific sequence. Future examination of the interaction between Stl and its binding sites in vivo will provide a molecular explanation for the mechanisms of gene repression and gene activation exerted simultaneously by the Stl protein in regulating transfer of the SaPIbov1 pathogenicity island in S. aureus.
Collapse
|
19
|
Structural Analysis and Insights into the Oligomeric State of an Arginine-Dependent Transcriptional Regulator from Bacillus halodurans. PLoS One 2016; 11:e0155396. [PMID: 27171430 PMCID: PMC4865122 DOI: 10.1371/journal.pone.0155396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 04/06/2016] [Indexed: 11/19/2022] Open
Abstract
The arginine repressor (ArgR) is an arginine-dependent transcription factor that regulates the expression of genes encoding proteins involved in the arginine biosynthesis and catabolic pathways. ArgR is a functional homolog of the arginine-dependent repressor/activator AhrC from Bacillus subtilis, and belongs to the ArgR/AhrC family of transcriptional regulators. In this research, we determined the structure of the ArgR (Bh2777) from Bacillus halodurans at 2.41 Å resolution by X-ray crystallography. The ArgR from B. halodurans appeared to be a trimer in a size exclusion column and in the crystal structure. However, it formed a hexamer in the presence of L-arginine in multi-angle light scattering (MALS) studies, indicating the oligomerization state was dependent on the presence of L-arginine. The trimeric structure showed that the C-terminal domains form the core, which was made by inter-subunit interactions mainly through hydrophobic contacts, while the N-terminal domains containing a winged helix-turn-helix DNA binding motif were arranged around the periphery. The arrangement of trimeric structure in the B. halodurans ArgR was different from those of other ArgR homologs previously reported. We finally showed that the B. halodurans ArgR has an arginine-dependent DNA binding property by an electrophoretic mobility shift assay.
Collapse
|
20
|
Complementation of Arginine Auxotrophy for Genetic Transformation of Coxiella burnetii by Use of a Defined Axenic Medium. Appl Environ Microbiol 2016; 82:3042-51. [PMID: 26969695 DOI: 10.1128/aem.00261-16] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/08/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Host cell-free (axenic) culture of Coxiella burnetii in acidified citrate cysteine medium-2 (ACCM-2) has provided important opportunities for investigating the biology of this naturally obligate intracellular pathogen and enabled the development of tools for genetic manipulation. However, ACCM-2 has complex nutrient sources that preclude a detailed study of nutritional factors required for C. burnetii growth. Metabolic reconstruction of C. burnetii predicts that the bacterium cannot synthesize all amino acids and therefore must sequester some from the host. To examine C. burnetii amino acid auxotrophies, we developed a nutritionally defined medium with known amino acid concentrations, termed ACCM-D. Compared to ACCM-2, ACCM-D supported longer logarithmic growth, a more gradual transition to stationary phase, and approximately 5- to 10-fold greater overall replication. Small-cell-variant morphological forms generated in ACCM-D also showed increased viability relative to that generated in ACCM-2. Lack of growth in amino acid-deficient formulations of ACCM-D revealed C. burnetii auxotrophy for 11 amino acids, including arginine. Heterologous expression of Legionella pneumophila argGH in C. burnetii permitted growth in ACCM-D missing arginine and supplemented with citrulline, thereby providing a nonantibiotic means of selection of C. burnetii genetic transformants. Consistent with bioinformatic predictions, the elimination of glucose did not impair C. burnetii replication. Together, these results highlight the advantages of a nutritionally defined medium in investigations of C. burnetii metabolism and the development of genetic tools. IMPORTANCE Host cell-free growth and genetic manipulation of Coxiella burnetii have revolutionized research of this intracellular bacterial pathogen. Nonetheless, undefined components of growth medium have made studies of C. burnetii physiology difficult and have precluded the development of selectable markers for genetic transformation based on nutritional deficiencies. Here, we describe a medium, containing only amino acids as the sole source of carbon and energy, which supports robust growth and improved viability of C. burnetii Growth studies confirmed that C. burnetii cannot replicate in medium lacking arginine. However, genetic transformation of the bacterium with constructs containing the last two genes in the L. pneumophila arginine biosynthesis pathway (argGH) allowed growth on defined medium missing arginine but supplemented with the arginine precursor citrulline. Our results advance the field by facilitating studies of C. burnetii metabolism and allowing non-antibiotic-based selection of C. burnetii genetic transformants, an important achievement considering that selectable makers based on antibiotic resistance are limited.
Collapse
|
21
|
Arginine Metabolism in Bacterial Pathogenesis and Cancer Therapy. Int J Mol Sci 2016; 17:363. [PMID: 26978353 PMCID: PMC4813224 DOI: 10.3390/ijms17030363] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 01/29/2016] [Accepted: 03/04/2016] [Indexed: 02/06/2023] Open
Abstract
Antibacterial resistance to infectious diseases is a significant global concern for health care organizations; along with aging populations and increasing cancer rates, it represents a great burden for government healthcare systems. Therefore, the development of therapies against bacterial infection and cancer is an important strategy for healthcare research. Pathogenic bacteria and cancer have developed a broad range of sophisticated strategies to survive or propagate inside a host and cause infection or spread disease. Bacteria can employ their own metabolism pathways to obtain nutrients from the host cells in order to survive. Similarly, cancer cells can dysregulate normal human cell metabolic pathways so that they can grow and spread. One common feature of the adaption and disruption of metabolic pathways observed in bacterial and cancer cell growth is amino acid pathways; these have recently been targeted as a novel approach to manage bacterial infections and cancer therapy. In particular, arginine metabolism has been illustrated to be important not only for bacterial pathogenesis but also for cancer therapy. Therefore, greater insights into arginine metabolism of pathogenic bacteria and cancer cells would provide possible targets for controlling of bacterial infection and cancer treatment. This review will summarize the recent progress on the relationship of arginine metabolism with bacterial pathogenesis and cancer therapy, with a particular focus on arginase and arginine deiminase pathways of arginine catabolism.
Collapse
|
22
|
Abstract
Early investigations on arginine biosynthesis brought to light basic features of metabolic regulation. The most significant advances of the last 10 to 15 years concern the arginine repressor, its structure and mode of action in both E. coli and Salmonella typhimurium, the sequence analysis of all arg structural genes in E. coli and Salmonella typhimurium, the resulting evolutionary inferences, and the dual regulation of the carAB operon. This review provides an overall picture of the pathways, their interconnections, the regulatory circuits involved, and the resulting interferences between arginine and polyamine biosynthesis. Carbamoylphosphate is a precursor common to arginine and the pyrimidines. In both Escherichia coli and Salmonella enterica serovar Typhimurium, it is produced by a single synthetase, carbamoylphosphate synthetase (CPSase), with glutamine as the physiological amino group donor. This situation contrasts with the existence of separate enzymes specific for arginine and pyrimidine biosynthesis in Bacillus subtilis and fungi. Polyamine biosynthesis has been particularly well studied in E. coli, and the cognate genes have been identified in the Salmonella genome as well, including those involved in transport functions. The review summarizes what is known about the enzymes involved in the arginine pathway of E. coli and S. enterica serovar Typhimurium; homologous genes were identified in both organisms, except argF (encoding a supplementary OTCase), which is lacking in Salmonella. Several examples of putative enzyme recruitment (homologous enzymes performing analogous functions) are also presented.
Collapse
|
23
|
Distinct Paths for Basic Amino Acid Export in Escherichia coli: YbjE (LysO) Mediates Export of L-Lysine. J Bacteriol 2015; 197:2036-47. [PMID: 25845847 DOI: 10.1128/jb.02505-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 04/01/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED In Escherichia coli, argO encodes an exporter for L-arginine (Arg) and its toxic analogue canavanine (CAN), and its transcriptional activation and repression, by Arg and L-lysine (Lys), respectively, are mediated by the regulator ArgP. Accordingly argO and argP mutants are CAN supersensitive (CAN(ss)). We report the identification of ybjE as a gene encoding a predicted inner membrane protein that mediates export of Lys, and our results confirm the previous identification with a different approach of YbjE as a Lys exporter, reported by Ueda and coworkers (T. Ueda, Y. Nakai, Y. Gunji, R. Takikawa, and Y. Joe, U.S. patents 7,629,142 B2 [December 2009] and 8,383,363 B1 [February 2013] and European patent 1,664,318 B1 [September 2009]). ybjE was isolated as a multicopy suppressor of the CAN(ss) phenotype of a strain lacking ArgO. The absence of YbjE did not confer a CAN(ss) phenotype but instead conferred hypersensitivity to the lysine antimetabolite thialysine and led to growth inhibition by the dipeptide lysylalanine, which is associated with elevated cellular Lys content. YbjE overproduction resulted in Lys excretion and syntrophic cross-feeding of a Lys auxotroph. Constitutive overexpression of argO promoted Lys cross-feeding that is indicative of a latent Lys export potential of ArgO. Arg modestly repressed ybjE transcription in an ArgR-dependent manner, and ArgR displayed Arg-sensitive binding to the ybjE promoter region in vitro. Our studies suggest that the reciprocal repression of argO and ybjE, respectively, by Lys and Arg confers the specificity for basic amino acid export by distinct paths and that such cross-repression contributes to maintenance of cytoplasmic Arg/Lys balance. We propose that YbjE be redesignated LysO. IMPORTANCE This work ascribes a lysine export function to the product of the ybjE gene of Escherichia coli, leading to a physiological scenario wherein two proteins, ArgO and YbjE, perform the task of separately exporting arginine and lysine, respectively, which is distinct from that seen for Corynebacterium glutamicum, where the ortholog of ArgO, LysE, mediates export of both arginine and lysine. Repression of argO transcription by lysine is thought to effect this separation. Accordingly, ArgO mediates lysine export when repression of its transcription by lysine is bypassed. Repression of ybjE transcription by arginine via the ArgR repressor, together with the lysine repression of argO effected by ArgP, is indicative of a mechanism of maintenance of arginine/lysine balance in E. coli.
Collapse
|
24
|
Kang J, Park YW, Yeo HK, Lee JY. Crystallization and preliminary X-ray diffraction analysis of the arginine repressor ArgR from Bacillus halodurans. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2015; 71:291-4. [PMID: 25760703 DOI: 10.1107/s2053230x15000904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 01/15/2015] [Indexed: 11/10/2022]
Abstract
The arginine repressor (ArgR) is a transcriptional regulator which regulates genes encoding proteins involved in arginine biosynthesis and the arginine catabolic pathway. ArgR from the alkaliphilic bacterium Bacillus halodurans was cloned and overexpressed in Escherichia coli. ArgR (Bh2777) from B. halodurans is composed of 149 amino-acid residues with a molecular mass of 16 836 Da. ArgR was crystallized at 296 K using 1,2-propanediol as a precipitant. Crystals of N-terminally His-tagged ArgR were obtained by the sitting-drop vapour-diffusion method. Dehydrated crystals showed a dramatic improvement in diffraction quality and diffracted to 2.35 Å resolution. The crystals belonged to the cubic space group I23, with unit-cell parameters a = b = c = 104.68 Å. The asymmetric unit contained one monomer of ArgR, which generates a trimer by the threefold axis of the space group, giving a crystal volume per mass (VM) of 2.98 Å(3) Da(-1) and a solvent content of 56.8%.
Collapse
Affiliation(s)
- Jina Kang
- Department of Life Science, Dongguk University, 30 Pildong-rho 1-gil, Jung-gu, Seoul 100-715, Republic of Korea
| | - Young Woo Park
- Department of Life Science, Dongguk University, 30 Pildong-rho 1-gil, Jung-gu, Seoul 100-715, Republic of Korea
| | - Hyun Ku Yeo
- Department of Life Science, Dongguk University, 30 Pildong-rho 1-gil, Jung-gu, Seoul 100-715, Republic of Korea
| | - Jae Young Lee
- Department of Life Science, Dongguk University, 30 Pildong-rho 1-gil, Jung-gu, Seoul 100-715, Republic of Korea
| |
Collapse
|
25
|
Ginesy M, Belotserkovsky J, Enman J, Isaksson L, Rova U. Metabolic engineering of Escherichia coli for enhanced arginine biosynthesis. Microb Cell Fact 2015; 14:29. [PMID: 25890272 PMCID: PMC4358701 DOI: 10.1186/s12934-015-0211-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/19/2015] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Arginine is a high-value product, especially for the pharmaceutical industry. Growing demand for environmental-friendly and traceable products have stressed the need for microbial production of this amino acid. Therefore, the aim of this study was to improve arginine production in Escherichia coli by metabolic engineering and to establish a fermentation process in 1-L bioreactor scale to evaluate the different mutants. RESULTS Firstly, argR (encoding an arginine responsive repressor protein), speC, speF (encoding ornithine decarboxylases) and adiA (encoding an arginine decarboxylase) were knocked out and the feedback-resistant argA214 or argA215 were introduced into the strain. Three glutamate independent mutants were assessed in bioreactors. Unlike the parent strain, which did not excrete any arginine during glucose fermentation, the constructs produced between 1.94 and 3.03 g/L arginine. Next, wild type argA was deleted and the gene copy number of argA214 was raised, resulting in a slight increase in arginine production (4.11 g/L) but causing most of the carbon flow to be redirected toward acetate. The V216A mutation in argP (transcriptional regulator of argO, which encodes for an arginine exporter) was identified as a potential candidate for improved arginine production. The combination of multicopy of argP216 or argO and argA214 led to nearly 2-fold and 3-fold increase in arginine production, respectively, and a reduction of acetate formation. CONCLUSIONS In this study, E. coli was successfully engineered for enhanced arginine production. The ∆adiA, ∆speC, ∆speF, ∆argR, ∆argA mutant with high gene copy number of argA214 and argO produced 11.64 g/L of arginine in batch fermentation, thereby demonstrating the potential of E. coli as an industrial producer of arginine.
Collapse
Affiliation(s)
- Mireille Ginesy
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87, Luleå, Sweden.
| | - Jaroslav Belotserkovsky
- Department of Molecular Biosciences Wenner-Gren institute, Stockholm University, SE-106 91, Stockholm, Sweden.
| | - Josefine Enman
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87, Luleå, Sweden.
| | - Leif Isaksson
- Department of Molecular Biosciences Wenner-Gren institute, Stockholm University, SE-106 91, Stockholm, Sweden.
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87, Luleå, Sweden.
| |
Collapse
|
26
|
Cho S, Cho YB, Kang TJ, Kim SC, Palsson B, Cho BK. The architecture of ArgR-DNA complexes at the genome-scale in Escherichia coli. Nucleic Acids Res 2015; 43:3079-88. [PMID: 25735747 PMCID: PMC4381063 DOI: 10.1093/nar/gkv150] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 02/13/2015] [Indexed: 01/26/2023] Open
Abstract
DNA-binding motifs that are recognized by transcription factors (TFs) have been well studied; however, challenges remain in determining the in vivo architecture of TF-DNA complexes on a genome-scale. Here, we determined the in vivo architecture of Escherichia coli arginine repressor (ArgR)-DNA complexes using high-throughput sequencing of exonuclease-treated chromatin-immunoprecipitated DNA (ChIP-exo). The ChIP-exo has a unique peak-pair pattern indicating 5′ and 3′ ends of ArgR-binding region. We identified 62 ArgR-binding loci, which were classified into three groups, comprising single, double and triple peak-pairs. Each peak-pair has a unique 93 base pair (bp)-long (±2 bp) ArgR-binding sequence containing two ARG boxes (39 bp) and residual sequences. Moreover, the three ArgR-binding modes defined by the position of the two ARG boxes indicate that DNA bends centered between the pair of ARG boxes facilitate the non-specific contacts between ArgR subunits and the residual sequences. Additionally, our approach may also reveal other fundamental structural features of TF-DNA interactions that have implications for studying genome-scale transcriptional regulatory networks.
Collapse
Affiliation(s)
- Suhyung Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | - Yoo-Bok Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | - Taek Jin Kang
- Department of Chemical and Biochemical Engineering, Dongguk University-Seoul, Seoul 100-715, Republic of Korea
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | - Bernhard Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| |
Collapse
|
27
|
Regulation of the arginine deiminase system by ArgR2 interferes with arginine metabolism and fitness of Streptococcus pneumoniae. mBio 2014; 5:mBio.01858-14. [PMID: 25538192 PMCID: PMC4278536 DOI: 10.1128/mbio.01858-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae is auxotrophic for arginine, and molecular analysis of the pneumococcal genome showed that the gene encoding an arginine-ornithine antiporter (ArcD) is organized in a cluster together with the arcABC genes encoding the arginine deiminase system (ADS) of pneumococci. The ADS consists of the arginine deiminase (AD), the catabolic ornithine carbamoyltransferase (cOCT), and the carbamate kinase (CK). Pneumococcal genomes contain three ArgR-type regulators (ArgR1, ArgR2, and AhrC) that are supposed to be involved in the regulation of arginine metabolism. Here, we identified ArgR2 of TIGR4 as the regulator of the ADS and ArcD. ArgR2 binds to promoter sequences of the arc operon, and the deficiency of ArgR2 in TIGR4 abrogates expression of the ADS, including the arginine-ornithine antiporter ArcD. Intranasal infection of mice and real-time bioimaging revealed that deletion of the arcABCDT genes attenuates TIGR4. However, the acute-pneumonia model and coinfection experiments indicated that the arginine-ornithine antiporter ArcD is essential to maintain fitness, while the deficiency of ADS enzymes has a minor impact on pneumococcal fitness under in vivo conditions. Strikingly, argR2 mutant TIGR4 outcompeted the wild type in the respiratory tract, suggesting an increase in fitness and further regulatory functions of ArgR2. In contrast to TIGR4, other pneumococci, such as D39, lacking expression of ArgR2, constitutively express the ADS with a truncated nonfunctional AD. On the basis of these results, we propose that the arginine-ornithine antiporter is essential to maintain pneumococcal fitness and that the genes of the ADS cluster are positively regulated in a strain-specific manner by ArgR2. Pneumococci are the major etiologic agents of community-acquired pneumonia, causing more than 1.5 million deaths annually worldwide. These versatile pathogens are highly adapted to the nutrients provided by the host niches encountered. Physiological fitness is of major importance for colonization of the nasopharyngeal cavity and dissemination during invasive infections. This work identifies the regulator ArgR2 as the activator of the S. pneumoniae TIGR4 ADS and the arginine-ornithine transporter ArcD, which is needed for uptake of the essential amino acid arginine. Although ArgR2 activates ArcD expression and uptake of arginine is required to maintain pneumococcal fitness, the deficiency of ArgR2 increases TIGR4 virulence under in vivo conditions, suggesting that other factors regulated by ArgR2 counterbalance the reduced uptake of arginine by ArcD. Thus, this work illustrates that the physiological homeostasis of pneumococci is complex and that ArgR2 plays a key role in maintaining bacterial fitness.
Collapse
|
28
|
Pandey SK, Řeha D, Zayats V, Melichercik M, Carey J, Ettrich R. Binding-competent states for L-arginine in E. coli arginine repressor apoprotein. J Mol Model 2014; 20:2330. [PMID: 24952066 DOI: 10.1007/s00894-014-2330-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 05/28/2014] [Indexed: 11/24/2022]
Abstract
Arginine repressor of E. coli is a multifunctional hexameric protein that provides feedback regulation of arginine metabolism upon activation by the negatively cooperative binding of L-arginine. Interpretation of this complex system requires an understanding of the protein's conformational landscape. The ~50 kDa hexameric C-terminal domain was studied by 100 ns molecular dynamics simulations in the presence and absence of the six L-arg ligands that bind at the trimer-trimer interface. A rotational shift between trimers followed by rotational oscillation occurs in the production phase of the simulations only when L-arg is absent. Analysis of the system reveals that the degree of rotation is correlated with the number of hydrogen bonds across the trimer interface. The trajectory presents frames with one or more apparently open binding sites into which one L-arg could be docked successfully in three different instances, indicating that a binding-competent state of the system is occasionally sampled. Simulations of the resulting singly-liganded systems reveal for the first time that the binding of one L-arg results in a holoprotein-like conformational distribution.
Collapse
Affiliation(s)
- Saurabh Kumar Pandey
- Institute of Nanobiology and Structural Biology, Global Change Research Center, Academy of Sciences of the Czech Republic, Zamek 136, CZ-373 33, Nove Hrady, Czech Republic
| | | | | | | | | | | |
Collapse
|
29
|
Fonseca MV, Swanson MS. Nutrient salvaging and metabolism by the intracellular pathogen Legionella pneumophila. Front Cell Infect Microbiol 2014; 4:12. [PMID: 24575391 PMCID: PMC3920079 DOI: 10.3389/fcimb.2014.00012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 01/23/2014] [Indexed: 11/13/2022] Open
Abstract
The Gram-negative bacterium Legionella pneumophila is ubiquitous in freshwater environments as a free-swimming organism, resident of biofilms, or parasite of protozoa. If the bacterium is aerosolized and inhaled by a susceptible human host, it can infect alveolar macrophages and cause a severe pneumonia known as Legionnaires' disease. A sophisticated cell differentiation program equips L. pneumophila to persist in both extracellular and intracellular niches. During its life cycle, L. pneumophila alternates between at least two distinct forms: a transmissive form equipped to infect host cells and evade lysosomal degradation, and a replicative form that multiplies within a phagosomal compartment that it has retooled to its advantage. The efficient changeover between transmissive and replicative states is fundamental to L. pneumophila's fitness as an intracellular pathogen. The transmission and replication programs of L. pneumophila are governed by a number of metabolic cues that signal whether conditions are favorable for replication or instead trigger escape from a spent host. Several lines of experimental evidence gathered over the past decade establish strong links between metabolism, cellular differentiation, and virulence of L. pneumophila. Herein, we focus on current knowledge of the metabolic components employed by intracellular L. pneumophila for cell differentiation, nutrient salvaging and utilization of host factors. Specifically, we highlight the metabolic cues that are coupled to bacterial differentiation, nutrient acquisition systems, and the strategies utilized by L. pneumophila to exploit host metabolites for intracellular replication.
Collapse
Affiliation(s)
- Maris V Fonseca
- Science and Mathematics Division, Monroe County Community College Monroe, MI, USA
| | - Michele S Swanson
- Department of Microbiology and Immunology, University of Michigan Medical School Ann Arbor, MI, USA
| |
Collapse
|
30
|
Optimal control of gene expression for fast proteome adaptation to environmental change. Proc Natl Acad Sci U S A 2013; 110:20527-32. [PMID: 24297927 DOI: 10.1073/pnas.1309356110] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial populations growing in a changing world must adjust their proteome composition in response to alterations in the environment. Rapid proteome responses to growth medium changes are expected to increase the average growth rate and fitness value of these populations. Little is known about the dynamics of proteome change, e.g., whether bacteria use optimal strategies of gene expression for rapid proteome adjustments and if there are lower bounds to the time of proteome adaptation in response to growth medium changes. To begin answering these types of questions, we modeled growing bacteria as stoichiometrically coupled networks of metabolic pathways. These are balanced during steady-state growth in a constant environment but are initially unbalanced after rapid medium shifts due to a shortage of enzymes required at higher concentrations in the new environment. We identified an optimal strategy for rapid proteome adjustment in the absence of protein degradation and found a lower bound to the time of proteome adaptation after medium shifts. This minimal time is determined by the ratio between the Kullback-Leibler distance from the pre- to the postshift proteome and the postshift steady-state growth rate. The dynamics of optimally controlled proteome adaptation has a simple analytical solution. We used detailed numerical modeling to demonstrate that realistic bacterial control systems can emulate this optimal strategy for rapid proteome adaptation. Our results may provide a conceptual link between the physiology and population genetics of growing bacteria.
Collapse
|
31
|
Abstract
Xer site-specific recombination at cer and psi converts bacterial plasmid multimers into monomers so that they can be efficiently segregated to both daughter cells at cell division. Recombination is catalysed by the XerC and XerD recombinases acting at ~30 bp core sites, and is regulated by the action of accessory proteins bound to accessory DNA sequences adjacent to the core sites. Recombination normally occurs only between sites in direct repeat in a negatively supercoiled circular DNA molecule, and yields two circular products linked together in a right-handed four-node catenane with antiparallel sites. These and other topological results are explained by a model in which the accessory DNA sequences are interwrapped around the accessory proteins, trapping three negative supercoils so that strand exchange by the XerC and XerD yields the observed four-node catenane.
Collapse
|
32
|
Pérez-Redondo R, Rodríguez-García A, Botas A, Santamarta I, Martín JF, Liras P. ArgR of Streptomyces coelicolor is a versatile regulator. PLoS One 2012; 7:e32697. [PMID: 22403700 PMCID: PMC3293853 DOI: 10.1371/journal.pone.0032697] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 01/29/2012] [Indexed: 11/19/2022] Open
Abstract
ArgR is the regulator of arginine biosynthesis genes in Streptomyces species. Transcriptomic comparison by microarrays has been made between Streptomyces coelicolor M145 and its mutant S. coelicolor ΔargR under control, unsupplemented conditions, and in the presence of arginine. Expression of 459 genes was different in transcriptomic assays, but only 27 genes were affected by arginine supplementation. Arginine and pyrimidine biosynthesis genes were derepressed by the lack of ArgR, while no strong effect on expression resulted on arginine supplementation. Several nitrogen metabolism genes expression as glnK, glnA and glnII, were downregulated in S. coelicolor ΔargR. In addition, downregulation of genes for the yellow type I polyketide CPK antibiotic and for the antibiotic regulatory genes afsS and scbR was observed. The transcriptomic data were validated by either reverse transcription-PCR, expression of the gene-promoter coupled to the luciferase gene, proteomic or by electrophoresis mobility shift assay (EMSA) using pure Strep-tagged ArgR. Two ARG-boxes in the arginine operon genes suggest that these genes are more tightly controlled. Other genes, including genes encoding regulatory proteins, possess a DNA sequence formed by a single ARG-box which responds to ArgR, as validated by EMSA.
Collapse
Affiliation(s)
- Rosario Pérez-Redondo
- Área de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, León, Spain
- Instituto de Biotecnología, Parque Científico de León, León, Spain
| | - Antonio Rodríguez-García
- Área de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, León, Spain
- Instituto de Biotecnología, Parque Científico de León, León, Spain
| | - Alma Botas
- Área de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, León, Spain
- Instituto de Biotecnología, Parque Científico de León, León, Spain
| | - Irene Santamarta
- Área de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, León, Spain
- Instituto de Biotecnología, Parque Científico de León, León, Spain
| | - Juan F. Martín
- Área de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, León, Spain
- Instituto de Biotecnología, Parque Científico de León, León, Spain
| | - Paloma Liras
- Área de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, León, Spain
- Instituto de Biotecnología, Parque Científico de León, León, Spain
- * E-mail:
| |
Collapse
|
33
|
Kloosterman TG, Kuipers OP. Regulation of arginine acquisition and virulence gene expression in the human pathogen Streptococcus pneumoniae by transcription regulators ArgR1 and AhrC. J Biol Chem 2011; 286:44594-605. [PMID: 22084243 DOI: 10.1074/jbc.m111.295832] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In this study, we investigated for the first time the transcriptional response of the human pathogen Streptococcus pneumoniae to fluctuating concentrations of arginine, an essential amino acid for this bacterium. By means of DNA microarray analyses, several operons and genes were found, the expression of which was affected by the concentration of arginine in the medium. Five of the identified operons were demonstrated to be directly repressed in the presence of high arginine concentrations via the concerted action of the ArgR-type regulators ArgR1 and AhrC. These ArgR1/AhrC targets encompass the putative amino acid transport genes artPQ, abpA, abpB, and aapA; the arginine biosynthetic genes argGH; and the virulence genes aliB and lmB/adcAII-phtD encoding an oligopeptide-binding lipoprotein and cell surface Zn(2+)-scavenging units, respectively. In addition, the data indicate that three of the amino acid transport genes encode an arginine ATP-binding cassette transporter unit required for efficient growth during arginine limitation. Instead of regulating arginine biosynthetic and catabolic genes as has been reported for other Gram-positive bacteria, our findings suggest that the physiological function of ArgR1/AhrC in S. pneumoniae is to ensure optimal uptake of arginine from the surrounding milieu.
Collapse
Affiliation(s)
- Tomas G Kloosterman
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | | |
Collapse
|
34
|
Interaction of transcriptional repressor ArgR with transcriptional regulator FarR at the argB promoter region in Corynebacterium glutamicum. Appl Environ Microbiol 2010; 77:711-8. [PMID: 21115700 DOI: 10.1128/aem.01610-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Corynebacterium glutamicum, the ArgR protein, a transcriptional repressor, affects the expression level of the argB gene through binding to its promoter region. The argB promoter region (positions -77 to -25) has been found by in vitro electrophoretic mobility shift assay (EMSA) results and in silico analysis to be important for the DNA binding of ArgR. Proline supplementation prevented the DNA binding of ArgR to the argB promoter region and triggered an increase of the argB mRNA level. Additional mutational analyses of the argB promoter region found nucleotides critical for ArgR binding (G located at position -58, C at position -55, and A at position -41 of the argB promoter) in that region. Another transcriptional repressor, FarR, was also demonstrated to bind to the argB promoter region. This binding was delimited to positions -57 to -77 on the argB promoter. FarR has only one putative binding domain located at positions -57 to -77, but this region exactly overlapped with the binding region located from positions -55 to -77 for the binding of ArgR within the argB promoter; thus, if ArgR bound with the argB promoter first, the binding of FarR was not observed in this region. However, if FarR bound to the binding domain located at positions -57 to -77 first, ArgR could bind other binding sites located at positions -49 to -25 within the argB promoter. Finally, this study suggests that ArgR can affect FarR binding to the argB promoter region, as protein binding is dominated by the protein most able to do so.
Collapse
|
35
|
Abstract
Legionella pneumophila is an intracellular pathogen that infects protozoa in aquatic environments and when inhaled by susceptible human hosts replicates in alveolar macrophages and can result in the often fatal pneumonia called Legionnaires' disease. The ability of L. pneumophila to replicate within host cells requires the establishment of a specialized compartment that evades normal phagolysosome fusion called the Legionella-containing vacuole (LCV). Elucidation of the biochemical composition of the LCV and the identification of the regulatory signals sensed during intracellular replication are inherently challenging. L-Arginine is a critical nutrient in the metabolism of both prokaryotic and eukaryotic organisms. We showed that the L. pneumophila arginine repressor homolog, ArgR, is required for maximal intracellular growth in the unicellular host Acanthamoeba castellanii. In this study, we present evidence that the concentration of L-arginine in the LCV is sensed by ArgR to produce an intracellular transcriptional response. We characterized the L. pneumophila ArgR regulon by global gene expression analysis, identified genes highly affected by ArgR, showed that ArgR repression is dependent upon the presence of L-arginine, and demonstrated that ArgR-regulated genes are derepressed during intracellular growth. Additional targets of ArgR that may account for the argR mutant's intracellular multiplication defect are discussed. These results suggest that L-arginine availability functions as a regulatory signal during Legionella intracellular growth.
Collapse
|
36
|
Strawn R, Melichercik M, Green M, Stockner T, Carey J, Ettrich R. Symmetric allosteric mechanism of hexameric Escherichia coli arginine repressor exploits competition between L-arginine ligands and resident arginine residues. PLoS Comput Biol 2010; 6:e1000801. [PMID: 20532206 PMCID: PMC2880562 DOI: 10.1371/journal.pcbi.1000801] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 04/29/2010] [Indexed: 12/20/2022] Open
Abstract
An elegantly simple and probably ancient molecular mechanism of allostery is described for the Escherichia coli arginine repressor ArgR, the master feedback regulator of transcription in L-arginine metabolism. Molecular dynamics simulations with ArgRC, the hexameric domain that binds L-arginine with negative cooperativity, reveal that conserved arginine and aspartate residues in each ligand-binding pocket promote rotational oscillation of apoArgRC trimers by engagement and release of hydrogen-bonded salt bridges. Binding of exogenous L-arginine displaces resident arginine residues and arrests oscillation, shifting the equilibrium quaternary ensemble and promoting motions that maintain the configurational entropy of the system. A single L-arg ligand is necessary and sufficient to arrest oscillation, and enables formation of a cooperative hydrogen-bond network at the subunit interface. The results are used to construct a free-energy reaction coordinate that accounts for the negative cooperativity and distinctive thermodynamic signature of L-arginine binding detected by calorimetry. The symmetry of the hexamer is maintained as each ligand binds, despite the conceptual asymmetry of partially-liganded states. The results thus offer the first opportunity to describe in structural and thermodynamic terms the symmetric relaxed state predicted by the concerted allostery model of Monod, Wyman, and Changeux, revealing that this state is achieved by exploiting the dynamics of the assembly and the distributed nature of its cohesive free energy. The ArgR example reveals that symmetry can be maintained even when binding sites fill sequentially due to negative cooperativity, which was not anticipated by the Monod, Wyman, and Changeux model. The molecular mechanism identified here neither specifies nor requires a pathway for transmission of the allosteric signal through the protein, and it suggests the possibility that binding of free amino acids was an early innovation in the evolution of allostery.
Collapse
Affiliation(s)
- Rebecca Strawn
- Chemistry Department, Princeton University, Princeton, New Jersey, United States of America
| | - Milan Melichercik
- Department of Structure and Function of Proteins, Institute of Systems Biology and Ecology, Academy of Sciences of the Czech Republic, and Institute of Physical Biology, University of South Bohemia, Nove Hrady, Czech Republic
| | - Michael Green
- Biology Department, The College of New Jersey, Ewing, New Jersey, United States of America
| | - Thomas Stockner
- Department of Medical Chemistry, Medical University of Vienna, Vienna, Austria
| | - Jannette Carey
- Chemistry Department, Princeton University, Princeton, New Jersey, United States of America
| | - Rüdiger Ettrich
- Department of Structure and Function of Proteins, Institute of Systems Biology and Ecology, Academy of Sciences of the Czech Republic, and Institute of Physical Biology, University of South Bohemia, Nove Hrady, Czech Republic
| |
Collapse
|
37
|
Lee SY, Kim YH, Min J. The effect of ArgR-DNA binding affinity on ornithine production in Corynebacterium glutamicum. Curr Microbiol 2009; 59:483-8. [PMID: 19688381 DOI: 10.1007/s00284-009-9467-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 05/07/2009] [Accepted: 07/17/2009] [Indexed: 11/26/2022]
Abstract
pEMBTL-SY1, which can over produce the ArgR protein in Corynebacterium glutamicum, was constructed. The DNA-binding affinity of ArgR was analyzed using a Chromatin Immunoprecipitation (ChIP) assay. The level of ArgR protein expression in the plasmid-carrying C. glutamicum (pEMBTL-SY1) was higher than that in the wild-type strain. On the other hand, there was no increase in the DNA-binding affinity of ArgR on the upstream of argB and the level of ornithine production. The DNA-binding affinity of ArgR on the arg operon and the level of ornithine production in the presence of three metabolites, ornithine, arginine, and proline, were examined as feedback controlling effectors in the arginine biosynthesis pathway in C. glutamicum. The ChIP assay showed that the supplemented metabolites altered the ArgR-binding affinity on the upstream of argB, which is consistent with the change in ornithine production. This suggests that the regulation of ornithine biosynthesis by the transcriptional regulator, ArgR, depends on the DNA-binding affinity of the arg operon, which is regulated by the feedback controlling effectors, rather than on the level of ArgR protein expression.
Collapse
Affiliation(s)
- Soo Youn Lee
- Division of Chemical Engineering, Chonbuk National University, Jeonju, South Korea
| | | | | |
Collapse
|
38
|
SigmaS controls multiple pathways associated with intracellular multiplication of Legionella pneumophila. J Bacteriol 2009; 191:2461-73. [PMID: 19218380 DOI: 10.1128/jb.01578-08] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Legionella pneumophila is the causative agent of the severe and potentially fatal pneumonia Legionnaires' disease. L. pneumophila is able to replicate within macrophages and protozoa by establishing a replicative compartment in a process that requires the Icm/Dot type IVB secretion system. The signals and regulatory pathways required for Legionella infection and intracellular replication are poorly understood. Mutation of the rpoS gene, which encodes sigma(S), does not affect growth in rich medium but severely decreases L. pneumophila intracellular multiplication within protozoan hosts. To gain insight into the intracellular multiplication defect of an rpoS mutant, we examined its pattern of gene expression during exponential and postexponential growth. We found that sigma(S) affects distinct groups of genes that contribute to Legionella intracellular multiplication. We demonstrate that rpoS mutants have a functional Icm/Dot system yet are defective for the expression of many genes encoding Icm/Dot-translocated substrates. We also show that sigma(S) affects the transcription of the cpxR and pmrA genes, which encode two-component response regulators that directly affect the transcription of Icm/Dot substrates. Our characterization of the L. pneumophila small RNA csrB homologs, rsmY and rsmZ, introduces a link between sigma(S) and the posttranscriptional regulator CsrA. We analyzed the network of sigma(S)-controlled genes by mutational analysis of transcriptional regulators affected by sigma(S). One of these, encoding the L. pneumophila arginine repressor homolog gene, argR, is required for maximal intracellular growth in amoebae. These data show that sigma(S) is a key regulator of multiple pathways required for L. pneumophila intracellular multiplication.
Collapse
|
39
|
Transcriptome analysis of the Lactococcus lactis ArgR and AhrC regulons. Appl Environ Microbiol 2008; 74:4768-71. [PMID: 18539789 DOI: 10.1128/aem.00117-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In previous studies, we have shown that direct protein-protein interaction between the two regulators ArgR and AhrC in Lactococcus lactis is required for arginine-dependent repression of the biosynthetic argC promoter and the activation of the catabolic arcA promoter. Here, we establish the global ArgR and AhrC regulons by transcriptome analyses and show that both regulators are dedicated to the control of arginine metabolism in L. lactis.
Collapse
|
40
|
Sequence of conjugative plasmid pIP1206 mediating resistance to aminoglycosides by 16S rRNA methylation and to hydrophilic fluoroquinolones by efflux. Antimicrob Agents Chemother 2008; 52:2581-92. [PMID: 18458128 DOI: 10.1128/aac.01540-07] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Self-transferable IncFI plasmid pIP1206, isolated from an Escherichia coli clinical isolate, carries two new resistance determinants: qepA, which confers resistance to hydrophylic fluoroquinolones by efflux, and rmtB, which specifies a 16S rRNA methylase conferring high-level aminoglycoside resistance. Analysis of the 168,113-bp sequence (51% G+C) revealed that pIP1206 was composed of several subregions separated by copies of insertion sequences. Of 151 open reading frames, 56 (37%) were also present in pRSB107, isolated from a bacterium in a sewage treatment plant. pIP1206 contained four replication regions (RepFIA, RepFIB, and two partial RepFII regions) and a transfer region 91% identical with that of pAPEC-O1-ColBM, a plasmid isolated from an avian pathogenic E. coli. A putative oriT region was found upstream from the transfer region. The antibiotic resistance genes tet(A), catA1, bla(TEM-1), rmtB, and qepA were clustered in a 33.5-kb fragment delineated by two IS26 elements that also carried a class 1 integron, including the sulI, qacEDelta1, aad4, and dfrA17 genes and Tn10, Tn21, and Tn3-like transposons. The plasmid also possessed a raffinose operon, an arginine deiminase pathway, a putative iron acquisition gene cluster, an S-methylmethionine metabolism operon, two virulence-associated genes, and a type I DNA restriction-modification (R-M) system. Three toxin/antitoxin systems and the R-M system ensured stabilization of the plasmid in the host bacteria. These data suggest that the mosaic structure of pIP1206 could have resulted from recombination between pRSB107 and a pAPEC-O1-ColBM-like plasmid, combined with structural rearrangements associated with acquisition of additional DNA by recombination and of mobile genetic elements by transposition.
Collapse
|
41
|
Regulation of gene expression in a mixed-genus community: stabilized arginine biosynthesis in Streptococcus gordonii by coaggregation with Actinomyces naeslundii. J Bacteriol 2008; 190:3646-57. [PMID: 18359813 DOI: 10.1128/jb.00088-08] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interactions involving genetically distinct bacteria, for example, between oral streptococci and actinomyces, are central to dental plaque development. A DNA microarray identified Streptococcus gordonii genes regulated in response to coaggregation with Actinomyces naeslundii. The expression of 23 genes changed >3-fold in coaggregates, including that of 9 genes involved in arginine biosynthesis and transport. The capacity of S. gordonii to synthesize arginine was assessed using a chemically defined growth medium. In monoculture, streptococcal arginine biosynthesis was inefficient and streptococci could not grow aerobically at low arginine concentrations. In dual-species cultures containing coaggregates, however, S. gordonii grew to high cell density at low arginine concentrations. Equivalent cocultures without coaggregates showed no growth until coaggregation was evident (9 h). An argH mutant was unable to grow at low arginine concentrations with or without A. naeslundii, indicating that arginine biosynthesis was essential for coaggregation-induced streptococcal growth. Using quantitative reverse transcriptase PCR, the expression of argC, argG, and pyrA(b) was strongly (10- to 100-fold) up-regulated in S. gordonii monocultures after 3 h of growth when exogenous arginine was depleted. Cocultures without induced coaggregation showed similar regulation. However, within 1 h after coaggregation with A. naeslundii, the expression of argC, argG, and pyrA(b) in S. gordonii was partially up-regulated although arginine was plentiful, and mRNA levels did not increase further when arginine was diminished. Thus, A. naeslundii stabilizes S. gordonii expression of arginine biosynthesis genes in coaggregates but not cocultures and enables aerobic growth when exogenous arginine is limited.
Collapse
|
42
|
Caldara M, Dupont G, Leroy F, Goldbeter A, De Vuyst L, Cunin R. Arginine Biosynthesis in Escherichia coli. J Biol Chem 2008; 283:6347-58. [DOI: 10.1074/jbc.m705884200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
43
|
Hartenbach S, Daoud-El Baba M, Weber W, Fussenegger M. An engineered L-arginine sensor of Chlamydia pneumoniae enables arginine-adjustable transcription control in mammalian cells and mice. Nucleic Acids Res 2007; 35:e136. [PMID: 17947334 PMCID: PMC2175317 DOI: 10.1093/nar/gkm652] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
For optimal compatibility with biopharmaceutical manufacturing and gene therapy, heterologous transgene control systems must be responsive to side-effect-free physiologic inducer molecules. The arginine-inducible interaction of the ArgR repressor and the ArgR-specific ARG box, which synchronize arginine import and synthesis in the intracellular human pathogen Chlamydia pneumoniae, was engineered for arginine-regulated transgene (ART) expression in mammalian cells. A synthetic arginine-responsive transactivator (ARG), consisting of ArgR fused to the Herpes simplex VP16 transactivation domain, reversibly adjusted transgene transcription of chimeric ARG box-containing mammalian minimal promoters (PART) in an arginine-inducible manner. Arginine-controlled transgene expression showed rapid induction kinetics in a variety of mammalian cell lines and was adjustable and reversible at concentrations which were compatible with host cell physiology. ART variants containing different transactivation domains, variable spacing between ARG box and minimal promoter and several tandem ARG boxes showed modified regulation performance tailored for specific expression scenarios and cell types. Mice implanted with microencapsulated cells engineered for ART-inducible expression of the human placental secreted alkaline phosphatase (SEAP) exhibited adjustable serum phosphatase levels after treatment with different arginine doses. Using a physiologic inducer, such as the amino acid l-arginine, to control heterologous transgenes in a seamless manner which is devoid of noticeable metabolic interference will foster novel opportunities for precise expression dosing in future gene therapy scenarios as well as the manufacturing of difficult-to-produce protein pharmaceuticals.
Collapse
Affiliation(s)
- Shizuka Hartenbach
- Institute for Chemical and Bioengineering, ETH Zurich, Wolfgang-Pauli-Strasse 10, HCI F115, CH-8093 Zurich, Switzerland
| | | | | | | |
Collapse
|
44
|
Braun F, Marhuenda FB, Morin A, Guevel L, Fleury F, Takahashi M, Sakanyan V. Similarity and divergence between the RNA polymerase α subunits from hyperthermophilic Thermotoga maritima and mesophilic Escherichia coli bacteria. Gene 2006; 380:120-6. [PMID: 16859838 DOI: 10.1016/j.gene.2006.05.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 05/12/2006] [Accepted: 05/16/2006] [Indexed: 11/21/2022]
Abstract
The alpha subunit (alphaTm) of Thermotoga maritima RNA polymerase has been characterized to investigate its role in transcriptional regulation in one of the few known anaerobic hyperthermophilic bacteria. The highly thermostable alphaTm shares 54% similarity with its Escherichia coli analogue (alphaEc). The T. maritima rpoA gene coding the alpha subunit does not complement the thermosensitive rpoA112 mutation of E. coli. However, alphaTm and alphaEc show similar folding patterns as determined by circular dichroism. Purified alphaTm binds to the T. maritima PargGo promoter region (probably to a UP-element) and Arg282 appears to be crucial for DNA binding. The thermostable protein is also able to interact with transcription regulatory proteins, like ArgR from T. neapolitana or CRP from E. coli. These data indicate that the RNA polymerase alpha subunit might play a crucial role in the modulation of gene expression in hyperthermophiles.
Collapse
Affiliation(s)
- Frederique Braun
- Unité Biotechnologie, Biocatalyse et Biorégulation, CNRS UMR 6204, Faculté des Sciences et des Techniques, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes cedex 03, France.
| | | | | | | | | | | | | |
Collapse
|
45
|
Michel A, Agerer F, Hauck CR, Herrmann M, Ullrich J, Hacker J, Ohlsen K. Global regulatory impact of ClpP protease of Staphylococcus aureus on regulons involved in virulence, oxidative stress response, autolysis, and DNA repair. J Bacteriol 2006; 188:5783-96. [PMID: 16885446 PMCID: PMC1540084 DOI: 10.1128/jb.00074-06] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Staphylococcus aureus is an important pathogen, causing a wide range of infections including sepsis, wound infections, pneumonia, and catheter-related infections. In several pathogens ClpP proteases were identified by in vivo expression technologies to be important for virulence. Clp proteolytic complexes are responsible for adaptation to multiple stresses by degrading accumulated and misfolded proteins. In this report clpP, encoding the proteolytic subunit of the ATP-dependent Clp protease, was deleted, and gene expression of DeltaclpP was determined by global transcriptional analysis using DNA-microarray technology. The transcriptional profile reveals a strong regulatory impact of ClpP on the expression of genes encoding proteins that are involved in the pathogenicity of S. aureus and adaptation of the pathogen to several stresses. Expression of the agr system and agr-dependent extracellular virulence factors was diminished. Moreover, the loss of clpP leads to a complete transcriptional derepression of genes of the CtsR- and HrcA-controlled heat shock regulon and a partial derepression of genes involved in oxidative stress response, metal homeostasis, and SOS DNA repair controlled by PerR, Fur, MntR, and LexA. The levels of transcription of genes encoding proteins involved in adaptation to anaerobic conditions potentially regulated by an Fnr-like regulator were decreased. Furthermore, the expression of genes whose products are involved in autolysis was deregulated, leading to enhanced autolysis in the mutant. Our results indicate a strong impact of ClpP proteolytic activity on virulence, stress response, and physiology in S. aureus.
Collapse
Affiliation(s)
- Antje Michel
- Institut für Molekulare Infektionsbiologie, Röntgenring 11, D-97070 Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Diniz SC, Voss I, Steinbüchel A. Optimization of cyanophycin production in recombinant strains of Pseudomonas putida and Ralstonia eutropha employing elementary mode analysis and statistical experimental design. Biotechnol Bioeng 2006; 93:698-717. [PMID: 16435401 DOI: 10.1002/bit.20760] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Elementary mode analysis was applied to simulate conditions for cyanophycin (CGP) biosynthesis and to optimize its production in bacteria. The conclusions from these simulations were confirmed by experiments with recombinant strains of the wild types and polyhydroxyalkanoate (PHA)-negative mutants of Ralstonia eutropha and Pseudomonas putida expressing CGP synthetase genes (cphA) of Synechocystis sp. strain PCC6308 or Anabaena sp. strain PCC7120. In particular, the effects of suitable precursor substrates and of oxygen supply as well as of the capability to accumulate PHA in addition to CGP biosynthesis were investigated. Since CGP consists of the amino acids aspartate and arginine, the tricarboxylic acid cycle (TCC), which provides intermediates for biosynthesis of these amino acids, seems to be important. Excretion of intermediates of the TCC upon cultivation at restricted oxygen supply and conversion of fumarate mainly to malate and to only little succinate in the absence of oxygen indicated that TCC intermediates for arginine and aspartate biosynthesis were provided by the oxidative or reductive parts of the TCC, respectively. The following important conclusions were made from the experiments and the simulations: (i) external arginine additionally supplied to the medium, (ii) oxygen limitation, and (iii) absence of PHA accumulation exerted positive effects on CGP accumulation. These conclusions were utilized to obtain CGP contents in the cells of as high as 17.9% (w x w(-1)) during cultivation of the investigated bacteria at the 30-L scale using mineral salts medium. Such high CGP contents were previously not obtained with these bacteria at a 30-L scale, even if complex media were used.
Collapse
Affiliation(s)
- Simone Cardoso Diniz
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, D-48149 Münster, Germany
| | | | | |
Collapse
|
47
|
Weerasinghe JP, Dong T, Schertzberg MR, Kirchhof MG, Sun Y, Schellhorn HE. Stationary phase expression of the arginine biosynthetic operon argCBH in Escherichia coli. BMC Microbiol 2006; 6:14. [PMID: 16504055 PMCID: PMC1413537 DOI: 10.1186/1471-2180-6-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 02/22/2006] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Arginine biosynthesis in Escherichia coli is elevated in response to nutrient limitation, stress or arginine restriction. Though control of the pathway in response to arginine limitation is largely modulated by the ArgR repressor, other factors may be involved in increased stationary phase and stress expression. RESULTS In this study, we report that expression of the argCBH operon is induced in stationary phase cultures and is reduced in strains possessing a mutation in rpoS, which encodes an alternative sigma factor. Using strains carrying defined argR, and rpoS mutations, we evaluated the relative contributions of these two regulators to the expression of argH using operon-lacZ fusions. While ArgR was the main factor responsible for modulating expression of argCBH, RpoS was also required for full expression of this biosynthetic operon at low arginine concentrations (below 60 microM L-arginine), a level at which growth of an arginine auxotroph was limited by arginine. When the argCBH operon was fully de-repressed (arginine limited), levels of expression were only one third of those observed in deltaargR mutants, indicating that the argCBH operon is partially repressed by ArgR even in the absence of arginine. In addition, argCBH expression was 30-fold higher in deltaargR mutants relative to levels found in wild type, fully-repressed strains, and this expression was independent of RpoS. CONCLUSION The results of this study indicate that both derepression and positive control by RpoS are required for full control of arginine biosynthesis in stationary phase cultures of E. coli.
Collapse
Affiliation(s)
- Jeevaka P Weerasinghe
- McMaster University, Department of Biology, Life Sciences Building, Rm. 218, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1
| | - Tao Dong
- McMaster University, Department of Biology, Life Sciences Building, Rm. 218, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1
| | - Michael R Schertzberg
- McMaster University, Department of Biology, Life Sciences Building, Rm. 218, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1
| | - Mark G Kirchhof
- McMaster University, Department of Biology, Life Sciences Building, Rm. 218, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1
| | - Yuan Sun
- McMaster University, Department of Biology, Life Sciences Building, Rm. 218, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1
| | - Herb E Schellhorn
- McMaster University, Department of Biology, Life Sciences Building, Rm. 218, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1
| |
Collapse
|
48
|
Zeng L, Dong Y, Burne RA. Characterization of cis-acting sites controlling arginine deiminase gene expression in Streptococcus gordonii. J Bacteriol 2006; 188:941-9. [PMID: 16428398 PMCID: PMC1347343 DOI: 10.1128/jb.188.3.941-949.2006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 11/07/2005] [Indexed: 11/20/2022] Open
Abstract
The arginine deiminase system (ADS) is responsible for the production of ornithine, CO2, ammonia, and ATP from arginine. The ADS of the oral bacterium Streptococcus gordonii plays major roles in physiologic homeostasis, acid tolerance, and oral biofilm ecology. To further our understanding of the transcriptional regulation of the ADS (arc) operon, the binding of the ArcR transcriptional activator, which governs expression of the ADS in response to arginine, was investigated by DNase I protection and gel mobility shift assays. An ArcR binding sequence was found that was 27 bp in length and had little sequence similarity to binding sites of other arginine metabolism regulators. The presence of arginine at physiologically relevant concentrations enhanced the binding of ArcR to its target. Using cat fusions, various deletion and substitution mutations within the putative ArcR footprint were shown to cause dramatic reductions in expression from the arcA promoter in vivo, confirming that the 27-bp sequence is required for optimal expression and induction of the ADS by arginine. Mutation of two putative catabolite response elements (CREs) within the arc promoter region showed that both CREs contribute to catabolite repression. A thorough understanding of the regulation of the ADS in S. gordonii and related organisms is needed to develop ways to exploit arginine catabolism for the control of oral diseases. Identification of the ArcR and CcpA binding sites lays the foundation for a more complete understanding of the complex interactions of multiple regulatory proteins with elements in the arc promoter region.
Collapse
Affiliation(s)
- Lin Zeng
- Department of Oral Biology, University of Florida, 1600 S.W. Archer Rd., Gainesville, FL 32610-0424, USA
| | | | | |
Collapse
|
49
|
Schaumburg CS, Tan M. Arginine-dependent gene regulation via the ArgR repressor is species specific in chlamydia. J Bacteriol 2006; 188:919-27. [PMID: 16428395 PMCID: PMC1347356 DOI: 10.1128/jb.188.3.919-927.2006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Accepted: 11/02/2005] [Indexed: 11/20/2022] Open
Abstract
Some, but not all, Chlamydia spp. are predicted to encode a homolog of ArgR, a master regulatory molecule that modulates arginine biosynthesis and catabolism in bacteria in response to intracellular arginine levels. While genes for arginine biosynthesis are apparently missing in Chlamydia, a putative arginine transport system encoded by glnP, glnQ, and artJ is present. We found that recombinant Chlamydia pneumoniae ArgR functions as an arginine-dependent aporepressor that bound specifically to operator sequences upstream of the glnPQ operon. ArgR was able to repress transcription in a promoter-specific manner that was dependent on the concentration of the corepressor l-arginine. We were able to locate ArgR operators upstream of glnPQ in C. pneumoniae and Chlamydophila caviae but not Chlamydia trachomatis, which corresponded to the predicted presence or absence of ArgR in these chlamydial species. Our findings indicate that only some members of the family Chlamydiaceae have an arginine-responsive mechanism of gene regulation that is predicted to control arginine uptake from the host cell. This is the first study to directly demonstrate a species-specific mechanism of transcriptional regulation in Chlamydia.
Collapse
Affiliation(s)
- Chris S Schaumburg
- Department of Microbiology and Molecular Genetics, B240 Med Sci I, University of California, Irvine, CA 92697-4025, USA
| | | |
Collapse
|
50
|
Gruening P, Fulde M, Valentin-Weigand P, Goethe R. Structure, regulation, and putative function of the arginine deiminase system of Streptococcus suis. J Bacteriol 2006; 188:361-9. [PMID: 16385025 PMCID: PMC1347268 DOI: 10.1128/jb.188.2.361-369.2006] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Accepted: 10/27/2005] [Indexed: 11/20/2022] Open
Abstract
Streptococcus suis is an important cause of infectious diseases in young pigs. Little is known about the virulence factors or protective antigens of S. suis. Recently, we have identified two proteins of the arginine deiminase system (ADS) of S. suis, which were temperature induced and expressed on the streptococcal surface (N. Winterhoff, R. Goethe, P. Gruening, M. Rohde, H. Kalisz, H. E. Smith, and P. Valentin-Weigand, J. Bacteriol. 184:6768-6776, 2002). In the present study, we analyzed the complete ADS of S. suis. Due to their homologies to the recently published S. gordonii ADS genes, the genes for arginine deiminase, ornithine carbamoyl-transferase, and carbamate kinase, which were previously designated adiS, octS, and ckS, respectively, were renamed arcA, arcB, and arcC, respectively. Our data revealed that arcA, arcB, and arcC of the S. suis ADS are transcribed from an operon (arcABC operon). Additionally, putative ADS-associated genes were cloned and sequenced which, however, did not belong to the arcABC operon. These were the flpS gene upstream of the arcABC operon with homology to the flp transcription regulator of S. gordonii and the arcD, arcT, arcH, and argR genes downstream of the arcABC operon with high homologies to a putative arginine-ornithine antiporter, a putative dipeptidase of S. gordonii, a putative beta-N-acetylhexosaminidase of S. pneumoniae, and a putative arginine repressor of S. gordonii, respectively. The transcriptional start point of the arcABC operon was determined, and promoter analysis provided evidence that multiple factors contribute to the regulation of the ADS. Thus, a putative binding site for a transcription regulator of the Crp/Fnr family, an ArgR-binding site, and two cis-acting catabolite response elements were identified in the promoter-operator region of the operon. Consistent with this, we could demonstrate that the ADS of S. suis is inducible by arginine and reduced O2 tension and subject to carbon catabolite repression. Furthermore, comparing an arcA knockout mutant in which expression of the three operon-encoded proteins was abolished with the parental wild-type strain showed that the arcABC operon of S. suis contributes to survival under acidic conditions.
Collapse
Affiliation(s)
- Petra Gruening
- Institut fuer Mikrobiologie, Zentrum fuer Infektionsmedizin, Tieraerztliche Hochschule Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
| | | | | | | |
Collapse
|