1
|
Li Y, Tao X, Ye S, Tai Q, You YA, Huang X, Liang M, Wang K, Wen H, You C, Zhang Y, Zhou X. A T-Cell-Derived 3-Gene Signature Distinguishes SARS-CoV-2 from Common Respiratory Viruses. Viruses 2024; 16:1029. [PMID: 39066192 PMCID: PMC11281602 DOI: 10.3390/v16071029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/06/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Research on the host responses to respiratory viruses could help develop effective interventions and therapies against the current and future pandemics from the host perspective. To explore the pathogenesis that distinguishes SARS-CoV-2 infections from other respiratory viruses, we performed a multi-cohort analysis with integrated bioinformatics and machine learning. We collected 3730 blood samples from both asymptomatic and symptomatic individuals infected with SARS-CoV-2, seasonal human coronavirus (sHCoVs), influenza virus (IFV), respiratory syncytial virus (RSV), or human rhinovirus (HRV) across 15 cohorts. First, we identified an enhanced cellular immune response but limited interferon activities in SARS-CoV-2 infection, especially in asymptomatic cases. Second, we identified a SARS-CoV-2-specific 3-gene signature (CLSPN, RBBP6, CCDC91) that was predominantly expressed by T cells, could distinguish SARS-CoV-2 infection, including Omicron, from other common respiratory viruses regardless of symptoms, and was predictive of SARS-CoV-2 infection before detectable viral RNA on RT-PCR testing in a longitude follow-up study. Thereafter, a user-friendly online tool, based on datasets collected here, was developed for querying a gene of interest across multiple viral infections. Our results not only identify a unique host response to the viral pathogenesis in SARS-CoV-2 but also provide insights into developing effective tools against viral pandemics from the host perspective.
Collapse
Affiliation(s)
- Yang Li
- Beijing International Center for Mathematical Research, Peking University, Beijing 100871, China;
- Chongqing Research Institute of Big Data, Peking University, Chongqing 400041, China; (X.T.); (X.H.)
| | - Xinya Tao
- Chongqing Research Institute of Big Data, Peking University, Chongqing 400041, China; (X.T.); (X.H.)
| | - Sheng Ye
- Chongqing Center for Disease Control and Prevention, Chongqing 400707, China;
| | - Qianchen Tai
- Department of Probability and Statistics, School of Mathematical Sciences, Peking University, Beijing 100091, China;
| | - Yu-Ang You
- Institute of Pharmaceutical Science, King’s College London, London WC2R 2LS, UK;
| | - Xinting Huang
- Chongqing Research Institute of Big Data, Peking University, Chongqing 400041, China; (X.T.); (X.H.)
| | - Mifang Liang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China;
| | - Kai Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China;
| | - Haiyan Wen
- Chongqing International Travel Health Care Center, Chongqing 401120, China;
| | - Chong You
- Beijing International Center for Mathematical Research, Peking University, Beijing 100871, China;
- Chongqing Research Institute of Big Data, Peking University, Chongqing 400041, China; (X.T.); (X.H.)
- Shanghai Institute for Mathematics and Interdisciplinary Sciences, Fudan University, Shanghai 200433, China
| | - Yan Zhang
- Sports & Medicine Integration Research Center (SMIRC), Capital University of Physical Education and Sports, Beijing 100088, China
| | - Xiaohua Zhou
- Beijing International Center for Mathematical Research, Peking University, Beijing 100871, China;
- Chongqing Research Institute of Big Data, Peking University, Chongqing 400041, China; (X.T.); (X.H.)
- Department of Probability and Statistics, School of Mathematical Sciences, Peking University, Beijing 100091, China;
| |
Collapse
|
2
|
Abstract
Aggressive diagnostic testing remains an indispensable strategy for health and aged care facilities to prevent the transmission of SARS-CoV-2 in vulnerable populations. The preferred diagnostic platform has shifted towards COVID-19 rapid antigen tests (RATs) to identify the most infectious individuals. As such, RATs are being manufactured faster than at any other time in our history yet lack the relevant quantitative analytics required to inform on absolute analytical sensitivity enabling manufacturers to maintain high batch-to-batch reproducibility, and end-users to accurately compare brands for decision making. Here, we describe a novel reference standard to measure and compare the analytical sensitivity of RATs using a recombinant GFP-tagged nucleocapsid protein (NP-GFP). Importantly, we show that the GFP tag does not interfere with NP detection and provides several advantages affording streamlined protein expression and purification in high yields as well as faster, cheaper and more sensitive quality control measures for post-production assessment of protein solubility and stability. Ten commercial COVID-19 RATs were evaluated and ranked using NP-GFP as a reference standard. Analytical sensitivity data of the selected devices as determined with NP-GFP did not correlate with those reported by the manufacturers using the median tissue culture infectious dose (TCID50) assay. Of note, TCID50 discordance has been previously reported. Taken together, our results highlight an urgent need for a reliable reference standard for evaluation and benchmarking of the analytical sensitivity of RAT devices. NP-GFP is a promising candidate as a reference standard that will ensure that RAT performance is accurately communicated to healthcare providers and the public.
Collapse
|
3
|
Montes-Cobos E, Bastos VC, Monteiro C, de Freitas JC, Fernandes HD, Constancio CS, Rodrigues DA, Gama AM, Vidal VM, Alves LS, Zalcberg-Renault L, de Lira GS, Ota VA, Caloba C, Conde L, Leitão IC, Tanuri A, Ferreira OD, Pereira RM, Vale AM, Castiñeiras TM, Kaiserlian D, Echevarria-Lima J, Bozza MT. Oligosymptomatic long-term carriers of SARS-CoV-2 display impaired innate resistance but increased high-affinity anti-spike antibodies. iScience 2023; 26:107219. [PMID: 37529320 PMCID: PMC10300054 DOI: 10.1016/j.isci.2023.107219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/05/2023] [Accepted: 06/22/2023] [Indexed: 08/03/2023] Open
Abstract
The vast spectrum of clinical features of COVID-19 keeps challenging scientists and clinicians. Low resistance to infection might result in long-term viral persistence, but the underlying mechanisms remain unclear. Here, we studied the immune response of immunocompetent COVID-19 patients with prolonged SARS-CoV-2 infection by immunophenotyping, cytokine and serological analysis. Despite viral loads and symptoms comparable to regular mildly symptomatic patients, long-term carriers displayed weaker systemic IFN-I responses and fewer circulating pDCs and NK cells at disease onset. Type 1 cytokines remained low, while type-3 cytokines were in turn enhanced. Of interest, we observed no defects in antigen-specific cytotoxic T cell responses, and circulating antibodies displayed higher affinity against different variants of SARS-CoV-2 Spike protein in these patients. The identification of distinct immune responses in long-term carriers adds up to our understanding of essential host protective mechanisms to ensure tissue damage control despite prolonged viral infection.
Collapse
Affiliation(s)
- Elena Montes-Cobos
- Laboratório de Inflamação e Imunidade, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victoria C. Bastos
- Laboratório de Inflamação e Imunidade, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Doenças Infecciosas e Parasitárias, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Clarice Monteiro
- Laboratório de Inflamação e Imunidade, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - João C.R. de Freitas
- Laboratório de Inflamação e Imunidade, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Heiny D.P. Fernandes
- Laboratório de Inflamação e Imunidade, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Clarice S. Constancio
- Laboratório de Imunologia Básica e Aplicada, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danielle A.S. Rodrigues
- Laboratório de Biologia de Linfócitos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andreza M.D.S. Gama
- Laboratório de Inflamação e Imunidade, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vinicius M. Vidal
- Laboratório de Inflamação e Imunidade, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leticia S. Alves
- Laboratório de Inflamação e Imunidade, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Laura Zalcberg-Renault
- Laboratório de Inflamação e Imunidade, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Doenças Infecciosas e Parasitárias, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Guilherme S. de Lira
- Laboratório de Inflamação e Imunidade, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Doenças Infecciosas e Parasitárias, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victor A. Ota
- Laboratório de Inflamação e Imunidade, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Doenças Infecciosas e Parasitárias, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carolina Caloba
- Laboratório de Imunologia Molecular, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana Conde
- Laboratório de Biologia de Linfócitos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isabela C. Leitão
- Departamento de Doenças Infecciosas e Parasitárias, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amilcar Tanuri
- Laboratório de Virologia Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Orlando D.C. Ferreira
- Laboratório de Virologia Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renata M. Pereira
- Laboratório de Imunologia Molecular, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André M. Vale
- Laboratório de Biologia de Linfócitos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Terezinha M. Castiñeiras
- Departamento de Doenças Infecciosas e Parasitárias, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dominique Kaiserlian
- INSERM U1060, Université Claude Bernard Lyon 1, Centre hospitalier Lyon-Sud, Pierre-Benite, France
| | - Juliana Echevarria-Lima
- Laboratório de Imunologia Básica e Aplicada, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo T. Bozza
- Laboratório de Inflamação e Imunidade, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Chua FJD, Kim SY, Hill E, Cai JW, Lee WL, Gu X, Afri Affandi SA, Kwok WCG, Ng W, Leifels M, Armas F, Chandra F, Chen H, Alm EJ, Tay M, Wong CCJ, Ng LC, Wuertz S, Thompson JR. Co-incidence of BA.1 and BA.2 at the start of Singapore's Omicron wave revealed by Community and University Campus wastewater surveillance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162611. [PMID: 36871716 DOI: 10.1016/j.scitotenv.2023.162611] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Wastewater surveillance (WWS) has been globally recognised to be a useful tool in quantifying SARS-CoV-2 RNA at the community and residential levels without biases associated with case-reporting. The emergence of variants of concern (VOCs) have given rise to an unprecedented number of infections even though populations are increasingly vaccinated. This is because VOCs have been reported to possess higher transmissibility and can evade host immune responses. The B.1.1.529 lineage (Omicron) has severely disrupted global plans to return to normalcy. In this study, we developed an allele-specific (AS) RT-qPCR assay which simultaneously targets the stretch of deletions and mutations in the spike protein from position 24-27 for quantitative detection of Omicron BA.2. Together with previous assays that detect mutations associated with Omicron BA.1 (deletion at position 69 and 70) and all Omicron (mutation at position 493 and 498), we report the validation and time series of these assays from September 2021 to May 2022 using influent samples from two wastewater treatment plants and across four University campus sites in Singapore. Viral RNA concentrations at the treatment plants corroborate with locally reported clinical cases, AS RT-qPCR assays revealed co-incidence of Omicron BA.1 and BA.2 on 12 January 2022, almost two months after initial BA.1 detection in South Africa and Botswana. BA.2 became the dominant variant by the end of January 2022 and completely displaced BA.1 by mid-March 2022. University campus sites were similarly positive for BA.1 and/or BA.2 in the same week as first detection at the treatment plants, where BA.2 became rapidly established as the dominant lineage within three weeks. These results corroborate clinical incidence of the Omicron lineages in Singapore and indicate minimal silent circulation prior to January 2022. The subsequent simultaneous spread of both variant lineages followed strategic relaxation of safe management measures upon meeting nationwide vaccination goals.
Collapse
Affiliation(s)
- Feng Jun Desmond Chua
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Se Yeon Kim
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Eric Hill
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Jia Wei Cai
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Wei Lin Lee
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 138602, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), 138602, Singapore
| | - Xiaoqiong Gu
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 138602, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), 138602, Singapore
| | - Siti Aisyah Afri Affandi
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Wee Chiew Germaine Kwok
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Weijie Ng
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Mats Leifels
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Federica Armas
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 138602, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), 138602, Singapore
| | - Franciscus Chandra
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 138602, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), 138602, Singapore
| | - Hongjie Chen
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 138602, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), 138602, Singapore
| | - Eric J Alm
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 138602, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), 138602, Singapore; Centre for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Martin Tay
- Environmental Health Institute, National Environmental Agency, 138667, Singapore
| | | | - Lee Ching Ng
- Environmental Health Institute, National Environmental Agency, 138667, Singapore; School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Janelle R Thompson
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), 138602, Singapore; Asian School of the Environment, Nanyang Technological University, 637459, Singapore.
| |
Collapse
|
5
|
Opsteen S, Files JK, Fram T, Erdmann N. The role of immune activation and antigen persistence in acute and long COVID. J Investig Med 2023; 71:545-562. [PMID: 36879504 PMCID: PMC9996119 DOI: 10.1177/10815589231158041] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/09/2023] [Accepted: 01/24/2023] [Indexed: 03/08/2023]
Abstract
In late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) triggered the global coronavirus disease 2019 (COVID-19) pandemic. Although most infections cause a self-limited syndrome comparable to other upper respiratory viral pathogens, a portion of individuals develop severe illness leading to substantial morbidity and mortality. Furthermore, an estimated 10%-20% of SARS-CoV-2 infections are followed by post-acute sequelae of COVID-19 (PASC), or long COVID. Long COVID is associated with a wide variety of clinical manifestations including cardiopulmonary complications, persistent fatigue, and neurocognitive dysfunction. Severe acute COVID-19 is associated with hyperactivation and increased inflammation, which may be an underlying cause of long COVID in a subset of individuals. However, the immunologic mechanisms driving long COVID development are still under investigation. Early in the pandemic, our group and others observed immune dysregulation persisted into convalescence after acute COVID-19. We subsequently observed persistent immune dysregulation in a cohort of individuals experiencing long COVID. We demonstrated increased SARS-CoV-2-specific CD4+ and CD8+ T-cell responses and antibody affinity in patients experiencing long COVID symptoms. These data suggest a portion of long COVID symptoms may be due to chronic immune activation and the presence of persistent SARS-CoV-2 antigen. This review summarizes the COVID-19 literature to date detailing acute COVID-19 and convalescence and how these observations relate to the development of long COVID. In addition, we discuss recent findings in support of persistent antigen and the evidence that this phenomenon contributes to local and systemic inflammation and the heterogeneous nature of clinical manifestations seen in long COVID.
Collapse
Affiliation(s)
- Skye Opsteen
- Division of Infectious Diseases, Department
of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jacob K Files
- Division of Infectious Diseases, Department
of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tim Fram
- Division of Infectious Diseases, Department
of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nathan Erdmann
- Division of Infectious Diseases, Department
of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
6
|
Wu Y, Guo Z, Yuan J, Cao G, Wang Y, Gao P, Liu J, Liu M. Duration of viable virus shedding and polymerase chain reaction positivity of the SARS-CoV-2 Omicron variant in the upper respiratory tract: a systematic review and meta-analysis. Int J Infect Dis 2023; 129:228-235. [PMID: 36804640 PMCID: PMC9937726 DOI: 10.1016/j.ijid.2023.02.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/04/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
OBJECTIVES To assess the duration of viable virus shedding and polymerase chain reaction (PCR) positivity of the SARS-CoV-2 Omicron variant in the upper respiratory tract. METHODS We systematically searched PubMed, Cochrane, and Web of Science for original articles reporting the duration of viable virus shedding and PCR positivity of the SARS-CoV-2 Omicron variant in the upper respiratory tract from November 11, 2021 to December 11, 2022. This meta-analysis was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and was registered with PROSPERO (CRD42022357349). We used the DerSimonian-Laird random-effects meta-analyses to obtain the pooled value and the 95% confidence intervals. RESULTS We included 29 studies and 230,227 patients. The pooled duration of viable virus shedding of the SARS-CoV-2 Omicron variant in the upper respiratory tract was 5.16 days (95% CI: 4.18-6.14), and the average duration of PCR positivity was 10.82 days (95% CI: 10.23-11.42). The duration of viable virus shedding and PCR positivity of the SARS-CoV-2 Omicron variant in symptomatic patients was slightly higher than that in asymptomatic patients, but the difference was not significant (P >0.05). CONCLUSION The current study improves our understanding of the status of the literature on the duration of viable virus shedding and PCR positivity of Omicron in the upper respiratory tract. Our findings have implications for pandemic control strategies and infection control measures.
Collapse
Affiliation(s)
- Yu Wu
- Department of Epidemiology and Biostatics, School of Public Health, Peking University, Beijing, China
| | - Zirui Guo
- Department of Epidemiology and Biostatics, School of Public Health, Peking University, Beijing, China
| | - Jie Yuan
- Department of Epidemiology and Biostatics, School of Public Health, Peking University, Beijing, China
| | - Guiying Cao
- Department of Epidemiology and Biostatics, School of Public Health, Peking University, Beijing, China
| | - Yaping Wang
- Department of Epidemiology and Biostatics, School of Public Health, Peking University, Beijing, China
| | - Peng Gao
- Department of Epidemiology and Biostatics, School of Public Health, Peking University, Beijing, China
| | - Jue Liu
- Department of Epidemiology and Biostatics, School of Public Health, Peking University, Beijing, China
| | - Min Liu
- Department of Epidemiology and Biostatics, School of Public Health, Peking University, Beijing, China.
| |
Collapse
|
7
|
Valenzuela-Fernández A, Cabrera-Rodriguez R, Ciuffreda L, Perez-Yanes S, Estevez-Herrera J, González-Montelongo R, Alcoba-Florez J, Trujillo-González R, García-Martínez de Artola D, Gil-Campesino H, Díez-Gil O, Lorenzo-Salazar JM, Flores C, Garcia-Luis J. Nanomaterials to combat SARS-CoV-2: Strategies to prevent, diagnose and treat COVID-19. Front Bioeng Biotechnol 2022; 10:1052436. [PMID: 36507266 PMCID: PMC9732709 DOI: 10.3389/fbioe.2022.1052436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/09/2022] [Indexed: 11/26/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the associated coronavirus disease 2019 (COVID-19), which severely affect the respiratory system and several organs and tissues, and may lead to death, have shown how science can respond when challenged by a global emergency, offering as a response a myriad of rapid technological developments. Development of vaccines at lightning speed is one of them. SARS-CoV-2 outbreaks have stressed healthcare systems, questioning patients care by using standard non-adapted therapies and diagnostic tools. In this scenario, nanotechnology has offered new tools, techniques and opportunities for prevention, for rapid, accurate and sensitive diagnosis and treatment of COVID-19. In this review, we focus on the nanotechnological applications and nano-based materials (i.e., personal protective equipment) to combat SARS-CoV-2 transmission, infection, organ damage and for the development of new tools for virosurveillance, diagnose and immune protection by mRNA and other nano-based vaccines. All the nano-based developed tools have allowed a historical, unprecedented, real time epidemiological surveillance and diagnosis of SARS-CoV-2 infection, at community and international levels. The nano-based technology has help to predict and detect how this Sarbecovirus is mutating and the severity of the associated COVID-19 disease, thereby assisting the administration and public health services to make decisions and measures for preparedness against the emerging variants of SARS-CoV-2 and severe or lethal COVID-19.
Collapse
Affiliation(s)
- Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Romina Cabrera-Rodriguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Laura Ciuffreda
- Research Unit, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Silvia Perez-Yanes
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Judith Estevez-Herrera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | | | - Julia Alcoba-Florez
- Servicio de Microbiología, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Rodrigo Trujillo-González
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | | | - Helena Gil-Campesino
- Servicio de Microbiología, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Oscar Díez-Gil
- Servicio de Microbiología, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - José M. Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
| | - Carlos Flores
- Research Unit, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Health Sciences, University of Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Jonay Garcia-Luis
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| |
Collapse
|
8
|
Rosca EC, Heneghan C, Spencer EA, Brassey J, Plüddemann A, Onakpoya IJ, Evans D, Conly JM, Jefferson T. Transmission of SARS-CoV-2 Associated with Cruise Ship Travel: A Systematic Review. Trop Med Infect Dis 2022; 7:290. [PMID: 36288031 PMCID: PMC9610645 DOI: 10.3390/tropicalmed7100290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/22/2022] Open
Abstract
Background: Maritime and river travel may be associated with respiratory viral spread via infected passengers and/or crew and potentially through other transmission routes. The transmission models of SARS-CoV-2 associated with cruise ship travel are based on transmission dynamics of other respiratory viruses. We aimed to provide a summary and evaluation of relevant data on SARS-CoV-2 transmission aboard cruise ships, report policy implications, and highlight research gaps. Methods: We searched four electronic databases (up to 26 May 2022) and included studies on SARS-CoV-2 transmission aboard cruise ships. The quality of the studies was assessed based on five criteria, and relevant findings were reported. Results: We included 23 papers on onboard SARS-CoV-2 transmission (with 15 reports on different aspects of the outbreak on Diamond Princess and nine reports on other international cruises), 2 environmental studies, and 1 systematic review. Three articles presented data on both international cruises and the Diamond Princess. The quality of evidence from most studies was low to very low. Index case definitions were heterogeneous. The proportion of traced contacts ranged from 0.19 to 100%. Studies that followed up >80% of passengers and crew reported attack rates (AR) up to 59%. The presence of a distinct dose−response relationship was demonstrated by findings of increased ARs in multi-person cabins. Two studies performed viral cultures with eight positive results. Genomic sequencing and phylogenetic analyses were performed in individuals from three cruises. Two environmental studies reported PCR-positive samples (cycle threshold range 26.21−39.00). In one study, no infectious virus was isolated from any of the 76 environmental samples. Conclusion: Our review suggests that crowding and multiple persons per cabin were associated with an increased risk of transmission on cruise ships. Variations in design, methodology, and case ascertainment limit comparisons across studies and quantification of transmission risk. Standardized guidelines for conducting and reporting studies on cruise ships of acute respiratory infection transmission should be developed.
Collapse
Affiliation(s)
- Elena Cecilia Rosca
- Department of Neurology, Victor Babes University of Medicine and Pharmacy, Piata Eftimie Murgu 2, 300041 Timisoara, Romania
| | - Carl Heneghan
- Centre for Evidence Based Medicine, Nuffield Department of Primary Care Health Sciences, University of Oxford, Radcliffe Observatory Quarter, Oxford OX2 6GG, UK
| | - Elizabeth A. Spencer
- Centre for Evidence Based Medicine, Nuffield Department of Primary Care Health Sciences, University of Oxford, Radcliffe Observatory Quarter, Oxford OX2 6GG, UK
| | - Jon Brassey
- Trip Database Ltd., Glasllwch Lane, Newport NP20 3PS, UK
| | - Annette Plüddemann
- Centre for Evidence Based Medicine, Nuffield Department of Primary Care Health Sciences, University of Oxford, Radcliffe Observatory Quarter, Oxford OX2 6GG, UK
| | - Igho J. Onakpoya
- Department for Continuing Education, University of Oxford, Rewley House, 1 Wellington Square, Oxford OX1 2JA, UK
| | - David Evans
- Li Ka Shing Institute of Virology, and Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - John M. Conly
- Departments of Medicine, Microbiology, Immunology & Infectious Diseases, and Pathology & Laboratory Medicine, Synder Institute for Chronic Diseases and O’Brien Institute for Public Health, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, AB T2N 4N1, Canada
| | - Tom Jefferson
- Department for Continuing Education, University of Oxford, Rewley House, 1 Wellington Square, Oxford OX1 2JA, UK
| |
Collapse
|
9
|
Folayan MO, Arije O, Enemo A, Sunday A, Muhammad A, Nyako HY, Abdullah RM, Okiwu H, Lamontagne E. Associations between COVID-19 vaccine hesitancy and the experience of violence among women and girls living with and at risk of HIV in Nigeria. AFRICAN JOURNAL OF AIDS RESEARCH 2022; 21:306-316. [DOI: 10.2989/16085906.2022.2118615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Morenike Oluwatoyin Folayan
- Department of Child Dental Health, Obafemi Awolowo University, Ile-Ife, Nigeria
- Nigeria Institute of Medical Research, Yaba, Nigeria
- Community Oral Health Department, Tehran University of Medical Sciences, Iran
- Faculty of Health Sciences, University of Zaragoza, Spain
| | - Olujide Arije
- Institute of Public Health, College of Health Sciences, Obafemi Awolowo University, Nigeria
| | - Amaka Enemo
- Nigeria Sex Workers Association, Kubwa, Nigeria
| | - Aaron Sunday
- African Network of Adolescent and Young Persons Development, Barnawa, Nigeria
| | - Amira Muhammad
- Northern Nigerian Transgender Initiative, Abuja, Nigeria
| | | | | | | | - Erik Lamontagne
- Joint United Nations Programme on HIV/AIDS, Strategic Information, Geneva, Switzerland
- Aix-Marseille University, School of Economics, Marseille, France
| |
Collapse
|
10
|
Pekar JE, Magee A, Parker E, Moshiri N, Izhikevich K, Havens JL, Gangavarapu K, Malpica Serrano LM, Crits-Christoph A, Matteson NL, Zeller M, Levy JI, Wang JC, Hughes S, Lee J, Park H, Park MS, Ching KZY, Lin RTP, Mat Isa MN, Noor YM, Vasylyeva TI, Garry RF, Holmes EC, Rambaut A, Suchard MA, Andersen KG, Worobey M, Wertheim JO. The molecular epidemiology of multiple zoonotic origins of SARS-CoV-2. Science 2022; 377:960-966. [PMID: 35881005 PMCID: PMC9348752 DOI: 10.1126/science.abp8337] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/18/2022] [Indexed: 01/08/2023]
Abstract
Understanding the circumstances that lead to pandemics is important for their prevention. We analyzed the genomic diversity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) early in the coronavirus disease 2019 (COVID-19) pandemic. We show that SARS-CoV-2 genomic diversity before February 2020 likely comprised only two distinct viral lineages, denoted "A" and "B." Phylodynamic rooting methods, coupled with epidemic simulations, reveal that these lineages were the result of at least two separate cross-species transmission events into humans. The first zoonotic transmission likely involved lineage B viruses around 18 November 2019 (23 October to 8 December), and the separate introduction of lineage A likely occurred within weeks of this event. These findings indicate that it is unlikely that SARS-CoV-2 circulated widely in humans before November 2019 and define the narrow window between when SARS-CoV-2 first jumped into humans and when the first cases of COVID-19 were reported. As with other coronaviruses, SARS-CoV-2 emergence likely resulted from multiple zoonotic events.
Collapse
Affiliation(s)
- Jonathan E. Pekar
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
- Department of Biomedical Informatics, University of California San Diego, La Jolla, CA 92093, USA
| | - Andrew Magee
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Edyth Parker
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Niema Moshiri
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Katherine Izhikevich
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA
- Department of Mathematics, University of California San Diego, La Jolla, CA 92093, USA
| | - Jennifer L. Havens
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Karthik Gangavarapu
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | - Alexander Crits-Christoph
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | - Nathaniel L. Matteson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mark Zeller
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Joshua I. Levy
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jade C. Wang
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY 11101, USA
| | - Scott Hughes
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY 11101, USA
| | - Jungmin Lee
- Department of Microbiology, Institute for Viral Diseases, Biosafety Center, College of Medicine, Korea University, Seoul, South Korea
| | - Heedo Park
- Department of Microbiology, Institute for Viral Diseases, Biosafety Center, College of Medicine, Korea University, Seoul, South Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Man-Seong Park
- Department of Microbiology, Institute for Viral Diseases, Biosafety Center, College of Medicine, Korea University, Seoul, South Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | | | - Raymond Tzer Pin Lin
- National Public Health Laboratory, National Centre for Infectious Diseases, Singapore
| | - Mohd Noor Mat Isa
- Malaysia Genome and Vaccine Institute, Jalan Bangi, 43000 Kajang, Selangor, Malaysia
| | - Yusuf Muhammad Noor
- Malaysia Genome and Vaccine Institute, Jalan Bangi, 43000 Kajang, Selangor, Malaysia
| | - Tetyana I. Vasylyeva
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Robert F. Garry
- Tulane University, School of Medicine, Department of Microbiology and Immunology, New Orleans, LA 70112, USA
- Zalgen Labs, LCC, Frederick, MD 21703 USA
- Global Virus Network (GVN), Baltimore, MD 21201, USA
| | - Edward C. Holmes
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Andrew Rambaut
- Institute of Evolutionary Biology, University of Edinburgh, King's Buildings, Edinburgh, EH9 3FL, UK
| | - Marc A. Suchard
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biomathematics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Kristian G. Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Research Translational Institute, La Jolla, CA 92037, USA
| | - Michael Worobey
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Joel O. Wertheim
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
11
|
Vassilaki N, Papadimitriou K, Ioannidis A, Papandreou NC, Milona RS, Iconomidou VA, Chatzipanagiotou S. SARS-CoV-2 Amino Acid Mutations Detection in Greek Patients Infected in the First Wave of the Pandemic. Microorganisms 2022; 10:microorganisms10071430. [PMID: 35889149 PMCID: PMC9322066 DOI: 10.3390/microorganisms10071430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel virus that belongs to the Coronoviridae family, emerged in December 2019, causing the COVID-19 pandemic in March 2020. Unlike previous SARS and Middle East respiratory syndrome (MERS) outbreaks, this virus has a higher transmissibility rate, albeit a lower case fatality rate, which results in accumulation of a significant number of mutations and a faster evolution rate. Genomic studies on the mutation rate of the virus, as well as the identification of mutations that prevail and their impact on disease severity, are of great importance for pandemic surveillance and vaccine and drug development. Here, we aim to identify mutations on the SARS-CoV-2 viral genome and their effect on the proteins they are located in, in Greek patients infected in the first wave of the pandemic. To this end, we perform SARS-CoV-2 amplicon-based NGS sequencing on nasopharyngeal swab samples from Greek patients and bioinformatic analysis of the results. Although SARS-CoV-2 is considered genetically stable, we discover a variety of mutations on the viral genome. In detail, 18 mutations are detected in total on 10 SARS-CoV-2 isolates. The mutations are located on ORF1ab, S protein, M protein, ORF3a and ORF7a. Sixteen are also detected in patients from other regions around the world, and two are identified for the first time in the present study. Most of them result in amino acid substitutions. These substitutions are analyzed using computational tools, and the results indicate minor or major impact on the proteins’ structural stability, which could probably affect viral transmissibility and pathogenesis. The correlation of these variations with the viral load levels is examined, and their implication for disease severity and the biology of the virus are discussed.
Collapse
Affiliation(s)
- Niki Vassilaki
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, 11521 Athens, Greece; (N.V.); (R.S.M.)
| | - Konstantinos Papadimitriou
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
| | - Anastasios Ioannidis
- Department of Nursing, Faculty of Health Sciences, University of Peloponnese, Sehi Area, 22100 Tripoli, Greece;
| | - Nikos C. Papandreou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece; (N.C.P.); (V.A.I.)
| | - Raphaela S. Milona
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, 11521 Athens, Greece; (N.V.); (R.S.M.)
| | - Vassiliki A. Iconomidou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece; (N.C.P.); (V.A.I.)
| | - Stylianos Chatzipanagiotou
- Department of Medical Biopathology, Eginition Hospital, Athens Medical School, National and Kapodistrian University of Athens, 72–74 Vasilissis Sofias Avenue, 11528 Athens, Greece
- Correspondence:
| |
Collapse
|
12
|
Effect of cannabidiol on apoptosis and cellular interferon and interferon-stimulated gene responses to the SARS-CoV-2 genes ORF8, ORF10 and M protein. Life Sci 2022; 301:120624. [PMID: 35568225 PMCID: PMC9091075 DOI: 10.1016/j.lfs.2022.120624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/21/2022]
Abstract
AIMS To study effects on cellular innate immune responses to ORF8, ORF10, and Membrane protein (M protein) from the Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes COVID-19, in combination with cannabidiol (CBD). MAIN METHODS HEK293 cells transfected with plasmids expressing control vector, ORF8, ORF10, or M protein were assayed for cell number and markers of apoptosis at 24 h, and interferon and interferon-stimulated gene expression at 14 h, with or without CBD. Cells transfected with polyinosinic:polycytidylic acid (Poly (I:C)) were also studied as a general model of RNA-type viral infection. KEY FINDINGS Reduced cell number and increased early and late apoptosis were found when expression of viral genes was combined with 1-2 μM CBD treatment, but not in control-transfected cells treated with CBD, or in cells expressing viral genes but treated only with vehicle. In cells expressing viral genes, CBD augmented expression of IFNγ, IFNλ1 and IFNλ2/3, as well as the 2'-5'-oligoadenylate synthetase (OAS) family members OAS1, OAS2, OAS3, and OASL. CBD also augmented expression of these genes in control cells not expressing viral genes, but without enhancing apoptosis. CBD similarly enhanced the cellular anti-viral response to Poly (I:C). SIGNIFICANCE Our results demonstrate a poor ability of HEK293 cells to respond to SARS-CoV-2 genes alone, but an augmented innate anti-viral response to these genes in the presence of CBD. Thus, CBD may prime components of the innate immune system, increasing readiness to respond to RNA-type viral infection without activating apoptosis, and could be studied for potential in prophylaxis.
Collapse
|
13
|
Mai LTP, Tran VD, Phuong HVM, Trang UTH, Thanh LT, Son NV, Cuong VD, Dung LP, Hanh NTM, Hai H, Oanh DTK, Thuy NT. Investigation of SARS-CoV-2 presence on environmental surfaces and waste in healthcare and non-healthcare facilities. ENVIRONMENTAL CHALLENGES (AMSTERDAM, NETHERLANDS) 2022; 7:100526. [PMID: 37519307 PMCID: PMC9026952 DOI: 10.1016/j.envc.2022.100526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/23/2022] [Accepted: 04/20/2022] [Indexed: 08/01/2023]
Abstract
Objective The objective of the paper is to investigate the presence of SARS-CoV-2 on inanimate surfaces in four healthcare facilities treating patients with COVID-19 and four quarantine regiments of provincial military commands. Methods From August to October 2020, a total of 468 one-off environmental samples consisting of inanimate surfaces, garbage, and wastewater were collected. The real-time RT-PCR assay targeting E and RdRp genes to detect SARS-CoV-2 and checklist and questionnaire of disinfection practices were employed. If detected by RT-PCR, then positive samples are subjected to cell culture to determine viability. Results The test results showed all samples (100%) to be negative with SARS-CoV-2 resulting in unperformed virus culture. As for recent disinfection practices, chlorine-based products dissolved at a concentration of 0.1% (1000 ppm) in the general context or 0.5% (5000 ppm) for blood and body fluid spills are routinely applied twice a day and at the discharge of patients or quarantined people. Conclusions The finding may illustrate the importance of disinfection practices in removing pathogens or significantly reducing SARS-CoV-2 contamination on environmental surfaces and waste.
Collapse
Affiliation(s)
- Le Thi Phuong Mai
- Department of Public Health, National Institute of Hygiene and Epidemiology, 1 Yersin St., Hai Ba Trung Dist, Hanoi, Vietnam
| | - Van Dinh Tran
- Department of Public Health, National Institute of Hygiene and Epidemiology, 1 Yersin St., Hai Ba Trung Dist, Hanoi, Vietnam
| | - Hoang Vu Mai Phuong
- Department of Public Health, National Institute of Hygiene and Epidemiology, 1 Yersin St., Hai Ba Trung Dist, Hanoi, Vietnam
| | - Ung Thi Hong Trang
- Department of Public Health, National Institute of Hygiene and Epidemiology, 1 Yersin St., Hai Ba Trung Dist, Hanoi, Vietnam
| | - Le Thi Thanh
- Department of Public Health, National Institute of Hygiene and Epidemiology, 1 Yersin St., Hai Ba Trung Dist, Hanoi, Vietnam
| | - Nguyen Vu Son
- Department of Public Health, National Institute of Hygiene and Epidemiology, 1 Yersin St., Hai Ba Trung Dist, Hanoi, Vietnam
| | - Vuong Duc Cuong
- Department of Public Health, National Institute of Hygiene and Epidemiology, 1 Yersin St., Hai Ba Trung Dist, Hanoi, Vietnam
| | - Luu Phuong Dung
- Department of Public Health, National Institute of Hygiene and Epidemiology, 1 Yersin St., Hai Ba Trung Dist, Hanoi, Vietnam
| | - Nguyen Thi My Hanh
- Department of Public Health, National Institute of Hygiene and Epidemiology, 1 Yersin St., Hai Ba Trung Dist, Hanoi, Vietnam
| | - Hoang Hai
- Department of Public Health, National Institute of Hygiene and Epidemiology, 1 Yersin St., Hai Ba Trung Dist, Hanoi, Vietnam
| | - Dang Thi Kieu Oanh
- Department of Public Health, National Institute of Hygiene and Epidemiology, 1 Yersin St., Hai Ba Trung Dist, Hanoi, Vietnam
| | - Nguyen Thanh Thuy
- Department of Public Health, National Institute of Hygiene and Epidemiology, 1 Yersin St., Hai Ba Trung Dist, Hanoi, Vietnam
| |
Collapse
|
14
|
Transmission of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) from pre and asymptomatic infected individuals: a systematic review. Clin Microbiol Infect 2022; 28:178-189. [PMID: 34757116 PMCID: PMC8555342 DOI: 10.1016/j.cmi.2021.10.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/13/2021] [Accepted: 10/23/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The role of SARS-Cov-2-infected persons who develop symptoms after testing (presymptomatics) or not at all (asymptomatics) in the pandemic spread is unknown. OBJECTIVES To determine infectiousness and probable contribution of asymptomatic persons (at the time of testing) to pandemic SARS-CoV-2 spread. DATA SOURCES LitCovid, medRxiv, Google Scholar, and WHO Covid-19 databases (to 31 March 2021) and references in included studies. STUDY ELIGIBILITY CRITERIA Studies with a proven or hypothesized transmission chain based either on serial PCR cycle threshold readings and/or viral culture and/or gene sequencing, with adequate follow-up. PARTICIPANTS People exposed to SARS-CoV-2 within 2-14 days to index asymptomatic (at time of observation) infected individuals. INTERVENTIONS Reliability of symptom and signs was assessed within contemporary knowledge; transmission likelihood was assessed using adapted causality criteria. METHODS Systematic review. We contacted all included studies' corresponding authors requesting further details. RESULTS We included 18 studies from a diverse setting with substantial methodological variation (this field lacks standardized methodology). At initial testing, prevalence of asymptomatic cases was 12.5-100%. Of these, 6-100% were later determined to be presymptomatic, this proportion varying according to setting, methods of case ascertainment and population. Nursing/care home facilities reported high rates of presymptomatic: 50-100% (n = 3 studies). Fourteen studies were classified as high risk of, and four studies as at moderate risk of symptom ascertainment bias. High-risk studies may be less likely to distinguish between presymptomatic and asymptomatic cases. Six asymptomatic studies and four presymptomatic studies reported culturing infectious virus; data were too sparse to determine infectiousness duration. Three studies provided evidence of possible and three of probable/likely asymptomatic transmission; five studies provided possible and two probable/likely presymptomatic SARS-CoV-2 transmission. CONCLUSION High-quality studies provide probable evidence of SARS-CoV-2 transmission from presymptomatic and asymptomatic individuals, with highly variable estimated transmission rates.
Collapse
|
15
|
Clark JA, Pathan N. Hide and seek in a pandemic: review of SARS-CoV-2 infection and sequelae in children. Exp Physiol 2021; 107:653-664. [PMID: 34242467 PMCID: PMC8447309 DOI: 10.1113/ep089399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/07/2021] [Indexed: 11/17/2022]
Abstract
New Findings What is the topic of this review? A description of the current literature relating to COVID‐19 infection in children and the associated inflammatory condition, paediatric multi‐inflammatory syndrome temporally associated with SARS‐CoV‐2 (PIMS‐TS). What advances does it highlight? Children with SARS‐CoV‐2 infection have a distinct clinical phenotype when compared to adults. This may relate to relative differences in their adaptive immunity and in the degree and distribution of expression of the SARS‐CoV‐2 receptor (angiotensin‐converting enzyme 2). There are several similarities between PIMS‐TS, Kawasaki disease shock syndrome and other known inflammatory disorders such as macrophage activation syndrome. Few data are available to date regarding vaccination responses of children against COVID‐19.
Abstract Children infected with SARS‐CoV‐2 have a clinical phenotype that is distinct from that observed in adult cases. They can present with a range of respiratory, gastrointestinal and neurological symptoms, or with a delayed hyperinflammatory syndrome (paediatric multisystem inflammatory system temporally associated with SARS‐CoV‐2; PIMS‐TS) that frequently requires treatment in an intensive care unit. These manifestations may be related to unique expression of transmembrane receptors and immune physiology in children. The clinical features and inflammatory profile of PIMS‐TS are similar to other inflammatory disorders that occur in children such as Kawasaki disease, macrophage activation syndrome and sepsis. Given children are infected less frequently and have less severe disease due to COVID‐19 compared to adults, their physiological profile is of great interest. An understanding of the unique mechanisms of infection and disease in children could aid the identification of potential therapeutic targets. Like adults, children can have long‐term complications of SARS‐CoV‐2 infection, including neurological and cardiac morbidity. Vaccination against SARS‐CoV‐2 is not yet authorised in children aged <12 years, and hence we anticipate ongoing paediatric presentations of COVID‐19 in the coming months.
Collapse
Affiliation(s)
- John A Clark
- Department of Paediatrics, University of Cambridge, Cambridge, Cambridgeshire, CB2 0QQ, UK.,Department of Paediatric Intensive Care, Cambridge University Hospitals NHS Foundation Trust, Hills Rd, Cambridge, Cambridgeshire, CB2 0QQ, UK
| | - Nazima Pathan
- Department of Paediatrics, University of Cambridge, Cambridge, Cambridgeshire, CB2 0QQ, UK.,Department of Paediatric Intensive Care, Cambridge University Hospitals NHS Foundation Trust, Hills Rd, Cambridge, Cambridgeshire, CB2 0QQ, UK
| |
Collapse
|