1
|
Jaroch M, Savage K, Kuipers P, Bacusmo JM, Hu J, Sun J, Dedon PC, Rice KC, de Crécy-Lagard V. Environmental Control of Queuosine Levels in Streptococcus mutans tRNAs. Mol Microbiol 2025; 123:48-59. [PMID: 39719891 DOI: 10.1111/mmi.15336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 12/26/2024]
Abstract
Queuosine (Q) is a modification of the wobble base in tRNAs that decode NA(C/U) codons. It is ubiquitous in bacteria, including many pathogens. Streptococcus mutans is an early colonizer of dental plaque biofilm and a key player in dental caries. Using a combination of genetic and physiological approaches, the predicted Q synthesis and salvage pathways were validated in this organism. These experiments confirmed that S. mutans can synthesize Q de novo through similar pathways found in Bacillus subtilis and Escherichia coli. However, S. mutans has a distinct salvage pathway compared to these model organisms, as it uses a transporter belonging to the energy coupling factor (ECF) family controlled by a preQ1-dependent riboswitch. Furthermore, Q levels in this oral pathogen depended heavily on the media composition, suggesting that micronutrients can affect Q-mediated translation efficiency.
Collapse
Affiliation(s)
- Marshall Jaroch
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, Florida, USA
| | - Kathryn Savage
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, Florida, USA
| | - Paul Kuipers
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, Florida, USA
| | - Jo Marie Bacusmo
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, Florida, USA
| | - Jennifer Hu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jingjing Sun
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Peter C Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Kelly C Rice
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, Florida, USA
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, Florida, USA
- Genetics Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
2
|
Rooke JL, Goodall ECA, Pullela K, Da Costa R, Martinelli N, Smith C, Mora M, Cunningham AF, Henderson IR. Genome-wide fitness analysis of Salmonella enterica reveals aroA mutants are attenuated due to iron restriction in vitro. mBio 2024; 15:e0331923. [PMID: 39287440 PMCID: PMC11481492 DOI: 10.1128/mbio.03319-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Salmonella enterica is a globally disseminated pathogen that is the cause of over 100 million infections per year. The resulting diseases are dependent upon host susceptibility and the infecting serovar. As S. enterica serovar Typhimurium induces a typhoid-like disease in mice, this model has been used extensively to illuminate various aspects of Salmonella infection and host responses. Due to the severity of infection in this model, researchers often use strains of mice resistant to infection or attenuated Salmonella. Despite decades of research, many aspects of Salmonella infection and fundamental biology remain poorly understood. Here, we use a transposon insertion sequencing technique to interrogate the essential genomes of widely used isogenic wild-type and attenuated S. Typhimurium strains. We reveal differential essential pathways between strains in vitro and provide a direct link between iron starvation, DNA synthesis, and bacterial membrane integrity.IMPORTANCESalmonella enterica is an important clinical pathogen that causes a high number of deaths and is increasingly resistant to antibiotics. Importantly, S. enterica is used widely as a model to understand host responses to infection. Understanding how Salmonella survives in vivo is important for the design of new vaccines to combat this pathogen. Live attenuated vaccines have been used clinically for decades. A widely used mutation, aroA, is thought to attenuate Salmonella by restricting the ability of the bacterium to access particular amino acids. Here we show that this mutation limits the ability of Salmonella to acquire iron. These observations have implications for the interpretation of many previous studies and for the use of aroA in vaccine development.
Collapse
Affiliation(s)
- Jessica L Rooke
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Emily C A Goodall
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Karthik Pullela
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Rochelle Da Costa
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Nicole Martinelli
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Chelsie Smith
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Maria Mora
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Adam F Cunningham
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Ian R Henderson
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| |
Collapse
|
3
|
Bedree JK, Bourgeois J, Balani P, Cen L, Hendrickson EL, Kerns KA, Camilli A, McLean JS, Shi W, He X. Identifying essential genes in Schaalia odontolytica using a highly-saturated transposon library. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.604004. [PMID: 39071323 PMCID: PMC11275721 DOI: 10.1101/2024.07.17.604004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The unique epibiotic-parasitic relationship between Nanosynbacter lyticus type strain TM7x, a member of the newly identified Candidate Phyla Radiation, now referred to as Patescibacteria, and its basibiont, Schaalia odontolytica strain XH001 (formerly Actinomyces odontolyticus), require more powerful genetic tools for deeper understanding of the genetic underpinnings that mediate their obligate relationship. Previous studies have mainly characterized the genomic landscape of XH001 during or post TM7x infection through comparative genomic or transcriptomic analyses followed by phenotypic analysis. Comprehensive genetic dissection of the pair is currently cumbersome due to the lack of robust genetic tools in TM7x. However, basic genetic tools are available for XH001 and this study expands the current genetic toolset by developing high-throughput transposon insertion sequencing (Tn-seq). Tn-seq was employed to screen for essential genes in XH001 under laboratory conditions. A highly saturated Tn-seq library was generated with nearly 660,000 unique insertion mutations, averaging one insertion every 2-3 nucleotides. 203 genes, 10.5% of the XH001 genome, were identified as putatively essential.
Collapse
Affiliation(s)
- Joseph K Bedree
- Section of Oral Biology, Division of Oral Biology and Medicine, School of Dentistry, University of California-Los Angeles, Los Angeles, CA, 90095
- Department of Microbiology, The ADA Forsyth Institute; Cambridge, MA, 02142
| | - Jacob Bourgeois
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Pooja Balani
- Department of Microbiology, The ADA Forsyth Institute; Cambridge, MA, 02142
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115
| | - Lujia Cen
- Department of Microbiology, The ADA Forsyth Institute; Cambridge, MA, 02142
| | - Erik L Hendrickson
- Department of Periodontics, School of Dentistry, University of Washington, Seattle, WA, 98195
| | - Kristopher A Kerns
- Department of Periodontics, School of Dentistry, University of Washington, Seattle, WA, 98195
| | - Andrew Camilli
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Jeffrey S McLean
- Department of Periodontics, School of Dentistry, University of Washington, Seattle, WA, 98195
| | - Wenyuan Shi
- Department of Microbiology, The ADA Forsyth Institute; Cambridge, MA, 02142
| | - Xuesong He
- Department of Microbiology, The ADA Forsyth Institute; Cambridge, MA, 02142
| |
Collapse
|
4
|
Torres M, Paszti S, Eberl L. Shedding light on bacteria-host interactions with the aid of TnSeq approaches. mBio 2024; 15:e0039024. [PMID: 38722161 PMCID: PMC11237515 DOI: 10.1128/mbio.00390-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024] Open
Abstract
Bacteria are highly adaptable and grow in diverse niches, where they often interact with eukaryotic organisms. These interactions with different hosts span the entire spectrum from symbiosis to pathogenicity and thus determine the lifestyle of the bacterium. Knowledge of the genetic determinants involved in animal and plant host colonization by pathogenic and mutualistic bacteria is not only crucial to discover new drug targets for disease management but also for developing novel biostimulant strategies. In the last decades, significant progress in genome-wide high-throughput technologies such as transposon insertion sequencing has led to the identification of pathways that enable efficient host colonization. However, the extent to which similar genes play a role in this process in different bacteria is yet unclear. This review highlights the commonalities and specificities of bacterial determinants important for bacteria-host interaction.
Collapse
Affiliation(s)
- Marta Torres
- Department of Plant and Microbial Biology, University of Zurich, Zürich, Switzerland
| | - Sarah Paszti
- Department of Plant and Microbial Biology, University of Zurich, Zürich, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, Zürich, Switzerland
| |
Collapse
|
5
|
St. Pierre J, Roberts J, Alam MA, Shields RC. Construction of an arrayed CRISPRi library as a resource for essential gene function studies in Streptococcus mutans. Microbiol Spectr 2024; 12:e0314923. [PMID: 38054713 PMCID: PMC10783072 DOI: 10.1128/spectrum.03149-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/08/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE The construction of arrayed mutant libraries has advanced the field of bacterial genetics by allowing researchers to more efficiently study the exact function and importance of encoded genes. In this study, we constructed an arrayed clustered regularly interspaced short palindromic repeats interference (CRISPRi) library, known as S treptococcus mutans arrayed CRISPRi (SNAP), as a resource to study >250 essential and growth-supporting genes in Streptococcus mutans. SNAP will be made available to the research community, and we anticipate that its distribution will lead to high-quality, high-throughput, and reproducible studies of essential genes.
Collapse
Affiliation(s)
- Jackson St. Pierre
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, USA
- New York Institute of Technology College of Osteopathic Medicine, Jonesboro, Arkansas, USA
| | - Justin Roberts
- Department of Chemistry & Physics, Arkansas State University, Jonesboro, Arkansas, USA
- University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Mohammad A. Alam
- Department of Chemistry & Physics, Arkansas State University, Jonesboro, Arkansas, USA
| | - Robert C. Shields
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, USA
| |
Collapse
|
6
|
Roy S, Kc HR, Roberts J, Hastings J, Gilmore DF, Shields RC, Alam MA. Development and Antibacterial Properties of 4-[4-(Anilinomethyl)-3-phenylpyrazol-1-yl]benzoic Acid Derivatives as Fatty Acid Biosynthesis Inhibitors. J Med Chem 2023; 66:13622-13645. [PMID: 37729113 PMCID: PMC10591900 DOI: 10.1021/acs.jmedchem.3c00969] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
A number of novel pyrazole derivatives have been synthesized, and several of these compounds are potent antibacterial agents with minimum inhibitory concentrations as low as 0.5 μg/mL. Human cell lines were tolerant to these lead compounds, and they showed negligible hemolytic effects at high concentrations. These bactericidal compounds are very effective against bacterial growth in both planktonic and biofilm contexts. Various techniques were applied to show the inhibition of biofilm growth and eradication of preformed biofilms by lead compounds. Potent compounds are more effective against persisters than positive controls. In vivo studies revealed that lead compounds are effective in rescuing C. elegans from bacterial infections. Several methods were applied to determine the mode of action including membrane permeability assay and SEM micrograph studies. Furthermore, CRISPRi studies led to the determination of these compounds as fatty acid biosynthesis (FAB) inhibitors.
Collapse
Affiliation(s)
- Subrata Roy
- Department of Chemistry and Physics, College of Science and Mathematics, Arkansas State University, Jonesboro, Arkansas 72467, United States
| | - Hansa Raj Kc
- Department of Chemistry and Physics, College of Science and Mathematics, Arkansas State University, Jonesboro, Arkansas 72467, United States
| | - Justin Roberts
- Department of Chemistry and Physics, College of Science and Mathematics, Arkansas State University, Jonesboro, Arkansas 72467, United States
| | - Jared Hastings
- Department of Chemistry and Physics, College of Science and Mathematics, Arkansas State University, Jonesboro, Arkansas 72467, United States
| | - David F Gilmore
- Department of Biological Sciences, College of Science and Mathematics, Arkansas State University, Jonesboro, Arkansas 72467, United States
| | - Robert C Shields
- Department of Biological Sciences, College of Science and Mathematics, Arkansas State University, Jonesboro, Arkansas 72467, United States
| | - Mohammad A Alam
- Department of Chemistry and Physics, College of Science and Mathematics, Arkansas State University, Jonesboro, Arkansas 72467, United States
| |
Collapse
|
7
|
Zhang Y, Li Z, Xu X, Peng X. Transposon mutagenesis in oral streptococcus. J Oral Microbiol 2022; 14:2104951. [PMID: 35903085 PMCID: PMC9318214 DOI: 10.1080/20002297.2022.2104951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Oral streptococci are gram-positive facultative anaerobic bacteria that are normal inhabitants of the human oral cavity and play an important role in maintaining oral microecological balance and pathogenesis. Transposon mutagenesis is an effective genetic manipulation strategy for studying the function of genomic features. In order to study cariogenic related genes and crucial biological element genes of oral Streptococcus, transposon mutagenesis was widely used to identify functional genes. With the advent of next-generation sequencing (NGS) technology and the development of transposon random mutation library construction methods, transposon insertion sequencing (TIS) came into being. Benefiting from high-throughput advances in NGS, TIS was able to evaluate the fitness contribution and essentiality of genetic features in the bacterial genome. The application of transposon mutagenesis, including TIS, to oral streptococci provided a massive amount of valuable detailed linkage data between genetic fitness and genetic backgrounds, further clarify the processes of colonization, virulence, and persistence and provides a more reliable basis for investigating relationships with host ecology and disease status. This review focuses on transposon mutagenesis, including TIS, and its applicability in oral streptococci.
Collapse
Affiliation(s)
- Yixin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu, Sichuan, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhengyi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu, Sichuan, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu, Sichuan, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Harten T, Nimzyk R, Gawlick VEA, Reinhold-Hurek B. Elucidation of Essential Genes and Mutant Fitness during Adaptation toward Nitrogen Fixation Conditions in the Endophyte Azoarcus olearius BH72 Revealed by Tn-Seq. Microbiol Spectr 2022; 10:e0216222. [PMID: 36416558 PMCID: PMC9769520 DOI: 10.1128/spectrum.02162-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/05/2022] [Indexed: 11/24/2022] Open
Abstract
Azoarcus olearius BH72 is a diazotrophic model endophyte that contributes fixed nitrogen to its host plant, Kallar grass, and expresses nitrogenase genes endophytically. Despite extensive studies on biological nitrogen fixation (BNF) of diazotrophic endophytes, little is known about global genetic players involved in survival under respective physiological conditions. Here, we report a global genomic screen for putatively essential genes of A. olearius employing Tn5 transposon mutagenesis with a modified transposon combined with high-throughput sequencing (Tn-Seq). A large Tn5 master library of ~6 × 105 insertion mutants of strain BH72 was obtained. Next-generation sequencing identified 183,437 unique insertion sites into the 4,376,040-bp genome, displaying one insertion every 24 bp on average. Applying stringent criteria, we describe 616 genes as putatively essential for growth on rich medium. COG (Clusters of Orthologous Groups) assignment of the 564 identified protein-coding genes revealed enrichment of genes related to core cellular functions and cell viability. To mimic gradual adaptations toward BNF conditions, the Tn5 mutant library was grown aerobically in synthetic medium or microaerobically on either combined or atmospheric nitrogen. Enrichment and depletion analysis of Tn5 mutants not only demonstrated the role of BNF- and metabolism-related proteins but also revealed that, strikingly, many genes relevant for plant-microbe interactions decrease bacterial competitiveness in pure culture, such type IV pilus- and bacterial envelope-associated genes. IMPORTANCE A constantly growing world population and the daunting challenge of climate change demand new strategies in agricultural crop production. Intensive usage of chemical fertilizers, overloading the world's fields with organic input, threaten terrestrial and marine ecosystems as well as human health. Long overlooked, the beneficial interaction of endophytic bacteria and grasses has attracted ever-growing interest in research in the last decade. Capable of biological nitrogen fixation, diazotrophic endophytes not only provide a valuable source of combined nitrogen but also are known for diverse plant growth-promoting effects, thereby contributing to plant productivity. Elucidation of an essential gene set for a prominent model endophyte such as A. olearius BH72 provides us with powerful insights into its basic lifestyle. Knowledge about genes detrimental or advantageous under defined physiological conditions may point out a way of manipulating key steps in the bacterium's lifestyle and plant interaction toward a more sustainable agriculture.
Collapse
Affiliation(s)
- Theresa Harten
- University of Bremen, Faculty of Biology and Chemistry, CBIB Center for Biomolecular Interactions, Department of Microbe-Plant Interactions, Bremen, Germany
| | - Rolf Nimzyk
- University of Bremen, Faculty of Biology and Chemistry, CBIB Center for Biomolecular Interactions, Department of Microbe-Plant Interactions, Bremen, Germany
- University of Bremen, Faculty of Biology and Chemistry, CBIB Center for Biomolecular Interactions, Nucleic Acid Analysis Facility (NAA), Bremen, Germany
| | - Vivian E. A. Gawlick
- University of Bremen, Faculty of Biology and Chemistry, CBIB Center for Biomolecular Interactions, Department of Microbe-Plant Interactions, Bremen, Germany
| | - Barbara Reinhold-Hurek
- University of Bremen, Faculty of Biology and Chemistry, CBIB Center for Biomolecular Interactions, Department of Microbe-Plant Interactions, Bremen, Germany
| |
Collapse
|
9
|
A Genome-Wide CRISPR Interference Screen Reveals an StkP-Mediated Connection between Cell Wall Integrity and Competence in Streptococcus salivarius. mSystems 2022; 7:e0073522. [PMID: 36342134 PMCID: PMC9765292 DOI: 10.1128/msystems.00735-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Competence is one of the most efficient bacterial evolutionary and adaptative strategies by synchronizing production of antibacterial compounds and integration of DNA released by dead cells. In most streptococci, this tactic is orchestrated by the ComRS system, a pheromone communication device providing a short time window of activation in which only part of the population is responsive. Understanding how this developmental process integrates multiple inputs to fine-tune the adequate response is a long-standing question. However, essential genes involved in the regulation of ComRS have been challenging to study. In this work, we built a conditional mutant library using CRISPR interference and performed three complementary screens to investigate competence genetic regulation in the human commensal Streptococcus salivarius. We show that initiation of competence increases upon cell wall impairment, suggesting a connection between cell envelope stress and competence activation. Notably, we report a key role for StkP, a serine-threonine kinase known to regulate cell wall homeostasis. We show that StkP controls competence by a mechanism that reacts to peptidoglycan fragments. Together, our data suggest a key cell wall sensing mechanism coupling competence to cell envelope integrity. IMPORTANCE Survival of human commensal streptococci in the digestive tract requires efficient strategies which must be tightly and collectively controlled for responding to competitive pressure and drastic environmental changes. In this context, the autocrine signaling system ComRS controlling competence for natural transformation and predation in salivarius streptococci could be seen as a multi-input device integrating a variety of environmental stimuli. In this work, we revealed novel positive and negative competence modulators by using a genome-wide CRISPR interference strategy. Notably, we highlighted an unexpected connection between bacterial envelope integrity and competence activation that involves several cell wall sensors. Together, these results showcase how commensal streptococci can fine-tune the pheromone-based competence system by responding to multiple inputs affecting their physiological status in order to calibrate an appropriate collective behavior.
Collapse
|
10
|
McLellan LK, Anderson ME, Grossman AD. TnSmu1 is a functional integrative and conjugative element in Streptococcus mutans that when expressed causes growth arrest of host bacteria. Mol Microbiol 2022; 118:652-669. [PMID: 36268794 PMCID: PMC10098952 DOI: 10.1111/mmi.14992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 01/18/2023]
Abstract
Integrative and conjugative elements (ICEs) are major drivers of horizontal gene transfer in bacteria. They mediate their own transfer from host cells (donors) to recipients and allow bacteria to acquire new phenotypes, including pathogenic and metabolic capabilities and drug resistances. Streptococcus mutans, a major causative agent of dental caries, contains a putative ICE, TnSmu1, integrated at the 3' end of a leucyl tRNA gene. We found that TnSmu1 is a functional ICE, containing all the genes necessary for ICE function. It excised from the chromosome and excision was stimulated by DNA damage. We identified the DNA junctions generated by excision of TnSmu1, defined the ends of the element, and detected the extrachromosomal circle. We found that TnSmu1 can transfer from S. mutans donors to recipients when co-cultured on solid medium. The presence of TnSmu1 in recipients inhibited successful acquisition of another copy and this inhibition was mediated, at least in part, by the likely transcriptional repressor encoded by the element. Using microscopy to track individual cells, we found that activation of TnSmu1 caused an arrest of cell growth. Our results demonstrate that TnSmu1 is a functional ICE that affects the biology of its host cells.
Collapse
Affiliation(s)
- Lisa K McLellan
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Mary E Anderson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Alan D Grossman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
11
|
King S, Quick A, King K, Walker AR, Shields RC. Activation of TnSmu1, an integrative and conjugative element, by an ImmR-like transcriptional regulator in Streptococcus mutans. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36201342 DOI: 10.1099/mic.0.001254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Integrative and conjugative elements (ICEs) are chromosomally encoded mobile genetic elements that can transfer DNA between bacterial strains. Recently, as part of efforts to determine hypothetical gene functions, we have discovered an important regulatory module encoded on an ICE known as TnSmu1 on the Streptococcus mutans chromosome. The regulatory module consists of a cI-like repressor with a helix-turn-helix DNA binding domain immR Smu (immunity repressor) and a metalloprotease immA Smu (anti-repressor). It is not possible to create an in-frame deletion mutant of immR Smu and repression of immR Smu with CRISPRi (CRISPR interference) causes substantial cell defects. We used a bypass of essentiality (BoE) screen to discover genes that allow deletion of the regulatory module. This revealed that conjugation genes, located within TnSmu1, can restore the viability of an immR Smu mutant. Deletion of immR Smu also leads to production of a circular intermediate form of TnSmu1, which is also inducible by the genotoxic agent mitomycin C. To gain further insights into potential regulation of TnSmu1 by ImmRSmu and broader effects on S. mutans UA159 physiology, we used CRISPRi and RNA-seq. Strongly induced genes included all the TnSmu1 mobile element, genes involved in amino acid metabolism, transport systems and a type I-C CRISPR-Cas system. Lastly, bioinformatic analysis shows that the TnSmu1 mobile element and its associated genes are well distributed across S. mutans isolates. Taken together, our results show that activation of TnSmu1 is controlled by the immRA Smu module, and that activation is deleterious to S. mutans, highlighting the complex interplay between mobile elements and their host.
Collapse
Affiliation(s)
- Shawn King
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, USA
| | - Allison Quick
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, USA
| | - Kalee King
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, USA
| | | | - Robert C Shields
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, USA
| |
Collapse
|
12
|
Genomic Analyses Identify Manganese Homeostasis as a Driver of Group B Streptococcal Vaginal Colonization. mBio 2022; 13:e0098522. [PMID: 35658538 PMCID: PMC9239048 DOI: 10.1128/mbio.00985-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Group B Streptococcus (GBS) is associated with severe infections in utero and in newborn populations, including pneumonia, sepsis, and meningitis. GBS vaginal colonization of the pregnant mother is an important prerequisite for transmission to the newborn and the development of neonatal invasive disease; however, our understanding of the factors required for GBS persistence and ascension in the female reproductive tract (FRT) remains limited. Here, we utilized a GBS mariner transposon (Krmit) mutant library previously developed by our group and identified underrepresented mutations in 535 genes that contribute to survival within the vaginal lumen and colonization of vaginal, cervical, and uterine tissues. From these mutants, we identified 47 genes that were underrepresented in all samples collected, including mtsA, a component of the mtsABC locus, encoding a putative manganese (Mn2+)-dependent ATP-binding cassette transporter. RNA sequencing analysis of GBS recovered from the vaginal tract also revealed a robust increase of mtsA expression during vaginal colonization. We engineered an ΔmtsA mutant strain and found by using inductively coupled plasma mass spectrometry that it exhibited decreased concentrations of intracellular Mn2+, confirming its involvement in Mn2+ acquisition. The ΔmtsA mutant was significantly more susceptible to the metal chelator calprotectin and to oxidative stressors, including both H2O2 and paraquat, than wild-type (WT) GBS. We further observed that the ΔmtsA mutant strain exhibited a significant fitness defect in comparison to WT GBS in vivo by using a murine model of vaginal colonization. Taken together, these data suggest that Mn2+ homeostasis is an important process contributing to GBS survival in the FRT.
Collapse
|
13
|
Rahman ASMZ, Timmerman L, Gallardo F, Cardona ST. Identification of putative essential protein domains from high-density transposon insertion sequencing. Sci Rep 2022; 12:962. [PMID: 35046497 PMCID: PMC8770471 DOI: 10.1038/s41598-022-05028-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 12/29/2021] [Indexed: 12/24/2022] Open
Abstract
A first clue to gene function can be obtained by examining whether a gene is required for life in certain standard conditions, that is, whether a gene is essential. In bacteria, essential genes are usually identified by high-density transposon mutagenesis followed by sequencing of insertion sites (Tn-seq). These studies assign the term "essential" to whole genes rather than the protein domain sequences that encode the essential functions. However, genes can code for multiple protein domains that evolve their functions independently. Therefore, when essential genes code for more than one protein domain, only one of them could be essential. In this study, we defined this subset of genes as "essential domain-containing" (EDC) genes. Using a Tn-seq data set built-in Burkholderia cenocepacia K56-2, we developed an in silico pipeline to identify EDC genes and the essential protein domains they encode. We found forty candidate EDC genes and demonstrated growth defect phenotypes using CRISPR interference (CRISPRi). This analysis included two knockdowns of genes encoding the protein domains of unknown function DUF2213 and DUF4148. These putative essential domains are conserved in more than two hundred bacterial species, including human and plant pathogens. Together, our study suggests that essentiality should be assigned to individual protein domains rather than genes, contributing to a first functional characterization of protein domains of unknown function.
Collapse
Affiliation(s)
| | - Lukas Timmerman
- Department of Computer Science, University of Manitoba, Winnipeg, MB, Canada
| | - Flyn Gallardo
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Silvia T Cardona
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada.
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
14
|
Walker AR, Shields RC. Identification and Analysis of Essential Genes in Streptococcus mutans with Transposon Sequencing. Methods Mol Biol 2022; 2377:237-258. [PMID: 34709620 DOI: 10.1007/978-1-0716-1720-5_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Transposon sequencing (Tn-seq) has greatly accelerated the rate at which gene function can be profiled in microbial organisms. This technique has been applied to the study of the dental caries pathogen Streptococcus mutans where it has been used to generate large transposon mutant libraries. Coupled with high-throughput sequencing and bioinformatics tools, culture of these transposon mutant libraries has facilitated the identification of essential and conditional essential genes. In this chapter, we describe a procedure for performing Tn-seq studies in S. mutans that covers pooled transposon mutant construction, in vitro culture, and DNA library sequencing and data analysis.
Collapse
Affiliation(s)
- Alejandro R Walker
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Robert C Shields
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA.
- Department of Biological Sciences, College of Sciences and Mathematics, Arkansas State University, Jonesboro, AR, USA.
| |
Collapse
|
15
|
Wang Y, Cao W, Merritt J, Xie Z, Liu H. Characterization of FtsH Essentiality in Streptococcus mutans via Genetic Suppression. Front Genet 2021; 12:659220. [PMID: 33986772 PMCID: PMC8112672 DOI: 10.3389/fgene.2021.659220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022] Open
Abstract
FtsH belongs to the AAA+ ATP-dependent family of proteases, which participate in diverse cellular processes and are ubiquitous among bacteria, chloroplasts, and mitochondria. FtsH is poorly characterized in most organisms, especially compared to other major housekeeping proteases. In the current study, we examined the source of FtsH essentiality in the human oral microbiome species Streptococcus mutans, one of the primary etiological agents of dental caries. By creating a conditionally lethal ftsH mutant, we were able to identify a secondary suppressor missense mutation in the vicR gene, encoding the response regulator of the essential VicRK two-component system (TCS). Transcriptomic analysis of the vicR (G195R) mutant revealed significantly reduced expression of 46 genes, many of which were located within the genomic island Tnsmu2, which harbors the mutanobactin biosynthetic gene cluster. In agreement with the transcriptomic data, deletion of the mutanobactin biosynthetic gene cluster suppressed ftsH essentiality in S. mutans. We also explored the role of FtsH in S. mutans physiology and demonstrated its critical role in stress tolerance, especially acid stress. The presented results reveal the first insights within S. mutans for the pleiotropic regulatory function of this poorly understood global regulator.
Collapse
Affiliation(s)
- Yaqi Wang
- MOE Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Wei Cao
- MOE Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Justin Merritt
- Department of Restorative Dentistry, Oregon Health & Science University, Portland, OR, United States.,Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, United States
| | - Zhoujie Xie
- MOE Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Hao Liu
- MOE Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
16
|
Quorum Sensing in Streptococcus mutans Regulates Production of Tryglysin, a Novel RaS-RiPP Antimicrobial Compound. mBio 2021; 12:mBio.02688-20. [PMID: 33727351 PMCID: PMC8092268 DOI: 10.1128/mbio.02688-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacteria interact and compete with a large community of organisms in their natural environment. Streptococcus mutans is one such organism, and it is an important member of the oral microbiota. We found that S. mutans uses a quorum-sensing system to regulate production of a novel posttranslationally modified peptide capable of inhibiting growth of several streptococcal species. The genus Streptococcus encompasses a large bacterial taxon that commonly colonizes mucosal surfaces of vertebrates and is capable of disease etiologies originating from diverse body sites, including the respiratory, digestive, and reproductive tracts. Identifying new modes of treating infections is of increasing importance, as antibiotic resistance has escalated. Streptococcus mutans is an important opportunistic pathogen that is an agent of dental caries and is capable of systemic diseases such as endocarditis. As such, understanding how it regulates virulence and competes in the oral niche is a priority in developing strategies to defend from these pathogens. We determined that S. mutans UA159 possesses a bona fide short hydrophobic peptide (SHP)/Rgg quorum-sensing system that regulates a specialized biosynthetic operon featuring a radical-SAM (S-adenosyl-l-methionine) (RaS) enzyme and produces a ribosomally synthesized and posttranslationally modified peptide (RiPP). The pairing of SHP/Rgg regulatory systems with RaS biosynthetic operons is conserved across streptococci, and a locus similar to that in S. mutans is found in Streptococcus ferus, an oral streptococcus isolated from wild rats. We identified the RaS-RiPP product from this operon and solved its structure using a combination of analytical methods; we term these RiPPs tryglysin A and B for the unusual Trp-Gly-Lys linkage. We report that tryglysins specifically inhibit the growth of other streptococci, but not other Gram-positive bacteria such as Enterococcus faecalis or Lactococcus lactis. We predict that tryglysin is produced by S. mutans in its oral niche, thus inhibiting the growth of competing species, including several medically relevant streptococci.
Collapse
|
17
|
Arenas J, Zomer A, Harders-Westerveen J, Bootsma HJ, De Jonge MI, Stockhofe-Zurwieden N, Smith HE, De Greeff A. Identification of conditionally essential genes for Streptococcus suis infection in pigs. Virulence 2021; 11:446-464. [PMID: 32419603 PMCID: PMC7239030 DOI: 10.1080/21505594.2020.1764173] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Streptococcus suis is a Gram-positive bacterium and zoonotic pathogen that causes meningitis and sepsis in pigs and humans. The aim of this study was to identify genes required for S. suis infection. We created Tn-Seq libraries in a virulent S. suis strain 10, which was used to inoculate pigs in an intrathecal experimental infection. Comparative analysis of the relative abundance of mutants recovered from different sites of infection (blood, cerebrospinal fluid, and meninges of the brain) identified 361 conditionally essential genes, i.e. required for infection, which is about 18% of the genome. The conditionally essential genes were primarily involved in metabolic and transport processes, regulation, ribosomal structure and biogenesis, transcription, and cell wall membrane and envelope biogenesis, stress defenses, and immune evasion. Directed mutants were created in a set of 10 genes of different genetic ontologies and their role was determined in ex vivo models. Mutants showed different levels of sensitivity to survival in whole blood, serum, cerebrospinal fluid, thermic shock, and stress conditions, as compared to the wild type. Additionally, the role of three selected mutants was validated in co-infection experiments in which pigs were infected with both wild type and isogenic mutant strains. The genetic determinants of infection identified in this work contribute to novel insights in S. suis pathogenesis and could serve as targets for novel vaccines or antimicrobial drugs.
Collapse
Affiliation(s)
- Jesús Arenas
- Department of Infection Biology, Wageningen Bioveterinary Research (WBVR), Lelystad, The Netherlands.,Unit of Microbiology and Immunology, Faculty of Veterinary, University of Zaragoza, Zaragoza, Spain
| | - Aldert Zomer
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud, Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Jose Harders-Westerveen
- Department of Infection Biology, Wageningen Bioveterinary Research (WBVR), Lelystad, The Netherlands
| | - Hester J Bootsma
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud, Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Marien I De Jonge
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud, Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | | | - Hilde E Smith
- Department of Infection Biology, Wageningen Bioveterinary Research (WBVR), Lelystad, The Netherlands
| | - Astrid De Greeff
- Department of Infection Biology, Wageningen Bioveterinary Research (WBVR), Lelystad, The Netherlands
| |
Collapse
|
18
|
Luo H, Lin Y, Liu T, Lai FL, Zhang CT, Gao F, Zhang R. DEG 15, an update of the Database of Essential Genes that includes built-in analysis tools. Nucleic Acids Res 2021; 49:D677-D686. [PMID: 33095861 PMCID: PMC7779065 DOI: 10.1093/nar/gkaa917] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/30/2020] [Accepted: 10/06/2020] [Indexed: 12/21/2022] Open
Abstract
Essential genes refer to genes that are required by an organism to survive under specific conditions. Studies of the minimal-gene-set for bacteria have elucidated fundamental cellular processes that sustain life. The past five years have seen a significant progress in identifying human essential genes, primarily due to the successful use of CRISPR/Cas9 in various types of human cells. DEG 15, a new release of the Database of Essential Genes (www.essentialgene.org), has provided major advancements, compared to DEG 10. Specifically, the number of eukaryotic essential genes has increased by more than fourfold, and that of prokaryotic ones has more than doubled. Of note, the human essential-gene number has increased by more than tenfold. Moreover, we have developed built-in analysis modules by which users can perform various analyses, such as essential-gene distributions between bacterial leading and lagging strands, sub-cellular localization distribution, enrichment analysis of gene ontology and KEGG pathways, and generation of Venn diagrams to compare and contrast gene sets between experiments. Additionally, the database offers customizable BLAST tools for performing species- and experiment-specific BLAST searches. Therefore, DEG comprehensively harbors updated human-curated essential-gene records among prokaryotes and eukaryotes with built-in tools to enhance essential-gene analysis.
Collapse
Affiliation(s)
- Hao Luo
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Yan Lin
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Tao Liu
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Fei-Liao Lai
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Chun-Ting Zhang
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Feng Gao
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China.,Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Ren Zhang
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
19
|
The Lactococcal dgkB ( yecE) and dxsA Genes for Lipid Metabolism Are Involved in the Resistance to Cell Envelope-Acting Antimicrobials. Int J Mol Sci 2021; 22:ijms22031014. [PMID: 33498351 PMCID: PMC7864038 DOI: 10.3390/ijms22031014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 01/01/2023] Open
Abstract
The emergence of antibiotic-resistant bacteria led to an urgent need for next-generation antimicrobial agents with novel mechanisms of action. The use of positively charged antimicrobial peptides that target cytoplasmic membrane is an especially promising strategy since essential functions and the conserved structure of the membrane hinder the development of bacterial resistance. Aureocin A53- and enterocin L50-like bacteriocins are highly cationic, membrane-targeting antimicrobial peptides that have potential as next-generation antibiotics. However, the mechanisms of resistance to these bacteriocins and cross-resistance against antibiotics must be examined before application to ensure their safe use. Here, in the model bacterium Lactococcus lactis, we studied the development of resistance to selected aureocin A53- and enterocin L50-like bacteriocins and its correlation with antibiotics. First, to generate spontaneous resistant mutants, L.lactis was exposed to bacteriocin BHT-B. Sequencing of their genomes revealed single nucleotide polymorphisms (SNPs) in the dgkB (yecE) and dxsA genes encoding diacylglycerol kinase and 1-deoxy-D-xylulose 5-phosphate synthase, respectively. Then, selected mutants underwent susceptibility tests with a wide array of bacteriocins and antibiotics. The highest alterations in the sensitivity of studied mutants were seen in the presence of cytoplasmic membrane targeting bacteriocins (K411, Ent7, EntL50, WelM, SalC, nisin) and antibiotics (daptomycin and gramicidin) as well as lipid II cycle-blocking bacteriocins (nisin and Lcn972) and antibiotics (bacitracin). Interestingly, decreased via the SNPs accumulation sensitivity to membrane-active bacteriocins and antibiotics resulted in the concurrently increased vulnerability to bacitracin, carbenicillin, or chlortetracycline. It is suspected that SNPs may result in alterations to the efficiency of the nascent enzymes rather than a total loss of their function as neither deletion nor overexpression of dxsA restored the phenotype observed in spontaneous mutants.
Collapse
|
20
|
Turner ME, Huynh K, Carroll RK, Ahn SJ, Rice KC. Characterization of the Streptococcus mutans SMU.1703c-SMU.1702c Operon Reveals Its Role in Riboflavin Import and Response to Acid Stress. J Bacteriol 2020; 203:e00293-20. [PMID: 33077636 PMCID: PMC7950412 DOI: 10.1128/jb.00293-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/15/2020] [Indexed: 11/20/2022] Open
Abstract
Streptococcus mutans utilizes numerous metabolite transporters to obtain essential nutrients in the "feast or famine" environment of the human mouth. S. mutans and most other streptococci are considered auxotrophic for several essential vitamins including riboflavin (vitamin B2), which is used to generate key cofactors and to perform numerous cellular redox reactions. Despite the well-known contributions of this vitamin to central metabolism, little is known about how S. mutans obtains and metabolizes B2 The uncharacterized protein SMU.1703c displays high sequence homology to the riboflavin transporter RibU. Deletion of SMU.1703c hindered S. mutans growth in complex and defined medium in the absence of saturating levels of exogenous riboflavin, whereas deletion of cotranscribed SMU.1702c alone had no apparent effect on growth. Expression of SMU.1703c in a Bacillus subtilis riboflavin auxotroph functionally complemented growth in nonsaturating riboflavin conditions. S. mutans was also able to grow on flavin adenine dinucleotide (FAD) or flavin mononucleotide (FMN) in an SMU.1703c-dependent manner. Deletion of SMU.1703c and/or SMU.1702c impacted S. mutans acid stress tolerance, as all mutants showed improved growth at pH 5.5 compared to that of the wild type when medium was supplemented with saturating riboflavin. Cooccurrence of SMU.1703c and SMU.1702c, a hypothetical PAP2 family acid phosphatase gene, appears unique to the streptococci and may suggest a connection of SMU.1702c to the acquisition or metabolism of flavins within this genus. Identification of SMU.1703c as a RibU-like riboflavin transporter furthers our understanding of how S. mutans acquires essential micronutrients within the oral cavity and how this pathogen successfully competes within nutrient-starved oral biofilms.IMPORTANCE Dental caries form when acid produced by oral bacteria erodes tooth enamel. This process is driven by the fermentative metabolism of cariogenic bacteria, most notably Streptococcus mutans Nutrient acquisition is key in the competitive oral cavity, and many organisms have evolved various strategies to procure carbon sources or necessary biomolecules. B vitamins, such as riboflavin, which many oral streptococci must scavenge from the oral environment, are necessary for survival within the competitive oral cavity. However, the primary mechanism and proteins involved in this process remain uncharacterized. This study is important because it identifies a key step in S. mutans riboflavin acquisition and cofactor generation, which may enable the development of novel anticaries treatment strategies via selective targeting of metabolite transporters.
Collapse
Affiliation(s)
- Matthew E Turner
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Khanh Huynh
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Ronan K Carroll
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA
| | - Sang-Joon Ahn
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Kelly C Rice
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
21
|
Shields RC, Kim JN, Ahn SJ, Burne RA. Peptides encoded in the Streptococcus mutans RcrRPQ operon are essential for thermotolerance. MICROBIOLOGY-SGM 2020; 166:306-317. [PMID: 31935187 DOI: 10.1099/mic.0.000887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The MarR-like transcriptional regulator and two ABC transporters encoded by the rcrRPQ operon in the dental caries pathogen Streptococcus mutans have important regulatory roles related to oxidative stress tolerance, genetic competence and (p)ppGpp metabolism. A unique feature of the rcrRPQ operon, when compared to other bacteria, is the presence of two peptides, designated Pep1 and Pep2, encoded in alternative reading frames at the 3' end of rcrQ. Here, we show that the rcrRPQ operon, including Pep1 and 2, is essential for S. mutans to survive and maintain viability at elevated temperatures. No major changes in the levels of the heat shock proteins DnaK or GroEL that could account for the thermosensitivity of rcrRPQ mutants were observed. By introducing a single amino acid substitution into the comX gene that deletes an internally encoded peptide, XrpA, we found that XrpA is a contributing factor to the thermosensitive phenotype of a ΔrcrR strain. Overexpression of XrpA on a plasmid also caused a significant growth defect at 42 °C. Interestingly, loss of the gene for the RelA/SpoT homologue (RSH) enzyme, relA, restored growth of the ΔrcrR strain at 42 °C. During heat stress and when a stringent response was induced, levels of (p)ppGpp were elevated in the ΔrcrR strain. Deletion of relA in the ΔrcrR strain lowered the basal levels of (p)ppGpp to those observed in wild-type S. mutans. Thus, (p)ppGpp pools are dysregulated in ΔrcrR, which likely leads to aberrant control of transcriptional/translational processes and the thermosensitive phenotype. In summary, the genes and peptides encoded in the rcrRPQ operon are critical for thermotolerance, and in some strains these phenotypes are related to altered (p)ppGpp metabolism and increased production of the XrpA peptide.
Collapse
Affiliation(s)
- Robert C Shields
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Jeong Nam Kim
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Sang-Joon Ahn
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Robert A Burne
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
22
|
Yu J, Wang Y, Han D, Cao W, Zheng L, Xie Z, Liu H. Identification of Streptococcus mutans genes involved in fluoride resistance by screening of a transposon mutant library. Mol Oral Microbiol 2020; 35:260-270. [PMID: 33000897 DOI: 10.1111/omi.12316] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 11/28/2022]
Abstract
Fluoride has been used as an effective anticaries agent for more than 70 years, which might result in the emergence of fluoride-resistant strains. However, the fluoride resistance mechanism and the cariogenic properties of fluoride-resistant mutant for cariogenic bacterial species Streptococcus mutans remain largely unknown. We describe here the construction and characterization of a mariner-based transposon system designed to be used in S. mutans, which is also potentially applicable to other streptococci. To identify genetic determinants of fluoride resistance in S. mutans, we constructed a library of S. mutans transposon insertion mutants and screened this library to identify mutants exhibiting fluoride resistance phenotype. Two mutants were found to carry transposon insertion in two different genetic loci (smu.396 and smu.1291c), respectively. Our subsequent genetic study indicates the fluoride-resistant phenotype for the mutant with the insertion in smu.1291c is resulting from the constitutive overexpression of downstream operon smu.1290c-89c, which is consistent with the previous reports. We also demonstrate for the first time that the deletion of smu.396 is responsible for the fluoride-resistant phenotype and that the combining of smu1290c-89c overexpression and smu.396 deletion in one strain could attribute an additive effect on the fluoride resistance. In addition, our results suggest that the biological fitness of those fluoride-resistant mutants is reduced compared to that of wild-type strain. Overall, our identification and characterization of genetic determinants responsible for fluoride resistance in S. mutans expand our understanding of the fluoride resistance mechanism and the biological consequence of the fluoride resistance strains.
Collapse
Affiliation(s)
- Jie Yu
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Yaqi Wang
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Dongmei Han
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Wei Cao
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Lanyan Zheng
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Zhoujie Xie
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Hao Liu
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
23
|
Ahn SJ, Hull W, Desai S, Rice KC, Culp D. Understanding LrgAB Regulation of Streptococcus mutans Metabolism. Front Microbiol 2020; 11:2119. [PMID: 33013773 PMCID: PMC7496758 DOI: 10.3389/fmicb.2020.02119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/11/2020] [Indexed: 12/27/2022] Open
Abstract
Lack of LrgAB renders cariogenic Streptococcus mutans more sensitive to oxidative stress, as well as limits the capacity of this organism to re-uptake pyruvate upon starvation. This study was aimed at investigating the ecological and metabolic contribution of LrgAB to competitive fitness, using S. mutans strains, that either lack or overexpress lrgAB. These experiments revealed that impaired aerobic growth of the ΔlrgAB mutant can be effectively restored by supplementation of pyruvate, and that perturbated expression of lrgAB significantly affects pyruvate flux and the conversion of pyruvate to acetyl-CoA by the Pdh pathway, verifying that LrgAB is closely linked to pyruvate catabolism. In vitro competition assays revealed that LrgAB plays an important role in S. mutans competition with H2O2-producing S. gordonii, an interaction which can also be modulated by external pyruvate. However, no obvious competitive disadvantage was observed against S. gordonii by either the S. mutans lrgAB mutant or lrgAB overexpression strain in vivo using a mouse caries model. Organic acid analysis of mouse dental biofilms revealed that metabolites produced by the host and/or dental plaque microbiota could complement the deficiency of a lrgAB mutant, and favored S. mutans establishment compared to S. gordonii. Collectively, these results reinforce the importance of the oral microbiota and the metabolic environment in the oral cavity battleground, and highlight that pyruvate uptake through LrgAB may be crucial for interspecies competition that drives niche occupancy.
Collapse
Affiliation(s)
- Sang-Joon Ahn
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| | - William Hull
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| | - Shailja Desai
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| | - Kelly C Rice
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - David Culp
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| |
Collapse
|
24
|
Cain AK, Barquist L, Goodman AL, Paulsen IT, Parkhill J, van Opijnen T. A decade of advances in transposon-insertion sequencing. Nat Rev Genet 2020; 21:526-540. [PMID: 32533119 PMCID: PMC7291929 DOI: 10.1038/s41576-020-0244-x] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2020] [Indexed: 01/12/2023]
Abstract
It has been 10 years since the introduction of modern transposon-insertion sequencing (TIS) methods, which combine genome-wide transposon mutagenesis with high-throughput sequencing to estimate the fitness contribution or essentiality of each genetic component in a bacterial genome. Four TIS variations were published in 2009: transposon sequencing (Tn-Seq), transposon-directed insertion site sequencing (TraDIS), insertion sequencing (INSeq) and high-throughput insertion tracking by deep sequencing (HITS). TIS has since become an important tool for molecular microbiologists, being one of the few genome-wide techniques that directly links phenotype to genotype and ultimately can assign gene function. In this Review, we discuss the recent applications of TIS to answer overarching biological questions. We explore emerging and multidisciplinary methods that build on TIS, with an eye towards future applications. In this Review, several experts discuss progress in the decade since the development of transposon-based approaches for bacterial genetic screens. They describe how advances in both experimental technologies and analytical strategies are resulting in insights into diverse biological processes.
Collapse
Affiliation(s)
- Amy K Cain
- ARC Centre of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany.,Faculty of Medicine, University of Würzburg, Würzburg, Germany
| | - Andrew L Goodman
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.,Microbial Sciences Institute, Yale University, New Haven, CT, USA
| | - Ian T Paulsen
- ARC Centre of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
25
|
Khara P, Biswas S, Biswas I. Induction of clpP expression by cell-wall targeting antibiotics in Streptococcus mutans. MICROBIOLOGY-SGM 2020; 166:641-653. [PMID: 32416745 DOI: 10.1099/mic.0.000920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Streptococcus mutans is one of the major bacteria of the human oral cavity that is associated with dental caries. The pathogenicity of this bacterium is attributed to its ability to rapidly respond and adapt to the ever-changing conditions of the oral cavity. The major player in this adaptive response is ClpP, an intracellular protease involved in degradation of misfolded proteins during stress responses. S. mutans encodes a single clpP gene with an upstream region uniquely containing multiple tandem repeat sequences (RSs). Here, we explored expression of clpP with respect to various stresses and report some new findings. First, we found that at sub-inhibitory concentration, certain cell-wall damaging antibiotics were able to induce clpP expression. Specifically, third- and fourth-generation cephalosporins that target penicillin-binding protein 3 (PBP3) strongly enhanced the clpP expression. However, induction of clpP was weak when the first-generation cephalosporins with lower affinity to PBP3 were used. Surprisingly, carbapenems, which primarily target PBP2, induced expression of clpP the least. Second, we found that a single RS element was capable of inducing clpP expression as efficiently as with the wild-type seven RS elements. Third, we found that the RS-element-mediated modulation of clpP expression was strain dependent, suggesting that specific host factors might be involved in the transcription. And finally, we observed that ClpP regulates its own expression, as the expression of clpP-gusA was higher in a clpP-deficient mutant. This suggests that ClpP is involved in the degradation of activator(s) involved in its own transcription.
Collapse
Affiliation(s)
- Pratick Khara
- Present address: Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, Texas, USA.,Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Saswati Biswas
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Indranil Biswas
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
26
|
Marx P, Sang Y, Qin H, Wang Q, Guo R, Pfeifer C, Kreth J, Merritt J. Environmental stress perception activates structural remodeling of extant Streptococcus mutans biofilms. NPJ Biofilms Microbiomes 2020; 6:17. [PMID: 32221309 PMCID: PMC7101444 DOI: 10.1038/s41522-020-0128-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/12/2020] [Indexed: 01/28/2023] Open
Abstract
Transcription regulators from the LexA-like Protein Superfamily control a highly diverse assortment of genetic pathways in response to environmental stress. All characterized members of this family modulate their functionality and stability via a strict coordination with the coprotease function of RecA. Using the LexA-like protein IrvR from Streptococcus mutans, we demonstrate an exception to the RecA paradigm and illustrate how this evolutionary innovation has been coopted to diversify the stress responsiveness of S. mutans biofilms. Using a combination of genetics and biophysical measurements, we demonstrate how non-SOS stresses and SOS stresses each trigger separate regulatory mechanisms that stimulate production of a surface lectin responsible for remodeling the viscoelastic properties of extant biofilms during episodes of environmental stress. These studies demonstrate how changes in the external environment or even anti-biofilm therapeutic agents can activate biofilm-specific adaptive mechanisms responsible for bolstering the integrity of established biofilm communities. Such changes in biofilm community structure are likely to play central roles in the notorious recalcitrance of biofilm infections.
Collapse
Affiliation(s)
- Patrick Marx
- 0000 0000 9758 5690grid.5288.7Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR 97239 USA
| | - Yu Sang
- 0000 0000 9758 5690grid.5288.7Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR 97239 USA
| | - Hua Qin
- 0000 0000 9758 5690grid.5288.7Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR 97239 USA
| | - Qingjing Wang
- 0000 0000 9758 5690grid.5288.7Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR 97239 USA
| | - Rongkai Guo
- 0000 0000 9758 5690grid.5288.7Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR 97239 USA
| | - Carmem Pfeifer
- 0000 0000 9758 5690grid.5288.7Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR 97239 USA
| | - Jens Kreth
- 0000 0000 9758 5690grid.5288.7Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR 97239 USA ,0000 0000 9758 5690grid.5288.7Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239 USA
| | - Justin Merritt
- 0000 0000 9758 5690grid.5288.7Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR 97239 USA ,0000 0000 9758 5690grid.5288.7Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239 USA
| |
Collapse
|
27
|
Shields RC, Walker AR, Maricic N, Chakraborty B, Underhill SAM, Burne RA. Repurposing the Streptococcus mutans CRISPR-Cas9 System to Understand Essential Gene Function. PLoS Pathog 2020; 16:e1008344. [PMID: 32150575 PMCID: PMC7082069 DOI: 10.1371/journal.ppat.1008344] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/19/2020] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
A recent genome-wide screen identified ~300 essential or growth-supporting genes in the dental caries pathogen Streptococcus mutans. To be able to study these genes, we built a CRISPR interference tool around the Cas9 nuclease (Cas9Smu) encoded in the S. mutans UA159 genome. Using a xylose-inducible dead Cas9Smu with a constitutively active single-guide RNA (sgRNA), we observed titratable repression of GFP fluorescence that compared favorably to that of Streptococcus pyogenes dCas9 (Cas9Spy). We then investigated sgRNA specificity and proto-spacer adjacent motif (PAM) requirements. Interference by sgRNAs did not occur with double or triple base-pair mutations, or if single base-pair mutations were in the 3' end of the sgRNA. Bioinformatic analysis of >450 S. mutans genomes allied with in vivo assays revealed a similar PAM recognition sequence as Cas9Spy. Next, we created a comprehensive library of sgRNA plasmids that were directed at essential and growth-supporting genes. We discovered growth defects for 77% of the CRISPRi strains expressing sgRNAs. Phenotypes of CRISPRi strains, across several biological pathways, were assessed using fluorescence microscopy. A variety of cell structure anomalies were observed, including segregational instability of the chromosome, enlarged cells, and ovococci-to-rod shape transitions. CRISPRi was also employed to observe how silencing of cell wall glycopolysaccharide biosynthesis (rhamnose-glucose polysaccharide, RGP) affected both cell division and pathogenesis in a wax worm model. The CRISPRi tool and sgRNA library are valuable resources for characterizing essential genes in S. mutans, some of which could prove to be promising therapeutic targets.
Collapse
Affiliation(s)
- Robert C. Shields
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Alejandro R. Walker
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Natalie Maricic
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Brinta Chakraborty
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Simon A. M. Underhill
- Department of Physics, University of Florida, Gainesville, Florida, United States of America
| | - Robert A. Burne
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
28
|
Røder HL, Olsen NMC, Whiteley M, Burmølle M. Unravelling interspecies interactions across heterogeneities in complex biofilm communities. Environ Microbiol 2019; 22:5-16. [DOI: 10.1111/1462-2920.14834] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 01/29/2023]
Affiliation(s)
- Henriette L. Røder
- Section of Microbiology, Department of BiologyUniversity of Copenhagen Copenhagen Denmark
| | - Nanna M. C. Olsen
- Section of Microbiology, Department of BiologyUniversity of Copenhagen Copenhagen Denmark
| | - Marvin Whiteley
- School of Biological SciencesGeorgia Institute of Technology, Atlanta Georgia USA
- Emory‐Children's Cystic Fibrosis Center, Atlanta Georgia USA
- Center for Microbial Dynamics and InfectionGeorgia Institute of Technology, Atlanta Georgia USA
| | - Mette Burmølle
- Section of Microbiology, Department of BiologyUniversity of Copenhagen Copenhagen Denmark
| |
Collapse
|
29
|
Abstract
Streptococcus mutans is a Gram-positive bacterium that thrives under acidic conditions and is a primary cause of tooth decay (dental caries). To better understand the metabolism of S. mutans on a systematic level, we manually constructed a genome-scale metabolic model of the S. mutans type strain UA159. The model, called iSMU, contains 675 reactions involving 429 metabolites and the products of 493 genes. We validated iSMU by comparing simulations with growth experiments in defined medium. The model simulations matched experimental results for 17 of 18 carbon source utilization assays and 47 of 49 nutrient depletion assays. We also simulated the effects of single gene deletions. The model's predictions agreed with 78.1% and 84.4% of the gene essentiality predictions from two experimental data sets. Our manually curated model is more accurate than S. mutans models generated from automated reconstruction pipelines and more complete than other manually curated models. We used iSMU to generate hypotheses about the S. mutans metabolic network. Subsequent genetic experiments confirmed that (i) S. mutans catabolizes sorbitol via a sorbitol-6-phosphate 2-dehydrogenase (SMU_308) and (ii) the Leloir pathway is required for growth on complex carbohydrates such as raffinose. We believe the iSMU model is an important resource for understanding the metabolism of S. mutans and guiding future experiments.IMPORTANCE Tooth decay is the most prevalent chronic disease in the United States. Decay is caused by the bacterium Streptococcus mutans, an oral pathogen that ferments sugars into tooth-destroying lactic acid. We constructed a complete metabolic model of S. mutans to systematically investigate how the bacterium grows. The model provides a valuable resource for understanding and targeting S. mutans' ability to outcompete other species in the oral microbiome.
Collapse
|
30
|
Quantitative Proteomics Uncovers the Interaction between a Virulence Factor and Mutanobactin Synthetases in Streptococcus mutans. mSphere 2019; 4:4/5/e00429-19. [PMID: 31554721 PMCID: PMC6763767 DOI: 10.1128/msphere.00429-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Streptococcus mutans is the major bacterium associated with dental caries. In order to thrive on the highly populated tooth surface and cause disease, S. mutans must be able to protect itself from hydrogen peroxide-producing commensal bacteria and compete effectively against the neighboring microbes. S. mutans produces mutacins, small antimicrobial peptides which help control the population of competing bacterial species. In addition, S. mutans produces a peptide called mutanobactin, which offers S. mutans protection against oxidative stress. Here, we uncover a new link between the putative glycosyltransferase SMU_833 and the mutanobactin-synthesizing protein complex through quantitative proteomic analysis and a tandem-affinity protein purification scheme. Furthermore, we show that SMU_833 mediates bacterial sensitivity to oxidative stress and bacterial ability to compete with commensal streptococci. This study has revealed a previously unknown association between SMU_833 and mutanobactin and demonstrated the importance of SMU_833 in the fitness of S. mutans. Streptococcus mutans, the primary etiological agent of tooth decay, has developed multiple adhesion and virulence factors which enable it to colonize and compete with other bacteria. The putative glycosyltransferase SMU_833 is important for the virulence of S. mutans by altering the biofilm matrix composition and cariogenicity. In this study, we further characterized the smu_833 mutant by evaluating its effects on bacterial fitness. Loss of SMU_833 led to extracellular DNA-dependent bacterial aggregation. In addition, the mutant was more susceptible to oxidative stress and less competitive against H2O2 producing oral streptococci. Quantitative proteomics analysis revealed that SMU_833 deficiency resulted in the significant downregulation of 10 proteins encoded by a biosynthetic gene cluster responsible for the production of mutanobactin, a compound produced by S. mutans which helps it survive oxidative stress. Tandem affinity purification demonstrated that SMU_833 interacts with the synthetic enzymes responsible for the production of mutanobactin. Similar to the smu_833 mutant, the deletion of the mutanobactin gene cluster rendered the mutant less competitive against H2O2-producing streptococci. Our studies revealed a new link between SMU_833 virulence and mutanobactin, suggesting that SMU_833 represents a new virulent target that can be used to develop potential anticaries therapeutics. IMPORTANCEStreptococcus mutans is the major bacterium associated with dental caries. In order to thrive on the highly populated tooth surface and cause disease, S. mutans must be able to protect itself from hydrogen peroxide-producing commensal bacteria and compete effectively against the neighboring microbes. S. mutans produces mutacins, small antimicrobial peptides which help control the population of competing bacterial species. In addition, S. mutans produces a peptide called mutanobactin, which offers S. mutans protection against oxidative stress. Here, we uncover a new link between the putative glycosyltransferase SMU_833 and the mutanobactin-synthesizing protein complex through quantitative proteomic analysis and a tandem-affinity protein purification scheme. Furthermore, we show that SMU_833 mediates bacterial sensitivity to oxidative stress and bacterial ability to compete with commensal streptococci. This study has revealed a previously unknown association between SMU_833 and mutanobactin and demonstrated the importance of SMU_833 in the fitness of S. mutans.
Collapse
|
31
|
Morinière L, Lecomte S, Gueguen E, Bertolla F. In vitro exploration of the Xanthomonas hortorum pv. vitians genome using transposon insertion sequencing and comparative genomics to discriminate between core and contextual essential genes. Microb Genom 2019; 7. [PMID: 33760724 PMCID: PMC8627662 DOI: 10.1099/mgen.0.000546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The essential genome of a bacterium encompasses core genes associated with basic cellular processes and conditionally essential genes dependent upon environmental conditions or the genetic context. Comprehensive knowledge of those gene sets allows for a better understanding of fundamental bacterial biology and offers new perspectives for antimicrobial drug research against detrimental bacteria such as pathogens. We investigated the essential genome of Xanthomonas hortorum pv. vitians, a gammaproteobacterial plant pathogen of lettuce (Lactuca sativa L.) which belongs to the plant-pathogen reservoir genus Xanthomonas and is affiliated to the family Xanthomonadaceae. No practical means of disease control or prevention against this pathogen is currently available, and its molecular biology is virtually unknown. To reach a comprehensive overview of the essential genome of X. hortorum pv. vitians LM16734, we developed a mixed approach combining high-quality full genome sequencing, saturated transposon insertion sequencing (Tn-Seq) in optimal growth conditions, and coupled computational analyses such as comparative genomics, synteny assessment and phylogenomics. Among the 370 essential loci identified by Tn-Seq, a majority was bound to critical cell processes conserved across bacteria. The remaining genes were either related to specific ecological features of Xanthomonas or Xanthomonadaceae species, or acquired through horizontal gene transfer of mobile genetic elements and associated with ancestral parasitic gene behaviour and bacterial defence systems. Our study sheds new light on our usual concepts about gene essentiality and is pioneering in the molecular and genomic study of X. hortorum pv. vitians.
Collapse
Affiliation(s)
- Lucas Morinière
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F 69622 Villeurbanne, France
| | - Solène Lecomte
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F 69622 Villeurbanne, France
| | - Erwan Gueguen
- Univ Lyon, Université Claude Bernard Lyon 1, INSA, CNRS, UMR Microbiologie, Adaptation, Pathogénie, F 69622 Villeurbanne, France
| | - Franck Bertolla
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F 69622 Villeurbanne, France
| |
Collapse
|
32
|
Mishra S, Crowley PJ, Wright KR, Palmer SR, Walker AR, Datta S, Brady J. Membrane proteomic analysis reveals overlapping and independent functions of Streptococcus mutans Ffh, YidC1, and YidC2. Mol Oral Microbiol 2019; 34:131-152. [PMID: 31034136 PMCID: PMC6625898 DOI: 10.1111/omi.12261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 11/29/2022]
Abstract
A comparative proteomic analysis was utilized to evaluate similarities and differences in membrane samples derived from the cariogenic bacterium Streptococcus mutans, including the wild-type strain and four mutants devoid of protein translocation machinery components, specifically ∆ffh, ∆yidC1, ∆yidC2, or ∆ffh/yidC1. The purpose of this work was to determine the extent to which the encoded proteins operate individually or in concert with one another and to identify the potential substrates of the respective pathways. Ffh is the principal protein component of the signal recognition particle (SRP), while yidC1 and yidC2 are dual paralogs encoding members of the YidC/Oxa/Alb family of membrane-localized chaperone insertases. Our results suggest that the co-translational SRP pathway works in concert with either YidC1 or YidC2 specifically, or with no preference for paralog, in the insertion of most membrane-localized substrates. A few instances were identified in which the SRP pathway alone, or one of the YidCs alone, appeared to be most relevant. These data shed light on underlying reasons for differing phenotypic consequences of ffh, yidC1 or yidC2 deletion. Our data further suggest that many membrane proteins present in a ∆yidC2 background may be non-functional, that ∆yidC1 is better able to adapt physiologically to the loss of this paralog, that shared phenotypic properties of ∆ffh and ∆yidC2 mutants can stem from impacts on different proteins, and that independent binding to ribosomal proteins is not a primary functional activity of YidC2. Lastly, genomic mutations accumulate in a ∆yidC2 background coincident with phenotypic reversion, including an apparent W138R suppressor mutation within yidC1.
Collapse
Affiliation(s)
- Surabhi Mishra
- Department of Oral Biology, University of Florida, P.O. Box 100424, Gainesville, Florida 32610
| | - Paula J. Crowley
- Department of Oral Biology, University of Florida, P.O. Box 100424, Gainesville, Florida 32610
| | - Katherine R. Wright
- Division of Biosciences College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Sara R. Palmer
- Division of Biosciences College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Alejandro R. Walker
- Department of Oral Biology, University of Florida, P.O. Box 100424, Gainesville, Florida 32610
| | - Susmita Datta
- Department of Biostatistics, College of Public Health & Health Professions College of Medicine, University of Florida, 2004 Mowry Rd, P.O. Box 117450, Gainesville, FL 32611
| | - Jeannine Brady
- Department of Oral Biology, University of Florida, P.O. Box 100424, Gainesville, Florida 32610
| |
Collapse
|
33
|
Warr AR, Hubbard TP, Munera D, Blondel CJ, Abel zur Wiesch P, Abel S, Wang X, Davis BM, Waldor MK. Transposon-insertion sequencing screens unveil requirements for EHEC growth and intestinal colonization. PLoS Pathog 2019; 15:e1007652. [PMID: 31404118 PMCID: PMC6705877 DOI: 10.1371/journal.ppat.1007652] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 08/22/2019] [Accepted: 08/01/2019] [Indexed: 12/28/2022] Open
Abstract
Enterohemorrhagic Escherichia coli O157:H7 (EHEC) is an important food-borne pathogen that colonizes the colon. Transposon-insertion sequencing (TIS) was used to identify genes required for EHEC and E. coli K-12 growth in vitro and for EHEC growth in vivo in the infant rabbit colon. Surprisingly, many conserved loci contribute to EHEC's but not to K-12's growth in vitro. There was a restrictive bottleneck for EHEC colonization of the rabbit colon, which complicated identification of EHEC genes facilitating growth in vivo. Both a refined version of an existing analytic framework as well as PCA-based analysis were used to compensate for the effects of the infection bottleneck. These analyses confirmed that the EHEC LEE-encoded type III secretion apparatus is required for growth in vivo and revealed that only a few effectors are critical for in vivo fitness. Over 200 mutants not previously associated with EHEC survival/growth in vivo also appeared attenuated in vivo, and a subset of these putative in vivo fitness factors were validated. Some were found to contribute to efficient type-three secretion while others, including tatABC, oxyR, envC, acrAB, and cvpA, promote EHEC resistance to host-derived stresses. cvpA is also required for intestinal growth of several other enteric pathogens, and proved to be required for EHEC, Vibrio cholerae and Vibrio parahaemolyticus resistance to the bile salt deoxycholate, highlighting the important role of this previously uncharacterized protein in pathogen survival. Collectively, our findings provide a comprehensive framework for understanding EHEC growth in the intestine.
Collapse
Affiliation(s)
- Alyson R. Warr
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Troy P. Hubbard
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Diana Munera
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Carlos J. Blondel
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Pia Abel zur Wiesch
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sören Abel
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xiaoxue Wang
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brigid M. Davis
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Matthew K. Waldor
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- HHMI, Boston, Massachusetts, United States of America
| |
Collapse
|
34
|
Kovacs CJ, Faustoferri RC, Bischer AP, Quivey RG. Streptococcus mutans requires mature rhamnose-glucose polysaccharides for proper pathophysiology, morphogenesis and cellular division. Mol Microbiol 2019; 112:944-959. [PMID: 31210392 DOI: 10.1111/mmi.14330] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2019] [Indexed: 12/30/2022]
Abstract
The cell wall of Gram-positive bacteria has been shown to mediate environmental stress tolerance, antibiotic susceptibility, host immune evasion and overall virulence. The majority of these traits have been demonstrated for the well-studied system of wall teichoic acid (WTA) synthesis, a common cell wall polysaccharide among Gram-positive organisms. Streptococcus mutans, a Gram-positive odontopathogen that contributes to the enamel-destructive disease dental caries, lacks the capabilities to generate WTA. Instead, the cell wall of S. mutans is highly decorated with rhamnose-glucose polysaccharides (RGP), for which functional roles are poorly defined. Here, we demonstrate that the RGP has a distinct role in protecting S. mutans from a variety of stress conditions pertinent to pathogenic capability. Mutant strains with disrupted RGP synthesis failed to properly localize cell division complexes, suffered from aberrant septum formation and exhibited enhanced cellular autolysis. Surprisingly, mutant strains of S. mutans with impairment in RGP side chain modification grew into elongated chains and also failed to properly localize the presumed cell wall hydrolase, GbpB. Our results indicate that fully mature RGP has distinct protective and morphogenic roles for S. mutans, and these structures are functionally homologous to the WTA of other Gram-positive bacteria.
Collapse
Affiliation(s)
- Christopher J Kovacs
- Department of Microbiology & Immunology, University of Rochester School of Medicine and Dentistry, Box 672, Rochester, NY, 14642, USA
| | - Roberta C Faustoferri
- Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Box 611, Rochester, NY, 14642, USA
| | - Andrew P Bischer
- Department of Microbiology & Immunology, University of Rochester School of Medicine and Dentistry, Box 672, Rochester, NY, 14642, USA
| | - Robert G Quivey
- Department of Microbiology & Immunology, University of Rochester School of Medicine and Dentistry, Box 672, Rochester, NY, 14642, USA.,Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Box 611, Rochester, NY, 14642, USA
| |
Collapse
|
35
|
Spontaneously Arising Streptococcus mutans Variants with Reduced Susceptibility to Chlorhexidine Display Genetic Defects and Diminished Fitness. Antimicrob Agents Chemother 2019; 63:AAC.00161-19. [PMID: 31036688 DOI: 10.1128/aac.00161-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/20/2019] [Indexed: 01/10/2023] Open
Abstract
Chlorhexidine (CHX) has been used to control dental caries caused by acid-tolerant bacteria such as Streptococcus mutans since the 1970s. Repeat CHX exposure for other bacterial species results in the development of variants with reduced susceptibility that also become more resistant to other antimicrobials. It has not been tested if such variants arise when streptococci are exposed to CHX. Here, we passaged S. mutans in increasing concentrations of CHX and isolated spontaneously arising reduced susceptibility variants (RSVs) from separate lineages that have MICs that are up to 3-fold greater than the parental strain. The RSVs have increased growth rates at neutral pH and under acidic conditions in the presence of CHX but accumulate less biomass in biofilms. RSVs display higher MICs for daptomycin and clindamycin but increased sensitivity to dental-relevant antimicrobials triclosan and sodium fluoride. Plate-based assays for competition with health-associated oral streptococci revealed decreased bacteriocin production by the RSVs, increased sensitivity to hydrogen peroxide, and diminished competitive fitness in a human-derived ex vivo biofilm consortium. Whole-genome sequencing identified common single nucleotide polymorphisms (SNPs) within a diacylglycerol kinase homolog and a glycolipid synthesis enzyme, which could alter the accumulation of lipoteichoic acids and other envelope constituents, as well as a variety of mutations in other genes. Collectively, these findings confirm that S. mutans and likely other streptococci can develop tolerance to CHX but that increased tolerance comes at a fitness cost, such that CHX-induced variants that spontaneously arise in the human oral cavity may not persist.
Collapse
|
36
|
Biswas S, Keightley A, Biswas I. Characterization of a stress tolerance-defective mutant of Lactobacillus rhamnosus LRB. Mol Oral Microbiol 2019; 34:153-167. [PMID: 31056830 DOI: 10.1111/omi.12262] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 02/06/2023]
Abstract
Lactobacillus rhamnosus is a lactic acid bacterium that survives diverse ecological niches, including the human oral cavity and gastrointestinal tract. L. rhamnosus is an acidogenic bacterium that produces copious amounts of lactic acid. The organism is also considered as aciduric, since it can survive prolonged exposure to an acidic environment. For a probiotic bacterium such as L. rhamnosus, it is necessary to understand how this organism survives acid stress. In this study we used L. rhamnosus LRB to isolate one spontaneous mutant that was sensitive to acid stress. The mutant, which we named RBM1, also displayed sensitivity to a wide range of stresses including osmotic, thermal, and others. Using whole genome sequencing, we mapped the putative mutations in the mutant strain. It appears that three single nucleotide substitutions occurred in the mutant as compared to the wild-type LRB strain. Among those, the most relevant mutation occurred in the ftsH gene that created a single amino acid change in the protein. We performed a comparative proteomic study to understand the molecular basis for stress sensitivity and found that ~15% of the proteome is altered in the mutant strain. Our study suggests that generation of spontaneous mutants during L. rhamnosus colonization could drastically affect bacterial physiology and survival under stress conditions.
Collapse
Affiliation(s)
- Saswati Biswas
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas, Medical Center, Kansas City, Kansas
| | - Andrew Keightley
- Mass Spectrometry and Proteomics, UMKC School of Biological Sciences, Kansas City, Missouri
| | - Indranil Biswas
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas, Medical Center, Kansas City, Kansas
| |
Collapse
|
37
|
Castillo Pedraza MC, Rosalen PL, de Castilho ARF, Freires IDA, de Sales Leite L, Faustoferri RC, Quivey RG, Klein MI. Inactivation of Streptococcus mutans genes lytST and dltAD impairs its pathogenicity in vivo. J Oral Microbiol 2019; 11:1607505. [PMID: 31143407 PMCID: PMC6522913 DOI: 10.1080/20002297.2019.1607505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/19/2022] Open
Abstract
Background: Streptococcus mutans orchestrates the development of a biofilm that causes dental caries in the presence of dietary sucrose, and, in the bloodstream, S. mutans can cause systemic infections. The development of a cariogenic biofilm is dependent on the formation of an extracellular matrix rich in exopolysaccharides, which contains extracellular DNA (eDNA) and lipoteichoic acids (LTAs). While the exopolysaccharides are virulence markers, the involvement of genes linked to eDNA and LTAs metabolism in the pathogenicity of S. mutans remains unclear. Objective and Design: In this study, a parental strain S. mutans UA159 and derivative strains carrying single gene deletions were used to investigate the role of eDNA (ΔlytS and ΔlytT), LTA (ΔdltA and ΔdltD), and insoluble exopolysaccharides (ΔgtfB) in virulence in a rodent model of dental caries (rats) and a systemic infection model (Galleria mellonella larvae). Results: Fewer carious lesions were observed on smooth and sulcal surfaces of enamel and dentin of the rats infected with ∆lytS, ∆dltD, and ΔgtfB (vs. the parental strain). Moreover, strains carrying gene deletions prevented the killing of larvae (vs. the parental strain). Conclusions: Altogether, these findings indicate that inactivation of lytST and dltAD impaired S. mutans cariogenicity and virulence in vivo.
Collapse
Affiliation(s)
- Midian C Castillo Pedraza
- Department of Dental Materials and Prosthodontics, Sao Paulo State University (Unesp), School of Dentistry, Araraquara, Brazil
| | - Pedro L Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, Brazil
| | - Aline Rogéria Freire de Castilho
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, Brazil.,Department of Pediatric Dentistry, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, Brazil
| | - Irlan de Almeida Freires
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, Brazil
| | - Luana de Sales Leite
- Department of Dental Materials and Prosthodontics, Sao Paulo State University (Unesp), School of Dentistry, Araraquara, Brazil
| | | | - Robert G Quivey
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
| | - Marlise I Klein
- Department of Dental Materials and Prosthodontics, Sao Paulo State University (Unesp), School of Dentistry, Araraquara, Brazil
| |
Collapse
|
38
|
Bedoya-Correa CM, Rincón Rodríguez RJ, Parada-Sanchez MT. Genomic and phenotypic diversity of Streptococcus mutans. J Oral Biosci 2019; 61:22-31. [DOI: 10.1016/j.job.2018.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/29/2018] [Accepted: 11/05/2018] [Indexed: 02/03/2023]
|
39
|
Shields RC, Jensen PA. The bare necessities: Uncovering essential and condition-critical genes with transposon sequencing. Mol Oral Microbiol 2019; 34:39-50. [PMID: 30739386 DOI: 10.1111/omi.12256] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/18/2019] [Accepted: 02/06/2019] [Indexed: 12/11/2022]
Abstract
Querying gene function in bacteria has been greatly accelerated by the advent of transposon sequencing (Tn-seq) technologies (related Tn-seq strategies are known as TraDIS, INSeq, RB-TnSeq, and HITS). Pooled populations of transposon mutants are cultured in an environment and next-generation sequencing tools are used to determine areas of the genome that are important for bacterial fitness. In this review we provide an overview of Tn-seq methodologies and discuss how Tn-seq has been applied, or could be applied, to the study of oral microbiology. These applications include studying the essential genome as a means to rationally design therapeutic agents. Tn-seq has also contributed to our understanding of well-studied biological processes in oral bacteria. Other important applications include in vivo pathogenesis studies and use of Tn-seq to probe the molecular basis of microbial interactions. We also highlight recent advancements in techniques that act in synergy with Tn-seq such as clustered regularly interspaced short palindromic repeats (CRISPR) interference and microfluidic chip platforms.
Collapse
Affiliation(s)
- Robert C Shields
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida
| | - Paul A Jensen
- Department of Bioengineering and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
40
|
van der Beek SL, Zorzoli A, Çanak E, Chapman RN, Lucas K, Meyer BH, Evangelopoulos D, de Carvalho LPS, Boons GJ, Dorfmueller HC, van Sorge NM. Streptococcal dTDP-L-rhamnose biosynthesis enzymes: functional characterization and lead compound identification. Mol Microbiol 2019; 111:951-964. [PMID: 30600561 PMCID: PMC6487966 DOI: 10.1111/mmi.14197] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2018] [Indexed: 12/12/2022]
Abstract
Biosynthesis of the nucleotide sugar precursor dTDP‐L‐rhamnose is critical for the viability and virulence of many human pathogenic bacteria, including Streptococcus pyogenes (Group A Streptococcus; GAS), Streptococcus mutans and Mycobacterium tuberculosis. Streptococcal pathogens require dTDP‐L‐rhamnose for the production of structurally similar rhamnose polysaccharides in their cell wall. Via heterologous expression in S. mutans, we confirmed that GAS RmlB and RmlC are critical for dTDP‐L‐rhamnose biosynthesis through their action as dTDP‐glucose‐4,6‐dehydratase and dTDP‐4‐keto‐6‐deoxyglucose‐3,5‐epimerase enzymes respectively. Complementation with GAS RmlB and RmlC containing specific point mutations corroborated the conservation of previous identified catalytic residues. Bio‐layer interferometry was used to identify and confirm inhibitory lead compounds that bind to GAS dTDP‐rhamnose biosynthesis enzymes RmlB, RmlC and GacA. One of the identified compounds, Ri03, inhibited growth of GAS, other rhamnose‐dependent streptococcal pathogens as well as M. tuberculosis with an IC50 of 120–410 µM. Importantly, we confirmed that Ri03 inhibited dTDP‐L‐rhamnose formation in a concentration‐dependent manner through a biochemical assay with recombinant rhamnose biosynthesis enzymes. We therefore conclude that inhibitors of dTDP‐L‐rhamnose biosynthesis, such as Ri03, affect streptococcal and mycobacterial viability and can serve as lead compounds for the development of a new class of antibiotics that targets dTDP‐rhamnose biosynthesis in pathogenic bacteria.
Collapse
Affiliation(s)
- Samantha L van der Beek
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Azul Zorzoli
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dow Street, DD1 5EH, Dundee, UK
| | - Ebru Çanak
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Robert N Chapman
- Department of Chemistry, Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, USA
| | - Kieron Lucas
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dow Street, DD1 5EH, Dundee, UK
| | - Benjamin H Meyer
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dow Street, DD1 5EH, Dundee, UK
| | - Dimitrios Evangelopoulos
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, London, UK
| | - Luiz Pedro S de Carvalho
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, London, UK
| | - Geert-Jan Boons
- Department of Chemistry, Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, USA.,Department of Medical Chemistry and Chemical Biology, Utrecht Institute Pharmaceutical Science, University Utrecht, Utrecht, 3508 TB, The Netherlands
| | - Helge C Dorfmueller
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dow Street, DD1 5EH, Dundee, UK
| | - Nina M van Sorge
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| |
Collapse
|