1
|
Langlois B, Guerin F, Isnard C, Gakuba C, Du Cheyron D, Giard JC, Brisse S, Le Hello S, Gravey F. Phenotypic and genomic changes in enteric Klebsiella populations during long-term ICU patient hospitalization: the role of RamR regulation. mSphere 2024; 9:e0070424. [PMID: 39611855 DOI: 10.1128/msphere.00704-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/01/2024] [Indexed: 11/30/2024] Open
Abstract
Acquired antimicrobial resistance and metabolic changes are central for bacterial host adaptation during the long-term hospitalization of patients. We aimed to analyze the genomic and phenotypic evolution of enteric Klebsiella populations in long-term intensive care unit (ICU) patients. Weekly rectal swabs were prospectively collected from all patients admitted to the ICU in a teaching hospital from December 2018 to February 2019. The inclusion criterion for patients was hospitalization for more than 15 days in the ICU without any history of hospitalization or antibiotic treatment for the 3 months prior to admission. Among them, enteric Klebsiella pneumoniae species complex (KpSC) populations were detected. For each isolate, extensive antimicrobial resistance profiles were determined using the disk diffusion method, and the whole genome was sequenced using an Illumina platform. In silico typing methods, such as Multilocus Sequence Typing (MLST), core-genome MLST, SNP typing, resistome characterization and mutation point detection, were applied. During the study period, 471 patients were admitted to ICUs. Among them, 21 patients met the inclusion criteria, and only 5 patients (24%) carried unique and distinct KpSC populations during 2-10 weeks in the gut that as detected at admission and excluding acquisition during the ICU stay. One patient showed a rare ST1563 K. variicola persistent carriage for 7 consecutive weeks, which displayed important antimicrobial resistance phenotype changes in the 2 last weeks. In-depth in silico characterization and RNA sequencing of these strains revealed a mutation within the ramR transcriptional regulator resulting in overexpression of the ramA regulator and decreased expression of acrR, which controls antibiotic efflux. This mutation also impacts tolerance to biliary salts. This study revealed the importance of endogenous colonization of KpSC populations in the gut throughout the patient's long-term ICU stay and highlighted the role of ramR in drug susceptibility. IMPORTANCE The Klebsiella pneumoniae species complex (KpSC) is one of the major causes of nosocomial infections, especially in intensive care unit (ICUs). These bacteria are frequently highly resistant to antibiotics, leading to an increase in morbidity and mortality. The origins of multidrug-resistant KpSC strains isolated from ICU patients are still unclear, with at least two hypotheses of acquisition paths: (i) endogenous KpSC populations that are or became resistant to antibiotics and/or (ii) hospital acquisition of circulating KpSC clones. Genomic changes observed in this study might reveal mechanisms to better adapt to KpSC in the patient's gut in the face of heavy ICU medical care pressure.
Collapse
Affiliation(s)
- Benedicte Langlois
- Univ de Caen Normandie, Univ Rouen Normandie, INSERM, DYNAMICURE, Caen, France
| | - Francois Guerin
- Univ de Caen Normandie, Univ Rouen Normandie, INSERM, DYNAMICURE, Caen, France
- Department of Infectious Agents, Bacteriology, CHU Caen, Caen, France
| | - Christophe Isnard
- Univ de Caen Normandie, Univ Rouen Normandie, INSERM, DYNAMICURE, Caen, France
- Department of Infectious Agents, Bacteriology, CHU Caen, Caen, France
| | - Clement Gakuba
- Department of Surgical Intensive Care, CHU Caen, Caen, France
| | | | | | - Sylvain Brisse
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Simon Le Hello
- Univ de Caen Normandie, Univ Rouen Normandie, INSERM, DYNAMICURE, Caen, France
- Department of Infectious Agents, Bacteriology, CHU Caen, Caen, France
| | - Francois Gravey
- Univ de Caen Normandie, Univ Rouen Normandie, INSERM, DYNAMICURE, Caen, France
- Department of Infectious Agents, Bacteriology, CHU Caen, Caen, France
| |
Collapse
|
2
|
Simner PJ, Pitout JDD, Dingle TC. Laboratory detection of carbapenemases among Gram-negative organisms. Clin Microbiol Rev 2024; 37:e0005422. [PMID: 39545731 PMCID: PMC11629623 DOI: 10.1128/cmr.00054-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024] Open
Abstract
SUMMARYThe carbapenems remain some of the most effective options available for treating patients with serious infections due to Gram-negative bacteria. Carbapenemases are enzymes that hydrolyze carbapenems and are the primary method driving carbapenem resistance globally. Detection of carbapenemases is required for patient management, the rapid implementation of infection prevention and control (IP&C) protocols, and for epidemiologic purposes. Therefore, clinical and public health microbiology laboratories must be able to detect and report carbapenemases among predominant Gram-negative organisms from both cultured isolates and direct from clinical specimens for treatment and surveillance purposes. There is not a "one size fits all" laboratory approach for the detection of bacteria with carbapenemases, and institutions need to determine what fits best with the goals of their antimicrobial stewardship and IP&C programs. Luckily, there are several options and approaches available for clinical laboratories to choose methods that best suits their individual needs. A laboratory approach to detect carbapenemases among bacterial isolates consists of two steps, namely a screening process (e.g., not susceptible to ertapenem, meropenem, and/or imipenem), followed by a confirmation test (i.e., phenotypic, genotypic or proteomic methods) for the presence of a carbapenemase. Direct from specimen testing for the most common carbapenemases generally involves detection via rapid, molecular approaches. The aim of this article is to provide brief overviews on Gram-negative bacteria carbapenem-resistant definitions, types of carbapenemases, global epidemiology, and then describe in detail the laboratory methods for the detection of carbapenemases among Gram-negative bacteria. We will specifically focus on the Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter baumannii complex.
Collapse
Affiliation(s)
- Patricia J. Simner
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Johann D. D. Pitout
- Cummings School of Medicine, University of Calgary, Calgary, Calgary, Alberta, Canada
- Alberta Precision Laboratories, Diagnostic Laboratory, Calgary, Alberta, Canada
- University of Pretoria, Pretoria, Gauteng, South Africa
| | - Tanis C. Dingle
- Cummings School of Medicine, University of Calgary, Calgary, Calgary, Alberta, Canada
- Alberta Precision Laboratories, Public Health Laboratory, Calgary, Alberta, Canada
| |
Collapse
|
3
|
AL-Busaidi B, AL-Muzahmi M, AL-Shabibi Z, Rizvi M, AL-Rashdi A, AL-Jardani A, Farzand R, AL-Jabri Z. Hypervirulent Capsular Serotypes K1 and K2 Klebsiella pneumoniae Strains Demonstrate Resistance to Serum Bactericidal Activity and Galleria mellonella Lethality. Int J Mol Sci 2024; 25:1944. [PMID: 38339222 PMCID: PMC10855873 DOI: 10.3390/ijms25031944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Hypervirulent Klebsiella pneumoniae (hvKp) is a variant that has been increasingly linked to severe, life-threatening infections including pyogenic liver abscess and bloodstream infections. HvKps belonging to the capsular serotypes K1 and K2 have been reported worldwide, however, very scarce studies are available on their genomics and virulence. In the current study, we report four hypermucoviscous extended-spectrum β-lactamase-producing hvKp clinical strains of capsular serotype K1 and K2 isolated from pus and urine of critically ill patients in tertiary care hospitals in Oman. These strains belong to diverse sequence types (STs), namely ST-23(K1), ST-231(K2), ST-881(K2), and ST-14(K2). To study their virulence, a Galleria mellonella model and resistance to human serum killing were used. The G. mellonella model revealed that the K1/ST-23 isolate was the most virulent, as 50% of the larvae died in the first day, followed by isolate K2/ST-231 and K2/ST-14, for which 75% and 50% of the larvae died in the second day, respectively. Resistance to human serum killing showed there was complete inhibition of bacterial growth of all four isolates by the end of the first hour and up to the third hour. Whole genome sequencing (WGS) revealed that hvKp strains display a unique genetic arrangement of k-loci. Whole-genome single-nucleotide polymorphism-based phylogenetic analysis revealed that these hvKp isolates were phylogenetically distinct, belonging to diverse clades, and belonged to different STs in comparison to global isolates. For ST-23(K1), ST-231(K2), ST-881(K2), and ST-14(K2), there was a gradual decrease in the number of colonies up to the second to third hour, which indicates neutralization of bacterial cells by the serum components. However, this was followed by a sudden increase of bacterial growth, indicating possible resistance of bacteria against human serum bactericidal activity. This is the first report from Oman detailing the WGS of hvKp clinical isolates and assessing their resistance and virulence genomics, which reinforce our understanding of their epidemiology and dissemination in clinical settings.
Collapse
Affiliation(s)
- Basaier AL-Busaidi
- Microbiology and Immunology Diagnostic Laboratory, Department of Microbiology and Immunology, Sultan Qaboos University Hospital, Muscat 123, Oman;
| | | | - Zahra AL-Shabibi
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University Hospital, Muscat 123, Oman;
| | - Meher Rizvi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Azza AL-Rashdi
- Central Public Health Laboratory, Department of Medical Microbiology, Ministry of Health, Muscat 100, Oman; (A.A.-R.); (A.A.-J.)
| | - Amina AL-Jardani
- Central Public Health Laboratory, Department of Medical Microbiology, Ministry of Health, Muscat 100, Oman; (A.A.-R.); (A.A.-J.)
| | - Robeena Farzand
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK;
| | - Zaaima AL-Jabri
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University Hospital, Muscat 123, Oman;
| |
Collapse
|
4
|
Loyola-Cruz MÁ, Gonzalez-Avila LU, Martínez-Trejo A, Saldaña-Padilla A, Hernández-Cortez C, Bello-López JM, Castro-Escarpulli G. ESKAPE and Beyond: The Burden of Coinfections in the COVID-19 Pandemic. Pathogens 2023; 12:pathogens12050743. [PMID: 37242413 DOI: 10.3390/pathogens12050743] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
The ESKAPE group constitute a threat to public health, since these microorganisms are associated with severe infections in hospitals and have a direct relationship with high mortality rates. The presence of these bacteria in hospitals had a direct impact on the incidence of healthcare-associated coinfections in the SARS-CoV-2 pandemic. In recent years, these pathogens have shown resistance to multiple antibiotic families. The presence of high-risk clones within this group of bacteria contributes to the spread of resistance mechanisms worldwide. In the pandemic, these pathogens were implicated in coinfections in severely ill COVID-19 patients. The aim of this review is to describe the main microorganisms of the ESKAPE group involved in coinfections in COVID-19 patients, addressing mainly antimicrobial resistance mechanisms, epidemiology, and high-risk clones.
Collapse
Affiliation(s)
- Miguel Ángel Loyola-Cruz
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Ciudad de México 11340, Mexico
- División de Investigación, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Gustavo A. Madero, Ciudad de México 07760, Mexico
| | - Luis Uriel Gonzalez-Avila
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Ciudad de México 11340, Mexico
| | - Arturo Martínez-Trejo
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Ciudad de México 11340, Mexico
| | - Andres Saldaña-Padilla
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Ciudad de México 11340, Mexico
- Laboratorio de Bioquímica Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Mexico City 11340, Mexico
| | - Cecilia Hernández-Cortez
- Laboratorio de Bioquímica Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Mexico City 11340, Mexico
| | - Juan Manuel Bello-López
- División de Investigación, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Gustavo A. Madero, Ciudad de México 07760, Mexico
| | - Graciela Castro-Escarpulli
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Ciudad de México 11340, Mexico
| |
Collapse
|
5
|
Córdova-Espinoza MG, Giono-Cerezo S, Sierra-Atanacio EG, Escamilla-Gutiérrez A, Carrillo-Tapia E, Carrillo-Vázquez LI, Mendoza-Pérez F, Leyte-Lugo M, González-Vázquez R, Mayorga-Reyes L, González-Vázquez R. Isolation and Identification of Multidrug-Resistant Klebsiella pneumoniae Clones from the Hospital Environment. Pathogens 2023; 12:pathogens12050634. [PMID: 37242304 DOI: 10.3390/pathogens12050634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/09/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Global dispersion, hospital outbreaks, and lineage relationships between emerging antibiotic-resistant strains such as Klebsiella pneumoniae are of public health interest. This study aimed to isolate and identify K. pneumoniae clones from third-level healthcare hospitals in Mexico to establish their multidrug-resistant phenotype, phylogeny, and prevalence. Biological and abiotic surface samples were used to isolate K. pneumoniae strains and to test their antibiotic susceptibility to classify them. The housekeeping genes: gapA, InfB, mdh, pgi, phoE, ropB, and tonB were used for multilocus sequence typing (MLST). Phylogenetic networks were constructed with 48 strains. Isolated strains (93) were mainly from urine and blood, 96% were resistant to ampicillin as expected, 60% were extended-spectrum β-lactamases (ESBL), 98% were susceptible to ertapenem and meropenem and 99% were susceptible to imipenem, 46% were multi-drug resistant (MDR), 17% were extensively-drug resistant (XDR), 1% were pan-drug resistant (PDR), and 36% were not classified. The tonB, mdh, and phoE genes were the most variable, and the InfB gene showed positive selection. The most prevalent sequence types (STs) were ST551 (six clones), ST405 (six clones), ST1088 (four clones), ST25 (four clones), ST392 (three clones), and ST36 (two clones). ST706 was PDR, and ST1088 clones were MDR; neither of these STs has been reported in Mexico. The strains analyzed were from different hospitals and locations; thus, it is important to maintain antibiotic surveillance and avoid clone dissemination to prevent outbreaks, adaptation to antibiotics, and the transmission of antibiotic resistance.
Collapse
Affiliation(s)
- María Guadalupe Córdova-Espinoza
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Departamento de Microbiología, Prolongación de Carpio y Plan de Ayala S/N, Col. Casco de Santo Tomas, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Escuela Militar de Graduados de Sanidad SEDENA, Laboratorio de Inmunologia, Batalla de Celaya 202, Col. Lomas de Sotelo, Alcaldía Miguel Hidalgo, Mexico City 11200, Mexico
| | - Silvia Giono-Cerezo
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Departamento de Microbiología, Prolongación de Carpio y Plan de Ayala S/N, Col. Casco de Santo Tomas, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
| | - Erika Gabriela Sierra-Atanacio
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Departamento de Microbiología, Prolongación de Carpio y Plan de Ayala S/N, Col. Casco de Santo Tomas, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
| | - Alejandro Escamilla-Gutiérrez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Departamento de Microbiología, Prolongación de Carpio y Plan de Ayala S/N, Col. Casco de Santo Tomas, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Instituto Mexicano del Seguro Social, Hospital General "Dr. Gaudencio González Garza", Centro Medico Nacional La Raza, Privada de las Jacarandas, S/N, Col. La Raza, Alcaldía Azcapotzalco, Mexico City 02990, Mexico
| | - Eduardo Carrillo-Tapia
- Colegio de Ciencias y Humanidades, Universidad Autónoma de la Ciudad de México, Avenida de la Corona 320, Col. Loma de la Palma, Alcaldia Gustavo a Madero, Mexico City 07160, Mexico
| | - Laura Isabel Carrillo-Vázquez
- Posgrado en Ciencia Genómicas, Universidad Autónoma de la Ciudad de México, San Lorenzo 290, Col. Del Valle, Alcaldía Benito Juárez, Mexico City 03130, Mexico
| | - Felipe Mendoza-Pérez
- Laboratorio de Biotecnología, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, Alcaldía Coyoacán, Mexico City 04960, Mexico
| | - Martha Leyte-Lugo
- Laboratorio de Biotecnología, Departamento de Sistemas Biológicos, CONACYT-Universidad Autónoma Metropolitana Unidad Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, Alcaldía Coyoacán, Mexico City 04960, Mexico
| | - Raquel González-Vázquez
- Laboratorio de Biotecnología, Departamento de Sistemas Biológicos, CONACYT-Universidad Autónoma Metropolitana Unidad Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, Alcaldía Coyoacán, Mexico City 04960, Mexico
| | - Lino Mayorga-Reyes
- Laboratorio de Biotecnología, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, Alcaldía Coyoacán, Mexico City 04960, Mexico
| | - Rosa González-Vázquez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Departamento de Microbiología, Prolongación de Carpio y Plan de Ayala S/N, Col. Casco de Santo Tomas, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Instituto Mexicano del Seguro Social, Unidad Médica de Alta Especialidad, Hospital de Especialidades "Dr. Antonio Fraga Mouret", Centro Medico Nacional La Raza. Seris y Zaachila S/N, Col. La Raza, Alcaldía Azcapotzalco, Mexico City 02990, Mexico
| |
Collapse
|
6
|
Vidal-Cortés P, Martin-Loeches I, Rodríguez A, Bou G, Cantón R, Diaz E, De la Fuente C, Torre-Cisneros J, Nuvials FX, Salavert M, Aguilar G, Nieto M, Ramírez P, Borges M, Soriano C, Ferrer R, Maseda E, Zaragoza R. Current Positioning against Severe Infections Due to Klebsiella pneumoniae in Hospitalized Adults. Antibiotics (Basel) 2022; 11:antibiotics11091160. [PMID: 36139940 PMCID: PMC9495006 DOI: 10.3390/antibiotics11091160] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Infections due to Klebsiella pneumoniae have been increasing in intensive care units (ICUs) in the last decade. Such infections pose a serious problem, especially when antimicrobial resistance is present. We created a task force of experts, including specialists in intensive care medicine, anaesthesia, microbiology and infectious diseases, selected on the basis of their varied experience in the field of nosocomial infections, who conducted a comprehensive review of the recently published literature on the management of carbapenemase-producing Enterobacterales (CPE) infections in the intensive care setting from 2012 to 2022 to summarize the best available treatment. The group established priorities regarding management, based on both the risk of developing infections caused by K. pneumoniae and the risk of poor outcome. Moreover, we reviewed and updated the most important clinical entities and the new antibiotic treatments recently developed. After analysis of the priorities outlined, this group of experts established a series of recommendations and designed a management algorithm.
Collapse
Affiliation(s)
| | - Ignacio Martin-Loeches
- ICU, Trinity Centre for Health Science HRB-Welcome Trust, St. James’s Hospital Dublin, D08 NHY1 Dublin, Ireland
| | - Alejandro Rodríguez
- ICU, Hospital Universitari Joan XXIII, 43005 Tarragona, Spain
- Institut d’Investigació Sanitària Pere Virgil, 43007 Tarragona, Spain
- Departament Medicina I Ciruurgia, Universitat Rovira i Virgili, 43003 Tarragona, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Germán Bou
- Microbiology Department, Complejo Hospitalario Universitario A Coruña, 15006 A Coruña, Spain
- Centro de Investigación en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rafael Cantón
- Centro de Investigación en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Microbiology Department, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Emili Diaz
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Critical Care Department, Corporació Sanitària Parc Taulí, 08208 Sabadell, Spain
- Department of Medicine, Universitat Autonoma de Barcelona (UAB), 08193 Barcelona, Spain
| | | | - Julián Torre-Cisneros
- Centro de Investigación en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Infectious Diseases Service, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, 14004 Córdoba, Spain
| | | | - Miguel Salavert
- Infectious Diseases Department, Hospital Universitari I Politecnic La Fe, 46026 Valencia, Spain
| | - Gerardo Aguilar
- SICU, Department of Anesthesiology and Critical Care, Hospital Clínico Universitario Valencia, 46014 Valencia, Spain
- School of Medicine, Universitat de Valencia, 46010 Valencia, Spain
| | - Mercedes Nieto
- ICU, Hospital Clínico Universitario San Carlos, 28040 Madrid, Spain
| | - Paula Ramírez
- ICU, Hospital Universitari I Politecnic La Fe, 46026 Valencia, Spain
| | - Marcio Borges
- ICU, Hospital Universitario Son Llázter, 07198 Palma de Mallorca, Spain
- Fundación Micellium, 46183 Valencia, Spain
| | - Cruz Soriano
- ICU, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | | | - Emilio Maseda
- Fundación Micellium, 46183 Valencia, Spain
- SICU, Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Rafael Zaragoza
- Fundación Micellium, 46183 Valencia, Spain
- ICU, Hospital Universitario Dr. Peset, 46017 Valencia, Spain
- Correspondence:
| |
Collapse
|
7
|
Liu Y, Zhu S, Wei L, Feng Y, Cai L, Dunn S, McNally A, Zong Z. Arm race among closely-related carbapenem-resistant Klebsiella pneumoniae clones. ISME COMMUNICATIONS 2022; 2:76. [PMID: 37938732 PMCID: PMC9723571 DOI: 10.1038/s43705-022-00163-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 11/09/2023]
Abstract
Multiple carbapenem-resistant Klebsiella pneumoniae (CRKP) clones typically co-exist in hospital wards, but often certain clones will dominate. The factors driving this dominance are largely unclear. This study began from a genomic epidemiology analysis and followed by multiple approaches to identify the potential mechanisms driving the successful spread of a dominant clone. 638 patients in a 50-bed ICU were screened. 171 (26.8%) and 21 had CRKP from swabs and clinical specimens, respectively. Many (39.8% of those with ≥7-day ICU stay) acquired CRKP. After removing 18 unable to recover, 174 CRKP isolates were genome sequenced and belonged to six sequence types, with ST11 being the most prevalent (n = 154, 88.5%) and most (n = 169, 97.1%) carrying blaKPC-2. The 154 ST11 isolates belonged to 7 clones, with one (clone 1, KL64 capsular type) being dominant (n = 130, 84.4%). Clone 1 and the second-most common clone (clone 2, KL64, n = 15, 9.7%) emerged simultaneously, which was also detected by genome-based dating. Clone 1 exhibited decreased biofilm formation, shorter environment survival, and attenuated virulence. In murine gut, clone 1 outcompeted clone 2. Transcriptomic analysis showed significant upregulation of the ethanolamine operon in clone 1 when competing with clone 2. Clone 1 exhibited increased utilization of ethanolamine as a nitrogen source. This highlights that reduced virulence and enhanced ability to utilize ethanolamine may promote the success of nosocomial multidrug-resistant clones.
Collapse
Affiliation(s)
- Ying Liu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Shichao Zhu
- Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China
| | - Li Wei
- Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Feng
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Cai
- Intensive Care Unit, West China Hospital, Sichuan University, Chengdu, China
| | - Steven Dunn
- Institute of Microbiology and Infection, College of Medical and Dental Science, University of Birmingham, Birmingham, UK
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Science, University of Birmingham, Birmingham, UK
| | - Zhiyong Zong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China.
- Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
8
|
Uyanik T, Çadirci Ö, Gücükoğlu A, Can C. Investigation of major carbapenemase genes in ESBL-producing Escherichia coli and Klebsiella pneumoniae strains isolated from raw milk in Black Sea region of Turkey. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Lázaro-Perona F, Dahdouh E, Sotillo A, Pérez-Blanco V, Villa J, Viedma E, Ruiz-Carrascoso G, Mingorance J. Dissemination of a single ST11 clone of OXA-48-producing Klebsiella pneumoniae within a large polyclonal hospital outbreak determined by genomic sequencing. Microb Genom 2022; 8. [PMID: 35394416 PMCID: PMC9453077 DOI: 10.1099/mgen.0.000808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The population structure of a set of OXA-48-producing Klebsiella pneumoniae isolates belonging to sequence type 11 (ST11 Kp-OXA) and obtained from two hospitals in Madrid in the period from 2012 to 2015 was studied by genome sequencing. Overall, 97 ST11 Kp-OXA isolates were sequenced and their population structure and demography were studied by Bayesian phylodynamic analysis using core-genome SNVs. In total, 92 isolates were from Hospital La Paz, 57 of them from two selected units. The remaining five isolates were from different units of Hospital Doce de Octubre. Altogether, 96 out of the 97 ST11 Kp-OXA isolates could be ascribed to a single lineage that evolved into three sublineages. Demographic inference showed an expansion of the ST11 Kp-OXA in the first half of 2013 in agreement with the registered incidences. Dated phylogeny showed transmission clusters within hospital wards, between wards and between hospitals. The ST11 Kp-OXA outbreak in Hospital La Paz was largely due to the expansion of a single clone that was transmitted between different units and to Hospital Doce de Octubre. This clone diverged into three sub-lineages and spread out following a mixed mode of neutral core-genome evolution with some features of antibiotic selection, frequent large deletions and plasmid loss and gain events.
Collapse
Affiliation(s)
- Fernando Lázaro-Perona
- Servicio de Microbiología, Hospital Universitario La Paz, IdiPAZ, Paseo de La Castellana 261, 28046 Madrid, Spain
| | - Elias Dahdouh
- Servicio de Microbiología, Hospital Universitario La Paz, IdiPAZ, Paseo de La Castellana 261, 28046 Madrid, Spain
| | - Alma Sotillo
- Servicio de Microbiología, Hospital Universitario La Paz, IdiPAZ, Paseo de La Castellana 261, 28046 Madrid, Spain
| | - Verónica Pérez-Blanco
- Servicio de Medicina Preventiva, Hospital Universitario La Paz, IdiPAZ, Paseo de La Castellana 261, 28046 Madrid, Spain
| | - Jennifer Villa
- Servicio de Microbiología, Hospital Universitario 12 de Octubre, Imas12, Avenida de Córdoba sn, Madrid 28041, Spain
| | - Esther Viedma
- Servicio de Microbiología, Hospital Universitario 12 de Octubre, Imas12, Avenida de Córdoba sn, Madrid 28041, Spain
| | - Guillermo Ruiz-Carrascoso
- Servicio de Microbiología, Hospital Universitario La Paz, IdiPAZ, Paseo de La Castellana 261, 28046 Madrid, Spain
| | - Jesús Mingorance
- Servicio de Microbiología, Hospital Universitario La Paz, IdiPAZ, Paseo de La Castellana 261, 28046 Madrid, Spain
| |
Collapse
|
10
|
Corbella L, Fernández-Ruiz M, Ruiz-Ruigómez M, Rodríguez-Goncer I, Silva JT, Hernández-Jiménez P, López-Medrano F, Lizasoain M, Villa J, Carretero O, Aguado JM, San-Juan R. Prognostic factors of OXA-48 carbapenemase-producing Klebsiella pneumoniae infection in a tertiary-care Spanish hospital: A retrospective single-center cohort study. Int J Infect Dis 2022; 119:59-68. [PMID: 35331934 DOI: 10.1016/j.ijid.2022.03.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVES To describe the determinants of outcome of infections due to OXA-48 carbapenemase-producing Klebsiella pneumoniae (OXA-48-Kp). METHODS A retrospective cohort study of 117 episodes of OXA-48-Kp infection were conducted. Multivariate Cox models identified factors predicting 14-day clinical response and 30-day all-cause mortality. RESULTS Seventy-seven (65.8%) isolates were susceptible to imipenem/meropenem. 14-day clinical response and 30-day mortality rates were 41.9% and 28.2%. Catheter-related bloodstream infection (adjusted hazard ratio [aHR]: 8.33; 95% confidence interval [95%CI]: 3.19-21.72; P-value <0.001), urinary tract infection (aHR: 3.04; 95%CI: 1.39-6.66; P-value = 0.006) and early appropriate treatment (aHR: 1.77; 95%CI: 0.97-3.22; P-value = 0.064) predicted clinical response, whereas severe sepsis had a deleterious impact (aHR: 0.22; 95%CI: 0.10-0.50; P-value <0.001). Lower respiratory tract infection (aHR: 6.58; 95%CI: 2.83-15.29; P-value <0.001) and bloodstream infection (aHR: 2.33; 95%CI: 1.05-5.15; P-value = 0.037) were associated with 30-day mortality, whereas definitive therapy including ≥1 active agent (aHR: 0.26; 95%CI: 0.11-0.63; P-value = 0.003) and source control (aHR: 0.35; 95%CI: 0.14-0.91; P-value = 0.030) were protective. Combination therapy did not seem to be associated with better outcomes. CONCLUSIONS Appropriate antimicrobial treatment was protective for 30-day mortality in OXA-48-Kp infections. Carbapenems are usually active, whereas combination therapy appeared not to confer additional benefit.
Collapse
Affiliation(s)
- Laura Corbella
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain; Department of Medicine, Complutense University, Madrid, Spain.
| | - Mario Fernández-Ruiz
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain; Department of Medicine, Complutense University, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain.
| | - María Ruiz-Ruigómez
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain; Department of Medicine, Complutense University, Madrid, Spain.
| | - Isabel Rodríguez-Goncer
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain; Department of Medicine, Complutense University, Madrid, Spain.
| | - José Tiago Silva
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain; Department of Medicine, Complutense University, Madrid, Spain.
| | - Pilar Hernández-Jiménez
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain; Department of Medicine, Complutense University, Madrid, Spain.
| | - Francisco López-Medrano
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain; Department of Medicine, Complutense University, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain.
| | - Manuel Lizasoain
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain; Department of Medicine, Complutense University, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain.
| | - Jennifer Villa
- Department of Microbiology, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain.
| | - Octavio Carretero
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain; Department of Medicine, Complutense University, Madrid, Spain.
| | - José María Aguado
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain; Department of Medicine, Complutense University, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain.
| | - Rafael San-Juan
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain; Department of Medicine, Complutense University, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain.
| |
Collapse
|
11
|
Hooban B, Fitzhenry K, Cahill N, Joyce A, O' Connor L, Bray JE, Brisse S, Passet V, Abbas Syed R, Cormican M, Morris D. A Point Prevalence Survey of Antibiotic Resistance in the Irish Environment, 2018-2019. ENVIRONMENT INTERNATIONAL 2021; 152:106466. [PMID: 33706038 DOI: 10.1016/j.envint.2021.106466] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 06/12/2023]
Abstract
Water bodies worldwide have proven to be vast reservoirs of clinically significant antibiotic resistant organisms. Contamination of waters by anthropogenic discharges is a significant contributor to the widespread dissemination of antibiotic resistance. The aim of this research was to investigate multiple different anthropogenic sources on a national scale for the role they play in the environmental propagation of antibiotic resistance. A total of 39 water and 25 sewage samples were collected across four local authority areas in the West, East and South of Ireland. In total, 211 Enterobacterales were isolated (139 water, 72 sewage) and characterised. A subset of isolates (n=60) were chosen for whole genome sequencing. Direct comparisons of the water versus sewage isolate collections revealed a higher percentage of sewage isolates displayed resistance to cefoxitin (46%) and ertapenem (32%), while a higher percentage of water isolates displayed resistance to tetracycline (55%) and ciprofloxacin (71%). Half of all isolates displayed extended spectrum beta-lactamase (ESBL) production phenotypically (n = 105/211; 50%), with blaCTX-M detected in 99/105 isolates by PCR. Carbapenemase genes were identified in 11 isolates (6 sewage, 5 water). The most common variant was blaOXA-48 (n=6), followed by blaNDM-5 (n=2) and blaKPC-2 (n=2). Whole genome sequencing analysis revealed numerous different sequence types in circulation in both waters and sewage including E. coli ST131 (n=15), ST38 (n=8), ST10 (n=4) along with Klebsiella ST405 (n=3) and ST11 (n=2). Core genome MLST (cgMLST) comparisons uncovered three highly similar Klebsiella isolates originating from hospital sewage and two nearby waters. The Klebsiella isolates from an estuary and seawater displayed 99.1% and 98.8% cgMLST identity to the hospital sewage isolate respectively. In addition, three pairs of E. coli isolates from different waters also revealed cgMLST similarities, indicating widespread dissemination and persistence of certain strains in the aquatic environment. These findings highlight the need for routine monitoring of water bodies used for recreational and drinking purposes for the presence of multi-drug resistant organisms.
Collapse
Affiliation(s)
- Brigid Hooban
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway; Centre for One Health, Ryan Institute, National University of Ireland, Galway.
| | - Kelly Fitzhenry
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway; Centre for One Health, Ryan Institute, National University of Ireland, Galway
| | - Niamh Cahill
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway; Centre for One Health, Ryan Institute, National University of Ireland, Galway
| | - Aoife Joyce
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway; Centre for One Health, Ryan Institute, National University of Ireland, Galway
| | - Louise O' Connor
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway; Centre for One Health, Ryan Institute, National University of Ireland, Galway
| | - James E Bray
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Sylvain Brisse
- Biodiversity and Epidemiology of Bacterial Pathogens, Institut Pasteur, Paris, France
| | - Virginie Passet
- Biodiversity and Epidemiology of Bacterial Pathogens, Institut Pasteur, Paris, France
| | - Raza Abbas Syed
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway
| | - Martin Cormican
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway; Centre for One Health, Ryan Institute, National University of Ireland, Galway; Health Service Executive, Ireland
| | - Dearbháile Morris
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway; Centre for One Health, Ryan Institute, National University of Ireland, Galway
| |
Collapse
|
12
|
León-Sampedro R, DelaFuente J, Díaz-Agero C, Crellen T, Musicha P, Rodríguez-Beltrán J, de la Vega C, Hernández-García M, López-Fresneña N, Ruiz-Garbajosa P, Cantón R, Cooper BS, San Millán Á. Pervasive transmission of a carbapenem resistance plasmid in the gut microbiota of hospitalized patients. Nat Microbiol 2021; 6:606-616. [PMID: 33782584 PMCID: PMC7610705 DOI: 10.1038/s41564-021-00879-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 02/12/2021] [Indexed: 01/31/2023]
Abstract
Infections caused by carbapenemase-producing enterobacteria (CPE) are a major concern in clinical settings worldwide. Two fundamentally different processes shape the epidemiology of CPE in hospitals: the dissemination of CPE clones from patient to patient (between-patient transfer), and the transfer of carbapenemase-encoding plasmids between enterobacteria in the gut microbiota of individual patients (within-patient transfer). The relative contribution of each process to the overall dissemination of carbapenem resistance in hospitals remains poorly understood. Here, we used mechanistic models combining epidemiological data from more than 9,000 patients with whole genome sequence information from 250 enterobacteria clones to characterize the dissemination routes of a pOXA-48-like carbapenemase-encoding plasmid in a hospital setting over a 2-yr period. Our results revealed frequent between-patient transmission of high-risk pOXA-48-carrying clones, mostly of Klebsiella pneumoniae and sporadically Escherichia coli. The results also identified pOXA-48 dissemination hotspots within the hospital, such as specific wards and individual rooms within wards. Using high-resolution plasmid sequence analysis, we uncovered the pervasive within-patient transfer of pOXA-48, suggesting that horizontal plasmid transfer occurs in the gut of virtually every colonized patient. The complex and multifaceted epidemiological scenario exposed by this study provides insights for the development of intervention strategies to control the in-hospital spread of CPE.
Collapse
Affiliation(s)
- Ricardo León-Sampedro
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Centro de Investigación Biológica en Red, Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain
| | - Javier DelaFuente
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Cristina Díaz-Agero
- Servicio de Medicina Preventiva y Salud Pública, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Thomas Crellen
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Patrick Musicha
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jerónimo Rodríguez-Beltrán
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Centro de Investigación Biológica en Red, Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen de la Vega
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Marta Hernández-García
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Red Española de Investigación en Patología Infecciosa, Instituto de Salud Carlos III, Madrid, Spain
| | - Nieves López-Fresneña
- Servicio de Medicina Preventiva y Salud Pública, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Patricia Ruiz-Garbajosa
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Red Española de Investigación en Patología Infecciosa, Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Red Española de Investigación en Patología Infecciosa, Instituto de Salud Carlos III, Madrid, Spain
| | - Ben S Cooper
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Álvaro San Millán
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain.
- Centro de Investigación Biológica en Red, Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain.
- Centro Nacional de Biotecnología-CSIC, Madrid, Spain.
| |
Collapse
|
13
|
Mateos M, Hernández-García M, Del Campo R, Martínez-García L, Gijón D, Morosini MI, Ruiz-Garbajosa P, Cantón R. Emergence and Persistence over Time of Carbapenemase-Producing Enterobacter Isolates in a Spanish University Hospital in Madrid, Spain (2005-2018). Microb Drug Resist 2020; 27:895-903. [PMID: 33090918 DOI: 10.1089/mdr.2020.0265] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Carbapenemase production is constantly increasing among different Enterobacterales species. We analyzed the microbiological characteristics and population structure of all carbapenemase-producing Enterobacter spp. (CP-Ent) isolates recovered at the Ramón y Cajal Hospital between 2005 and 2018. Overall, 178 CP-Ent isolates (60.7% colonization, 39.3% clinical) were recovered from 165 hospitalized patients (165/176, 93.7%; medical [102/165], surgical [34/165], and intensive care unit [29/165] areas), emergency unit (4/176, 2.3%), and ambulatory patients (7/176, 4.0%). In addition, three CP-Ent were found in environmental sources. Clinical samples were mainly urine (37.1%). The most frequent matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF)-identified species were Enterobacter cloacae (n = 85) and Enterobacter asburiae (n = 49). hsp60 gene sequencing showed a higher species diversity than MALDI-TOF: 70 Enterobacter hormaechei-clusters III, VI, VIII; 69 Enterobacter roggenkampii-IV; 15 Enterobacter kobei-II; 9 E. asburiae-I; 3 Enterobacter ludwigii-V; and 1 E. cloacae subsp. dissolvens-XII. Nine Klebsiella aerogenes were also identified. Overall, a high clonal diversity (Simpson Diversity Index >0.90) was found among CP-Ent-clusters. Environmental isolates were clonally related to clinical ones. Amikacin and tigecycline showed the highest susceptibility (>93%). VIM-1 (n = 133/181, 73.5%) and OXA-48 (n = 34/181, 18.8%) carbapenemases were predominant, followed by KPC-2 (n = 9/181, 5.0%), KPC-3 (n = 2/181, 1.1%), VIM-2 (n = 1/181, 0.6%), and two coproducers (VIM-1+KPC-2 and VIM-1+KPC-3). Extended-spectrum beta-lactamase (ESBL) coproduction (14.4%) emerged in 2012, mainly associated with blaSHV-12 (p < 0.001), E. roggenkampii (p < 0.001), and colonization (p = 0.03). VIM-1- and OXA-48-CP-Ent fecal carriers increased in our hospital, particularly between 2011 and 2018 (p < 0.001). Moreover, KPC and OXA-48 producers emerged in 2010 and 2012, respectively. They superimposed over VIM producers, which were persistently recovered since first detection in 2005. These results depict increased complexity over time of CP-Ent.
Collapse
Affiliation(s)
- Miriam Mateos
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Marta Hernández-García
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - Rosa Del Campo
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - Laura Martínez-García
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Desirée Gijón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - María Isabel Morosini
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - Patricia Ruiz-Garbajosa
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| |
Collapse
|
14
|
Hernández-García M, García-Fernández S, García-Castillo M, Bou G, Cercenado E, Delgado-Valverde M, Mulet X, Pitart C, Rodríguez-Lozano J, Tormo N, López-Mendoza D, Díaz-Regañón J, Cantón R. WGS characterization of MDR Enterobacterales with different ceftolozane/tazobactam susceptibility profiles during the SUPERIOR surveillance study in Spain. JAC Antimicrob Resist 2020; 2:dlaa084. [PMID: 34223039 PMCID: PMC8210196 DOI: 10.1093/jacamr/dlaa084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/03/2020] [Indexed: 11/13/2022] Open
Abstract
Objectives To analyse by WGS the ceftolozane/tazobactam (C/T) resistance mechanisms in Escherichia coli and Klebsiella spp. isolates recovered from complicated intra-abdominal and urinary tract infections in patients from Spanish ICUs (SUPERIOR surveillance study, 2016-17). Methods The clonal relatedness, the resistome and the virulome of 45 E. coli and 43 Klebsiella spp. isolates with different C/T susceptibility profiles were characterized. Results In E. coli, two (C/T susceptible) carbapenemase producers (VIM-2-CC23, OXA-48-ST38) were detected. The most relevant clone was ST131-B2-O25:H4-H30 (17/45), particularly the CTX-M-15-ST131-H30-Rx sublineage (15/17). ST131 strains were mainly C/T susceptible (15/17) and showed an extensive virulome. In non-ST131 strains (28/45), CTX-M enzymes [CTX-M-14 (8/24); CTX-M-15 (6/24); CTX-M-1 (3/24); CTX-M-32 (2/24)] were found in different clones. C/T resistance was detected in non-clonal E. coli isolates (13%, 6/45) with ESBL (4/6) and non-ESBL (2/6) genotypes. Among Klebsiella spp., Klebsiella pneumoniae (42/43) and Klebsiella michiganensis (1/43) species were identified; 42% (18/43) were carbapenemase producers and 58% showed a C/T resistance phenotype (25/43). OXA-48-ST11 (12/18), OXA-48-ST392 (2/18), OXA-48-ST15 (2/18), NDM-1-ST101 (1/18) and OXA-48+VIM-2-ST15 (1/18) isolates were found, all C/T resistant. Correlation between carbapenemase detection and resistance to C/T was demonstrated (P < 0.001). In non-carbapenemase-producing K. pneumoniae (25/43), C/T resistance (28%, 7/25) was detected in ESBL (3/7) and AmpC (2/7) producers. Overall, an extensive virulome was found and was correlated with carbapenemase carriage (P < 0.001) and C/T resistance (P < 0.05), particularly in OXA-48-ST11 strains (P < 0.05). Conclusions Prediction of antimicrobial susceptibility profiles using WGS is challenging. Carbapenemase-encoding genes are associated with C/T resistance in K. pneumoniae, but other resistance mechanisms might be additionally involved.
Collapse
Affiliation(s)
| | | | | | - Germán Bou
- Servicio de Microbiología, Hospital Universitario A Coruña, A Coruña, Spain
| | - Emilia Cercenado
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Mercedes Delgado-Valverde
- UGC Enfermedades Infecciosas, Microbiología Clínica y Medicina Preventiva, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Xavier Mulet
- Servicio de Microbiología, Hospital Universitario Son Espases, Palma de Mallorca, Spain
| | - Cristina Pitart
- Laboratorio de Microbiología. Hospital Clínic i Provincial, Barcelona, Spain
| | - Jesús Rodríguez-Lozano
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Nuria Tormo
- Servicio de Microbiología, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | | | | | - Rafael Cantón
- Servicio de Microbiología, Hospital Ramón y Cajal-IRYCIS, Madrid, Spain
| | | |
Collapse
|
15
|
Pérez-Viso B, Hernández-García M, Ponce-Alonso M, Morosini MI, Ruiz-Garbajosa P, del Campo R, Cantón R. Characterization of carbapenemase-producing Serratia marcescens and whole-genome sequencing for plasmid typing in a hospital in Madrid, Spain (2016–18). J Antimicrob Chemother 2020; 76:110-116. [DOI: 10.1093/jac/dkaa398] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/25/2020] [Indexed: 01/09/2023] Open
Abstract
Abstract
Objectives
Carbapenemase-producing Enterobacterales (CPE) are increasingly recognized in nosocomial infections, also affecting ICU patients. We aimed to characterize the carbapenemase-producing Serratia marcescens (CPSm) isolates recovered in our hospital in Madrid (Spain) between March 2016 and December 2018.
Methods
Overall, 50 isolates from clinical and epidemiological surveillance samples were recovered from 24 patients admitted to the medical ICU and 10 non-ICU-related patients based on their phenotypic resistance. Carbapenemase characterization, antibiotic susceptibility, PFGE clonal relatedness, plasmid characterization, WGS (Illumina-NovaSeq 6000) and phylogenetic analysis were performed.
Results
A single isolate was finally considered for each patient, except for Patient 8 that was colonized by two different isolates (n = 35). Isolates were characterized as VIM-1 (n = 29) or OXA-48 producers (n = 6). Up to seven genetic lineages were found by PFGE, with dominance of two clones. Plasmid characterization confirmed that almost all CPSm carried the same ∼60 kb IncL OXA-48- or VIM-1-encoding plasmid, which was related to the globally disseminated IncL-pOXA-48a. WGS allowed plasmid reconstruction with two variants: IncL-pVIM-1 (∼65 kb) and IncL-pOXA-48 (∼62 kb). blaOXA-48–Tn1999 (∼5 kb) was the unique antibiotic resistance gene in pOXA-48, whereas pVIM-1 plasmids (∼8 kb) harboured a class 1 integron containing 5′-blaVIM-1+aacA4+dfrB1+aadA1+catB2+qacEDelta1+sul1-3′.
Conclusions
Our results confirm the dissemination of CPSm within our institution in both ICU and non-ICU environments, representing two prevalent CPSm clones, and the same IncL-pOXA-48 plasmid previously described in other Enterobacterales, but containing the blaVIM-1 gene. This also reinforces the relevance of species different from Klebsiella pneumoniae or Escherichia coli in the CPE landscape and circulating lineages and plasmids in local CPE epidemiology.
Collapse
Affiliation(s)
- Blanca Pérez-Viso
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - Marta Hernández-García
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - Manuel Ponce-Alonso
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - María Isabel Morosini
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - Patricia Ruiz-Garbajosa
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - Rosa del Campo
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| |
Collapse
|