1
|
Guo L, Ruan Q, Ma D, Wen J. Revealing quorum-sensing networks in Pseudomonas aeruginosa infections through internal and external signals to prevent new resistance trends. Microbiol Res 2024; 289:127915. [PMID: 39342746 DOI: 10.1016/j.micres.2024.127915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/18/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
In the context of growing antibiotic resistance in bacteria, the quorum-sensing (QS) system of Pseudomonas aeruginosa (P. aeruginosa) has become a target for new therapeutic strategies. QS is a crucial communication process and an essential pathogenic mechanism. This comprehensive review explores the critical role of QS in the pathogenesis of P. aeruginosa infections, including lung, burn, bloodstream, gastrointestinal, corneal, and urinary tract infections. In addition, this review delves into the complexity of the bacterial QS communication network and highlights the intricate mechanisms underlying these pathological processes. Notably, in addition to the four main QS systems, bacterial QS can interact with various external and internal signaling networks, such as host environments and nutrients in the external microbiome, as well as internal virulence regulation systems within bacteria. These elements can significantly influence the behavior and virulence of microbial communities. Therefore, this review reveals that inhibitors targeting singular QS pathways may inadvertently promote virulence in other pathways, leading to new trends in drug resistance. In response to evolving resistance challenges, this study proposes more cautious treatment strategies, including multitarget interventions and combination therapies, aimed at combating the escalating issue of resistance.
Collapse
Affiliation(s)
- Li Guo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiao Ruan
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Dandan Ma
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Jun Wen
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Mattos MMG, Filho SA, Martins GR, Venturi LS, Canetti VB, Ferreira FA, Foguel D, Silva ASD. Antimicrobial and antibiofilm properties of procyanidins: potential for clinical and biotechnological applications. Crit Rev Microbiol 2024:1-24. [PMID: 39301598 DOI: 10.1080/1040841x.2024.2404509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/29/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Procyanidins (PCs) have emerged as agents with potential antimicrobial and antibiofilm activities, although their mechanisms of action and structure-activity relationships remain poorly understood. This review assessed the potential mechanisms of action and applications of these compounds to explore these aspects. Studies on the antimicrobial properties of PCs suggest that they are involved in osmotic imbalance, DNA interactions and metabolic disruption. Although less studied, their antibiofilm activities include antiadhesive effects and the modulation of mobility and quorum sensing. However, most research has used uncharacterized plant extracts for in vitro assays, limiting the understanding of the structure-activity relationships of PCs and their in vivo mechanisms. Clinical trials on the antimicrobial and antibiofilm properties of PCs have not clarified these issues due to nonstandardized methodologies, inadequate chemical characterization, and the limited number of studies, preventing a consensus and evaluation of the in vivo effects. Additionally, patent analysis revealed that technological developments in the antimicrobial and antibiofilm uses of PCs are concentrated in health care and dental care, but new biotechnological uses are emerging. Therefore, while PCs are promising antimicrobial and antibiofilm compounds, further research into their chemical structures and mechanisms of action is crucial for evidence-based applications in biotechnology and health care.
Collapse
Affiliation(s)
- Mariana M G Mattos
- Divisão de Catálise, Biocatálise e Processos Químicos (DICAP), Instituto Nacional de Tecnologia, Rio de Janeiro, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sérgio Antunes Filho
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriel R Martins
- Divisão de Catálise, Biocatálise e Processos Químicos (DICAP), Instituto Nacional de Tecnologia, Rio de Janeiro, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lara Souza Venturi
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vinícius Benjamim Canetti
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabienne Antunes Ferreira
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Debora Foguel
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ayla Sant'Ana da Silva
- Divisão de Catálise, Biocatálise e Processos Químicos (DICAP), Instituto Nacional de Tecnologia, Rio de Janeiro, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Jeong GJ, Khan F, Tabassum N, Kim YM. Natural and synthetic molecules with potential to enhance biofilm formation and virulence properties in Pseudomonas aeruginosa. Crit Rev Microbiol 2024; 50:830-858. [PMID: 37968960 DOI: 10.1080/1040841x.2023.2282459] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 10/06/2023] [Accepted: 11/01/2023] [Indexed: 11/17/2023]
Abstract
Pseudomonas aeruginosa can efficiently adapt to changing environmental conditions due to its ubiquitous nature, intrinsic/acquired/adaptive resistance mechanisms, high metabolic versatility, and the production of numerous virulence factors. As a result, P. aeruginosa becomes an opportunistic pathogen, causing chronic infection in the lungs and several organs of patients suffering from cystic fibrosis. Biofilm established by P. aeruginosa in host tissues and medical device surfaces has been identified as a major obstruction to antimicrobial therapy. P. aeruginosa is very likely to be closely associated with the various microorganisms in the host tissues or organs in a pathogenic or nonpathogenic behavior. Aside from host-derived molecules, other beneficial and pathogenic microorganisms produce a diverse range of secondary metabolites that either directly or indirectly favor the persistence of P. aeruginosa. Thus, it is critical to understand how P. aeruginosa interacts with different molecules and ions in the host and abiotic environment to produce extracellular polymeric substances and virulence factors. Thus, the current review discusses how various natural and synthetic molecules in the environment induce biofilm formation and the production of multiple virulence factors.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| | - Fazlurrahman Khan
- Institute of Fisheries Sciences, Pukyong National University, Busan, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
4
|
Conaway A, Todorovic I, Mould DL, Hogan DA. Loss of LasR function leads to decreased repression of Pseudomonas aeruginosa PhoB activity at physiological phosphate concentrations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.586856. [PMID: 38585852 PMCID: PMC10996656 DOI: 10.1101/2024.03.27.586856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
While the Pseudomonas aeruginosa LasR transcription factor plays a role in quorum sensing (QS) across phylogenetically-distinct lineages, isolates with loss-of-function mutations in lasR (LasR- strains) are commonly found in diverse settings including infections where they are associated with worse clinical outcomes. In LasR- strains, the transcription factor RhlR, which is controlled by LasR, can be alternately activated in low inorganic phosphate (Pi) concentrations via the two-component system PhoR-PhoB. Here, we demonstrate a new link between LasR and PhoB in which the absence of LasR increases PhoB activity at physiological Pi concentrations and raises the Pi concentration necessary for PhoB inhibition. PhoB activity was also less repressed by Pi in mutants lacking different QS regulators (RhlR and PqsR) and in mutants lacking genes required for the production of QS-regulated phenazines suggesting that decreased phenazine production was one reason for decreased PhoB repression by Pi in LasR- strains. In addition, the CbrA-CbrB two-component system, which is elevated in LasR- strains, was necessary for reduced PhoB repression by Pi and a Δcrc mutant, which lacks the CbrA-CbrB-controlled translational repressor, activated PhoB at higher Pi concentrations than the wild type. The ΔlasR mutant had a PhoB-dependent growth advantage in a medium with no added Pi and increased virulence-determinant gene expression in a medium with physiological Pi, in part through reactivation of QS. This work suggests PhoB activity may contribute to the virulence of LasR- P. aeruginosa and subsequent clinical outcomes.
Collapse
Affiliation(s)
- Amy Conaway
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH USA
| | - Igor Todorovic
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH USA
| | - Dallas L. Mould
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH USA
| | - Deborah A. Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH USA
| |
Collapse
|
5
|
Qiu H, Li Y, Yuan M, Chen H, Dandekar AA, Dai W. Uncovering a hidden functional role of the XRE-cupin protein PsdR as a novel quorum-sensing regulator in Pseudomonas aeruginosa. PLoS Pathog 2024; 20:e1012078. [PMID: 38484003 DOI: 10.1371/journal.ppat.1012078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/26/2024] [Accepted: 02/28/2024] [Indexed: 03/27/2024] Open
Abstract
XRE-cupin family proteins containing an DNA-binding domain and a cupin signal-sensing domain are widely distributed in bacteria. In Pseudomonas aeruginosa, XRE-cupin transcription factors have long been recognized as regulators exclusively controlling cellular metabolism pathways. However, their potential functional roles beyond metabolism regulation remain unknown. PsdR, a typical XRE-cupin transcriptional regulator, was previously characterized as a local repressor involved solely in dipeptide metabolism. Here, by measuring quorum-sensing (QS) activities and QS-controlled metabolites, we uncover that PsdR is a new QS regulator in P. aeruginosa. Our RNA-seq analysis showed that rather than a local regulator, PsdR controls a large regulon, including genes associated with both the QS circuit and non-QS pathways. To unveil the underlying mechanism of PsdR in modulating QS, we developed a comparative transcriptome approach named "transcriptome profile similarity analysis" (TPSA). Using this TPSA method, we revealed that PsdR expression causes a QS-null-like transcriptome profile, resulting in QS-inactive phenotypes. Based on the results of TPSA, we further demonstrate that PsdR directly binds to the promoter for the gene encoding the QS master transcription factor LasR, thereby negatively regulating its expression and influencing QS activation. Moreover, our results showed that PsdR functions as a negative virulence regulator, as inactivation of PsdR enhanced bacterial cytotoxicity on host cells. In conclusion, we report on a new QS regulation role for PsdR, providing insights into its role in manipulating QS-controlled virulence. Most importantly, our findings open the door for a further discovery of untapped functions for other XRE-Cupin family proteins.
Collapse
Affiliation(s)
- Huifang Qiu
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yuanhao Li
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Min Yuan
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Huali Chen
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Ajai A Dandekar
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Weijun Dai
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou, China
| |
Collapse
|
6
|
Tan X, Cheng X, Xiao J, Liu Q, Du D, Li M, Sun Y, Zhou J, Zhu G. Alkaline phosphatase LapA regulates quorum sensing-mediated virulence and biofilm formation in Pseudomonas aeruginosa PAO1 under phosphate depletion stress. Microbiol Spectr 2023; 11:e0206023. [PMID: 37796007 PMCID: PMC10715133 DOI: 10.1128/spectrum.02060-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/19/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE Our previous study demonstrated that the expression of lapA was induced under phosphate depletion conditions, but its roles in virulence and biofilm formation by Pseudomonas aeruginosa remain largely unknown. This study presents a systematic investigation of the roles of lapA in virulence induction and biofilm formation by constructing a lapA-deficient strain with P. aeruginosa PAO1. The results showed that deletion of the lapA gene evidently reduced elastase activity, swimming motility, C4-HSL, and 3-oxo-C12-HSL production, and increased rhamnolipid production under phosphate depletion stress. Moreover, lapA gene deletion inhibited PAO1 biofilm formation in porcine skin explants by reducing the expression levels of las and rhl quorum sensing systems and extracellular polymeric substance synthesis. Finally, lapA gene deletion also reduced the virulence of PAO1 in Caenorhabditis elegans in fast-kill and slow-kill infection assays. This study provides insights into the roles of lapA in modulating P. aeruginosa virulence and biofilm formation under phosphate depletion stress.
Collapse
Affiliation(s)
- Xiaojuan Tan
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Xi Cheng
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Jingjing Xiao
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Qianqian Liu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Dongsheng Du
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Minghui Li
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Yang Sun
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Jinwei Zhou
- School of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu, China
| | - Guoping Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| |
Collapse
|
7
|
Cheng Y, Narayanan M, Shi X, Chen X, Li Z, Ma Y. Phosphate-solubilizing bacteria: Their agroecological function and optimistic application for enhancing agro-productivity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166468. [PMID: 37619729 DOI: 10.1016/j.scitotenv.2023.166468] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/11/2023] [Accepted: 08/19/2023] [Indexed: 08/26/2023]
Abstract
Phosphorus (P) is a limiting nutrient in the soil-plant nutrient cycling. Although the exogenous application of chemical P fertilizers can satisfy crop P requirements during critical growth phases. While excessive P fertilizers use results in low phosphorus acquisition efficiency (PAE), it has serious environmental consequences and hastens the depletion of P mineral reserves. Phosphate-solubilizing bacteria (PSB) have the potential to make insoluble phosphate available to plants through solubilization and mineralization, increasing crop yields while maintaining environmental sustainability. Existing reviews mainly focus on the beneficial effects of PSB on crop performance and related mechanisms, while few of them elucidate the action mechanisms of PSB in soil-microbe-plant interactions for crop cultivation with high yield efficiency. Hence, this study provides a comprehensive review of the physicochemical and molecular mechanisms (e.g., root exudates, extracellular polysaccharides, organic acids, phosphatases, and phosphate-specific transport systems) of PSB to facilitate the P cycle in the soil-plant systems. Further, the potential of commercial applications of PSB (e.g., genetic engineering, seed priming and coating) are also discussed in order to highlight their contribution to sustainable agriculture. Finally, existing challenges and future prospects in agricultural applications are proposed. In conclusion, we firmly believe that PSB represent a highly significant biotechnological tool for enhancing agricultural productivity and offers a wide range of extensive potential applications.
Collapse
Affiliation(s)
- Yingying Cheng
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Mathiyazhagan Narayanan
- Division of Research and Innovation, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai 602105, Tamil Nadu, India
| | - Xiaojun Shi
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Xinping Chen
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Zhenlun Li
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Ying Ma
- College of Resources and Environment, Southwest University, Chongqing 400716, China.
| |
Collapse
|
8
|
Bayat M, Nahand JS, Farsad-Akhatr N, Memar MY. Bile effects on the Pseudomonas aeruginosa pathogenesis in cystic fibrosis patients with gastroesophageal reflux. Heliyon 2023; 9:e22111. [PMID: 38034726 PMCID: PMC10685303 DOI: 10.1016/j.heliyon.2023.e22111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/10/2023] [Accepted: 11/05/2023] [Indexed: 12/02/2023] Open
Abstract
Gastroesophageal reflux (GER) occurs in most cystic fibrosis (CF) patients and is the primary source of bile aspiration in the airway tract of CF individuals. Aspirated bile is associated with the severity of lung diseases and chronic inflammation caused by Pseudomonas aeruginosa as the most common pathogen of CF respiratory tract infections. P. aeruginosa is equipped with several mechanisms to facilitate the infection process, including but not limited to the expression of virulence factors, biofilm formation, and antimicrobial resistance, all of which are under the strong regulation of quorum sensing (QS) mechanism. By increasing the expression of lasI, rhlI, and pqsA-E, bile exposure directly impacts the QS network. An increase in psl expression and pyocyanin production can promote biofilm formation. Along with the loss of flagella and reduced swarming motility, GER-derived bile can repress the expression of genes involved in creating an acute infection, such as expression of Type Three Secretion (T3SS), hydrogen cyanide (hcnABC), amidase (amiR), and phenazine (phzA-E). Inversely, to cause persistent infection, bile exposure can increase the Type Six Secretion System (T6SS) and efflux pump expression, which can trigger resistance to antibiotics such as colistin, polymyxin B, and erythromycin. This review will discuss the influence of aspirated bile on the pathogenesis, resistance, and persistence of P. aeruginosa in CF patients.
Collapse
Affiliation(s)
- Mobina Bayat
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nader Farsad-Akhatr
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Buch A, Gupta V. Unusual concurrence of P-solubilizing and biocontrol traits under P-limitation in plant-beneficial Pseudomonas aeruginosa P4: insights from in vitro metabolic and gene expression analysis. Arch Microbiol 2023; 205:355. [PMID: 37833514 DOI: 10.1007/s00203-023-03692-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
Plant-beneficial fluorescent Pseudomonas species with concurrent P-solubilizing and biocontrol traits could have improved rhizospheric survival and efficacy; this rare ability being subject to diverse environmental and endogenous regulations. This study correlates growth patterns, time-course analysis of selected metabolites, non-targeted metabolomics of exometabolites and selected gene expression analysis to elucidate P-limitation-induced physiological shifts enabling co-production of metabolites implied in P-solubilization and biocontrol by P. aeruginosa P4 (P4). P-limited culture supernatants showed enhanced production of selected biocontrol metabolites such as pyocyanin, pyoverdine and pyochelin and IAA while maintaining biomass yield despite reduced growth rate and glucose consumption. Non-targeted exometabolomics further indicated that P-limitation positively impacted pentose phosphate pathway as well as pyruvate, C5-branched dibasic acid and amino acid metabolism. Its correlation with unusually reduced aroC expression and growth phase-dependent changes in the expression of key biosynthetic genes pchA, pchE, pchG, pvdQ and phzM implied a probable regulation of biosynthesis of chorismate-derived secondary metabolites, not neglecting the possibility of multiple factors influencing the gene expression profiles. Similar increase in biocontrol metabolite production was also observed in Artificial Root Exudates (ARE)-grown P4 cultures. While such metabolic flexibility could impart physiological advantage in sustaining P-starvation stress, it manifests as unique coexistence of P-solubilizing and biocontrol abilities.
Collapse
Affiliation(s)
- Aditi Buch
- Department of Biological Sciences, P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Dist, Anand, Changa, 388 421, Gujarat, India.
| | - Vaishnawi Gupta
- Department of Biological Sciences, P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Dist, Anand, Changa, 388 421, Gujarat, India
| |
Collapse
|
10
|
Somathilaka SS, Balasubramaniam S, Martins DP, Li X. Revealing gene regulation-based neural network computing in bacteria. BIOPHYSICAL REPORTS 2023; 3:100118. [PMID: 37649578 PMCID: PMC10462848 DOI: 10.1016/j.bpr.2023.100118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/26/2023] [Indexed: 09/01/2023]
Abstract
Bacteria are known to interpret a range of external molecular signals that are crucial for sensing environmental conditions and adapting their behaviors accordingly. These external signals are processed through a multitude of signaling transduction networks that include the gene regulatory network (GRN). From close observation, the GRN resembles and exhibits structural and functional properties that are similar to artificial neural networks. An in-depth analysis of gene expression dynamics further provides a new viewpoint of characterizing the inherited computing properties underlying the GRN of bacteria despite being non-neuronal organisms. In this study, we introduce a model to quantify the gene-to-gene interaction dynamics that can be embedded in the GRN as weights, converting a GRN to gene regulatory neural network (GRNN). Focusing on Pseudomonas aeruginosa, we extracted the GRNN associated with a well-known virulence factor, pyocyanin production, using an introduced weight extraction technique based on transcriptomic data and proving its computing accuracy using wet-lab experimental data. As part of our analysis, we evaluated the structural changes in the GRNN based on mutagenesis to determine its varying computing behavior. Furthermore, we model the ecosystem-wide cell-cell communications to analyze its impact on computing based on environmental as well as population signals, where we determine the impact on the computing reliability. Subsequently, we establish that the individual GRNNs can be clustered to collectively form computing units with similar behaviors to single-layer perceptrons with varying sigmoidal activation functions spatio-temporally within an ecosystem. We believe that this will lay the groundwork toward molecular machine learning systems that can see artificial intelligence move toward non-silicon devices, or living artificial intelligence, as well as giving us new insights into bacterial natural computing.
Collapse
Affiliation(s)
- Samitha S. Somathilaka
- VistaMilk Research Centre, Walton Institute for Information and Communication Systems Science, South East Technological University, Waterford, Ireland
- School of Computing, University of Nebraska-Lincoln, Lincoln, Nebraska
| | | | - Daniel P. Martins
- VistaMilk Research Centre, Walton Institute for Information and Communication Systems Science, South East Technological University, Waterford, Ireland
| | - Xu Li
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| |
Collapse
|
11
|
Hespanhol JT, Nóbrega-Silva L, Bayer-Santos E. Regulation of type VI secretion systems at the transcriptional, posttranscriptional and posttranslational level. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001376. [PMID: 37552221 PMCID: PMC10482370 DOI: 10.1099/mic.0.001376] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023]
Abstract
Bacteria live in complex polymicrobial communities and are constantly competing for resources. The type VI secretion system (T6SS) is a widespread antagonistic mechanism used by Gram-negative bacteria to gain an advantage over competitors. T6SSs translocate toxic effector proteins inside target prokaryotic cells in a contact-dependent manner. In addition, some T6SS effectors can be secreted extracellularly and contribute to the scavenging scarce metal ions. Bacteria deploy their T6SSs in different situations, categorizing these systems into offensive, defensive and exploitative. The great variety of bacterial species and environments occupied by such species reflect the complexity of regulatory signals and networks that control the expression and activation of the T6SSs. Such regulation is tightly controlled at the transcriptional, posttranscriptional and posttranslational level by abiotic (e.g. pH, iron) or biotic (e.g. quorum-sensing) cues. In this review, we provide an update on the current knowledge about the regulatory networks that modulate the expression and activity of T6SSs across several species, focusing on systems used for interbacterial competition.
Collapse
Affiliation(s)
- Julia Takuno Hespanhol
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-900, Brazil
| | - Luize Nóbrega-Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-900, Brazil
| | - Ethel Bayer-Santos
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-900, Brazil
| |
Collapse
|
12
|
Zhao X, Xu C, Qu J, Jin Y, Bai F, Cheng Z, Wu W, Pan X. PitA Controls the H2- and H3-T6SSs through PhoB in Pseudomonas aeruginosa. Appl Environ Microbiol 2023; 89:e0209422. [PMID: 37184394 PMCID: PMC10304775 DOI: 10.1128/aem.02094-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/21/2023] [Indexed: 05/16/2023] Open
Abstract
Pseudomonas aeruginosa possesses three type VI secretion systems (T6SSs) that are involved in interspecies competition, internalization into epithelial cells, and virulence. Host-derived mucin glycans regulate the T6SSs through RetS, and attacks from other species activate the H1-T6SS. However, other environmental signals that control the T6SSs remain to be explored. Previously, we determined PitA to be a constitutive phosphate transporter, whose mutation reduces the intracellular phosphate concentration. Here, we demonstrate that mutation in the pitA gene increases the expression of the H2- and H3-T6SS genes and enhances bacterial uptake by A549 cells. We further found that mutation of pitA results in activation of the quorum sensing (QS) systems, which contributes to the upregulation of the H2- and H3-T6SS genes. Overexpression of the phosphate transporter complex genes pstSCAB or knockdown of the phosphate starvation response regulator gene phoB in the ΔpitA mutant reduces the expression of the QS genes and subsequently the H2- and H3-T6SS genes and bacterial internalization. Furthermore, growth of wild-type PA14 in a low-phosphate medium results in upregulation of the QS and H2- and H3-T6SS genes and bacterial internalization compared to those in cells grown in a high-phosphate medium. Deletion of the phoB gene abolished the differences in the expression of the QS and T6SS genes as well as bacterial internalization in the low- and high- phosphate media. Overall, our results elucidate the mechanism of PitA-mediated regulation on the QS system and H2- and H3-T6SSs and reveal a novel pathway that regulates the T6SSs in response to phosphate starvation. IMPORTANCE Pseudomonas aeruginosa is an opportunistic pathogenic bacterium that causes acute and chronic infections in humans. The type VI secretion systems (T6SSs) have been shown to associate with chronic infections. Understanding the mechanism used by the bacteria to sense environmental signals and regulate virulence factors will provide clues for developing novel effective treatment strategies. Here, we demonstrate a relationship between a phosphate transporter and the T6SSs and reveal a novel regulatory pathway that senses phosphate limitation and controls bacterial virulence factors in P. aeruginosa.
Collapse
Affiliation(s)
- Xinrui Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Congjuan Xu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Junze Qu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaolei Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
13
|
Ambreetha S, Singh V. Genetic and environmental determinants of surface adaptations in Pseudomonas aeruginosa. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 37276014 DOI: 10.1099/mic.0.001335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Pseudomonas aeruginosa
is a well-studied Gram-negative opportunistic bacterium that thrives in markedly varied environments. It is a nutritionally versatile microbe that can colonize a host as well as exist in the environment. Unicellular, planktonic cells of
P. aeruginosa
can come together to perform a coordinated swarming movement or turn into a sessile, surface-adhered population called biofilm. These collective behaviours produce strikingly different outcomes. While swarming motility rapidly disseminates the bacterial population, biofilm collectively protects the population from environmental stresses such as heat, drought, toxic chemicals, grazing by predators, and attack by host immune cells and antibiotics. The ubiquitous nature of
P. aeruginosa
is likely to be supported by the timely transition between planktonic, swarming and biofilm lifestyles. The social behaviours of this bacteria viz biofilm and swarm modes are controlled by signals from quorum-sensing networks, LasI-LasR, RhlI-RhlR and PQS-MvfR, and several other sensory kinases and response regulators. A combination of environmental and genetic cues regulates the transition of the
P. aeruginosa
population to specific states. The current review is aimed at discussing key factors that promote physiologically distinct transitioning of the
P. aeruginosa
population.
Collapse
Affiliation(s)
- Sakthivel Ambreetha
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, Karnataka - 560012, India
| | - Varsha Singh
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, Karnataka - 560012, India
| |
Collapse
|
14
|
Balasubramaniam S, Somathilaka S, Sun S, Ratwatte A, Pierobon M. Realizing Molecular Machine Learning through Communications for Biological AI: Future Directions and Challenges. IEEE NANOTECHNOLOGY MAGAZINE 2023; 17:10-20. [PMID: 38855043 PMCID: PMC11160936 DOI: 10.1109/mnano.2023.3262099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Artificial Intelligence (AI) and Machine Learning (ML) are weaving their way into the fabric of society, where they are playing a crucial role in numerous facets of our lives. As we witness the increased deployment of AI and ML in various types of devices, we benefit from their use into energy-efficient algorithms for low powered devices. In this paper, we investigate a scale and medium that is far smaller than conventional devices as we move towards molecular systems that can be utilized to perform machine learning functions, i.e., Molecular Machine Learning (MML). Fundamental to the operation of MML is the transport, processing, and interpretation of information propagated by molecules through chemical reactions. We begin by reviewing the current approaches that have been developed for MML, before we move towards potential new directions that rely on gene regulatory networks inside biological organisms as well as their population interactions to create neural networks. We then investigate mechanisms for training machine learning structures in biological cells based on calcium signaling and demonstrate their application to build an Analog to Digital Converter (ADC). Lastly, we look at potential future directions as well as challenges that this area could solve.
Collapse
Affiliation(s)
| | - Samitha Somathilaka
- School of Computing, University of Nebraska-Lincoln, NE, USA
- Walton Institute, South East Technological University, Ireland
| | - Sehee Sun
- School of Computing, University of Nebraska-Lincoln, NE, USA
| | - Adrian Ratwatte
- School of Computing, University of Nebraska-Lincoln, NE, USA
| | | |
Collapse
|
15
|
De León ME, Wilson HS, Jospin G, Eisen JA. Genome sequencing and multifaceted taxonomic analysis of novel strains of violacein-producing bacteria and non-violacein-producing close relatives. Microb Genom 2023; 9. [PMID: 37052581 PMCID: PMC10210950 DOI: 10.1099/mgen.0.000971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/31/2023] [Indexed: 04/14/2023] Open
Abstract
Violacein is a water-insoluble violet pigment produced by various Gram-negative bacteria. The compound and the bacteria that produce it have been gaining attention due to the antimicrobial and proposed antitumour properties of violacein and the possibility that strains producing it may have broad industrial uses. Bacteria that produce violacein have been isolated from diverse environments including fresh and ocean waters, glaciers, tropical soils, trees, fish and the skin of amphibians. We report here the isolation and characterization of six violacein-producing bacterial strains and three non-violacein-producing close relatives, each isolated from either an aquatic environment or moist food materials in northern California, USA. For each isolate, we characterized traditional phenotypes, generated and analysed draft genome sequences, and carried out multiple types of taxonomic, phylogenetic and phylogenomic analyses. Based on these analyses we assign putative identifications to the nine isolates, which include representatives of the genera Chromobacterium, Aquitalea, Iodobacter, Duganella, Massilia and Janthinobacterium. In addition, we discuss the utility of various metrics for taxonomic assignment in these groups including average nucleotide identity, whole genome phylogenetic analysis and extent of recent homologous recombination using the software program PopCOGenT.
Collapse
Affiliation(s)
| | - Harriet S Wilson
- Department of Biological Sciences, Sierra College, Rocklin, CA, USA
| | - Guillaume Jospin
- Genome Center, University of California, Davis, CA, USA
- AnimalBiome, Oakland, CA, USA
| | - Jonathan A Eisen
- Genome Center, University of California, Davis, CA, USA
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Department of Evolution and Ecology, University of California, Davis, CA, USA
| |
Collapse
|
16
|
Jahdauti L, Muggeo A, Paturel V, Jaisson S, Luczka E, Coraux C, Guillard T. [Involvement of inorganic phosphate starvation in Pseudomonas aeruginosa bacterial virulence]. Rev Mal Respir 2023; 40:243-246. [PMID: 36828680 DOI: 10.1016/j.rmr.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 02/24/2023]
Abstract
Pseudomonas aeruginosa is a bacterium causing a wide spectrum of nosocomial and opportunistic respiratory infections. As an element essential for bacterial metabolism , phosphorus is incorporated as an inorganic phosphate and regulated by a two-component PhoB-PhoR system. Recently, it has been shown that as a result of overexpression of virulence factors, including the PhoB transcription factor, P. aeruginosa exhibited increased virulence in phosphate-deficient conditions. Exploration of the relationship between phosphate homeostasis and P. aeruginosa virulence could effectively contribute to the development of new, simple and innovative therapeutic strategies.
Collapse
Affiliation(s)
- L Jahdauti
- Université de Reims Champagne-Ardenne, Inserm UMR-S 1250, P3Cell, Reims, France.
| | - A Muggeo
- Université de Reims Champagne-Ardenne, Inserm UMR-S 1250, P3Cell, Reims, France
| | - V Paturel
- Université de Reims Champagne-Ardenne, Inserm UMR-S 1250, P3Cell, Reims, France
| | - S Jaisson
- Laboratoire de biochimie, CHU de Reims, Reims, France
| | - E Luczka
- Université de Reims Champagne-Ardenne, Inserm UMR-S 1250, P3Cell, Reims, France
| | - C Coraux
- Université de Reims Champagne-Ardenne, Inserm UMR-S 1250, P3Cell, Reims, France
| | - T Guillard
- Université de Reims Champagne-Ardenne, Inserm UMR-S 1250, P3Cell, Reims, France
| |
Collapse
|
17
|
Zhu M, He L, Liu J, Long Y, Shentu J, Lu L, Shen D. Dynamic processes in conjunction with microbial response to unveil the attenuation mechanisms of tris (2-chloroethyl) phosphate (TCEP) in non-sanitary landfill soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120666. [PMID: 36403879 DOI: 10.1016/j.envpol.2022.120666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/07/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Although the environmental and health risks of chlorinated organophosphate esters (OPEs-Cl) have drawn much attention, its environmental behaviors have been insufficiently characterized. As a notable sink of this emerging contaminant, non-sanitary landfills, which may decompose/accumulate OPEs-Cl, is of particular concern. In the present study, the dynamic processes of the typical OPEs-Cl, tris(2-chloroethyl) phosphate (TCEP), in non-sanitary landfill soils were analyzed under anaerobic condition, and the microbial taxa involved in these processes were explored. Our results showed that TCEP could be simultaneously reduced by abiotic and biotic processes, as it was reduced by 73.9% and 65.5% over the 120-day experiment in landfill humus and subsoil, respectively. Notably, the degradation of TCEP was significantly (p < 0.05) enhanced under the stress of a high TCEP concentration (10 μg g-1), while its ecological consequences were found insignificant regarding the microbial diversity and community structure and the typical soil redox processes, including Fe(III)/SO42- reduction and methanogenesis, in both soils. The microbial diversity of subsoil was significantly lower, and acetate was an important factor in changing microbial communities in landfill soils. The microbes in the family Nocardioidaceae and genus Pseudomonas might contribute to in the degradation of TCEP in landfill humus and subsoil, respectively. The metabolism related to sulfur and sulfate respiration were significantly (p < 0.05) correlated with TCEP reduction, and Desulfosporosinus were found as a potentially functional microbial taxon in TCEP degradation in both soils. The results could advance our understanding of the environmental behavior of OPEs-Cl in landfill-like complex environments.
Collapse
Affiliation(s)
- Min Zhu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou, 310012, PR China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Hangzhou, 310012, PR China
| | - Lisha He
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310012, PR China
| | - Jiayi Liu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310012, PR China
| | - Yuyang Long
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou, 310012, PR China
| | - Jiali Shentu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou, 310012, PR China
| | - Li Lu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou, 310012, PR China
| | - Dongsheng Shen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou, 310012, PR China.
| |
Collapse
|
18
|
Liu Z, Xu Z, Chen S, Huang J, Li T, Duan C, Zhang LH, Xu Z. CzcR Is Essential for Swimming Motility in Pseudomonas aeruginosa during Zinc Stress. Microbiol Spectr 2022; 10:e0284622. [PMID: 36416561 PMCID: PMC9769499 DOI: 10.1128/spectrum.02846-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
Two-component system (TCS) plays a vital role in modulating target gene expression in response to the changing environments. Pseudomonas aeruginosa is a ubiquitous opportunistic pathogen that can survive under diverse stress conditions. The great adaptability of P. aeruginosa relies heavily on the abundant TCSs encoded by its genome. However, most TCSs in P. aeruginosa have not been well-characterized. CzcS/CzcR is a metal responsive TCS which displays multiple regulatory functions associated with metal hemostasis, quorum sensing activity and antibiotic resistance. In this study, we found that swimming motility of P. aeruginosa was completely abolished during zinc (Zn2+) stress when the czcR gene from the TCS CzcS/CzcR was deleted. Noticeably, CzcR was dispensable for swimming without the stress of Zn2+ excess. CzcR was shown to be activated by Zn2+ stress possibly through inducing its expression level and triggering its phosphorylation to positively regulate swimming which was abolished by Zn2+ stress in a CzcR-independent manner. Further TEM analyses and promoter activity examinations revealed that CzcR was required for the expression of genes involved in flagellar biosynthesis during Zn2+ stress. In vitro protein-DNA interaction assay showed that CzcR was capable of specifically recognizing and binding to the promoters of operons flgBCDE, flgFGHIJK, and PA1442/FliMNOPQR/flhB. Together, this study demonstrated a novel function of CzcR in regulating flagellar gene expression and motility in P. aeruginosa when the pathogen encounters Zn2+ stress conditions. IMPORTANCE The fitness of bacterial cells depends largely on their ability to sense and respond quickly to the changing environments. P. aeruginosa expresses a great number of signal sensing and transduction systems that enable the pathogen to grow and survive under diverse stress conditions and cause serious infections at different sites in many hosts. In addition to the previously characterized functions to regulate metal homeostasis, quorum sensing activity, and antibiotic resistance, here we report that CzcR is a novel regulator essential for flagellar gene expression and swimming motility in P. aeruginosa during Zn2+ stress. Since swimming motility is important for the virulence of P. aeruginosa, findings in this study might provide a new target for the treatment of P. aeruginosa infections with Zn2+-based antimicrobial agents in the future.
Collapse
Affiliation(s)
- Zhiqing Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Zirui Xu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Shuzhen Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Jiahui Huang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Ting Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Cheng Duan
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Lian-Hui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, People’s Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Zeling Xu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, People’s Republic of China
| |
Collapse
|
19
|
Virulence Induction in Pseudomonas aeruginosa under Inorganic Phosphate Limitation: a Proteomics Perspective. Microbiol Spectr 2022; 10:e0259022. [PMID: 36354317 PMCID: PMC9769906 DOI: 10.1128/spectrum.02590-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Inorganic phosphate (Pi) is a central nutrient and signal molecule for bacteria. Pi limitation was shown to increase the virulence of several phylogenetically diverse pathogenic bacteria with different lifestyles. Hypophosphatemia enhances the risk of death in patients due to general bacteremia and was observed after surgical injury in humans. Phosphate therapy, or the reduction of bacterial virulence by the administration of Pi or phosphate-containing compounds, is a promising anti-infective therapy approach that will not cause cytotoxicity or the emergence of antibiotic-resistant strains. The proof of concept of phosphate therapy has been obtained using primarily Pseudomonas aeruginosa (PA). However, a detailed understanding of Pi-induced changes at protein levels is missing. Using pyocyanin production as proxy, we show that the Pi-mediated induction of virulence is a highly cooperative process that occurs between 0.2 to 0.6 mM Pi. We present a proteomics study of PA grown in minimal medium supplemented with either 0.2 mM or 1 mM Pi and rich medium. About half of the predicted PA proteins could be quantified. Among the 1,471 dysregulated proteins comparing growth in 0.2 mM to 1 mM Pi, 1,100 were depleted under Pi-deficient conditions. Most of these proteins are involved in general and energy metabolism, different biosynthetic and catabolic routes, or transport. Pi depletion caused accumulation of proteins that belong to all major families of virulence factors, including pyocyanin synthesis, secretion systems, quorum sensing, chemosensory signaling, and the secretion of proteases, phospholipases, and phosphatases, which correlated with an increase in exoenzyme production and antibacterial activity. IMPORTANCE Antibiotics are our main weapons to fight pathogenic bacteria, but the increase in antibiotic-resistant strains and their consequences represents a major global health challenge, revealing the necessity to develop alternative antimicrobial strategies that do not involve the bacterial killing or growth inhibition. P. aeruginosa has been placed second on the global priority list to guide research on the development of new antibiotics. One of the most promising alternative strategies is the phosphate therapy for which the proof of concept has been obtained for P. aeruginosa. This article reports the detailed changes at the protein levels comparing P. aeruginosa grown under Pi-abundant and Pi-depleted conditions. These data describe in detail the molecular mechanisms underlying phosphate therapy. Apart from Pi, several other phosphate-containing compounds have been used for phosphate therapy and this study will serve as a reference for comparative studies aimed at evaluating the effect of alternative compounds.
Collapse
|
20
|
Pseudomonas aeruginosa Phosphate Transporter PitA (PA4292) Controls Susceptibility to Aminoglycoside Antibiotics by Regulating the Proton Motive Force. Antimicrob Agents Chemother 2022; 66:e0099222. [PMID: 36346250 PMCID: PMC9765264 DOI: 10.1128/aac.00992-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic Gram-negative bacterium that causes nosocomial infections in immunocompromised patients. β-lactam and aminoglycoside antibiotics are commonly used in the treatment of P. aeruginosa infections. Previously, we found that mutation in a PA4292 gene increases bacterial resistance to β-lactam antibiotics. In this study, we demonstrated that mutation in PA4292 increases bacterial susceptibility to aminoglycoside antibiotics. We further found enhanced uptake of tobramycin by the ΔPA4292 mutant, which might be due to an increase of proton motive force (PMF). Sequence analysis revealed PA4292 is homologous to the Escherichia coli phosphate transporter PitA. Mutation of PA4292 indeed reduces intracellular phosphate concentration. We thus named PA4292 as pitA. Although the PMF is enhanced in the ΔpitA mutant, the intracellular ATP concentration is lower than that in the isogenic wild-type strain PA14, which might be due to lack of the ATP synthesis substrate phosphate. Overexpression of the phosphate transporter complex genes pstSCAB in the ΔpitA mutant restores the intracellular phosphate concentration, PMF, ATP synthesis, and aminoglycosides resistance. In addition, growth of wild-type PA14 in a low-phosphate medium resulted in higher PMF and aminoglycoside susceptibility compared to cells grown in a high-phosphate medium. Overall, our results demonstrate the roles of PitA in phosphate transportation and reveal the relationship between intracellular phosphate and aminoglycoside susceptibility.
Collapse
|
21
|
Molecular Mechanisms and Applications of N-Acyl Homoserine Lactone-Mediated Quorum Sensing in Bacteria. Molecules 2022; 27:molecules27217584. [PMID: 36364411 PMCID: PMC9654057 DOI: 10.3390/molecules27217584] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Microbial biodiversity includes biotic and abiotic components that support all life forms by adapting to environmental conditions. Climate change, pollution, human activity, and natural calamities affect microbial biodiversity. Microbes have diverse growth conditions, physiology, and metabolism. Bacteria use signaling systems such as quorum sensing (QS) to regulate cellular interactions via small chemical signaling molecules which also help with adaptation under undesirable survival conditions. Proteobacteria use acyl-homoserine lactone (AHL) molecules as autoinducers to sense population density and modulate gene expression. The LuxI-type enzymes synthesize AHL molecules, while the LuxR-type proteins (AHL transcriptional regulators) bind to AHLs to regulate QS-dependent gene expression. Diverse AHLs have been identified, and the diversity extends to AHL synthases and AHL receptors. This review comprehensively explains the molecular diversity of AHL signaling components of Pseudomonas aeruginosa, Chromobacterium violaceum, Agrobacterium tumefaciens, and Escherichia coli. The regulatory mechanism of AHL signaling is also highlighted in this review, which adds to the current understanding of AHL signaling in Gram-negative bacteria. We summarize molecular diversity among well-studied QS systems and recent advances in the role of QS proteins in bacterial cellular signaling pathways. This review describes AHL-dependent QS details in bacteria that can be employed to understand their features, improve environmental adaptation, and develop broad biomolecule-based biotechnological applications.
Collapse
|
22
|
Holban AM, Gregoire CM, Gestal MC. Conquering the host: Bordetella spp. and Pseudomonas aeruginosa molecular regulators in lung infection. Front Microbiol 2022; 13:983149. [PMID: 36225372 PMCID: PMC9549215 DOI: 10.3389/fmicb.2022.983149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/17/2022] [Indexed: 11/27/2022] Open
Abstract
When bacteria sense cues from the host environment, stress responses are activated. Two component systems, sigma factors, small RNAs, ppGpp stringent response, and chaperones start coordinate the expression of virulence factors or immunomodulators to allow bacteria to respond. Although, some of these are well studied, such as the two-component systems, the contribution of other regulators, such as sigma factors or ppGpp, is increasingly gaining attention. Pseudomonas aeruginosa is the gold standard pathogen for studying the molecular mechanisms to sense and respond to environmental cues. Bordetella spp., on the other hand, is a microbial model for studying host-pathogen interactions at the molecular level. These two pathogens have the ability to colonize the lungs of patients with chronic diseases, suggesting that they have the potential to share a niche and interact. However, the molecular networks that facilitate adaptation of Bordetella spp. to cues are unclear. Here, we offer a side-by-side comparison of what is known about these diverse molecular mechanisms that bacteria utilize to counteract host immune responses, while highlighting the relatively unexplored interactions between them.
Collapse
Affiliation(s)
- Alina M. Holban
- Research Institute of the University of Bucharest (ICUB), Bucharest, Romania
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Courtney M. Gregoire
- Department of Microbiology and Immunology, Louisiana State University Health Science Center, Shreveport, LA, United States
| | - Monica C. Gestal
- Department of Microbiology and Immunology, Louisiana State University Health Science Center, Shreveport, LA, United States
- *Correspondence: Monica C. Gestal, ;
| |
Collapse
|
23
|
Feng Z, Lu X, Chen C, Huo Y, Zhou D. Transboundary intercellular communications between Penicillium and bacterial communities during sludge bulking: Inspirations on quenching fungal dominance. WATER RESEARCH 2022; 221:118829. [PMID: 35839592 DOI: 10.1016/j.watres.2022.118829] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Fungal bulking is caused by the evolution toward a fungi-dominant unbalanced sludge system, which is indeed the phenomenon of fungi competing against bacterial cells. We hypothesized that the cross-kingdom intercellular communication between fungi and bacteria was internal driving force that stimulated fungal bulking. In this study, we identified three signal molecules related to Penicillium fungi bulking under low-pH stress in an activated sludge reactor, which inspired us to propose a sludge bulking prevention strategy using the quorum quenching theory. When pH dropped from 7.0 to 4.5, the abundance of Penicillium increased from 12.5% to 44.8%. However, some functional bacterial genera, such as Nitrosomonas and Sphingopyxis, were washed out from the sludge. The production of quorum-sensing (QS) molecules N-Heptanoyl-L-homoserine lactone (C7-HSL), N-Dodecanoyl-L-homoserine lactone (C12-HSL), and N-Tetradecanoyl-L-homoserine lactone (C14-HSL) was regulated with sludge bulking; especially the response of the latter two was significantly negative to Penicillium blooming (P < 0.05). To test their roles, trace commercial C12-HSL and C14-HSL were added to Penicillium culture, successfully causing 8.3% and 30.2% inhibition of mycelial formation, respectively. They also contributed to the improvement of activated sludge settleability by 6.1% and 39.7%, respectively (represented by sludge volume index). The transcriptome technique further revealed the regulation of the expression of genes in |logFC| >1, involving signal transduction, mycelium synthesis, and metabolic pathways. Our study provided an innovative strategy for controlling fungal bulking from the perspective of microbial transboundary informatics.
Collapse
Affiliation(s)
- Zhixuan Feng
- Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Xin Lu
- Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Congli Chen
- Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Yang Huo
- College of Physics, Northeast Normal University, Changchun 130117, China.
| | - Dandan Zhou
- Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
24
|
Choi HY, Le DD, Kim WG. Curvularin Isolated From Phoma macrostoma Is an Antagonist of RhlR Quorum Sensing in Pseudomonas aeruginosa. Front Microbiol 2022; 13:913882. [PMID: 35903467 PMCID: PMC9315252 DOI: 10.3389/fmicb.2022.913882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/20/2022] [Indexed: 11/15/2022] Open
Abstract
Quorum sensing (QS) is an attractive target for the treatment of multidrug-resistant Pseudomonas aeruginosa, against which new antibiotics are urgently needed. Because LasR is at the top of the QS hierarchy controlling Rhl and PQS systems, most QS inhibitors have been targeted to LasR. However, it has recently been reported that in clinical isolates of P. aeruginosa, LasR is frequently mutated and nonfunctional, and RhlR independently acts to produce virulent factors that maintain toxicity. Thus, for effective treatment of chronic cystic fibrosis infections, RhlR antagonists is needed to prevent the LasR-independent Rhl system, but RhlR antagonists have rarely been reported. In this study, we found that curvularin, an aromatic compound with a cyclized alkyl side chain isolated from Phoma macrostoma, at a low micromolar concentration of 1–30 μM potently and selectively inhibited pyocyanin and rhamnolipid production without affecting the cell viability of P. aeruginosa. Only high concentration (more over 100 μM) curvularin negligibly inhibited biofilm formation and elastase production, suggesting that curvularin at low concentrations selectively inhibits RhlR. The QS antagonism by curvularin was investigated in experiments using QS competition and signaling molecules assays with QS gene expression analysis, and the results showed that, indeed, at low concentrations, curvularin selectively antagonized RhlR; in contrast, it negligibly antagonized LasR only when applied at a high concentration. The exclusive RhlR antagonizing activity of curvularin at low concentrations was confirmed using QS mutants; specifically, curvularin at low concentrations inhibited pyocyanin and rhamnolipid production by selectively antagonizing N-butanoyl homoserine lactone (BHL)-activated RhlR. Moreover, by targeting RhlR, curvularin reduced the in vivo virulence of wild-type P. aeruginosa as well as lasR mutants in Caenorhabditis elegans. Overall, low-concentration curvularin is a pure RhlR antagonist in P. aeruginosa, and to the best of our knowledge, this is the first report describing an RhlR antagonist from natural resources. Hence, curvularin has great potential for the development of chronic P. aeruginosa infection therapeutics and for the study of RhlR function in the complex QS system.
Collapse
Affiliation(s)
- Ha-Young Choi
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Bio-Molecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, South Korea
| | - Duc Dat Le
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Won-Gon Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Bio-Molecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, South Korea
- *Correspondence: Won-Gon Kim,
| |
Collapse
|
25
|
Acetylation of CspC Controls the Las Quorum-Sensing System through Translational Regulation of rsaL in Pseudomonas aeruginosa. mBio 2022; 13:e0054722. [PMID: 35467416 PMCID: PMC9239060 DOI: 10.1128/mbio.00547-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous pathogenic bacterium that can adapt to a variety environments. The ability to effectively sense and respond to host local nutrients is critical for the infection of P. aeruginosa. However, the mechanisms employed by the bacterium to respond to nutrients remain to be explored. CspA family proteins are RNA binding proteins that are involved in gene regulation. We previously demonstrated that the P. aeruginosa CspA family protein CspC regulates the type III secretion system in response to temperature shift. In this study, we found that CspC regulates the quorum-sensing (QS) systems by repressing the translation of a QS negative regulatory gene, rsaL. Through RNA immunoprecipitation coupled with real-time quantitative reverse transcription-PCR (RIP-qRT-PCR) and electrophoretic mobility shift assays (EMSAs), we found that CspC binds to the 5′ untranslated region of the rsaL mRNA. Unlike glucose, itaconate (a metabolite generated by macrophages during infection) reduces the acetylation of CspC, which increases the affinity between CspC and the rsaL mRNA, leading to upregulation of the QS systems. Our results revealed a novel regulatory mechanism of the QS systems in response to a host-generated metabolite.
Collapse
|
26
|
The StkSR Two-Component System Influences Colistin Resistance in Acinetobacter baumannii. Microorganisms 2022; 10:microorganisms10050985. [PMID: 35630428 PMCID: PMC9146086 DOI: 10.3390/microorganisms10050985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 01/27/2023] Open
Abstract
Acinetobacter baumannii is an opportunistic human pathogen responsible for numerous severe nosocomial infections. Genome analysis on the A. baumannii clinical isolate 04117201 revealed the presence of 13 two-component signal transduction systems (TCS). Of these, we examined the putative TCS named here as StkSR. The stkR response regulator was deleted via homologous recombination and its progeny, ΔstkR, was phenotypically characterized. Antibiogram analyses of ΔstkR cells revealed a two-fold increase in resistance to the clinically relevant polymyxins, colistin and polymyxin B, compared to wildtype. PAGE-separation of silver stained purified lipooligosaccharide isolated from ΔstkR and wildtype cells ruled out the complete loss of lipooligosaccharide as the mechanism of colistin resistance identified for ΔstkR. Hydrophobicity analysis identified a phenotypical change of the bacterial cells when exposed to colistin. Transcriptional profiling revealed a significant up-regulation of the pmrCAB operon in ΔstkR compared to the parent, associating these two TCS and colistin resistance. These results reveal that there are multiple levels of regulation affecting colistin resistance; the suggested ‘cross-talk’ between the StkSR and PmrAB two-component systems highlights the complexity of these systems.
Collapse
|
27
|
Recent Advance in Small Molecules Targeting RhlR of Pseudomonas aeruginosa. Antibiotics (Basel) 2022; 11:antibiotics11020274. [PMID: 35203876 PMCID: PMC8868144 DOI: 10.3390/antibiotics11020274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/02/2022] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic gram-negative pathogen that can cause various infections, particularly in patients with compromised host defenses. P. aeruginosa forms biofilms and produces virulence factors through quorum sensing (QS) network, resulting in resistance to antibiotics. RhlI/RhlR, one of key QS systems in P. aeruginosa, is considered an attractive target for inhibiting biofilm formation and attenuating virulence factors. Several recent studies examined small molecules targeting the RhlI/RhlR system and their in vitro and in vivo biological activities. In this review, RhlR-targeted modulators, including agonists and antagonists, are discussed with particular focus on structure-activity relationship studies and outlook for next-generation anti-biofilm agents.
Collapse
|
28
|
Sultan M, Arya R, Kim KK. Roles of Two-Component Systems in Pseudomonas aeruginosa Virulence. Int J Mol Sci 2021; 22:12152. [PMID: 34830033 PMCID: PMC8623646 DOI: 10.3390/ijms222212152] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/28/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that synthesizes and secretes a wide range of virulence factors. P. aeruginosa poses a potential threat to human health worldwide due to its omnipresent nature, robust host accumulation, high virulence, and significant resistance to multiple antibiotics. The pathogenicity of P. aeruginosa, which is associated with acute and chronic infections, is linked with multiple virulence factors and associated secretion systems, such as the ability to form and utilize a biofilm, pili, flagella, alginate, pyocyanin, proteases, and toxins. Two-component systems (TCSs) of P. aeruginosa perform an essential role in controlling virulence factors in response to internal and external stimuli. Therefore, understanding the mechanism of TCSs to perceive and respond to signals from the environment and control the production of virulence factors during infection is essential to understanding the diseases caused by P. aeruginosa infection and further develop new antibiotics to treat this pathogen. This review discusses the important virulence factors of P. aeruginosa and the understanding of their regulation through TCSs by focusing on biofilm, motility, pyocyanin, and cytotoxins.
Collapse
Affiliation(s)
| | - Rekha Arya
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon 16419, Korea;
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon 16419, Korea;
| |
Collapse
|
29
|
Chadha J, Harjai K, Chhibber S. Revisiting the virulence hallmarks of Pseudomonas aeruginosa: a chronicle through the perspective of quorum sensing. Environ Microbiol 2021; 24:2630-2656. [PMID: 34559444 DOI: 10.1111/1462-2920.15784] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/15/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen and the leading cause of mortality among immunocompromised patients in clinical setups. The hallmarks of virulence in P. aeruginosa encompass six biologically competent attributes that cumulatively drive disease progression in a multistep manner. These multifaceted hallmarks lay the principal foundation for rationalizing the complexities of pseudomonal infections. They include factors for host colonization and bacterial motility, biofilm formation, production of destructive enzymes, toxic secondary metabolites, iron-chelating siderophores and toxins. This arsenal of virulence hallmarks is fostered and stringently regulated by the bacterial signalling system called quorum sensing (QS). The central regulatory functions of QS in controlling the timely expression of these virulence hallmarks for adaptation and survival drive the disease outcome. This review describes the intricate mechanisms of QS in P. aeruginosa and its role in shaping bacterial responses, boosting bacterial fitness. We summarize the virulence hallmarks of P. aeruginosa, relating them with the QS circuitry in clinical infections. We also examine the role of QS in the development of drug resistance and propose a novel antivirulence therapy to combat P. aeruginosa infections. This can prove to be a next-generation therapy that may eventually become refractory to the use of conventional antimicrobial treatments.
Collapse
Affiliation(s)
- Jatin Chadha
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Sanjay Chhibber
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
30
|
Zhou T, Huang J, Liu Z, Xu Z, Zhang LH. Molecular Mechanisms Underlying the Regulation of Biofilm Formation and Swimming Motility by FleS/FleR in Pseudomonas aeruginosa. Front Microbiol 2021; 12:707711. [PMID: 34367113 PMCID: PMC8335546 DOI: 10.3389/fmicb.2021.707711] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/28/2021] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas aeruginosa, a major cause of nosocomial infection, can survive under diverse environmental conditions. Its great adaptive ability is dependent on its multiple signaling systems such as the two-component system (TCS). A TCS FleS/FleR has been previously identified to positively regulate a variety of virulence-related traits in P. aeruginosa PAO1 including motility and biofilm formation which are involved in the acute and chronic infections, respectively. However, the molecular mechanisms underlying these regulations are still unclear. In this study, we first analyzed the regulatory roles of each domains in FleS/FleR and characterized key residues in the FleS-HisKA, FleR-REC and FleR-AAA domains that are essential for the signaling. Next, we revealed that FleS/FleR regulates biofilm formation in a c-di-GMP and FleQ dependent manner. Lastly, we demonstrated that FleR can regulate flagellum biosynthesis independently without FleS, which explains the discrepant regulation of swimming motility by FleS and FleR.
Collapse
Affiliation(s)
- Tian Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| | - Jiahui Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| | - Zhiqing Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| | - Zeling Xu
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| | - Lian-Hui Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| |
Collapse
|
31
|
García-Reyes S, Soto-Aceves MP, Cocotl-Yañez M, González-Valdez A, Servín-González L, Chávez GS. The outlier Pseudomonas aeruginosa strain ATCC 9027 harbors a defective LasR quorum-sensing transcriptional regulator. FEMS Microbiol Lett 2021; 367:5874253. [PMID: 32691823 DOI: 10.1093/femsle/fnaa122] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/17/2020] [Indexed: 12/24/2022] Open
Abstract
Pseudomonas aeruginosa infections represent an important health problem that has been recognized by the World Health Organization as a research priority. A complex regulatory network called the quorum sensing (QS) regulates several P. aeruginosa virulence-related traits, including production of elastase, rhamnolipids and pyocyanin. The avirulent P. aeruginosa strain ATCC 9027 belongs to clade 3, which is the more distant phylogroup in relationship to the other four clades of this species. This strain does not produce QS-regulated virulence factors such as elastase and rhamnolipids when cultured in rich LB medium. We report here that ATCC 9027 harbors a defective LasR protein, presumably due to the presence of an aspartic acid in position 196 instead of a glutamic acid which is the amino acid present in this position in functional LasR proteins of the type strains PAO1 (clade 1) and PA7 (also belonging to clade 3), among others. In addition, we report that ATCC 9027 and PA7 strains present differences compared to the PAO1 strain in lasB which encodes elastase, and in the rhlR regulatory sequences that modify las-boxes, and that these mutations have a little effect in the expression of these genes by a functional LasR transcriptional regulator.
Collapse
Affiliation(s)
- Selene García-Reyes
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apdo. Postal 70228, C. P. 04510, CDMX, México
| | - Martín P Soto-Aceves
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apdo. Postal 70228, C. P. 04510, CDMX, México
| | - Miguel Cocotl-Yañez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México. C.P. 04510
| | - Abigail González-Valdez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apdo. Postal 70228, C. P. 04510, CDMX, México
| | - Luis Servín-González
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apdo. Postal 70228, C. P. 04510, CDMX, México
| | - Gloria Soberón Chávez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apdo. Postal 70228, C. P. 04510, CDMX, México
| |
Collapse
|
32
|
Ahmed SAKS, Rudden M, Elias SM, Smyth TJ, Marchant R, Banat IM, Dooley JSG. Pseudomonas aeruginosa PA80 is a cystic fibrosis isolate deficient in RhlRI quorum sensing. Sci Rep 2021; 11:5729. [PMID: 33707533 PMCID: PMC7970962 DOI: 10.1038/s41598-021-85100-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/08/2021] [Indexed: 11/10/2022] Open
Abstract
Pseudomonas aeruginosa uses quorum sensing (QS) to modulate the expression of several virulence factors that enable it to establish severe infections. The QS system in P. aeruginosa is complex, intricate and is dominated by two main N-acyl-homoserine lactone circuits, LasRI and RhlRI. These two QS systems work in a hierarchical fashion with LasRI at the top, directly regulating RhlRI. Together these QS circuits regulate several virulence associated genes, metabolites, and enzymes in P. aeruginosa. Paradoxically, LasR mutants are frequently isolated from chronic P. aeruginosa infections, typically among cystic fibrosis (CF) patients. This suggests P. aeruginosa can undergo significant evolutionary pathoadaptation to persist in long term chronic infections. In contrast, mutations in the RhlRI system are less common. Here, we have isolated a clinical strain of P. aeruginosa from a CF patient that has deleted the transcriptional regulator RhlR entirely. Whole genome sequencing shows the rhlR locus is deleted in PA80 alongside a few non-synonymous mutations in virulence factors including protease lasA and rhamnolipid rhlA, rhlB, rhlC. Importantly we did not observe any mutations in the LasRI QS system. PA80 does not appear to have an accumulation of mutations typically associated with several hallmark pathoadaptive genes (i.e., mexT, mucA, algR, rpoN, exsS, ampR). Whole genome comparisons show that P. aeruginosa strain PA80 is closely related to the hypervirulent Liverpool epidemic strain (LES) LESB58. PA80 also contains several genomic islands (GI’s) encoding virulence and/or resistance determinants homologous to LESB58. To further understand the effect of these mutations in PA80 QS regulatory and virulence associated genes, we compared transcriptional expression of genes and phenotypic effects with isogenic mutants in the genetic reference strain PAO1. In PAO1, we show that deletion of rhlR has a much more significant impact on the expression of a wide range of virulence associated factors rather than deletion of lasR. In PA80, no QS regulatory genes were expressed, which we attribute to the inactivation of the RhlRI QS system by deletion of rhlR and mutation of rhlI. This study demonstrates that inactivation of the LasRI system does not impact RhlRI regulated virulence factors. PA80 has bypassed the common pathoadaptive mutations observed in LasR by targeting the RhlRI system. This suggests that RhlRI is a significant target for the long-term persistence of P. aeruginosa in chronic CF patients. This raises important questions in targeting QS systems for therapeutic interventions.
Collapse
Affiliation(s)
- Syed A K Shifat Ahmed
- School of Environment and Life Sciences, Independent University, Bangladesh (IUB), Dhaka, Bangladesh
| | - Michelle Rudden
- Department of Biology, University of York, Wentworth, York, YO10 5DD, UK
| | - Sabrina M Elias
- School of Environment and Life Sciences, Independent University, Bangladesh (IUB), Dhaka, Bangladesh
| | - Thomas J Smyth
- School of Science, Institute of Technology Sligo, Sligo, Ireland
| | - Roger Marchant
- School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - Ibrahim M Banat
- School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - James S G Dooley
- School of Biomedical Sciences, Ulster University, Coleraine, UK.
| |
Collapse
|
33
|
Pseudomonas aeruginosa elastase (LasB) as a therapeutic target. Drug Discov Today 2021; 26:2108-2123. [PMID: 33676022 DOI: 10.1016/j.drudis.2021.02.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/03/2021] [Accepted: 02/17/2021] [Indexed: 02/08/2023]
Abstract
Why is P. aeruginosa LasB elastase an attractive target for antivirulence therapy and what is the state-of-the art in LasB inhibitor design and development?
Collapse
|
34
|
Fan K, Cao Q, Lan L. Genome-Wide Mapping Reveals Complex Regulatory Activities of BfmR in Pseudomonas aeruginosa. Microorganisms 2021; 9:485. [PMID: 33668961 PMCID: PMC8025907 DOI: 10.3390/microorganisms9030485] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/09/2021] [Accepted: 02/22/2021] [Indexed: 01/04/2023] Open
Abstract
BfmR is a response regulator that modulates diverse pathogenic phenotypes and induces an acute-to-chronic virulence switch in Pseudomonas aeruginosa, an important human pathogen causing serious nosocomial infections. However, the mechanisms of action of BfmR remain largely unknown. Here, using chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq), we showed that 174 chromosomal regions of P. aeruginosa MPAO1 genome were highly enriched by coimmunoprecipitation with a C-terminal Flag-tagged BfmR. Integration of these data with global transcriptome analyses revealed that 172 genes in 106 predicted transcription units are potential targets for BfmR. We determined that BfmR binds to and modulates the promoter activity of genes encoding transcriptional regulators CzcR, ExsA, and PhoB. Intriguingly, BfmR bound to the promoters of a number of genes belong to either CzcR or PhoB regulon, or both, indicating that CzcRS and PhoBR two-component systems (TCSs) deeply feed into the BfmR-mediated regulatory network. In addition, we demonstrated that phoB is required for BfmR to promote the biofilm formation by P. aeruginosa. These results delineate the direct BfmR regulon and exemplify the complexity of BfmR-mediated regulation of cellular functions in P. aeruginosa.
Collapse
Affiliation(s)
- Ke Fan
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China;
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China;
| | - Qiao Cao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China;
| | - Lefu Lan
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China;
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China;
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Shanghai Institute for Food and Drug Control, Shanghai 201203, China
| |
Collapse
|
35
|
The Rhl Quorum-Sensing System Is at the Top of the Regulatory Hierarchy under Phosphate-Limiting Conditions in Pseudomonas aeruginosa PAO1. J Bacteriol 2021; 203:JB.00475-20. [PMID: 33288622 DOI: 10.1128/jb.00475-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa is a major nosocomial pathogen that presents high-level resistance to antibiotics. Its ability to cause infections relies on the production of multiple virulence factors. Quorum sensing (QS) regulates the expression of many of these virulence factors through three QS systems: Las, Rhl, and PQS. The Las system positively regulates the other two systems, so it is at the top of a hierarchized regulation. Nevertheless, clinical and environmental strains that lack a functional Las system have been isolated, and, surprisingly, some of them still have the ability to produce virulence factors and infect animal models, so it has been suggested that the hierarchy is flexible under some conditions or with atypical strains. Here, we analyze the PAO1 type strain and its ΔlasR-derived mutant and report, for the first time, a growth condition (phosphate limitation) where LasR absence has no effect either on virulence factor production or on the gene expression profile, in contrast to a condition of phosphate repletion where the LasR hierarchy is maintained. This work provides evidence on how the QS hierarchy can change from being a strictly LasR-dependent to a LasR-independent RhlR-based hierarchy under phosphate limitation even in the PAO1 type strain.IMPORTANCE Pseudomonas aeruginosa is an important pathogen, considered a priority for the development of new therapeutic strategies. An important approach to fight its infections relies on blocking quorum sensing. The Las system is the main regulator of the quorum-sensing response, so many research efforts aim to block this system to suppress the entire response. In this work, we show that LasR is dispensable in a phosphate-limited environment in the PAO1 type strain, which has been used to define the quorum-sensing response hierarchy, and that under this condition RhlR is at the top of the regulation hierarchy. These results are highly significant, since phosphate limitation represents a similar environment to the one that P. aeruginosa faces when establishing infections.
Collapse
|
36
|
Thi MTT, Wibowo D, Rehm BH. Pseudomonas aeruginosa Biofilms. Int J Mol Sci 2020; 21:ijms21228671. [PMID: 33212950 PMCID: PMC7698413 DOI: 10.3390/ijms21228671] [Citation(s) in RCA: 340] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen causing devastating acute and chronic infections in individuals with compromised immune systems. Its highly notorious persistence in clinical settings is attributed to its ability to form antibiotic-resistant biofilms. Biofilm is an architecture built mostly by autogenic extracellular polymeric substances which function as a scaffold to encase the bacteria together on surfaces, and to protect them from environmental stresses, impedes phagocytosis and thereby conferring the capacity for colonization and long-term persistence. Here we review the current knowledge on P. aeruginosa biofilms, its development stages, and molecular mechanisms of invasion and persistence conferred by biofilms. Explosive cell lysis within bacterial biofilm to produce essential communal materials, and interspecies biofilms of P. aeruginosa and commensal Streptococcus which impedes P. aeruginosa virulence and possibly improves disease conditions will also be discussed. Recent research on diagnostics of P. aeruginosa infections will be investigated. Finally, therapeutic strategies for the treatment of P. aeruginosa biofilms along with their advantages and limitations will be compiled.
Collapse
|
37
|
Abdel-Rhman SH, Rizk DE, Abdelmegeed ES. Effect of Sub-Minimum Inhibitory Concentrations of Tyrosol and EDTA on Quorum Sensing and Virulence of Pseudomonas aeruginosa. Infect Drug Resist 2020; 13:3501-3511. [PMID: 33116669 PMCID: PMC7550211 DOI: 10.2147/idr.s264805] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023] Open
Abstract
Introduction Pseudomonas aeruginosa is considered a dangerous pathogen, as it causes many human diseases, besides that it is resistant to almost all types of antibacterial agents. So, new strategies to overcome P. aeruginosa infection have evolved to attenuate its virulence factors and inhibit its quorum-sensing (QS) activity. Purpose This study investigated the effect of tyrosol and EDTA as anti-quorum-sensing and antivirulence agents against P. aeruginosa PAO1. Methods Anti-quorum activity of sub-minimum inhibitory concentrations (sub-MICs) of tyrosol and EDTA was tested using Chromobacterium violaceum (CV 12,472) biosensor bioassay. Miller assay was used to assess the inhibition of QS signal molecules by β-galactosidase activity determination. Also, their effects on the production of protease, lipase, lecithinase, and motility were tested. The inhibitory effects of these molecules on QS regulatory genes and exotoxins genes expression were evaluated by real-time PCR. Results Tyrosol and EDTA at sub-MICs inhibited the production of violacein pigment. Both compounds inhibited QS molecules production and their associated virulence factors (protease, lipase, lecithinase, and motility) (P≤ 0.05). Besides, the expression levels of QS regulatory genes (lasI, lasR, rhƖI, rhIR, pqsA, and pqsR) and exotoxins genes (exoS and exoY) were significantly reduced (P≤ 0.05). Conclusion Both tyrosol and EDTA can be used to fight P. aeruginosa infection as anti-quorum-sensing and antivirulence agents at their sub-MICs.
Collapse
Affiliation(s)
- Shaymaa H Abdel-Rhman
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.,Department of Pharmaceutics and Pharmaceutical Biotechnology, Faculty of Pharmacy, Taibah University, AlMadinah Al Munawwarah, Saudi Arabia
| | - Dina E Rizk
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Eman S Abdelmegeed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
38
|
Conditional antagonism in co-cultures of Pseudomonas aeruginosa and Candida albicans: An intersection of ethanol and phosphate signaling distilled from dual-seq transcriptomics. PLoS Genet 2020; 16:e1008783. [PMID: 32813693 PMCID: PMC7480860 DOI: 10.1371/journal.pgen.1008783] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/09/2020] [Accepted: 06/20/2020] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa and Candida albicans are opportunistic pathogens whose interactions involve the secreted products ethanol and phenazines. Here, we describe the role of ethanol in mixed-species co-cultures by dual-seq analyses. P. aeruginosa and C. albicans transcriptomes were assessed after growth in mono-culture or co-culture with either ethanol-producing C. albicans or a C. albicans mutant lacking the primary ethanol dehydrogenase, Adh1. Analysis of the RNA-Seq data using KEGG pathway enrichment and eADAGE methods revealed several P. aeruginosa responses to C. albicans-produced ethanol including the induction of a non-canonical low-phosphate response regulated by PhoB. C. albicans wild type, but not C. albicans adh1Δ/Δ, induces P. aeruginosa production of 5-methyl-phenazine-1-carboxylic acid (5-MPCA), which forms a red derivative within fungal cells and exhibits antifungal activity. Here, we show that C. albicans adh1Δ/Δ no longer activates P. aeruginosa PhoB and PhoB-regulated phosphatase activity, that exogenous ethanol complements this defect, and that ethanol is sufficient to activate PhoB in single-species P. aeruginosa cultures at permissive phosphate levels. The intersection of ethanol and phosphate in co-culture is inversely reflected in C. albicans; C. albicans adh1Δ/Δ had increased expression of genes regulated by Pho4, the C. albicans transcription factor that responds to low phosphate, and Pho4-dependent phosphatase activity. Together, these results show that C. albicans-produced ethanol stimulates P. aeruginosa PhoB activity and 5-MPCA-mediated antagonism, and that both responses are dependent on local phosphate concentrations. Further, our data suggest that phosphate scavenging by one species improves phosphate access for the other, thus highlighting the complex dynamics at play in microbial communities. Pseudomonas aeruginosa and Candida albicans are opportunistic pathogens that are frequently isolated from co-infections. Using a combination of dual-seq transcriptomics and genetics approaches, we found that ethanol produced by C. albicans stimulates the PhoB regulon in P. aeruginosa asynchronously with activation of the Pho4 regulon in C. albicans. We validated our result by showing that PhoB plays multiple roles in co-culture including orchestrating the competition for phosphate and the production of 5-methyl-phenazine-1-carboxylic acid; the P. aeruginosa phenazine response to C. albicans-produced ethanol depends on phosphate availability. The conditional stimulation of antifungal production in response to sub-inhibitory concentrations of ethanol only under phosphate limitation highlights the importance of considering nutrient concentrations in the analysis of co-culture interactions and suggests that the low-phosphate response in one species influences phosphate availability for the other.
Collapse
|
39
|
Spatiotemporal Distribution of Pseudomonas aeruginosa Alkyl Quinolones under Metabolic and Competitive Stress. mSphere 2020; 5:5/4/e00426-20. [PMID: 32699119 PMCID: PMC7376503 DOI: 10.1128/msphere.00426-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Alkyl quinolones (AQs), including Pseudomonas quinolone signal (PQS), made by the opportunistic pathogen Pseudomonas aeruginosa have been associated with both population density and stress. The regulation of AQ production is known to be complex, and the stimuli that modulate AQ responses are not fully clear. Here, we have used hyperspectral Raman chemical imaging to examine the temporal and spatial profiles of AQs exhibited by P. aeruginosa under several potentially stressful conditions. We found that metabolic stress, effected by carbon limitation, or competition stress, effected by proximity to other species, resulted in accelerated PQS production. This competition effect did not require cell-to-cell interaction, as evidenced by the fact that the addition of supernatants from either Escherichia coli or Staphylococcus aureus led to early appearance of PQS. Lastly, the fact that these modulations were observed for PQS but not for all AQs suggests a high level of complexity in AQ regulation that remains to be discerned. Pseudomonas aeruginosa is an opportunistic human pathogen important to diseases such as cystic fibrosis. P. aeruginosa has multiple quorum-sensing (QS) systems, one of which utilizes the signaling molecule 2-heptyl-3-hydroxy-4-quinolone (Pseudomonas quinolone signal [PQS]). Here, we use hyperspectral Raman imaging to elucidate the spatiotemporal PQS distributions that determine how P. aeruginosa regulates surface colonization and its response to both metabolic stress and competition from other bacterial strains. These chemical imaging experiments illustrate the strong link between environmental challenges, such as metabolic stress caused by nutritional limitations or the presence of another bacterial species, and PQS signaling. Metabolic stress elicits a complex response in which limited nutrients induce the bacteria to produce PQS earlier, but the bacteria may also pause PQS production entirely if the nutrient concentration is too low. Separately, coculturing P. aeruginosa in the proximity of another bacterial species, or its culture supernatant, results in earlier production of PQS. However, these differences in PQS appearance are not observed for all alkyl quinolones (AQs) measured; the spatiotemporal response of 2-heptyl-4-hydroxyquinoline N-oxide (HQNO) is highly uniform for most conditions. These insights on the spatiotemporal distributions of quinolones provide additional perspective on the behavior of P. aeruginosa in response to different environmental cues. IMPORTANCE Alkyl quinolones (AQs), including Pseudomonas quinolone signal (PQS), made by the opportunistic pathogen Pseudomonas aeruginosa have been associated with both population density and stress. The regulation of AQ production is known to be complex, and the stimuli that modulate AQ responses are not fully clear. Here, we have used hyperspectral Raman chemical imaging to examine the temporal and spatial profiles of AQs exhibited by P. aeruginosa under several potentially stressful conditions. We found that metabolic stress, effected by carbon limitation, or competition stress, effected by proximity to other species, resulted in accelerated PQS production. This competition effect did not require cell-to-cell interaction, as evidenced by the fact that the addition of supernatants from either Escherichia coli or Staphylococcus aureus led to early appearance of PQS. Lastly, the fact that these modulations were observed for PQS but not for all AQs suggests a high level of complexity in AQ regulation that remains to be discerned.
Collapse
|