1
|
Flores Ventura E, Bernabeu M, Callejón-Leblic B, Cabrera-Rubio R, Yeruva L, Estañ-Capell J, Martínez-Costa C, García-Barrera T, Collado MC. Human milk metals and metalloids shape infant microbiota. Food Funct 2024; 15:12134-12145. [PMID: 39584920 DOI: 10.1039/d4fo01929f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Background: The profile of metal(loid)s in human milk is essential for infant growth and development, yet its impact on the development of the infant microbiota remains unclear. Elements, such as manganese, zinc, iron or copper, play crucial roles in influencing infant health. Aim: To investigate the metal(loid) content within human milk and its influence on the infant's gut microbiota within the first 2 months after birth. Methods: Human milk samples and infant stool samples from 77 mother-infant dyads in the MAMI cohort were collected at two time points: the early transitional stage and the mature stage. Metallomic profiling of human milk was conducted using inductively coupled plasma-mass spectrometry (ICP-MS). The infant gut microbiota was profiled through 16S rRNA amplicon sequencing and maternal-infant clinical data were available. Spearman's rank correlation coefficientsprovided insights into metal(loid)-microbiota relationships. Results: Independent cross-sectional analyses of mother-infant pairs at two time points, significant variations in metal concentrations and differences in microbial abundances and diversities were observed. Notably, Bifidobacterium genus abundance was higher during the mature lactation stage. During early lactation, we found a significant positive correlation between infant gut Corynebacterium and human milk nickel concentrations, and negative correlations between Veillonella spp. and antimony, and Enterobacter spp. and copper. Additionally, Simpson's diversity was negatively correlated with iron. In the mature lactation stage, we identified eleven significant correlations between metals and microbiota. Notably, Klebsiella genus showed multiple negative correlations with iron, antimony, and vanadium. Conclusion: Our study highlights the significance of metal(loid)-microbiota interactions in early infant development, indicating that infant gut Klebsiella genus may be particularly vulnerable to fluctuations in metal(loid) levels present in human milk, when compared to other genera. Future research should explore these interactions at a strain level and the implications on infant health and development. This trial was registered as NCT03552939.
Collapse
Affiliation(s)
- Eduard Flores Ventura
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain.
| | - Manuel Bernabeu
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain.
| | - Belén Callejón-Leblic
- Research Centre of Natural Resources, Health and the Environment (RENSMA), Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Campus El Carmen, Fuerzas Armadas Ave., 21007, Huelva, Spain
| | - Raúl Cabrera-Rubio
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain.
| | - Laxmi Yeruva
- Microbiome and Metabolism Research Unit, USDA-ARS, SEA, Arkansas Children's Nutrition Center, Little Rock, AR, USA
| | - Javier Estañ-Capell
- Department of Pediatrics, University of Valencia, INCLIVA Biomedical Research Institute, Avenida Blasco Ibáñez 15-17, 46010 Valencia, Spain
| | - Cecilia Martínez-Costa
- Department of Pediatrics, University of Valencia, INCLIVA Biomedical Research Institute, Avenida Blasco Ibáñez 15-17, 46010 Valencia, Spain
| | - Tamara García-Barrera
- Research Centre of Natural Resources, Health and the Environment (RENSMA), Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Campus El Carmen, Fuerzas Armadas Ave., 21007, Huelva, Spain
| | - María Carmen Collado
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain.
| |
Collapse
|
2
|
Hollifield IE, Motyka NI, Fernando KA, Bitoun JP. Heat-Labile Enterotoxin Decreases Macrophage Phagocytosis of Enterotoxigenic Escherichia coli. Microorganisms 2023; 11:2121. [PMID: 37630681 PMCID: PMC10459231 DOI: 10.3390/microorganisms11082121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Enterotoxigenic E. coli (ETEC) are endemic in low-resource settings and cause robust secretory diarrheal disease in children less than five years of age. ETEC cause secretory diarrhea by producing the heat-stable (ST) and/or heat-labile (LT) enterotoxins. Recent studies have shown that ETEC can be carried asymptomatically in children and adults, but how ETEC subvert mucosal immunity to establish intestinal residency remains unclear. Macrophages are innate immune cells that can be exploited by enteric pathogens to evade mucosal immunity, so we interrogated the ability of ETEC and other E. coli pathovars to survive within macrophages. Using gentamicin protection assays, we show that ETEC H10407 is phagocytosed more readily than other ETEC and non-ETEC isolates. Furthermore, we demonstrate that ETEC H10407, at high bacterial burdens, causes nitrite accumulation in macrophages, which is indicative of a proinflammatory macrophage nitric oxide killing response. However, at low bacterial burdens, ETEC H10407 remains viable within macrophages for an extended period without nitrite accumulation. We demonstrate that LT, but not ST, intoxication decreases the number of ETEC phagocytosed by macrophages. Furthermore, we now show that macrophages exposed simultaneously to LPS and LT produce IL-33, which is a cytokine implicated in promoting macrophage alternative activation, iron recycling, and intestinal repair. Lastly, iron restriction using deferoxamine induces IL-33 receptor (IL-33R) expression and allows ETEC to escape macrophages. Altogether, these data demonstrate that LT provides ETEC with the ability to decrease the perceived ETEC burden and suppresses the initiation of inflammation. Furthermore, these data suggest that host IL-33/IL-33R signaling may augment pathways that promote iron restriction to facilitate ETEC escape from macrophages. These data could help explain novel mechanisms of immune subversion that may contribute to asymptomatic ETEC carriage.
Collapse
Affiliation(s)
| | | | | | - Jacob P. Bitoun
- Department of Microbiology and Immunology, Tulane University School of Medicine, 1430 Tulane Avenue, #8638, New Orleans, LA 70112, USA; (I.E.H.); (N.I.M.); (K.A.F.)
| |
Collapse
|
3
|
Brønstad I, von Volkmann HL, Sakkestad ST, Steinsland H, Hanevik K. Reduced Plasma Guanylin Levels Following Enterotoxigenic Escherichia coli-Induced Diarrhea. Microorganisms 2023; 11:1997. [PMID: 37630557 PMCID: PMC10458898 DOI: 10.3390/microorganisms11081997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/20/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
The intestinal peptide hormones guanylin (GN) and uroguanylin (UGN) interact with the epithelial cell receptor guanylate cyclase C to regulate fluid homeostasis. Some enterotoxigenic Escherichia coli (ETEC) produce heat-stable enterotoxin (ST), which induces diarrhea by mimicking GN and UGN. Plasma concentrations of prohormones of GN (proGN) and UGN (proUGN) are reportedly decreased during chronic diarrheal diseases. Here we investigate whether prohormone concentrations also drop during acute diarrhea caused by ST-producing ETEC strains TW10722 and TW11681. Twenty-one volunteers were experimentally infected with ETEC. Blood (n = 21) and urine (n = 9) specimens were obtained immediately before and 1, 2, 3, and 7 days after ETEC ingestion. Concentrations of proGN and proUGN were measured by ELISA. Urine electrolyte concentrations were measured by photometry and mass spectrometry. Ten volunteers developed diarrhea (D group), and eleven did not (ND group). In the D group, plasma proGN, but not proUGN, concentrations were substantially reduced on days 2 and 3, coinciding with one day after diarrhea onset. No changes were seen in the ND group. ETEC diarrhea also seemed to affect diuresis, the zinc/creatinine ratio, and sodium and chloride secretion levels in urine. ETEC-induced diarrhea causes a reduction in plasma proGN and could potentially be a useful marker for intestinal isotonic fluid loss.
Collapse
Affiliation(s)
- Ingeborg Brønstad
- National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, 5021 Bergen, Norway; (I.B.); (H.L.v.V.)
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Hilde Løland von Volkmann
- National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, 5021 Bergen, Norway; (I.B.); (H.L.v.V.)
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Sunniva Todnem Sakkestad
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway;
- National Center for Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Hans Steinsland
- Centre for Intervention Science in Maternal and Child Health (CISMAC), Centre of International Health, Department of Global Public Health and Primary Care, University of Bergen, 5020 Bergen, Norway;
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway
| | - Kurt Hanevik
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway;
- National Center for Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| |
Collapse
|
4
|
Heat-Stable Enterotoxin Secretions Assessed via ICP-MS Reveal Iron-Mediated Regulation of Virulence in CFA/I- and CS6-Expressing ETEC Isolates. Cells 2023; 12:cells12040567. [PMID: 36831233 PMCID: PMC9954033 DOI: 10.3390/cells12040567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/11/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) are a significant cause of childhood diarrhea in low-resource settings. ETEC are defined by the production of heat-stable enterotoxin (ST) and/or heat-labile enterotoxin (LT), which alter intracellular cyclic nucleotide signaling and cause the secretion of water and electrolytes into the intestinal lumen. ETEC take cues from chemicals (e.g., glycans, bile salts, and solutes) that may be liberated following enterotoxin activity to recognize entrance into the host. ETEC then alter the expression of surface adhesins called colonization factors (CFs) to attach to the intestinal epithelium, proliferate, and cause disease. Here, we used an in vivo model of oral ST intoxication to determine its impact on luminal ion concentrations via ICP-MS. We also used functional assays, including Western blots, qPCR, and toxin activity assays, to assess the impact of luminal ion flux on CF and toxin expression. Finally, we assessed ETEC strains with CFs CFA/I or CS6 in a streptomycin mouse model of ETEC colonization. ST causes rapid and significant increases in luminal chloride but significant decreases in luminal magnesium and iron. We confirmed that increased sodium chloride suppresses CFA/I production in ETEC H10407 but does not affect CS6 production in ETEC 214-4. CFA/I production in ETEC H10407 is increased when magnesium becomes limiting, although it does not affect CS6 production in ETEC 214-4. Iron restriction via deferoxamine induces CFA/I expression in ETEC H10407 but not CS6 expression in ETEC 214-4. We demonstrate that ST production is suppressed via iron restriction in H10407, 214-4, and over 50 other ETEC clinical isolates. Lastly, we demonstrate that the iron restriction of mice using oral deferoxamine pre-treatment extends the duration of ETEC H10407 (CFA/I+) fecal shedding while accelerating ETEC 214-4 (CS6+) fecal shedding. Combined, these data suggest that enterotoxins modulate luminal ion flux to influence ETEC virulence including toxin and CF production.
Collapse
|
5
|
Sudan S, Zhan X, Li J. A Novel Probiotic Bacillus subtilis Strain Confers Cytoprotection to Host Pig Intestinal Epithelial Cells during Enterotoxic Escherichia coli Infection. Microbiol Spectr 2022; 10:e0125721. [PMID: 35736372 PMCID: PMC9430607 DOI: 10.1128/spectrum.01257-21] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 05/26/2022] [Indexed: 01/13/2023] Open
Abstract
Enteric infections caused by enterotoxic Escherichia coli (ETEC) negatively impact the growth performance of piglets during weaning, resulting in significant economic losses for the producers. With the ban on antibiotic usage in livestock production, probiotics have gained a lot of attention as a potential alternative. However, strain specificity and limited knowledge on the host-specific targets limit their efficacy in preventing ETEC-related postweaning enteric infections. We recently isolated and characterized a novel probiotic Bacillus subtilis bacterium (CP9) that demonstrated antimicrobial activity. Here, we report anti-ETEC properties of CP9 and its impact on metabolic activity of swine intestinal epithelial (IPEC-J2) cells. Our results showed that pre- or coincubation with CP9 protected IPEC-J2 cells from ETEC-induced cytotoxicity. CP9 significantly attenuated ETEC-induced inflammatory response by reducing ETEC-induced nitric oxide production and relative mRNA expression of the Toll-like receptors (TLRs; TLR2, TLR4, and TLR9), proinflammatory tumor necrosis factor alpha, interleukins (ILs; IL-6 and IL-8), augmenting anti-inflammatory granulocyte-macrophage colony-stimulating factor and host defense peptide mucin 1 (MUC1) mRNA levels. We also show that CP9 significantly (P < 0.05) reduced caspase-3 activity, reinstated cell proliferation and increased relative expression of tight junction genes, claudin-1, occludin, and zona occludens-1 in ETEC-infected cells. Finally, metabolomic analysis revealed that CP9 exposure induced metabolic modulation in IPEC J2 cells with the greatest impact seen in alanine, aspartate, and glutamate metabolism; pyrimidine metabolism; nicotinate and nicotinamide metabolism; glutathione metabolism; the citrate cycle (TCA cycle); and arginine and proline metabolism. Our study shows that CP9 incubation attenuated ETEC-induced cytotoxicity in IPEC-J2 cells and offers insight into potential application of this probiotic for ETEC infection control. IMPORTANCE ETEC remains one of the leading causes of postweaning diarrhea and mortality in swine production. Due to the rising concerns with the antibiotic use in livestock, alternative interventions need to be developed. In this study, we analyzed the cytoprotective effect of a novel probiotic strain in combating ETEC infection in swine intestinal cells, along with assessing its mechanism of action. To our knowledge, this is also the first study to analyze the metabolic impact of a probiotic on intestinal cells. Results from this study should provide effective cues in developing a probiotic intervention for ameliorating ETEC infection and improving overall gut health in swine production.
Collapse
Affiliation(s)
- Sudhanshu Sudan
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | - Xiaoshu Zhan
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | - Julang Li
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
6
|
Zhang Y, Tan P, Zhao Y, Ma X. Enterotoxigenic Escherichia coli: intestinal pathogenesis mechanisms and colonization resistance by gut microbiota. Gut Microbes 2022; 14:2055943. [PMID: 35358002 PMCID: PMC8973357 DOI: 10.1080/19490976.2022.2055943] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a major cause of diarrhea in children and travelers in developing countries. ETEC is characterized by the ability to produce major virulence factors including colonization factors (CFs) and enterotoxins, that bind to specific receptors on epithelial cells and induce diarrhea. The gut microbiota is a stable and sophisticated ecosystem that performs a range of beneficial functions for the host, including protection against pathogen colonization. Understanding the pathogenic mechanisms of ETEC and the interaction between the gut microbiota and ETEC represents not only a research need but also an opportunity and challenge to develop precautions for ETEC infection. Herein, this review focuses on recent discoveries about ETEC etiology, pathogenesis and clinical manifestation, and discusses the colonization resistances mediated by gut microbiota, as well as preventative strategies against ETEC with an aim to provide novel insights that can reduce the adverse effect on human health.
Collapse
Affiliation(s)
- Yucheng Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Peng Tan
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Ying Zhao
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China,CONTACT Xi Ma State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Enterotoxigenic Escherichia coli enterotoxins regulate epithelial to immune relay of IL-33 and IL-1Ra cytokines. Infect Immun 2022; 90:e0063721. [PMID: 35191758 DOI: 10.1128/iai.00637-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) remain a major cause of diarrheal mortality and morbidity in children in low-resource settings. Few studies have explored the consequences of simultaneous intoxication with heat-stable (ST) and heat-labile (LT) enterotoxins despite the increased prevalence of wild ETEC isolates expressing both toxins. We therefore used a combination of tissue culture and murine models to explore the impact of simultaneous ST+LT intoxication of epithelial and myeloid cell responses. We report that LT induces sustained IL-33 and IL-1Ra responses in T84 intestinal epithelial cells via cAMP-production and protein kinase A activation. We demonstrate that combined ST+LT intoxication hastens epithelial transcriptional responses induced more slowly by LT alone. ST- and LT-mediated luminal fluid accumulation in vivo correlates with significant increases in IL-33 and IL-1Ra in small intestinal mucosal scrapings. Additionally, IL-33 receptor (IL-33R)-deficient mice are less susceptible to ST-mediated secretion. In the immune compartment, IL-33 is sensed by myeloid cells, and LT suppresses IL-33-induced TNFα secretion from macrophages but amplifies IL-33-mediated induction of IL-6 from bone marrow-derived dendritic cells. In conclusion, our studies suggest that enterotoxin-induced IL-33 and IL-1Ra modulate intestinal inflammation and IL-1 receptor signaling in the intestinal mucosa in response to ETEC enterotoxins.
Collapse
|
8
|
Prasad H, Mathew JKK, Visweswariah SS. Receptor Guanylyl Cyclase C and Cyclic GMP in Health and Disease: Perspectives and Therapeutic Opportunities. Front Endocrinol (Lausanne) 2022; 13:911459. [PMID: 35846281 PMCID: PMC9276936 DOI: 10.3389/fendo.2022.911459] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
Receptor Guanylyl Cyclase C (GC-C) was initially characterized as an important regulator of intestinal fluid and ion homeostasis. Recent findings demonstrate that GC-C is also causally linked to intestinal inflammation, dysbiosis, and tumorigenesis. These advances have been fueled in part by identifying mutations or changes in gene expression in GC-C or its ligands, that disrupt the delicate balance of intracellular cGMP levels and are associated with a wide range of clinical phenotypes. In this review, we highlight aspects of the current knowledge of the GC-C signaling pathway in homeostasis and disease, emphasizing recent advances in the field. The review summarizes extra gastrointestinal functions for GC-C signaling, such as appetite control, energy expenditure, visceral nociception, and behavioral processes. Recent research has expanded the homeostatic role of GC-C and implicated it in regulating the ion-microbiome-immune axis, which acts as a mechanistic driver in inflammatory bowel disease. The development of transgenic and knockout mouse models allowed for in-depth studies of GC-C and its relationship to whole-animal physiology. A deeper understanding of the various aspects of GC-C biology and their relationships with pathologies such as inflammatory bowel disease, colorectal cancer, and obesity can be leveraged to devise novel therapeutics.
Collapse
Affiliation(s)
- Hari Prasad
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| | | | - Sandhya S. Visweswariah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India
- *Correspondence: Sandhya S. Visweswariah,
| |
Collapse
|
9
|
Elevated Extracellular cGMP Produced after Exposure to Enterotoxigenic Escherichia coli Heat-Stable Toxin Induces Epithelial IL-33 Release and Alters Intestinal Immunity. Infect Immun 2021; 89:IAI.00707-20. [PMID: 33431701 PMCID: PMC8090939 DOI: 10.1128/iai.00707-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/05/2021] [Indexed: 01/13/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a major diarrheal pathogen in children in low- to middle-income countries. Previous studies identified heat-stable enterotoxin (ST)-producing ETEC as a prevalent diarrheal pathogen in children younger than 5 years. Enterotoxigenic Escherichia coli (ETEC) is a major diarrheal pathogen in children in low- to middle-income countries. Previous studies identified heat-stable enterotoxin (ST)-producing ETEC as a prevalent diarrheal pathogen in children younger than 5 years. While many studies have evaluated the interaction of ETEC heat-labile enterotoxin (LT) with host epithelium and immunity, few investigations have attempted similar studies with ST. To further understand ST pathogenesis, we examined the impact of ST on cGMP localization, epithelial cell cytokine production, and antibody development following immunization. In addition to robust intracellular cGMP in T84 cells in the presence of phosphodiesterase inhibitors (PDEis) that prevent the breakdown of cyclic nucleotides, we found that prolonged ST intoxication induced extracellular cGMP accumulation in the presence or absence of PDEis. Further, ST intoxication induced luminal cGMP in vivo in mice, suggesting that secreted cGMP may have other cellular functions. Using transcriptome sequencing (RNA-seq) and quantitative PCR (qPCR), we demonstrated that ST intoxication, or treatment with the clinically used ST mimic linaclotide, altered inflammatory cytokine gene expression, including the interleukin 1 (IL-1) family member IL-33, which could also be induced by cell-permeative 8-Br-cGMP. Finally, when present during immunization, ST suppressed induction of antibodies to specific antigens. In conclusion, our studies indicate that ST modulates epithelial cell physiology and the interplay between the epithelial and immune compartments.
Collapse
|
10
|
Burkholderia pseudomallei OMVs derived from infection mimicking conditions elicit similar protection to a live-attenuated vaccine. NPJ Vaccines 2021; 6:18. [PMID: 33514749 PMCID: PMC7846723 DOI: 10.1038/s41541-021-00281-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
Burkholderia pseudomallei is a Gram-negative, facultative intracellular bacillus that causes the disease melioidosis. B. pseudomallei expresses a number of proteins that contribute to its intracellular survival in the mammalian host. We previously demonstrated that immunization with OMVs derived from B. pseudomallei grown in nutrient-rich media protects mice against lethal disease. Here, we evaluated if OMVs derived from B. pseudomallei grown under macrophage-mimicking growth conditions could be enriched with intracellular-stage proteins in order to improve the vaccine. We show that OMVs produced in this manner (M9 OMVs) contain proteins associated with intracellular survival yet are non-toxic to living cells. Immunization of mice provides significant protection against pulmonary infection similar to that achieved with a live attenuated vaccine and is associated with increased IgG, CD4+, and CD8+ T cells. OMVs possess inherent adjuvanticity and drive DC activation and maturation. These results indicate that M9 OMVs constitute a new promising vaccine against melioidosis.
Collapse
|
11
|
Talaat KR, Porter CK, Jaep KM, Duplessis CA, Gutierrez RL, Maciel M, Adjoodani B, Feijoo B, Chakraborty S, Brubaker J, Trop SA, Riddle MS, Joseph SS, Bourgeois AL, Prouty MG. Refinement of the CS6-expressing enterotoxigenic Escherichia coli strain B7A human challenge model: A randomized trial. PLoS One 2020; 15:e0239888. [PMID: 33264302 PMCID: PMC7710093 DOI: 10.1371/journal.pone.0239888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 09/01/2020] [Indexed: 12/29/2022] Open
Abstract
Background Human challenge models for enterotoxigenic Escherichia coli (ETEC) facilitate vaccine down-selection. The B7A (O148:H28 CS6+LT+ST+) strain is important for vaccine development. We sought to refine the B7A model by identifying a dose and fasting regimen consistently inducing moderate-severe diarrhea. Methods An initial cohort of 28 subjects was randomized (1:1:1:1) to receive B7A following an overnight fast at doses of 108 or 109 colony forming units (cfu) or a 90-minute fast at doses of 109 or 1010 cfu. A second cohort included naïve and rechallenged subjects who had moderate-severe diarrhea and were given the target regimen. Immune responses to important ETEC antigens were assessed. Results Among subjects receiving 108 cfu of B7A, overnight fast, or 109 cfu, 90-minute fast, 42.9% (3/7) had moderate-severe diarrhea. Higher attack rates (71.4%; 5/7) occurred in subjects receiving 109 cfu, overnight fast, or 1010 cfu, 90-minute fast. Upon rechallenge with 109 cfu of B7A, overnight fast, 5/11 (45.5%) had moderate-severe diarrhea; the attack rate among concurrently challenge naïve subjects was 57.9% (11/19). Anti-CS6, O148 LPS and LT responses were modest across all groups. Conclusions An overnight fast enabled a reduction in the B7A inoculum dose; however, the attack rate was inconsistent and protection upon rechallenge was minimal.
Collapse
Affiliation(s)
- Kawsar R. Talaat
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States of America
- * E-mail:
| | - Chad K. Porter
- Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Kayla M. Jaep
- Henry M. Jackson Foundation, Bethesda, MD, United States of America
| | | | | | - Milton Maciel
- Henry M. Jackson Foundation, Bethesda, MD, United States of America
| | - Brittany Adjoodani
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Brittany Feijoo
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Subhra Chakraborty
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Jessica Brubaker
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Stefanie A. Trop
- Henry M. Jackson Foundation, Bethesda, MD, United States of America
| | - Mark S. Riddle
- Naval Medical Research Center, Silver Spring, MD, United States of America
- Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | | | - A. Louis Bourgeois
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States of America
- PATH, Washington, DC, United States of America
| | - Michael G. Prouty
- Naval Medical Research Center, Silver Spring, MD, United States of America
| |
Collapse
|