1
|
Abbas M, Khan MT, Iqbal Z, Ali A, Eddine BT, Yousaf N, Wei D. Sources, transmission and hospital-associated outbreaks of nontuberculous mycobacteria: a review. Future Microbiol 2024; 19:715-740. [PMID: 39015998 PMCID: PMC11259073 DOI: 10.2217/fmb-2023-0279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/20/2024] [Indexed: 07/18/2024] Open
Abstract
Nontuberculous mycobacteria (NTM) are widespread environmental organisms found in both natural and man-made settings, such as building plumbing, water distribution networks and hospital water systems. Their ubiquitous presence increases the risk of transmission, leading to a wide range of human infections, particularly in immunocompromised individuals. NTM primarily spreads through environmental exposures, such as inhaling aerosolized particles, ingesting contaminated food and introducing it into wounds. Hospital-associated outbreaks have been linked to contaminated medical devices and water systems. Furthermore, the rising global incidence, prevalence and isolation rates highlight the urgency of addressing NTM infections. Gaining a thorough insight into the sources and epidemiology of NTM infection is crucial for devising novel strategies to prevent and manage NTM transmission and infections.
Collapse
Affiliation(s)
- Munawar Abbas
- College of Food Science & Technology, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Muhammad Tahir Khan
- Institute of Molecular Biology & Biotechnology (IMBB), The University of Lahore, 1KM Defense Road, Lahore, 58810, Pakistan
- Zhongjing Research & Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nanyang, Henan, 473006, PR China
| | - Zafar Iqbal
- School of Life Science, Anhui Normal University, Wuhu, Anhui, China
| | - Arif Ali
- Department of Bioinformatics & Biological Statistics, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Benarfa Taki Eddine
- Echahid Cheikh Larbi Tebessi University Faculty of Exact Sciences & Natural & Life Sciences, Département of Microbiology, Algeria
| | - Numan Yousaf
- Department of Biosciences, COMSATS University Islamabad, Pakistan
| | - Dongqing Wei
- College of Food Science & Technology, Henan University of Technology, Zhengzhou, Henan, 450001, China
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences & School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, PR China
- Zhongjing Research & Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nanyang, Henan, 473006, PR China
- Henan Biological Industry Group, 41, Nongye East Rd, Jinshui, Zhengzhou, Henan, 450008, China
- Peng Cheng National Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen, Guangdong, 518055, PR China
| |
Collapse
|
2
|
Siponen S, Jayaprakash B, Hokajärvi AM, Gomez-Alvarez V, Inkinen J, Ryzhikov I, Räsänen P, Ikonen J, Pursiainen A, Kauppinen A, Kolehmainen M, Paananen J, Torvinen E, Miettinen IT, Pitkänen T. Composition of active bacterial communities and presence of opportunistic pathogens in disinfected and non-disinfected drinking water distribution systems in Finland. WATER RESEARCH 2024; 248:120858. [PMID: 37988808 PMCID: PMC10840642 DOI: 10.1016/j.watres.2023.120858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023]
Abstract
Many factors, including microbiome structure and activity in the drinking water distribution system (DWDS), affect the colonization potential of opportunistic pathogens. The present study aims to describe the dynamics of active bacterial communities in DWDS and identify the factors that shape the community structures and activity in the selected DWDSs. Large-volume drinking water and hot water, biofilm, and water meter deposit samples were collected from five DWDSs. Total nucleic acids were extracted, and RNA was further purified and transcribed into its cDNA from a total of 181 water and biofilm samples originating from the DWDS of two surface water supplies (disinfected with UV and chlorine), two artificially recharged groundwater supplies (non-disinfected), and a groundwater supply (disinfected with UV and chlorine). In chlorinated DWDSs, concentrations of <0.02-0.97 mg/l free chlorine were measured. Bacterial communities in the RNA and DNA fractions were analysed using Illumina MiSeq sequencing with primer pair 341F-785R targeted to the 16S rRNA gene. The sequence libraries were analysed using QIIME pipeline, Program R, and MicrobiomeAnalyst. Not all bacterial cells were active based on their 16S rRNA content, and species richness was lower in the RNA fraction (Chao1 mean value 490) than in the DNA fraction (710). Species richness was higher in the two DWDSs distributing non-disinfected artificial groundwater (Chao1 mean values of 990 and 1 000) as compared to the two disinfected DWDSs using surface water (Chao1 mean values 190 and 460) and disinfected DWDS using ground water as source water (170). The difference in community structures between non-disinfected and disinfected water was clear in the beta-diversity analysis. Distance from the waterworks also affected the beta diversity of community structures, especially in disinfected distribution systems. The two most abundant bacteria in the active part of the community (RNA) and total bacterial community (DNA) belonged to the classes Alphaproteobacteria (RNA 28 %, DNA 44 %) and Gammaproteobacteria (RNA 32 %, DNA 30 %). The third most abundant and active bacteria class was Vampirovibrionia (RNA 15 %), whereas in the total community it was Paceibacteria (DNA 11 %). Class Nitrospiria was more abundant and active in both cold and hot water in DWDS that used chloramine disinfection compared to non-chlorinated or chlorine-using DWDSs. Thirty-eight operational taxonomic units (OTU) of Legionella, 30 of Mycobacterium, and 10 of Pseudomonas were detected among the sequences. The (RT)-qPCR confirmed the presence of opportunistic pathogens in the DWDSs studied as Legionella spp. was detected in 85 % (mean value 4.5 × 104 gene copies/100 ml), Mycobacterium spp. in 95 % (mean value 8.3 × 106 gene copies/100 ml), and Pseudomonas spp. in 78 % (mean value 1.6 × 105 gene copies/100 ml) of the water and biofilm samples. Sampling point inside the system (distance from the waterworks and cold/hot system) affected the active bacterial community composition. Chloramine as a chlorination method resulted in a recognizable community composition, with high abundance of bacteria that benefit from the excess presence of nitrogen. The results presented here confirm that each DWDS is unique and that opportunistic pathogens are present even in conditions when water quality is considered excellent.
Collapse
Affiliation(s)
- Sallamaari Siponen
- Finnish Institute for Health and Welfare, Department of Health Security, P.O. Box 95, 70701 Kuopio, Finland; University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 1627, 70211 Kuopio, Finland.
| | | | - Anna-Maria Hokajärvi
- Finnish Institute for Health and Welfare, Department of Health Security, P.O. Box 95, 70701 Kuopio, Finland
| | - Vicente Gomez-Alvarez
- U.S. Environmental Protection Agency, Office of Research and Development, 26W. Martin Luther King Dr., Cincinnati, OH 45268, United States
| | - Jenni Inkinen
- University of Eastern Finland, Institute of Biomedicine, P.O. Box 1627, 70211 Kuopio, Finland
| | - Ivan Ryzhikov
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 1627, 70211 Kuopio, Finland
| | - Pia Räsänen
- Finnish Institute for Health and Welfare, Department of Health Security, P.O. Box 95, 70701 Kuopio, Finland
| | - Jenni Ikonen
- Finnish Institute for Health and Welfare, Department of Health Security, P.O. Box 95, 70701 Kuopio, Finland
| | - Anna Pursiainen
- Finnish Institute for Health and Welfare, Department of Health Security, P.O. Box 95, 70701 Kuopio, Finland
| | - Ari Kauppinen
- Finnish Institute for Health and Welfare, Department of Health Security, P.O. Box 95, 70701 Kuopio, Finland
| | - Mikko Kolehmainen
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 1627, 70211 Kuopio, Finland
| | - Jussi Paananen
- University of Eastern Finland, Institute of Biomedicine, P.O. Box 1627, 70211 Kuopio, Finland
| | - Eila Torvinen
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 1627, 70211 Kuopio, Finland
| | - Ilkka T Miettinen
- Finnish Institute for Health and Welfare, Department of Health Security, P.O. Box 95, 70701 Kuopio, Finland
| | - Tarja Pitkänen
- Finnish Institute for Health and Welfare, Department of Health Security, P.O. Box 95, 70701 Kuopio, Finland; University of Helsinki, Faculty of Veterinary Medicine, Department of Food Hygiene and Environmental Health, P.O. Box 66, 00014 Helsinki, Finland
| |
Collapse
|
3
|
Hegarty B, Dai Z, Raskin L, Pinto A, Wigginton K, Duhaime M. A snapshot of the global drinking water virome: Diversity and metabolic potential vary with residual disinfectant use. WATER RESEARCH 2022; 218:118484. [PMID: 35504157 DOI: 10.1016/j.watres.2022.118484] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/01/2022] [Accepted: 04/19/2022] [Indexed: 05/22/2023]
Abstract
Viruses are important drivers of microbial community ecology and evolution, influencing microbial mortality, metabolism, and horizontal gene transfer. However, the effects of viruses remain largely unknown in many environments, including in drinking water systems. Drinking water metagenomic studies have offered a whole community perspective of bacterial impacts on water quality, but have not yet considered the influences of viruses. In this study, we address this gap by mining viral DNA sequences from publicly available drinking water metagenomes from distribution systems in six countries around the world. These datasets provide a snapshot of the taxonomic diversity and metabolic potential of the global drinking water virome; and provide an opportunity to investigate the effects of geography, climate, and drinking water treatment practices on viral diversity. Both environmental conditions and differences in sample processing were found to influence the viral composition. Using free chlorine as the residual disinfectant was associated with clear differences in viral taxonomic diversity and metabolic potential, with significantly fewer viral populations and less even viral community structures than observed in distribution systems without residual disinfectant. Additionally, drinking water viruses carry antibiotic resistance genes (ARGs), as well as genes to survive oxidative stress and nitrogen limitation. Through this study, we have demonstrated that viral communities are diverse across drinking water systems and vary with the use of residual disinfectant. Our findings offer directions for future research to develop a more robust understanding of how virus-bacteria interactions in drinking water distribution systems affect water quality.
Collapse
Affiliation(s)
- Bridget Hegarty
- Department of Civil and Environmental Engineering, Environmental and Water Resources Engineering Building, University of Michigan, 1351 Beal Ave. 181, Ann Arbor, MI 48109-2125, USA
| | - Zihan Dai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lutgarde Raskin
- Department of Civil and Environmental Engineering, Environmental and Water Resources Engineering Building, University of Michigan, 1351 Beal Ave. 181, Ann Arbor, MI 48109-2125, USA
| | - Ameet Pinto
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Georgia
| | - Krista Wigginton
- Department of Civil and Environmental Engineering, Environmental and Water Resources Engineering Building, University of Michigan, 1351 Beal Ave. 181, Ann Arbor, MI 48109-2125, USA.
| | - Melissa Duhaime
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105N University Ave., 4068 Biological Sciences Building, Ann Arbor, MI 48109-1085, USA.
| |
Collapse
|
4
|
Farhat N, Kim L, Mineta K, Alarawi M, Gojobori T, Saikaly P, Vrouwenvelder J. Seawater desalination based drinking water: Microbial characterization during distribution with and without residual chlorine. WATER RESEARCH 2022; 210:117975. [PMID: 34952456 DOI: 10.1016/j.watres.2021.117975] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Monitoring the changes that occur to water during distribution is vital to ensure water safety. In this study, the biological stability of reverse osmosis (RO) produced drinking water, characterized by low cell concentration and low assimilable organic carbon, in combination with chlorine disinfection was investigated. Water quality at several locations throughout the existing distribution network was monitored to investigate whether microbial water quality changes can be identified. Results revealed that the water leaving the plant had an average bacterial cell concentration of 103 cells/mL. A 0.5-1.5 log increase in bacterial cell concentration was observed at locations in the network. The residual disinfectant was largely dissipated in the network from 0.5 mg/L at the treatment plant to less than 0.1 mg/L in the network locations. The simulative study involving miniature distribution networks, mimicking the dynamics of a distribution network, fed with the RO produced chlorinated and non-chlorinated drinking water revealed that distributing RO produced water without residual disinfection, especially at high water temperatures (25-30 °C), poses a higher chance for water quality change. Within six months of operation of the miniature network fed with unchlorinated RO produced water, the adenosine triphosphate (ATP) and total cell concentration (TCC) in the pipe biofilm were 4 × 102 pg ATP/cm2 and 1 × 107 cells/ cm2. The low bacterial cell concentration and organic carbon concentration in the RO-produced water did not prevent biofilm development inside the network with and without residual chlorine. The bacterial community analysis using 16S ribosomal RNA (rRNA) gene sequencing revealed that mesophilic bacteria with higher temperature tolerance and bacteria associated with oligotrophic, nutrient-poor conditions dominated the biofilm, with no indication of the existence of opportunistic pathogenic species. However, chlorination selected against most bacterial groups and the bacterial community that remained was mainly the bacteria capable of surviving disinfection regimes. Biofilms that developed in the presence of chlorine contained species classified as opportunistic pathogens. These biofilms have an impact on shaping the water quality received at the consumer tap. The presence of these bacteria on its own is not a health risk indicator; viability assessment and qPCRs targeting genes specific to the opportunistic pathogens as well as quantitative microbiological risk assessment (QMRA) should be included to assess the risk. The results from this study highlight the importance of implementing multiple barriers to ensure water safety. Changes in water quality detected even when high-quality disinfected RO-produced water is distributed highlight microbiological challenges that chlorinated systems endure, especially at high water temperatures.
Collapse
Affiliation(s)
- Nadia Farhat
- Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| | - Lanhee Kim
- Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Katsuhiko Mineta
- Computational Bioscience Research Center (CBRC), Division of Computer, Electrical and Mathematical Sciences and Engineering (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Mohammed Alarawi
- Computational Bioscience Research Center (CBRC), Division of Computer, Electrical and Mathematical Sciences and Engineering (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Takashi Gojobori
- Computational Bioscience Research Center (CBRC), Division of Computer, Electrical and Mathematical Sciences and Engineering (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia; Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Pascal Saikaly
- Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Johannes Vrouwenvelder
- Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia; Faculty of Applied Sciences, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, Netherlands
| |
Collapse
|
5
|
Webster TM, McFarland A, Gebert MJ, Oliverio AM, Nichols LM, Dunn RR, Hartmann EM, Fierer N. Structure and Functional Attributes of Bacterial Communities in Premise Plumbing Across the United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14105-14114. [PMID: 34606240 DOI: 10.1021/acs.est.1c03309] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microbes that thrive in premise plumbing can have potentially important effects on human health. Yet, how and why plumbing-associated microbial communities vary across broad spatial scales remain undetermined. We characterized the bacterial communities in 496 showerheads collected from across the continental United States. The overall community structure, determined by 16S rRNA gene amplicon sequencing, revealed high levels of bacterial diversity. Although a large fraction of the observed variation in community composition could not be explained, differences in bacterial community composition were associated with water supply (private well water vs public municipal water), water source (groundwater vs surface water), and associated differences in water chemistry (pH and chlorine). Most notably, showerheads in homes supplied with public water had higher abundances of Blastomonas, Mycobacterium, and Porphyrobacter, while Pseudorhodoplanes, Novosphingobium, and Nitrospira were more abundant in those receiving private well water. We conducted shotgun metagenomic analyses on 92 of these samples to assess differences in genomic attributes. Public water-sourced showerheads had communities enriched in genes related to lipid and xenobiotic metabolisms, virulence factors, and antibiotic resistance. In contrast, genes associated with oxidative stress and membrane transporters were over-represented in communities from private well water-sourced showerheads compared to those supplied by public water systems. These results highlight the broad diversity of bacteria found in premise plumbing across the United States and the role of the water source and treatment in shaping the microbial community structure and functional potential.
Collapse
Affiliation(s)
- Tara M Webster
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, United States
| | - Alexander McFarland
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Matthew J Gebert
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, United States
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80302, United States
| | - Angela M Oliverio
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, United States
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80302, United States
| | - Lauren M Nichols
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Robert R Dunn
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina 27607, United States
- Center for Evolutionary Hologenomics, University of Copenhagen, Copenhagen 1050, Denmark
| | - Erica M Hartmann
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Noah Fierer
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, United States
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80302, United States
| |
Collapse
|
6
|
Keenum I, Medina MC, Garner E, Pieper KJ, Blair MF, Milligan E, Pruden A, Ramirez-Toro G, Rhoads WJ. Source-to-Tap Assessment of Microbiological Water Quality in Small Rural Drinking Water Systems in Puerto Rico Six Months After Hurricane Maria. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3775-3785. [PMID: 33645970 DOI: 10.1021/acs.est.0c08814] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Maria made a landfall in Puerto Rico on September 20, 2017 as a category 4 hurricane, causing severe flooding, widespread electricity outages, damage to infrastructure, and interruptions in water and wastewater treatment. Small rural community water systems face unique challenges in providing drinking water, which intensify after natural disasters. The purpose of this study was to evaluate the functionality of six very small rural public water systems and one large regulated system in Puerto Rico six months after Maria and survey a broad sweep of fecal, zoonotic, and opportunistic pathogens from the source to tap. Samples were collected from surface and groundwater sources, after water treatment and after distribution to households. Genes indicative of pathogenic Leptospira spp. were detected by polymerase chain reaction (PCR) in all systems reliant on surface water sources. Salmonella spp. was detected in surface and groundwater sources and some distribution system water both by culture and PCR. Legionella spp. and Mycobacteria spp. gene numbers measured by quantitative PCR were similar to nonoutbreak conditions in the continental U.S. Amplicon sequencing provided a nontarget screen for other potential pathogens of concern. This study aids in improving future preparedness, assessment, and recovery operations for small rural water systems after natural disasters.
Collapse
Affiliation(s)
- Ishi Keenum
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Melitza Crespo Medina
- Center for Environmental Education, Conservation and Research, Inter American University, San Germán, Puerto Rico 00683, United States
| | - Emily Garner
- Department of Civil & Environmental Engineering, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Kelsey J Pieper
- Department of Civil & Environmental Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Matthew Forrest Blair
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Erin Milligan
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Amy Pruden
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Graciela Ramirez-Toro
- Center for Environmental Education, Conservation and Research, Inter American University, San Germán, Puerto Rico 00683, United States
| | - William J Rhoads
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| |
Collapse
|
7
|
Dowdell K, Haig SJ, Caverly LJ, Shen Y, LiPuma JJ, Raskin L. Nontuberculous mycobacteria in drinking water systems - the challenges of characterization and risk mitigation. Curr Opin Biotechnol 2019; 57:127-136. [PMID: 31003169 DOI: 10.1016/j.copbio.2019.03.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/05/2019] [Accepted: 03/05/2019] [Indexed: 12/18/2022]
Abstract
Nontuberculous mycobacteria (NTM) pulmonary infections are a growing concern worldwide, with a disproportionate incidence in persons with pre-existing health conditions. NTM have frequently been found in municipally-treated drinking water and building plumbing, leading to the hypothesis that an important source of NTM exposure is drinking water. The identification and quantification of NTM in environmental samples are complicated by genetic variability among NTM species, making it challenging to determine if clinically relevant NTM are present. Additionally, their unique cellular features and lifestyles make NTM and their nucleic acids difficult to recover. This review highlights a recent work focused on quantification and characterization of NTM and on understanding the influence of source water, treatment plants, distribution systems, and building plumbing on the abundance of NTM in drinking water.
Collapse
Affiliation(s)
- Katherine Dowdell
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Sarah-Jane Haig
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lindsay J Caverly
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Yun Shen
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA
| | - John J LiPuma
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Lutgarde Raskin
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|