1
|
Muñoz-Alía MÁ, Nace RA, Balakrishnan B, Zhang L, Packiriswamy N, Singh G, Warang P, Mena I, Narjari R, Vandergaast R, Peng KW, García-Sastre A, Schotsaert M, Russell SJ. Surface-modified measles vaccines encoding oligomeric, prefusion-stabilized SARS-CoV-2 spike glycoproteins boost neutralizing antibody responses to Omicron and historical variants, independent of measles seropositivity. mBio 2024; 15:e0292823. [PMID: 38193729 PMCID: PMC10865805 DOI: 10.1128/mbio.02928-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
Serum titers of SARS-CoV-2-neutralizing antibodies (nAbs) correlate well with protection from symptomatic COVID-19 but decay rapidly in the months following vaccination or infection. In contrast, measles-protective nAb titers are lifelong after measles vaccination, possibly due to persistence of the live-attenuated virus in lymphoid tissues. We, therefore, sought to generate a live recombinant measles vaccine capable of driving high SARS-CoV-2 nAb responses. Since previous clinical testing of a live measles vaccine encoding a SARS-CoV-2 spike glycoprotein resulted in suboptimal anti-spike antibody titers, our new vectors were designed to encode prefusion-stabilized SARS-CoV-2 spike glycoproteins, trimerized via an inserted peptide domain, and displayed on a dodecahedral miniferritin scaffold. Additionally, to circumvent the blunting of vaccine efficacy by preformed anti-measles antibodies, we extensively modified the measles surface glycoproteins. Comprehensive in vivo mouse testing demonstrated the potent induction of high titer nAbs in measles-immune mice and confirmed the significant contributions to overall potency afforded by prefusion stabilization, trimerization, and miniferritin display of the SARS-CoV-2 spike glycoprotein. In animals primed and boosted with a measles virus (MeV) vaccine encoding the ancestral SARS-CoV-2 spike, high-titer nAb responses against ancestral virus strains were only weakly cross-reactive with the Omicron variant. However, in primed animals that were boosted with a MeV vaccine encoding the Omicron BA.1 spike, antibody titers to both ancestral and Omicron strains were robustly elevated, and the passive transfer of serum from these animals protected K18-ACE2 mice from infection and morbidity after exposure to BA.1 and WA1/2020 strains. Our results demonstrate that by engineering the antigen, we can develop potent measles-based vaccine candidates against SARS-CoV-2.IMPORTANCEAlthough the live-attenuated measles virus (MeV) is one of the safest and most efficacious human vaccines, a measles-vectored COVID-19 vaccine candidate expressing the SARS-CoV-2 spike failed to elicit neutralizing antibody (nAb) responses in a phase-1 clinical trial, especially in measles-immune individuals. Here, we constructed a comprehensive panel of MeV-based COVID-19 vaccine candidates using a MeV with extensive modifications on the envelope glycoproteins (MeV-MR). We show that artificial trimerization of the spike is critical for the induction of nAbs and that their magnitude can be significantly augmented when the spike protein is synchronously fused to a dodecahedral scaffold. Furthermore, preexisting measles immunity did not abolish heterologous immunity elicited by our vector. Our results highlight the importance of antigen optimization in the development of spike-based COVID-19 vaccines and therapies.
Collapse
Affiliation(s)
- Miguel Á. Muñoz-Alía
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Vyriad Inc, Rochester, Minnesota, USA
| | - Rebecca A. Nace
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Lianwen Zhang
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Prajakta Warang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ignacio Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | - Kah-Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Vyriad Inc, Rochester, Minnesota, USA
- Imanis Life Sciences, Rochester, Minnesota, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stephen J. Russell
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Vyriad Inc, Rochester, Minnesota, USA
- Imanis Life Sciences, Rochester, Minnesota, USA
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
2
|
O’Reilly S, Kenny G, Alrawahneh T, Francois N, Gu L, Angeliadis M, de Masson d’Autume V, Garcia Leon A, Feeney ER, Yousif O, Cotter A, de Barra E, Horgan M, Mallon PWG, Gautier V. Development of a novel medium throughput flow-cytometry based micro-neutralisation test for SARS-CoV-2 with applications in clinical vaccine trials and antibody screening. PLoS One 2023; 18:e0294262. [PMID: 38033116 PMCID: PMC10688860 DOI: 10.1371/journal.pone.0294262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Quantifying neutralising capacity of circulating SARS-COV-2 antibodies is critical in evaluating protective humoral immune responses generated post-infection/post-vaccination. Here we describe a novel medium-throughput flow cytometry-based micro-neutralisation test to evaluate Neutralising Antibody (NAb) responses against live SARS-CoV-2 Wild Type and Variants of Concern (VOC) in convalescent/vaccinated populations. Flow Cytometry-Based Micro-Neutralisation Test (Micro-NT) was performed in 96-well plates using clinical isolates WT-B, WT-B.1.177.18 and/or VOCs Beta and Omicron. Plasma samples (All Ireland Infectious Diseases (AIID) Cohort) were serially diluted (8 points, half-log) from 1:20 and pre-incubated with SARS-CoV-2 (1h, 37°C). Virus-plasma mixture were added onto Vero E6 or Vero E6/TMPRSS2 cells for 18h. Percentage infected cells was analysed by automated flow cytometry following trypsinisation, fixation and SARS-CoV-2 Nucleoprotein intracellular staining. Half-maximal Neutralisation Titres (NT50) were determined using non-linear regression. Our assay was compared to Plaque Reduction Neutralisation Test (PRNT) and validated against the First WHO International Standard for anti-SARS-CoV-2 immunoglobulin. Both Micro-NT and PRNT achieved comparable NT50 values. Further validation showed adequate correlation with PRNT using a panel of secondary standards of clinical convalescent and vaccinated plasma samples. We found the assay to be reproducible through measuring both repeatability and intermediate precision. Screening 190 convalescent samples and 11 COVID-19 naive controls (AIID cohort) we demonstrated that Micro-NT has broad dynamic range differentiating NT50s <1/20 to >1/5000. We could also characterise immune-escape VOC Beta and Omicron BA.5, achieving fold-reductions in neutralising capacity similar to those published. Our flow cytometry-based Micro-NT is a robust and reliable assay to quantify NAb titres, and has been selected as an endpoint in clinical trials.
Collapse
Affiliation(s)
- Sophie O’Reilly
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Grace Kenny
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
- Department of Infectious Diseases, St Vincent’s University Hospital, Elm Park, Dublin, Ireland
| | - Tamara Alrawahneh
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Nathan Francois
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Lili Gu
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Matthew Angeliadis
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Valentin de Masson d’Autume
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Alejandro Garcia Leon
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Eoin R. Feeney
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
- Department of Infectious Diseases, St Vincent’s University Hospital, Elm Park, Dublin, Ireland
| | - Obada Yousif
- Endocrinology Department, Wexford General Hospital, Carricklawn, Wexford, Ireland
| | - Aoife Cotter
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
- Department of Infectious Diseases, Mater Misericordiae University Hospital, Eccles St, Dublin, Ireland
| | - Eoghan de Barra
- Department of Infectious Diseases, Beaumont Hospital, Beaumont, Dublin, Ireland
- Department of International Health and Tropical Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Mary Horgan
- Department of Infectious Diseases, Cork University Hospital, Wilton, Cork, Ireland
| | - Patrick W. G. Mallon
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
- Department of Infectious Diseases, St Vincent’s University Hospital, Elm Park, Dublin, Ireland
| | - Virginie Gautier
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
- Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
3
|
Kolesov DE, Gaiamova EA, Orlova NA, Vorobiev II. Dimeric ACE2-FC Is Equivalent to Monomeric ACE2 in the Surrogate Virus Neutralization Test. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1274-1283. [PMID: 37770394 DOI: 10.1134/s0006297923090079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 09/30/2023]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is the main cellular receptor for the dangerous sarbecoviruses SARS-CoV and SARS-CoV-2. Its recombinant extracellular domain is used to monitor the level of protective humoral immune response to a viral infection or vaccine using the surrogate virus neutralization test (sVNT). Soluble ACE2 is also considered as an option for antiviral therapy potentially insensitive to the changes in the SARS-CoV-2 spike protein. Extensive testing of the samples of patient's serum by the sVNT method requires using preparations of ACE2 or ACE2 conjugates with constant properties. We have previously obtained a cell line that is a producer of a soluble monomeric ACE2 and showed that this ACE2 variant can be used in sVNT, preferably as a conjugate with horseradish peroxidase. A cell line that generates an ACE2-Fc fusion protein with high productivity, more than 150 mg/liter of the target protein when cultured in a stirred flask, was obtained for producing a stable and universally applicable form of soluble ACE2. The affinity-purified ACE2-Fc fusion contains a mixture of dimeric and tetrameric forms, but allows obtaining linear response curves for inhibition of binding with the receptor-binding domain of the SARS-CoV-2 spike protein by antibodies. The ACE2-Fc-HRP-based sVNT testing system can be used for practical measurements of the levels of virus-neutralizing antibodies against various circulating variants of the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Denis E Kolesov
- Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Elizaveta A Gaiamova
- Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Nadezhda A Orlova
- Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Ivan I Vorobiev
- Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
4
|
Li D, Xu M, Hooper AT, Rofail D, Mohammadi KA, Chen Y, Ali S, Norton T, Weinreich DM, Musser BJ, Hamilton JD, Geba GP. Casirivimab + imdevimab accelerates symptom resolution linked to improved COVID-19 outcomes across susceptible antibody and risk profiles. Sci Rep 2023; 13:12784. [PMID: 37550377 PMCID: PMC10406852 DOI: 10.1038/s41598-023-39681-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/28/2023] [Indexed: 08/09/2023] Open
Abstract
Severe, protracted symptoms are associated with poor outcomes in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In a placebo-controlled study of casirivimab and imdevimab (CAS + IMD) in persons at high risk of severe coronavirus disease 2019 (COVID-19; n = 3816), evolution of individual symptoms was assessed for resolution patterns across risk factors, and baseline SARS-CoV-2-specific antibody responses against S1 and N domains. CAS + IMD versus placebo provided statistically significant resolution for 17/23 symptoms, with greater response linked to absence of endogenous anti-SARS-CoV-2 immunoglobulin (Ig)G, IgA, or specific neutralizing antibodies at baseline, or high baseline viral load. Resolution of five key symptoms (onset days 3-5)-dyspnea, cough, feeling feverish, fatigue, and loss of appetite-independently correlated with reduced hospitalization and death (hazard ratio range: 0.31-0.56; P < 0.001-0.043), and was more rapid in CAS + IMD-treated patients lacking robust early antibody responses. Those who seroconverted late still benefited from treatment. Thus, highly neutralizing COVID-19-specific antibodies provided by CAS + IMD treatment accelerated key symptom resolution associated with hospitalization and death in those at high risk for severe disease as well as in those lacking early, endogenous neutralizing antibody responses.
Collapse
Affiliation(s)
- Dateng Li
- Global Development, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Meng Xu
- Global Development, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Andrea T Hooper
- Global Development, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Diana Rofail
- Global Development, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Kusha A Mohammadi
- Global Development, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Yiziying Chen
- Global Development, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Shazia Ali
- Global Development, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Thomas Norton
- Global Development, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - David M Weinreich
- Global Development, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Bret J Musser
- Global Development, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Jennifer D Hamilton
- Global Development, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Gregory P Geba
- Global Development, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA.
| |
Collapse
|
5
|
dePillis L, Caffrey R, Chen G, Dela MD, Eldevik L, McConnell J, Shabahang S, Varvel SA. A mathematical model of the within-host kinetics of SARS-CoV-2 neutralizing antibodies following COVID-19 vaccination. J Theor Biol 2023; 556:111280. [PMID: 36202234 PMCID: PMC9529354 DOI: 10.1016/j.jtbi.2022.111280] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/22/2022] [Accepted: 09/14/2022] [Indexed: 10/25/2022]
Abstract
Compelling evidence continues to build to support the idea that SARS-CoV-2 Neutralizing Antibody (NAb) levels in an individual can serve as an important indicator of the strength of protective immunity against infection. It is not well understood why NAb levels in some individuals remain high over time, while in others levels decline rapidly. In this work, we present a two-state mathematical model of within-host NAb dynamics in response to vaccination. By fitting only four host-specific parameters, the model is able to capture individual-specific NAb levels over time as measured by the AditxtScore™ for NAbs. The model can serve as a foundation for predicting NAb levels in the long-term, understanding connections between NAb levels, protective immunity, and breakthrough infections, and potentially guiding decisions about whether and when a booster vaccination may be warranted.
Collapse
Affiliation(s)
- Lisette dePillis
- Department of Mathematics, Harvey Mudd College, 301 Platt Blvd., Claremont, CA 91711, United States.
| | - Rebecca Caffrey
- Aditxt, Inc. 737 N. Fifth Street, Suite 200, Richmond, VA 23219, United States
| | - Ge Chen
- Aditxt, Inc. 737 N. Fifth Street, Suite 200, Richmond, VA 23219, United States
| | - Mark D. Dela
- California State Polytechnic University, Pomona, CA, United States
| | - Leif Eldevik
- Aditxt, Inc. 737 N. Fifth Street, Suite 200, Richmond, VA 23219, United States
| | - Joseph McConnell
- Aditxt, Inc. 737 N. Fifth Street, Suite 200, Richmond, VA 23219, United States
| | - Shahrokh Shabahang
- Aditxt, Inc. 737 N. Fifth Street, Suite 200, Richmond, VA 23219, United States
| | - Stephen A. Varvel
- Aditxt, Inc. 737 N. Fifth Street, Suite 200, Richmond, VA 23219, United States
| |
Collapse
|
6
|
Hooper AT, Somersan-Karakaya S, McCarthy SE, Mylonakis E, Ali S, Mei J, Bhore R, Mahmood A, Geba GP, Dakin P, Weinreich DM, Yancopoulos GD, Herman GA, Hamilton JD. Casirivimab and Imdevimab Treatment Reduces Viral Load and Improves Clinical Outcomes in Seropositive Hospitalized COVID-19 Patients with Nonneutralizing or Borderline Neutralizing Antibodies. mBio 2022; 13:e0169922. [PMID: 36255239 PMCID: PMC9765482 DOI: 10.1128/mbio.01699-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/20/2022] [Indexed: 11/20/2022] Open
Abstract
We conducted a post hoc analysis in seropositive patients who were negative or borderline for functional neutralizing antibodies (NAbs) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at baseline from a phase 1, 2, and 3 trial of casirivimab and imdevimab (CAS+IMD) treatment in hospitalized coronavirus disease 2019 (COVID-19) patients on low-flow or no supplemental oxygen prior to the emergence of Omicron-lineage variants. Patients were randomized to a single dose of 2.4 g CAS+IMD, 8.0 g CAS+IMD, or placebo. Patients seropositive for anti-SARS-CoV-2 antibodies at baseline were analyzed by their baseline neutralizing antibody status. At baseline, 20.6% (178/864) of seropositive patients were negative or borderline for neutralizing antibodies, indicating negative or very low functionally neutralizing anti-SARS-CoV-2 antibodies. CAS+IMD reduced viral load in patients who were negative or borderline for neutralizing antibodies versus placebo, but not in patients who were positive for neutralizing antibodies. In patients who were negative or borderline for neutralizing antibodies, we observed a trend in reduction of the proportion of patients who died or required mechanical ventilation, as well as in all-cause mortality, by day 29 with CAS+IMD versus placebo. The proportions of patients who died or required mechanical ventilation from days 1 to 29 were 19.1% in the placebo group and 10.9% in the CAS+IMD combined-dose group, and the proportions of patients who died (all-cause mortality) from days 1 to 29 were 16.2% in the placebo group and 9.1% in the CAS+IMD combined-dose group. In patients who were positive for neutralizing antibodies, no measurable harm or benefit was observed in either the proportion of patients who died or required mechanical ventilation or the proportion of patients who died (all-cause mortality). In hospitalized COVID-19 patients on low-flow or no supplemental oxygen, CAS+IMD reduced viral load, the risk of death or mechanical ventilation, and all-cause mortality in seropositive patients who were negative or borderline for neutralizing antibodies. IMPORTANCE The clinical benefit of CAS+IMD in hospitalized seronegative patients with COVID-19 has previously been demonstrated, although these studies observed no clinical benefit in seropositive patients. As the prevalence of SARS-CoV-2-seropositive individuals rises due to both vaccination and previous infection, it is important to understand whether there is a subset of hospitalized patients with COVID-19 with antibodies against SARS-CoV-2 who could benefit from anti-SARS-CoV-2 monoclonal antibody treatment. This post hoc analysis demonstrates that there is a subset of hospitalized seropositive patients with inadequate SARS-CoV-2-neutralizing antibodies (i.e., those who were negative or borderline for neutralizing antibodies) who may still benefit from CAS+IMD treatment if infected with a susceptible SARS-CoV-2 variant. Therefore, utilizing serostatus alone to guide treatment decisions for patients with COVID-19 may fail to identify those seropositive patients who could benefit from anti-SARS-CoV-2 monoclonal antibody therapies known to be effective against circulating strains, dependent upon how effectively their endogenous antibodies neutralize SARS-CoV-2.
Collapse
Affiliation(s)
| | | | | | | | - Shazia Ali
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA
| | - Jingning Mei
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA
| | - Rafia Bhore
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA
| | - Adnan Mahmood
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA
| | | | - Paula Dakin
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA
| | | | | | - Gary A. Herman
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA
| | | |
Collapse
|
7
|
Muñoz-Alía MÁ, Nace RA, Balakrishnan B, Zhang L, Packiriswamy N, Singh G, Warang P, Mena I, Narjari R, Vandergaast R, García-Sastre A, Schotsaert M, Russell SJ. Surface-modified measles vaccines encoding oligomeric, fusion-stabilized SARS-CoV-2 spike glycoproteins bypass measles seropositivity, boosting neutralizing antibody responses to omicron and historical variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.12.16.520799. [PMID: 36561187 PMCID: PMC9774211 DOI: 10.1101/2022.12.16.520799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Serum titers of SARS-CoV-2 neutralizing antibodies (nAb) correlate well with protection from symptomatic COVID-19, but decay rapidly in the months following vaccination or infection. In contrast, measles-protective nAb titers are life-long after measles vaccination, possibly due to persistence of the live-attenuated virus in lymphoid tissues. We therefore sought to generate a live recombinant measles vaccine capable of driving high SARS-CoV-2 nAb responses. Since previous clinical testing of a live measles vaccine encoding a SARS-CoV-2 spike glycoprotein resulted in suboptimal anti-spike antibody titers, our new vectors were designed to encode prefusion-stabilized SARS-CoV-2 spike glycoproteins, trimerized via an inserted peptide domain and displayed on a dodecahedral miniferritin scaffold. Additionally, to circumvent the blunting of vaccine efficacy by preformed anti-measles antibodies, we extensively modified the measles surface glycoproteins. Comprehensive in vivo mouse testing demonstrated potent induction of high titer nAb in measles-immune mice and confirmed the significant incremental contributions to overall potency afforded by prefusion stabilization, trimerization, and miniferritin-display of the SARS-CoV-2 spike glycoprotein, and vaccine resurfacing. In animals primed and boosted with a MeV vaccine encoding the ancestral SARS-CoV-2 spike, high titer nAb responses against ancestral virus strains were only weakly cross-reactive with the omicron variant. However, in primed animals that were boosted with a MeV vaccine encoding the omicron BA.1 spike, antibody titers to both ancestral and omicron strains were robustly elevated and the passive transfer of serum from these animals protected K18-ACE2 mice from infection and morbidity after exposure to BA.1 and WA1/2020 strains. Our results demonstrate that antigen engineering can enable the development of potent measles-based SARS-CoV-2 vaccine candidates.
Collapse
Affiliation(s)
- Miguel Á. Muñoz-Alía
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
- Vyriad Inc, Rochester, MN, USA
| | - Rebecca A. Nace
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Lianwen Zhang
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Prajakta Warang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ignacio Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephen J. Russell
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
- Vyriad Inc, Rochester, MN, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Imanis Life Sciences, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
8
|
Porter AK, Kleinschmidt SE, Andres KL, Reusch CN, Krisko RM, Taiwo OA, Olsen GW, Longnecker MP. Antibody response to COVID-19 vaccines among workers with a wide range of exposure to per- and polyfluoroalkyl substances. ENVIRONMENT INTERNATIONAL 2022; 169:107537. [PMID: 36183490 PMCID: PMC9489981 DOI: 10.1016/j.envint.2022.107537] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/25/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a broad class of synthetic chemicals; some are present in most humans in developed countries. Several studies have shown associations between certain PFAS, such as perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), and reduced antibody concentration after vaccination against diseases such as Tetanus. Recent studies have reported associations between COVID-19 occurrence and exposure to certain types of PFAS. However, studies of antibody concentration after COVID-19 vaccination in relation to PFAS serum concentrations have not been reported. We examined COVID-19 antibody responses to vaccines and PFAS serum concentrations among employees and retirees from two 3M facilities, one of which historically manufactured PFOS, PFOA, and perfluorohexane sulfonic acid (PFHxS). Participants completed enrollment and follow-up study visits in the Spring of 2021, when vaccines were widely available. In total 415 participants with 757 observations were included in repeated measures analyses. Log-transformed concentrations of anti-spike IgG and neutralizing antibodies were modeled in relation to concentration of PFAS at enrollment after adjusting for antigenic stimulus group (9 groups determined by COVID-19 history and number and type of vaccination) and other variables. The fully adjusted IgG concentration was 3.45 percent lower (95% CI -7.03, 0.26) per 14.5 ng/mL (interquartile range) increase in PFOS; results for neutralizing antibody and PFOS were similar. For PFOA, PFHxS, and perfluorononanoic acid (PFNA), the results were comparable to those for PFOS, though of smaller magnitude. In our study data, the fully adjusted coefficients relating concentration of vaccine-induced antibodies to COVID-19 and interquartile range difference in serum concentration of PFOS, PFOA, PFHxS, and PFNA were inverse but small with confidence intervals that included zero. Our analysis showed that the coefficient for the four PFAS examined in detail was considerably affected by adjustment for antigenic stimulus group.
Collapse
Affiliation(s)
- Anna K Porter
- Ramboll U.S. Consulting, 3214 Charles B. Root Wynd, Suite 130, Raleigh, NC 27612, United States.
| | | | - Kara L Andres
- 3M Company, Corporate Occupational Medicine, St. Paul, MN 55144, United States
| | - Courtney N Reusch
- 3M Company, Corporate Occupational Medicine, St. Paul, MN 55144, United States
| | - Ryan M Krisko
- 3M Company, Environment, Health, Safety and Product Stewardship, St. Paul, MN 55144, United States
| | - Oyebode A Taiwo
- 3M Company, Corporate Occupational Medicine, St. Paul, MN 55144, United States
| | - Geary W Olsen
- 3M Company, Corporate Occupational Medicine, St. Paul, MN 55144, United States
| | - Matthew P Longnecker
- Ramboll U.S. Consulting, 3214 Charles B. Root Wynd, Suite 130, Raleigh, NC 27612, United States
| |
Collapse
|
9
|
Frische A, Brooks PT, Gybel-Brask M, Sækmose SG, Jensen BA, Mikkelsen S, Bruun MT, Boding L, Strandh CP, Jørgensen CS, Krogfelt KA, Fomsgaard A, Lassauniere R. Optimization and evaluation of a live virus SARS-CoV-2 neutralization assay. PLoS One 2022; 17:e0272298. [PMID: 35901110 PMCID: PMC9333216 DOI: 10.1371/journal.pone.0272298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/15/2022] [Indexed: 12/23/2022] Open
Abstract
Virus neutralization assays provide a means to quantitate functional antibody responses that block virus infection. These assays are instrumental in defining vaccine and therapeutic antibody potency, immune evasion by viral variants, and post-infection immunity. Here we describe the development, optimization and evaluation of a live virus microneutralization assay specific for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this assay, SARS-CoV-2 clinical isolates are pre-incubated with serial diluted antibody and added to Vero E6 cells. Replicating virus is quantitated by enzyme-linked immunosorbent assay (ELISA) targeting the SARS-CoV-2 nucleocapsid protein and the standardized 50% virus inhibition titer calculated. We evaluated critical test parameters that include virus titration, assay linearity, number of cells, viral dose, incubation period post-inoculation, and normalization methods. Virus titration at 96 hours was determined optimal to account for different growth kinetics of clinical isolates. Nucleocapsid protein levels directly correlated with virus inoculum, with the strongest correlation at 24 hours post-inoculation. Variance was minimized by infecting a cell monolayer, rather than a cell suspension. Neutralization titers modestly decreased with increasing numbers of Vero E6 cells and virus amount. Application of two different normalization models effectively reduced the intermediate precision coefficient of variance to <16.5%. The SARS-CoV-2 microneutralization assay described and evaluated here is based on the influenza virus microneutralization assay described by WHO, and are proposed as a standard assay for comparing neutralization investigations.
Collapse
Affiliation(s)
- Anders Frische
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | | | - Mikkel Gybel-Brask
- Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
| | | | | | - Susan Mikkelsen
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Mie Topholm Bruun
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Lasse Boding
- Danish National Biobank, Statens Serum Institut, Copenhagen, Denmark
| | - Charlotta Polacek Strandh
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | | | - Karen Angeliki Krogfelt
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
- Department of Molecular and Medicinal Biology, Institute for Science and Environment, Roskilde University, Roskilde, Denmark
| | - Anders Fomsgaard
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
- Infectious Diseases Unit, Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Ria Lassauniere
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
10
|
Lu H, Xia M, Qin Z, Lu S, Guan R, Yang Y, Miao C, Chen T. The Built Environment Assessment of Residential Areas in Wuhan during the Coronavirus Disease (COVID-19) Outbreak. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:7814. [PMID: 35805475 PMCID: PMC9266129 DOI: 10.3390/ijerph19137814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023]
Abstract
The COVID-19 epidemic has emerged as one of the biggest challenges, and the world is focused on preventing and controlling COVID-19. Although there is still insufficient understanding of how environmental conditions may impact the COVID-19 pandemic, airborne transmission is regarded as an important environmental factor that influences the spread of COVID-19. The natural ventilation potential (NVP) is critical for airborne infection control in the micro-built environment, where infectious and susceptible people share air spaces. Taking Wuhan as the research area, we evaluated the NVP in residential areas to combat COVID-19 during the outbreak. We determined four fundamental residential area layouts (point layout, parallel layout, center-around layout, and mixed layout) based on the semantic similarity model for point of interest (POI) picking. Our analyses indicated that the center-around and point layout had a higher NVP, while the mixed and parallel layouts had a lower NVP in winter and spring. Further analysis showed that the proportion of the worst NVP has been rising, while the proportion of the poor NVP remains very high in Wuhan. This study suggested the need to efficiently improve the residential area layout in Wuhan for better urban ventilation to combat COVID-19 without losing other benefits.
Collapse
Affiliation(s)
- Heli Lu
- College of Geography and Environmental Science/Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng 475004, China; (H.L.); (M.X.); (Z.Q.); (R.G.); (Y.Y.); (C.M.); (T.C.)
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education/National Demonstration Center for Environment and Planning, Henan University, Kaifeng 475004, China
- Henan Key Laboratory of Earth System Observation and Modeling, Henan University, Kaifeng 475004, China
- Henan Dabieshan National Field Observation and Research Station of Forest Ecosystem, Henan University, Kaifeng 475004, China
| | - Menglin Xia
- College of Geography and Environmental Science/Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng 475004, China; (H.L.); (M.X.); (Z.Q.); (R.G.); (Y.Y.); (C.M.); (T.C.)
| | - Ziyuan Qin
- College of Geography and Environmental Science/Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng 475004, China; (H.L.); (M.X.); (Z.Q.); (R.G.); (Y.Y.); (C.M.); (T.C.)
| | - Siqi Lu
- Department of Geography, University of Connecticut, Storrs, CT 06269-4148, USA
| | - Ruimin Guan
- College of Geography and Environmental Science/Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng 475004, China; (H.L.); (M.X.); (Z.Q.); (R.G.); (Y.Y.); (C.M.); (T.C.)
| | - Yuna Yang
- College of Geography and Environmental Science/Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng 475004, China; (H.L.); (M.X.); (Z.Q.); (R.G.); (Y.Y.); (C.M.); (T.C.)
| | - Changhong Miao
- College of Geography and Environmental Science/Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng 475004, China; (H.L.); (M.X.); (Z.Q.); (R.G.); (Y.Y.); (C.M.); (T.C.)
| | - Taizheng Chen
- College of Geography and Environmental Science/Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng 475004, China; (H.L.); (M.X.); (Z.Q.); (R.G.); (Y.Y.); (C.M.); (T.C.)
| |
Collapse
|
11
|
Abstract
Preexisting immunity to Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) was nonexistent in humans, which coupled with high transmission rates of certain SARS-CoV-2 variants and limited vaccine uptake or availability, has collectively resulted in an ongoing global pandemic. The identification and establishment of one or multiple correlates of protection (CoP) against infectious pathogens is challenging, but beneficial from both the patient care and public health perspectives. Multiple studies have shown that neutralizing antibodies, whether generated following SARS-CoV-2 infection, vaccination, or a combination of both (i.e., hybrid immunity), as well as adaptive cellular immune responses, serve as CoPs for COVID-19. However, the diverse number and type of serologic assays, alongside the lack of cross-assay standardization and emergence of new SARS-CoV-2 variants with immune evasive characteristics, have collectively posed challenges to determining a robust CoP 'threshold' and for the routine utilization of these assays to document 'immunity,' as is commonly done for other vaccine preventable diseases. Here, we discuss what CoPs are, review our current understanding of infection-induced, vaccine-elicited and hybrid immunity to COVID-19 and summarize the current and potential future utility of SARS-CoV-2 serologic testing.
Collapse
Affiliation(s)
- Anisha Misra
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Elitza S. Theel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
12
|
Peng KW, Carey T, Lech P, Vandergaast R, Muñoz-Alía MÁ, Packiriswamy N, Gnanadurai C, Krotova K, Tesfay M, Ziegler C, Haselton M, Sevola K, Lathrum C, Reiter S, Narjari R, Balakrishnan B, Suksanpaisan L, Sakuma T, Recker J, Zhang L, Waniger S, Russell L, Petro CD, Kyratsous CA, Baum A, Janecek JL, Lee RM, Ramachandran S, Graham ML, Russell SJ. Boosting of SARS-CoV-2 immunity in nonhuman primates using an oral rhabdoviral vaccine. Vaccine 2022; 40:2342-2351. [PMID: 35282925 PMCID: PMC8743387 DOI: 10.1016/j.vaccine.2021.12.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 01/29/2023]
Abstract
An orally active vaccine capable of boosting SARS-CoV-2 immune responses in previously infected or vaccinated individuals would help efforts to achieve and sustain herd immunity. Unlike mRNA-loaded lipid nanoparticles and recombinant replication-defective adenoviruses, replicating vesicular stomatitis viruses with SARS-CoV-2 spike glycoproteins (VSV-SARS2) were poorly immunogenic after intramuscular administration in clinical trials. Here, by G protein trans-complementation, we generated VSV-SARS2(+G) virions with expanded target cell tropism. Compared to parental VSV-SARS2, G-supplemented viruses were orally active in virus-naive and vaccine-primed cynomolgus macaques, powerfully boosting SARS-CoV-2 neutralizing antibody titers. Clinical testing of this oral VSV-SARS2(+G) vaccine is planned.
Collapse
Affiliation(s)
- Kah-Whye Peng
- Vyriad Inc, Rochester MN 55901, USA; Imanis Life Sciences, Rochester MN 55901, USA; Department of Molecular Medicine, Mayo Clinic, MN 55905, USA
| | | | | | | | | | | | | | | | - Mulu Tesfay
- Imanis Life Sciences, Rochester MN 55901, USA
| | | | | | - Kara Sevola
- Imanis Life Sciences, Rochester MN 55901, USA
| | | | | | | | | | | | | | | | - Lianwen Zhang
- Department of Molecular Medicine, Mayo Clinic, MN 55905, USA
| | | | | | | | | | - Alina Baum
- Regeneron Pharmaceuticals Inc, Tarrytown, NY 10591, USA
| | | | | | | | | | - Stephen J Russell
- Vyriad Inc, Rochester MN 55901, USA; Imanis Life Sciences, Rochester MN 55901, USA; Department of Molecular Medicine, Mayo Clinic, MN 55905, USA.
| |
Collapse
|
13
|
Comparison of the Anti-SARS-CoV-2 Surrogate Neutralization Assays by TECOmedical and DiaPROPH-Med with Samples from Vaccinated and Infected Individuals. Viruses 2022; 14:v14020315. [PMID: 35215912 PMCID: PMC8877287 DOI: 10.3390/v14020315] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023] Open
Abstract
Anti-SARS-CoV-2-specific serological responses are a topic of ongoing evaluation studies. In the study presented here, the anti-SARS-CoV-2 surrogate neutralization assays by TECOmedical and DiaPROPH -Med were assessed in a head-to-head comparison with serum samples of individuals after vaccination as well as after previous infection with SARS-CoV-2. In case of discordant results, a cell culture-based neutralization assay was applied as a reference standard. The TECOmedical assay showed sensitivity and specificity of 100% and 61.3%, respectively, the DiaPROPH-Med assay 95.0% and 48.4%, respectively. As a side finding of the study, differences in the likelihood of expressing neutralizing antibodies could be shown for different exposition types. So, 60 of 81 (74.07%) of the samples with only one vaccination showed an expression of neutralizing antibodies in contrast to 85.71% (60 of 70 samples) of the samples with two vaccinations and 100% (40 of 40) of the samples from previously infected individuals. In conclusion, the both assays showed results similar to previous assessments. While the measured diagnostic accuracy of both assays requires further technical improvement of this diagnostic approach, as the calculated specificity values of 61.3% and 48.4%, respectively, appear acceptable for diagnostic use only in populations with a high percentage of positive subjects, but not at expectedly low positivity rates.
Collapse
|
14
|
Kolesov DE, Sinegubova MV, Dayanova LK, Dolzhikova IV, Vorobiev II, Orlova NA. Fast and Accurate Surrogate Virus Neutralization Test Based on Antibody-Mediated Blocking of the Interaction of ACE2 and SARS-CoV-2 Spike Protein RBD. Diagnostics (Basel) 2022; 12:diagnostics12020393. [PMID: 35204485 PMCID: PMC8870830 DOI: 10.3390/diagnostics12020393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 12/02/2022] Open
Abstract
The humoral response to the SARS-CoV-2 S protein determines the development of protective immunity against this infection. The standard neutralizing antibodies detection method is a live virus neutralization test. It can be replaced with an ELISA-based surrogate virus neutralization test (sVNT), measuring the ability of serum antibodies to inhibit complex formation between the receptor-binding domain (RBD) of the S protein and the cellular ACE2 receptor. There are conflicting research data on the sVNT methodology and the reliability of its results. We show that the performance of sVNT dramatically improves when the intact RBD from the Wuhan-Hu-1 virus variant is used as the plate coating reagent, and the HRP-conjugated soluble ACE2 is used as the detection reagent. This design omits the pre-incubation step in separate tubes or separate microplate and allows the simple quantification of the results using the linear regression, utilizing only 3–4 test sample dilutions. When this sVNT was performed for 73 convalescent plasma samples, its results showed a very strong correlation with VNT (Spearman’s Rho 0.83). For the RBD, bearing three amino acid substitutions and corresponding to the SARS-CoV-2 beta variant, the inhibitory strength was diminished for 18 out of 20 randomly chosen serum samples, and the magnitude of this decrease was not similar to the change in overall anti-RBD IgG level. The sVNT assay design with the ACE2-HRP is preferable over the assay with the RBD-HRP reagent and is suitable for mass screening of neutralizing antibodies titers.
Collapse
Affiliation(s)
- Denis E. Kolesov
- Laboratory of Mammalian Cell Bioengineering, Skryabin Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 117312 Moscow, Russia; (D.E.K.); (M.V.S.); (L.K.D.); (I.I.V.)
| | - Maria V. Sinegubova
- Laboratory of Mammalian Cell Bioengineering, Skryabin Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 117312 Moscow, Russia; (D.E.K.); (M.V.S.); (L.K.D.); (I.I.V.)
| | - Lutsia K. Dayanova
- Laboratory of Mammalian Cell Bioengineering, Skryabin Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 117312 Moscow, Russia; (D.E.K.); (M.V.S.); (L.K.D.); (I.I.V.)
- Laboratory of Glycoproteins Biotechnology, Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Inna V. Dolzhikova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098 Moscow, Russia;
| | - Ivan I. Vorobiev
- Laboratory of Mammalian Cell Bioengineering, Skryabin Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 117312 Moscow, Russia; (D.E.K.); (M.V.S.); (L.K.D.); (I.I.V.)
- Laboratory of Glycoproteins Biotechnology, Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Nadezhda A. Orlova
- Laboratory of Mammalian Cell Bioengineering, Skryabin Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 117312 Moscow, Russia; (D.E.K.); (M.V.S.); (L.K.D.); (I.I.V.)
- Correspondence:
| |
Collapse
|
15
|
Immune Responses against SARS-CoV-2-Questions and Experiences. Biomedicines 2021; 9:biomedicines9101342. [PMID: 34680460 PMCID: PMC8533170 DOI: 10.3390/biomedicines9101342] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 02/07/2023] Open
Abstract
Understanding immune reactivity against SARS-CoV-2 is essential for coping with the COVID-19 pandemic. Herein, we discuss experiences and open questions about the complex immune responses to SARS-CoV-2. Some people react excellently without experiencing any clinical symptoms, they do not get sick, and they do not pass the virus on to anyone else ("sterilizing" immunity). Others produce antibodies and do not get COVID-19 but transmit the virus to others ("protective" immunity). Some people get sick but recover. A varying percentage develops respiratory failure, systemic symptoms, clotting disorders, cytokine storms, or multi-organ failure; they subsequently decease. Some develop long COVID, a new pathologic entity similar to fatigue syndrome or autoimmunity. In reality, COVID-19 is considered more of a systemic immune-vascular disease than a pulmonic disease, involving many tissues and the central nervous system. To fully comprehend the complex clinical manifestations, a profound understanding of the immune responses to SARS-CoV-2 is a good way to improve clinical management of COVID-19. Although neutralizing antibodies are an established approach to recognize an immune status, cellular immunity plays at least an equivalent or an even more important role. However, reliable methods to estimate the SARS-CoV-2-specific T cell capacity are not available for clinical routines. This deficit is important because an unknown percentage of people may exist with good memory T cell responsibility but a low number of or completely lacking peripheral antibodies against SARS-CoV-2. Apart from natural immune responses, vaccination against SARS-CoV-2 turned out to be very effective and much safer than naturally acquired immunity. Nevertheless, besides unwanted side effects of the currently available vector and mRNA preparations, concerns remain whether these vaccines will be strong enough to defeat the pandemic. Altogether, herein we discuss important questions, and try to give answers based on the current knowledge and preliminary data from our laboratories.
Collapse
|
16
|
Abstract
The coronavirus disease 2019 (COVID‐19) pandemic has triggered a global health emergency and brought disaster to humans. Tremendous efforts have been made to control the pandemic, among which neutralizing antibodies (NAbs) are of specific interest to researchers. Neutralizing antibodies are generated within weeks after infection or immunization and can protect cells from virus intrusion and confer protective immunity to cells. Thus, production of NAbs is considered as a main goal for severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) vaccines and NAbs may be used for patient treatment in the form of monoclonal antibodies. Neutralization assays are capable of quantitatively detecting NAbs against SARS‐CoV‐2, allowing to explore the relationship between the level of NAbs and the severity of the disease, and may predict the possibility of re‐infection in COVID‐19 patients. They can also be used to test the effects of monoclonal antibodies, convalescent plasma and vaccines. At present, wild‐type virus neutralization assay remains the gold standard for measuring Nabs, while pseudovirus neutralization assays, Surrogate virus neutralization test (sVNT) and high‐throughput versions of neutralization assays are popular alternatives with their own advantages and disadvantages. In this review article, we summarize the characteristics and recent progress of SARS‐CoV‐2 neutralization assays. Special attention is given to the current limitations of various neutralization assays so as to promote new possible strategies with NAbs by which rapid SARS‐CoV‐2 serological diagnosis and antiviral screening in the future will be achieved.
Collapse
Affiliation(s)
- Yuying Lu
- Department of Epidemiology School of Public Health Sun Yat‐Sen University Guangzhou China
| | - Jin Wang
- Department of Epidemiology School of Public Health Sun Yat‐Sen University Guangzhou China
| | - Qianlin Li
- Department of Epidemiology School of Public Health Sun Yat‐Sen University Guangzhou China
| | - Huan Hu
- Department of Epidemiology School of Public Health Sun Yat‐Sen University Guangzhou China
| | - Jiahai Lu
- Department of Epidemiology School of Public Health Sun Yat‐Sen University Guangzhou China
| | - Zeliang Chen
- Department of Epidemiology School of Public Health Sun Yat‐Sen University Guangzhou China
| |
Collapse
|