1
|
Midlej V, Tenaglia AH, Luján HD, de Souza W. Tunneling Nanotube-like Structures in Giardia duodenalis. Cells 2024; 13:1538. [PMID: 39329722 PMCID: PMC11430593 DOI: 10.3390/cells13181538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Giardia doudenalis (lamblia, intestinalis) is a protozoan parasite that inhabits the lumen of the upper small intestine of vertebrates, causing chronic abdominal pains and severe diarrhea, symptoms of giardiasis, a persistent and recurrent infection. This characteristic is mainly due to the presence of membrane variant-specific surface proteins (VSPs) that give this parasite the ability to successively infect the host through antigenic variation. Using high-resolution scanning microscopy (HR-SM), we observed the presence, formation, and extension of tunneling-nanotube-like surface structures in Giardia, especially following parasite challenges with VSP antibodies. They were seen all over the parasite surface, both in vitro and in vivo, showing that G. duodenalis nanotube formation occurs in complex environments such as the gut. In addition, we also observed that some of these nanotubes displayed a periodic strangulation that produces 100 nm vesicles that seemed to be released in a process similar to that previously observed in Trypanosoma brucei. The presence of nanotube-like structures in G. duodenalis highlights yet another strategy of cellular communication utilized by these parasites, whether between themselves or with the host cell.
Collapse
Affiliation(s)
- Victor Midlej
- Structural Biology Laboratory, Oswaldo Cruz Institution, Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Albano H. Tenaglia
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Universidad Nacional de Córdoba, Córdoba 5000, Argentina
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
- Facultad de Ciencias de la Salud, Universidad Católica de Córdoba (UCC), Córdoba 5004, Argentina
| | - Hugo D. Luján
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| |
Collapse
|
2
|
Lorenzo-Benito S, Rivera-Rivas LA, Sánchez-Ayala L, Ortega-López J, Montes-Flores O, Talamás-Lara D, Arroyo R. Omics Analyses of Trichomonas vaginalis Actin and Tubulin and Their Participation in Intercellular Interactions and Cytokinesis. Genes (Basel) 2022; 13:genes13061067. [PMID: 35741829 PMCID: PMC9222396 DOI: 10.3390/genes13061067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
Actin and tubulin proteins from Trichomonas vaginalis are crucial for morphogenesis and mitosis. This parasite has 10 and 11 genes coding bonafide actin and tubulin proteins, respectively. Hence, the goal of this work was to analyze these actin and tubulin genes, their expression at the mRNA and protein levels, and their parasite localization in intercellular interaction and cytokinesis. Representative bonafide actin (tvact1) and tubulin (tvtubα1) genes were cloned into and expressed in Escherichia coli. The recombinant proteins TvACT1r and TvTUBα1r were affinity purified and used as antigens to produce polyclonal antibodies. These antibodies were used in 1DE and 2DE WB and indirect immunofluorescence assays (IFA). By IFA, actin was detected as a ring on the periphery of ameboid, ovoid, and cold-induced cyst-like parasites, on pseudopods of amoeboid parasites, and in cytoplasmic extensions (filopodia) in cell–cell interactions. Tubulin was detected in the axostyle, flagellum, undulating membrane, and paradesmose during mitosis. Paradesmose was observed by IFA mainly during cytokinesis. By scanning electron microscopy, a tubulin-containing nanotubular structure similar to the tunneling nanotubes (TNTs) was also detected in the last stage of cytokinesis. In conclusion, actin and tubulin are multigene families differentially expressed that play important roles in intercellular interactions and cytokinesis.
Collapse
Affiliation(s)
- Sebastián Lorenzo-Benito
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN #2508, Col. San Pedro Zacatenco, Alcaldía Gustavo A. Madero, Mexico City CP 07360, Mexico; (S.L.-B.); (L.A.R.-R.); (L.S.-A.); (D.T.-L.)
| | - Luis Alberto Rivera-Rivas
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN #2508, Col. San Pedro Zacatenco, Alcaldía Gustavo A. Madero, Mexico City CP 07360, Mexico; (S.L.-B.); (L.A.R.-R.); (L.S.-A.); (D.T.-L.)
| | - Lizbeth Sánchez-Ayala
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN #2508, Col. San Pedro Zacatenco, Alcaldía Gustavo A. Madero, Mexico City CP 07360, Mexico; (S.L.-B.); (L.A.R.-R.); (L.S.-A.); (D.T.-L.)
| | - Jaime Ortega-López
- Departamento de Biotecnología y Bioingeniería, CINVESTAV-IPN. Av. IPN #2508, Col. San Pedro Zacatenco, Alcaldía Gustavo A. Madero, Mexico City CP 07360, Mexico; (J.O.-L.); (O.M.-F.)
| | - Octavio Montes-Flores
- Departamento de Biotecnología y Bioingeniería, CINVESTAV-IPN. Av. IPN #2508, Col. San Pedro Zacatenco, Alcaldía Gustavo A. Madero, Mexico City CP 07360, Mexico; (J.O.-L.); (O.M.-F.)
| | - Daniel Talamás-Lara
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN #2508, Col. San Pedro Zacatenco, Alcaldía Gustavo A. Madero, Mexico City CP 07360, Mexico; (S.L.-B.); (L.A.R.-R.); (L.S.-A.); (D.T.-L.)
| | - Rossana Arroyo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN #2508, Col. San Pedro Zacatenco, Alcaldía Gustavo A. Madero, Mexico City CP 07360, Mexico; (S.L.-B.); (L.A.R.-R.); (L.S.-A.); (D.T.-L.)
- Correspondence: ; Tel.: +52-55-5747-3342
| |
Collapse
|
3
|
Hardin WR, Alas GCM, Taparia N, Thomas EB, Steele-Ogus MC, Hvorecny KL, Halpern AR, Tůmová P, Kollman JM, Vaughan JC, Sniadecki NJ, Paredez AR. The Giardia ventrolateral flange is a lamellar membrane protrusion that supports attachment. PLoS Pathog 2022; 18:e1010496. [PMID: 35482847 PMCID: PMC9089883 DOI: 10.1371/journal.ppat.1010496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/10/2022] [Accepted: 04/04/2022] [Indexed: 12/01/2022] Open
Abstract
Attachment to the intestinal epithelium is critical to the lifestyle of the ubiquitous parasite Giardia lamblia. The ventrolateral flange is a sheet-like membrane protrusion at the interface between parasites and attached surfaces. This structure has been implicated in attachment, but its role has been poorly defined. Here, we identified a novel actin associated protein with putative WH2-like actin binding domains we named Flangin. Flangin complexes with Giardia actin (GlActin) and is enriched in the ventrolateral flange making it a valuable marker for studying the flanges' role in Giardia biology. Live imaging revealed that the flange grows to around 1 μm in width after cytokinesis, then remains uniform in size during interphase, grows in mitosis, and is resorbed during cytokinesis. A flangin truncation mutant stabilizes the flange and blocks cytokinesis, indicating that flange disassembly is necessary for rapid myosin-independent cytokinesis in Giardia. Rho family GTPases are important regulators of membrane protrusions and GlRac, the sole Rho family GTPase in Giardia, was localized to the flange. Knockdown of Flangin, GlActin, and GlRac result in flange formation defects. This indicates a conserved role for GlRac and GlActin in forming membrane protrusions, despite the absence of canonical actin binding proteins that link Rho GTPase signaling to lamellipodia formation. Flangin-depleted parasites had reduced surface contact and when challenged with fluid shear force in flow chambers they had a reduced ability to remain attached, confirming a role for the flange in attachment. This secondary attachment mechanism complements the microtubule based adhesive ventral disc, a feature that may be particularly important during mitosis when the parental ventral disc disassembles in preparation for cytokinesis. This work supports the emerging view that Giardia's unconventional actin cytoskeleton has an important role in supporting parasite attachment.
Collapse
Affiliation(s)
- William R. Hardin
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Germain C. M. Alas
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Nikita Taparia
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
| | - Elizabeth B. Thomas
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Melissa C. Steele-Ogus
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Kelli L. Hvorecny
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Aaron R. Halpern
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Pavla Tůmová
- Institute of Immunology and Microbiology, 1 Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Justin M. Kollman
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Joshua C. Vaughan
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, United States of America
| | - Nathan J. Sniadecki
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
- Bioengineering, University of Washington, Seattle, Washington, United States of America
- Lab Medicine & Pathology, University of Washington, Seattle, Washington, United States of America
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington, United States of America
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Alexander R. Paredez
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
4
|
Steele-Ogus MC, Johnson RS, MacCoss MJ, Paredez AR. Identification of Actin Filament-Associated Proteins in Giardia lamblia. Microbiol Spectr 2021; 9:e0055821. [PMID: 34287056 PMCID: PMC8552679 DOI: 10.1128/spectrum.00558-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 06/17/2021] [Indexed: 11/20/2022] Open
Abstract
The deep-branching protozoan parasite Giardia lamblia is the causative agent of the intestinal disease giardiasis. Consistent with its proposed evolutionary position, many pathways are minimalistic or divergent, including its actin cytoskeleton. Giardia is the only eukaryote known to lack all canonical actin-binding proteins. Previously, our lab identified a number of noncanonical Giardia lamblia actin (GlActin) interactors; however, these proteins appeared to interact only with monomeric or globular actin (G-actin) rather than with filamentous actin (F-actin). To identify F-actin interactors, we used a chemical cross-linker to preserve native interactions followed by an anti-GlActin antibody, protein A affinity chromatography, and liquid chromatography coupled to mass spectrometry. We found 46 putative actin interactors enriched under the conditions favoring F-actin. Data are available via ProteomeXchange with identifier PXD026067. None of the proteins identified contain known actin-interacting motifs, and many lacked conserved domains. Each potential interactor was then tagged with the fluorescent protein mNeonGreen and visualized in live cells. We categorized the proteins based on their primary localization; localizations included ventral disc, marginal plate, nuclei, flagella, plasma membrane, and internal membranes. One protein from each of the six categories was colocalized with GlActin using immunofluorescence microscopy. We also co-immunoprecipitated one protein from each category and confirmed three of the six potential interactions. Most of the localization patterns are consistent with previously demonstrated GlActin functions, but the ventral disc represents a new category of actin interactor localization. These results suggest a role for GlActin in ventral disc function, which has previously been controversial. IMPORTANCE Giardia lamblia is an intestinal parasite that colonizes the small intestine and causes diarrhea, which can lead to dehydration and malnutrition. Giardia actin (GlActin) has a conserved role in Giardia cells, despite being a highly divergent protein with none of the conserved regulators found in model organisms. Here, we identify and localize 46 interactors of polymerized actin. These putative interactors localize to a number of places in the cell, underlining GlActin's importance in multiple cellular processes. Surprisingly, eight of these proteins localize to the ventral disc, Giardia's host attachment organelle. Since host attachment is required for infection, proteins involved in this process are an appealing target for new drugs. While treatments for Giardia exist, drug resistance is becoming more common, resulting in a need for new treatments. Giardia and human systems are highly dissimilar, thus drugs specifically tailored to Giardia proteins would be less likely to have side effects.
Collapse
Affiliation(s)
| | - Richard S. Johnson
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
5
|
Abstract
Giardia duodenalis captured the attention of Leeuwenhoek in 1681 while he was examining his own diarrheal stool, but, ironically, it did not really gain attention as a human pathogen until the 1960s, when outbreaks were reported. Key technological advances, including in vitro cultivation, genomic and proteomic databases, and advances in microscopic and molecular approaches, have led to an understanding that this is a eukaryotic organism with a reduced genome rather than a truly premitochondriate eukaryote. This has included the discovery of mitosomes (vestiges of mitochondria), a transport system with many of the features of the Golgi apparatus, and even evidence for a sexual or parasexual cycle. Cell biology approaches have led to a better understanding of how Giardia survives with two nuclei and how it goes through its life cycle as a noninvasive organism in the hostile environment of the lumen of the host intestine. Studies of its immunology and pathogenesis have moved past the general understanding of the importance of the antibody response in controlling infection to determining the key role of the Th17 response. This work has led to understanding of the requirement for a balanced host immune response that avoids the extremes of an excessive response with collateral damage or one that is unable to clear the organism. This understanding is especially important in view of the remarkable ranges of early manifestations, which range from asymptomatic to persistent diarrhea and weight loss, and longer-term sequelae that include growth stunting in children who had no obvious symptoms and a high frequency of postinfectious irritable bowel syndrome (IBS).
Collapse
|
6
|
Filić V, Mijanović L, Putar D, Talajić A, Ćetković H, Weber I. Regulation of the Actin Cytoskeleton via Rho GTPase Signalling in Dictyostelium and Mammalian Cells: A Parallel Slalom. Cells 2021; 10:1592. [PMID: 34202767 PMCID: PMC8305917 DOI: 10.3390/cells10071592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 01/15/2023] Open
Abstract
Both Dictyostelium amoebae and mammalian cells are endowed with an elaborate actin cytoskeleton that enables them to perform a multitude of tasks essential for survival. Although these organisms diverged more than a billion years ago, their cells share the capability of chemotactic migration, large-scale endocytosis, binary division effected by actomyosin contraction, and various types of adhesions to other cells and to the extracellular environment. The composition and dynamics of the transient actin-based structures that are engaged in these processes are also astonishingly similar in these evolutionary distant organisms. The question arises whether this remarkable resemblance in the cellular motility hardware is accompanied by a similar correspondence in matching software, the signalling networks that govern the assembly of the actin cytoskeleton. Small GTPases from the Rho family play pivotal roles in the control of the actin cytoskeleton dynamics. Indicatively, Dictyostelium matches mammals in the number of these proteins. We give an overview of the Rho signalling pathways that regulate the actin dynamics in Dictyostelium and compare them with similar signalling networks in mammals. We also provide a phylogeny of Rho GTPases in Amoebozoa, which shows a variability of the Rho inventories across different clades found also in Metazoa.
Collapse
Affiliation(s)
- Vedrana Filić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (L.M.); (D.P.); (A.T.); (H.Ć.)
| | | | | | | | | | - Igor Weber
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (L.M.); (D.P.); (A.T.); (H.Ć.)
| |
Collapse
|
7
|
Thomas EB, Sutanto R, Johnson RS, Shih HW, Alas GCM, Krtková J, MacCoss MJ, Paredez AR. Staging Encystation Progression in Giardia lamblia Using Encystation-Specific Vesicle Morphology and Associating Molecular Markers. Front Cell Dev Biol 2021; 9:662945. [PMID: 33987184 PMCID: PMC8111296 DOI: 10.3389/fcell.2021.662945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/15/2021] [Indexed: 01/24/2023] Open
Abstract
Differentiation into environmentally resistant cysts is required for transmission of the ubiquitous intestinal parasite Giardia lamblia. Encystation in Giardia requires the production, processing and transport of Cyst Wall Proteins (CWPs) in developmentally induced, Golgi-like, Encystation Specific Vesicles (ESVs). Progress through this trafficking pathway can be followed by tracking CWP localization over time. However, there is no recognized system to distinguish the advancing stages of this process which can complete at variable rates depending on how encystation is induced. Here, we propose a staging system for encysting Giardia based on the morphology of CWP1-stained ESVs. We demonstrate the molecular distinctiveness of maturing ESVs at these stages by following GlRab GTPases through encystation. Previously, we established that Giardia’s sole Rho family GTPase, GlRac, associates with ESVs and has a role in regulating their maturation and the secretion of their cargo. As a proof of principle, we delineate the relationship between GlRac and ESV stages. Through proteomic studies, we identify putative interactors of GlRac that could be used as additional ESV stage markers. This staging system provides a common descriptor of ESV maturation regardless of the source of encysting cells. Furthermore, the identified set of molecular markers for ESV stages will be a powerful tool for characterizing trafficking mutants that impair ESV maturation and morphology.
Collapse
Affiliation(s)
- Elizabeth B Thomas
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Renaldo Sutanto
- Department of Biology, University of Washington, Seattle, WA, United States.,Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Richard S Johnson
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | - Han-Wei Shih
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Germain C M Alas
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Jana Krtková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | | |
Collapse
|
8
|
Differential Subcellular Distribution and Translocation of Seven 14-3-3 Isoforms in Response to EGF and During the Cell Cycle. Int J Mol Sci 2020; 21:ijms21010318. [PMID: 31906564 PMCID: PMC6981507 DOI: 10.3390/ijms21010318] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/05/2019] [Accepted: 12/28/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple isoforms of 14-3-3 proteins exist in different organisms. In mammalian cells, 14-3-3 protein has seven isoforms (α/β, ε, η, γ, σ, θ/τ, and δ/ζ), with α and δ representing the phosphorylated versions of β and ζ, respectively. While the existence of multiple isoforms may represent one more level of regulation in 14-3-3 signaling, our knowledge regarding the isoform-specific functions of 14-3-3 proteins is very limited. Determination of the subcellular localization of the different 14-3-3 isoforms could give us important clues of their specific functions. In this study, by using indirect immunofluorescence, subcellular fractionation, and immunoblotting, we studied the subcellular localization of the total 14-3-3 protein and each of the seven 14-3-3 isoforms; their redistribution throughout the cell cycle; and their translocation in response to EGF in Cos-7 cells. We showed that 14-3-3 proteins are broadly distributed throughout the cell and associated with many subcellular structures/organelles, including the plasma membrane (PM), mitochondria, ER, nucleus, microtubules, and actin fibers. This broad distribution underlines the multiple functions identified for 14-3-3 proteins. The different isoforms of 14-3-3 proteins have distinctive subcellular localizations, which suggest their distinctive cellular functions. Most notably, 14-3-3ƞ is almost exclusively localized to the mitochondria, 14-3-3γ is only localized to the nucleus, and 14-3-3σ strongly and specifically associated with the centrosome during mitosis. We also examined the subcellular localization of the seven 14-3-3 isoforms in other cells, including HEK-293, MDA-MB-231, and MCF-7 cells, which largely confirmed our findings with Cos-7 cells.
Collapse
|
9
|
Velle KB, Fritz-Laylin LK. Diversity and evolution of actin-dependent phenotypes. Curr Opin Genet Dev 2019; 58-59:40-48. [DOI: 10.1016/j.gde.2019.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/19/2019] [Accepted: 07/20/2019] [Indexed: 12/20/2022]
|
10
|
Lalle M, Fiorillo A. The protein 14-3-3: A functionally versatile molecule in Giardia duodenalis. ADVANCES IN PARASITOLOGY 2019; 106:51-103. [PMID: 31630760 DOI: 10.1016/bs.apar.2019.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Giardia duodenalis is a cosmopolitan zoonotic protozoan parasite causing giardiasis, one of the most common diarrhoeal diseases in human and animals. Beyond its public health relevance, Giardia represents a valuable and fascinating model microorganism. The deep-branching phylogenetic position of Giardia, its simple life cycle and its minimalistic genomic and cellular organization provide a unique opportunity to define basal and "ancestral" eukaryotic functions. The eukaryotic 14-3-3 protein family represents a distinct example of phosphoserine/phosphothreonine-binding proteins. The extended network of protein-protein interactions established by 14-3-3 proteins place them at the crossroad of multiple signalling pathways that regulate physiological and pathological cellular processes. Despite the remarkable insight on 14-3-3 protein in different organisms, from yeast to humans, so far little attention was given to the study of this protein in protozoan parasites. However, in the last years, research efforts have provided evidences on unique properties of the single 14-3-3 protein of Giardia and on its association in key aspects of Giardia life cycle. In the first part of this chapter, a general overview of the features commonly shared among 14-3-3 proteins in different organisms (i.e. structure, target recognition, mode of action and regulatory mechanisms) is included. The second part focus on the current knowledge on the biochemistry and biology of the Giardia 14-3-3 protein and on the possibility to use this protein as target to propose new strategies for developing innovative antigiardial therapy.
Collapse
Affiliation(s)
- Marco Lalle
- Department of Infectious Diseases, European Union Reference Laboratory for Parasites, Istituto Superiore di Sanità, Rome, Italy.
| | - Annarita Fiorillo
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
11
|
Junker AD, Soh AWJ, O'Toole ET, Meehl JB, Guha M, Winey M, Honts JE, Gaertig J, Pearson CG. Microtubule glycylation promotes attachment of basal bodies to the cell cortex. J Cell Sci 2019; 132:jcs.233726. [PMID: 31243050 DOI: 10.1242/jcs.233726] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/18/2019] [Indexed: 12/13/2022] Open
Abstract
Motile cilia generate directed hydrodynamic flow that is important for the motility of cells and extracellular fluids. To optimize directed hydrodynamic flow, motile cilia are organized and oriented into a polarized array. Basal bodies (BBs) nucleate and position motile cilia at the cell cortex. Cytoplasmic BB-associated microtubules are conserved structures that extend from BBs. By using the ciliate, Tetrahymena thermophila, combined with EM-tomography and light microscopy, we show that BB-appendage microtubules assemble coincidently with new BB assembly and that they are attached to the cell cortex. These BB-appendage microtubules are specifically marked by post translational modifications of tubulin, including glycylation. Mutations that prevent glycylation shorten BB-appendage microtubules and disrupt BB positioning and cortical attachment. Consistent with the attachment of BB-appendage microtubules to the cell cortex to position BBs, mutations that disrupt the cellular cortical cytoskeleton disrupt the cortical attachment and positioning of BBs. In summary, BB-appendage microtubules promote the organization of ciliary arrays through attachment to the cell cortex.
Collapse
Affiliation(s)
- Anthony D Junker
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Adam W J Soh
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Eileen T O'Toole
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80302, USA
| | - Janet B Meehl
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80302, USA
| | - Mayukh Guha
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Mark Winey
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Jerry E Honts
- Department of Biology, Drake University, 2507 University Avenue, Des Moines, IA 50311, USA
| | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Chad G Pearson
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
12
|
Agarwal S, Anand G, Sharma S, Parimita Rath P, Gourinath S, Bhattacharya A. EhP3, a homolog of 14-3-3 family of protein participates in actin reorganization and phagocytosis in Entamoeba histolytica. PLoS Pathog 2019; 15:e1007789. [PMID: 31095644 PMCID: PMC6541287 DOI: 10.1371/journal.ppat.1007789] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 05/29/2019] [Accepted: 04/24/2019] [Indexed: 11/19/2022] Open
Abstract
The highly conserved proteins of the 14-3-3 family are universal adaptors known to regulate an enormous range of cellular processes in eukaryotes. However, their biological functions remain largely uncharacterized in pathogenic protists comprising of several 14-3-3 protein isoforms. In this study, we report the role of 14-3-3 in coordinating cytoskeletal dynamics during phagocytosis in a professional phagocytic protist Entamoeba histolytica, the etiological agent of human amebiasis. There are three isoforms of 14-3-3 protein in amoeba and here we have investigated Eh14-3-3 Protein 3 (EhP3). Live and fixed cell imaging studies revealed the presence of this protein throughout the parasite phagocytosis process, with high rate of accumulation at the phagocytic cups and closed phagosomes. Conditional suppression of EhP3 expression caused significant defects in phagocytosis accompanied by extensive diminution of F-actin at the site of cup formation. Downregulated cells also exhibited defective recruitment of an F-actin stabilizing protein, EhCoactosin at the phagocytic cups. In addition, mass spectrometry based analysis further revealed a large group of EhP3-associated proteins, many of these proteins are known to regulate cytoskeletal architecture in E histolytica. The dynamics of these proteins may also be controlled by EhP3. Taken together, our findings strongly suggest that EhP3 is a novel and a key regulatory element of actin dynamics and phagocytosis in E. histolytica. Phagocytosis of host cells is central to pathogenesis of protist parasite Entamoeba histolytica, the etiological agent of human amebiasis. It is a complex and multistep process that requires dynamic remodelling of the actin cytoskeleton by a large number of scaffolding, signaling and actin-binding proteins (ABPs). Although several parasite ligands such as EhC2PK, EhCaBP1, EhCaBP3, EhAK1, Arp2/3 complex and EhCoactosin that participate in the phagocytic machinery have been identified, the mechanistic insights to their regulation process remain largely elusive. We have in this study identified and characterized the important role of scaffolding protein EhP3 in modulating cytoskeletal dynamics and regulating phagocytosis in E. histolytica. Expression knockdown, imaging and interaction studies suggest that EhP3 function as an adaptor molecule that controls the localization of an F-actin stabilizing protein EhCoactosin and thus the dynamics of F-actin rearrangement during phagocytosis. EhP3 also interact with other actin dynamics regulating proteins that may in coordination regulate cytoskeletal dynamics and thereby phagocytosis in Entamoeba.
Collapse
Affiliation(s)
- Shalini Agarwal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- * E-mail:
| | - Gaurav Anand
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Shalini Sharma
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | | - Alok Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- Ashoka University, P.O. Rai, Sonepat, Haryana, India
| |
Collapse
|