1
|
Lu Q, Yang H, Peng Y, Dong Z, Nie P, Wang G, Luo S, Min X, Huang J, Huang M. Intranasal trivalent candidate vaccine induces strong mucosal and systemic immune responses against Neisseria gonorrhoeae. Front Immunol 2024; 15:1473193. [PMID: 39660148 PMCID: PMC11628552 DOI: 10.3389/fimmu.2024.1473193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
The spread of multidrug-resistant strains of Neisseria gonorrhoeae poses a great challenge in gonorrhea treatment. At present, vaccination is the best strategy for gonorrhea control. However, given the extensive antigenic variability of N. gonorrhoeae, the effectiveness of monovalent vaccines is limited. Therefore, increasing the coverage of vaccination by using a multivalent vaccine may be more effective. In this study, a trivalent vaccine comprising three conserved antigens, namely, the App passenger domain, MetQ, and neisserial heparin binding antigen (NHBA), was constructed, and its protective effect was evaluated. Trivalent vaccines induced stronger circulating IgG and IgA antibody responses in mice than monovalent vaccines, in addition to eliciting Th1, Th2, and Th17 immune responses. Antiserum generated by the trivalent vaccine killed N. gonorrhoeae strains (homologous FA1090 and heterologous FA19), exhibiting superior bactericidal capacity than NHBA and MetQ vaccine antisera against N. gonorrhoeae, but similar capacities to those of the App vaccine antiserum. In addition, the trivalent vaccine antiserum achieved greater inhibition of N. gonorrhoeae FA1090 strain adherence to ME-180 cells compared to that elicited by the monovalent vaccine antiserum. In a mouse vaginal infection model, the trivalent vaccine was modestly effective (9.2% decrease in mean area under curve compared to the pCold-TF control mice), which was somewhat better than the protection seen with the monovalent vaccines. Our findings suggest that recombinant multivalent vaccines targeting N. gonorrhoeae exhibit advantages in protective efficacy compared to monovalent vaccines, and future research on multivalent vaccines should focus on optimizing different antigen combinations.
Collapse
Affiliation(s)
- Qin Lu
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Hui Yang
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yanfeng Peng
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Zeling Dong
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Pujing Nie
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Guangli Wang
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Shilu Luo
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xun Min
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Jian Huang
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Meirong Huang
- Department of Blood Transfusion, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
2
|
Colón Pérez J, Villarino Fernández RA, Domínguez Lago A, Treviño Castellano MM, Pérez del Molino Bernal ML, Sánchez Poza S, Torres-Sangiao E. Addressing Sexually Transmitted Infections Due to Neisseria gonorrhoeae in the Present and Future. Microorganisms 2024; 12:884. [PMID: 38792714 PMCID: PMC11124187 DOI: 10.3390/microorganisms12050884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
It was in the 1800s when the first public publications about the infection and treatment of gonorrhoea were released. However, the first prevention programmes were only published a hundred years later. In the 1940s, the concept of vaccination was introduced into clinical prevention programmes to address early sulphonamide resistance. Since then, tons of publications on Neisseria gonorrhoeae are undisputed, around 30,000 publications today. Currently, the situation seems to be just as it was in the last century, nothing has changed or improved. So, what are we doing wrong? And more importantly, what might we do? The review presented here aims to review the current situation regarding the resistance mechanisms, prevention programmes, treatments, and vaccines, with the challenge of better understanding this special pathogen. The authors have reviewed the last five years of advancements, knowledge, and perspectives for addressing the Neisseria gonorrhoeae issue, focusing on new therapeutic alternatives.
Collapse
Affiliation(s)
- Julia Colón Pérez
- Servicio de Microbiología y Parasitología Clínica, Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (J.C.P.); (A.D.L.); (M.M.T.C.); (M.L.P.d.M.B.)
- Grupo Microbiología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Rosa-Antía Villarino Fernández
- Departamento de Microbiología, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Adrián Domínguez Lago
- Servicio de Microbiología y Parasitología Clínica, Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (J.C.P.); (A.D.L.); (M.M.T.C.); (M.L.P.d.M.B.)
- Grupo Microbiología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - María Mercedes Treviño Castellano
- Servicio de Microbiología y Parasitología Clínica, Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (J.C.P.); (A.D.L.); (M.M.T.C.); (M.L.P.d.M.B.)
- Grupo Microbiología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - María Luisa Pérez del Molino Bernal
- Servicio de Microbiología y Parasitología Clínica, Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (J.C.P.); (A.D.L.); (M.M.T.C.); (M.L.P.d.M.B.)
- Grupo Microbiología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Sandra Sánchez Poza
- Departamento de Microbiología, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Eva Torres-Sangiao
- Servicio de Microbiología y Parasitología Clínica, Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (J.C.P.); (A.D.L.); (M.M.T.C.); (M.L.P.d.M.B.)
- Grupo Microbiología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| |
Collapse
|
3
|
Williams E, Seib KL, Fairley CK, Pollock GL, Hocking JS, McCarthy JS, Williamson DA. Neisseria gonorrhoeae vaccines: a contemporary overview. Clin Microbiol Rev 2024; 37:e0009423. [PMID: 38226640 PMCID: PMC10938898 DOI: 10.1128/cmr.00094-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
Neisseria gonorrhoeae infection is an important public health issue, with an annual global incidence of 87 million. N. gonorrhoeae infection causes significant morbidity and can have serious long-term impacts on reproductive and neonatal health and may rarely cause life-threatening disease. Global rates of N. gonorrhoeae infection have increased over the past 20 years. Importantly, rates of antimicrobial resistance to key antimicrobials also continue to increase, with the United States Centers for Disease Control and Prevention identifying drug-resistant N. gonorrhoeae as an urgent threat to public health. This review summarizes the current evidence for N. gonorrhoeae vaccines, including historical clinical trials, key N. gonorrhoeae vaccine preclinical studies, and studies of the impact of Neisseria meningitidis vaccines on N. gonorrhoeae infection. A comprehensive survey of potential vaccine antigens, including those identified through traditional vaccine immunogenicity approaches, as well as those identified using more contemporary reverse vaccinology approaches, are also described. Finally, the potential epidemiological impacts of a N. gonorrhoeae vaccine and research priorities for further vaccine development are described.
Collapse
Affiliation(s)
- Eloise Williams
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Reference Laboratory at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Kate L. Seib
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Christopher K. Fairley
- Melbourne Sexual Health Centre, Alfred Health, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Georgina L. Pollock
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jane S. Hocking
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| | - James S. McCarthy
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Deborah A. Williamson
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Reference Laboratory at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Xia L, Lu Q, Wang X, Jia C, Zhao Y, Wang G, Yang J, Zhang N, Min X, Huang J, Huang M. Characterization of protective immune responses against Neisseria gonorrhoeae induced by intranasal immunization with adhesion and penetration protein. Heliyon 2024; 10:e25733. [PMID: 38352762 PMCID: PMC10862674 DOI: 10.1016/j.heliyon.2024.e25733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/16/2024] Open
Abstract
Drug-resistant N. gonorrhoeae is an urgent threat to global public health, and vaccine development is the best long-term strategy for controlling gonorrhea. We have previously shown that adhesion and penetration protein (App) play a role in the adhesion, invasion, and reproductive tract colonization of N. gonorrhoeae. Here, we describe the immune response induced by intranasal immunization with passenger and translocator fragments of App. The recombinant App passenger and translocator fragments induced high titers of IgG and IgA antibodies in serum and vaginal washes. Antibodies produced by App passenger and the combination of passenger and translocator mediated the killing of N. gonorrhoeae via serum bactericidal activity and opsonophagocytic activity, whereas antisera from translocator-immunized groups had lower bactericidal activity and opsonophagocytic activity. The antisera of the App passenger and translocator, alone and in combination, inhibited the adhesion of N. gonorrhoeae to cervical epithelial cells in a concentration-dependent manner. Nasal immunization with App passenger and translocator fragments alone or in combination induced high levels of IgG1, IgG2a, and IgG2b antibodies and stimulated mouse splenocytes to secrete cytokines IFN-γ and IL-17A, suggesting that Th1 and Th17 cellular immune responses were activated. In vivo experiments have shown that immune App passenger and transporter fragments can accelerate the clearance of N. gonorrhoeae in the vagina of mice. These data suggest that the App protein is a promising N. gonorrhoeae vaccine antigen.
Collapse
Affiliation(s)
- Lingyin Xia
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Qin Lu
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiaosu Wang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Chengyi Jia
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yujie Zhao
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Guangli Wang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jianru Yang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ningqing Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xun Min
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jian Huang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Meirong Huang
- Department of Blood Transfusion, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
5
|
Waltmann A, Chen JS, Duncan JA. Promising developments in gonococcal vaccines. Curr Opin Infect Dis 2024; 37:63-69. [PMID: 38050729 PMCID: PMC11625492 DOI: 10.1097/qco.0000000000000992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
PURPOSE OF REVIEW While effective vaccines to prevent invasive infections by Neisseria meningitidis have been deployed around the world, development of a vaccine to prevent Neisseria gonorrhoeae has lagged. After multiple failed vaccine candidates, vaccine development for N. gonorrhoeae is showing promise for the first time in several decades. This review highlights recent progress in the field. RECENT FINDINGS Vaccines containing outer-membrane vesicles (OMV) have been used to manage outbreaks of the serogroup B N. meningitidis in a number of countries. Epidemiologic studies indicate these vaccination campaigns were associated with reductions in reported N. gonorrhoeae infections. Recently, a serogroup B N. meningitidis vaccine containing both recombinant antigens and OMV has been licensed through much of the world. Epidemiologic studies also demonstrate associations between 4CMenB immunization and reduced N. gonorrhoeae infections. Additionally, mathematical modeling studies have begun to identify potential strategies for vaccine deployment to maximize reduction of infections. SUMMARY After several decades with little progress towards an effective gonococcal vaccine, large observational studies have provided evidence that a new generation of group B N. meningitidis vaccines containing OMV have serendipitously restarted the field. Ongoing clinical trials will soon provide definitive evidence regarding the efficacy of these vaccines in preventing N. gonorrhoeae infection.
Collapse
Affiliation(s)
- Andreea Waltmann
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jane S. Chen
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Health Behavior, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Joseph A. Duncan
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
6
|
Gulati S, Mattsson AH, Schussek S, Zheng B, DeOliveira RB, Shaughnessy J, Lewis LA, Rice PA, Comstedt P, Ram S. Preclinical efficacy of a cell division protein candidate gonococcal vaccine identified by artificial intelligence. mBio 2023; 14:e0250023. [PMID: 37905891 PMCID: PMC10746169 DOI: 10.1128/mbio.02500-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE Vaccines to curb the global spread of multidrug-resistant gonorrhea are urgently needed. Here, 26 vaccine candidates identified by an artificial intelligence-driven platform (Efficacy Discriminative Educated Network[EDEN]) were screened for efficacy in the mouse vaginal colonization model. Complement-dependent bactericidal activity of antisera and the EDEN protective scores both correlated positively with the reduction in overall bacterial colonization burden. NGO1549 (FtsN) and NGO0265, both involved in cell division, displayed the best activity and were selected for further development. Both antigens, when fused to create a chimeric protein, elicited bactericidal antibodies against a wide array of gonococcal isolates and significantly attenuated the duration and burden of gonococcal colonization of mouse vaginas. Protection was abrogated in mice that lacked complement C9, the last step in the formation of the membrane attack complex pore, suggesting complement-dependent bactericidal activity as a mechanistic correlate of protection of the vaccine. FtsN and NGO0265 represent promising vaccine candidates against gonorrhea.
Collapse
Affiliation(s)
- Sunita Gulati
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | | | - Bo Zheng
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Rosane B. DeOliveira
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jutamas Shaughnessy
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Lisa A. Lewis
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Peter A. Rice
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | - Sanjay Ram
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
7
|
Roe SK, Felter B, Zheng B, Ram S, Wetzler LM, Garges E, Zhu T, Genco CA, Massari P. In Vitro Pre-Clinical Evaluation of a Gonococcal Trivalent Candidate Vaccine Identified by Transcriptomics. Vaccines (Basel) 2023; 11:1846. [PMID: 38140249 PMCID: PMC10747275 DOI: 10.3390/vaccines11121846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/03/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Gonorrhea, a sexually transmitted disease caused by Neisseria gonorrhoeae, poses a significant global public health threat. Infection in women can be asymptomatic and may result in severe reproductive complications. Escalating antibiotic resistance underscores the need for an effective vaccine. Approaches being explored include subunit vaccines and outer membrane vesicles (OMVs), but an ideal candidate remains elusive. Meningococcal OMV-based vaccines have been associated with reduced rates of gonorrhea in retrospective epidemiologic studies, and with accelerated gonococcal clearance in mouse vaginal colonization models. Cross-protection is attributed to shared antigens and possibly cross-reactive, bactericidal antibodies. Using a Candidate Antigen Selection Strategy (CASS) based on the gonococcal transcriptome during human mucosal infection, we identified new potential vaccine targets that, when used to immunize mice, induced the production of antibodies with bactericidal activity against N. gonorrhoeae strains. The current study determined antigen recognition by human sera from N. gonorrhoeae-infected subjects, evaluated their potential as a multi-antigen (combination) vaccine in mice and examined the impact of different adjuvants (Alum or Alum+MPLA) on functional antibody responses to N. gonorrhoeae. Our results indicated that a stronger Th1 immune response component induced by Alum+MPLA led to antibodies with improved bactericidal activity. In conclusion, a combination of CASS-derived antigens may be promising for developing effective gonococcal vaccines.
Collapse
Affiliation(s)
- Shea K. Roe
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA; (S.K.R.); (C.A.G.)
| | - Brian Felter
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA; (S.K.R.); (C.A.G.)
| | - Bo Zheng
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA (S.R.)
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA (S.R.)
| | - Lee M. Wetzler
- Section of Infectious Diseases, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Eric Garges
- Department of Preventive Medicine and Biostatistics, F. Edward Hebert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA;
| | - Tianmou Zhu
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA; (S.K.R.); (C.A.G.)
| | - Caroline A. Genco
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA; (S.K.R.); (C.A.G.)
| | - Paola Massari
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA; (S.K.R.); (C.A.G.)
| |
Collapse
|
8
|
Martinez FG, Zielke RA, Fougeroux CE, Li L, Sander AF, Sikora AE. Development of a Tag/Catcher-mediated capsid virus-like particle vaccine presenting the conserved Neisseria gonorrhoeae SliC antigen that blocks human lysozyme. Infect Immun 2023; 91:e0024523. [PMID: 37916806 PMCID: PMC10715030 DOI: 10.1128/iai.00245-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023] Open
Abstract
Virus-like particles (VLPs) are promising nanotools for the development of subunit vaccines due to high immunogenicity and safety. Herein, we explored the versatile and effective Tag/Catcher-AP205 capsid VLP (cVLP) vaccine platform to address the urgent need for the development of an effective and safe vaccine against gonorrhea. The benefits of this clinically validated cVLP platform include its ability to facilitate unidirectional, high-density display of complex/full-length antigens through an effective split-protein Tag/Catcher conjugation system. To assess this modular approach for making cVLP vaccines, we used a conserved surface lipoprotein, SliC, that contributes to the Neisseria gonorrhoeae defense against human lysozyme, as a model antigen. This protein was genetically fused at the N- or C-terminus to the small peptide Tag enabling their conjugation to AP205 cVLP, displaying the complementary Catcher. We determined that SliC with the N-terminal SpyTag, N-SliC, retained lysozyme-blocking activity and could be displayed at high density on cVLPs without causing aggregation. In mice, the N-SliC-VLP vaccines, adjuvanted with AddaVax or CpG, induced significantly higher antibody titers compared to controls. In contrast, similar vaccine formulations containing monomeric SliC were non-immunogenic. Accordingly, sera from N-SliC-VLP-immunized mice also had significantly higher human complement-dependent serum bactericidal activity. Furthermore, the N-SliC-VLP vaccines administered subcutaneously with an intranasal boost elicited systemic and vaginal IgG and IgA, whereas subcutaneous delivery alone failed to induce vaginal IgA. The N-SliC-VLP with CpG (10 µg/dose) induced the most significant increase in total serum IgG and IgG3 titers, vaginal IgG and IgA, and bactericidal antibodies.
Collapse
Affiliation(s)
- Fabian G. Martinez
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| | - Ryszard A. Zielke
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| | | | - Lixin Li
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| | - Adam F. Sander
- AdaptVac Aps, Hørsholm, Denmark
- Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
- Institute for Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Aleksandra E. Sikora
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| |
Collapse
|
9
|
Song S, Wang S, Jiang X, Yang F, Gao S, Lin X, Cheng H, van der Veen S. Th1-polarized MtrE-based gonococcal vaccines display prophylactic and therapeutic efficacy. Emerg Microbes Infect 2023; 12:2249124. [PMID: 37584947 PMCID: PMC10467530 DOI: 10.1080/22221751.2023.2249124] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 08/17/2023]
Abstract
ABSTRACTGlobal dissemination of high-level ceftriaxone-resistant Neisseria gonorrhoeae strains associated with the FC428 clone poses a threat to the efficacy ceftriaxone-based therapies. Vaccination is the best strategy to contain multidrug-resistant infections. In this study, we investigated the efficacy of MtrE and its surface Loop2 as vaccine antigens when combined with a Th1-polarizing adjuvant, which is expected to be beneficial for gonococcal vaccine development. Using in vitro dendritic cell maturation and T cell differentiation assays, CpG1826 was identified as the optimal Th1-polarizing adjuvant for MtrE and Loop2 displayed as linear epitope (Nloop2) or structural epitope (Intraloop2) on a carrier protein. Loop2-based antigens raised strongly Th1-polarized and bactericidal antibody responses in vaccinated mice. Furthermore, the vaccine formulations provided protection against a gonococcal challenge in mouse vaginal tract infection model when provided as prophylactic vaccines. Also, the vaccine formulations accelerated gonococcal clearance when provided as a single therapeutic dose to treat an already established infection, including against a strain associated with the FC428 clone. Therefore, this study demonstrated that MtrE and Loop 2 are effective gonococcal vaccine antigens when combined with the Th1-polarizing CpG1826 adjuvant.
Collapse
Affiliation(s)
- Shuaijie Song
- Department of Microbiology, and Department of Dermatology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Shuyi Wang
- Department of Microbiology, and Department of Dermatology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Xiaoyun Jiang
- Department of Microbiology, and Department of Dermatology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Fan Yang
- Department of Microbiology, and Department of Dermatology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Shuai Gao
- Department of Microbiology, and Department of Dermatology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Xu’ai Lin
- Department of Microbiology, and Department of Dermatology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Hao Cheng
- Department of Microbiology, and Department of Dermatology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Stijn van der Veen
- Department of Microbiology, and Department of Dermatology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, People’s Republic of China
| |
Collapse
|
10
|
Belcher T, Rollier CS, Dold C, Ross JDC, MacLennan CA. Immune responses to Neisseria gonorrhoeae and implications for vaccine development. Front Immunol 2023; 14:1248613. [PMID: 37662926 PMCID: PMC10470030 DOI: 10.3389/fimmu.2023.1248613] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/26/2023] [Indexed: 09/05/2023] Open
Abstract
Neisseria gonorrheoae is the causative agent of gonorrhea, a sexually transmitted infection responsible for a major burden of disease with a high global prevalence. Protective immunity to infection is often not observed in humans, possible due to high variability of key antigens, induction of blocking antibodies, or a large number of infections being relatively superficial and not inducing a strong immune response. N. gonorrhoeae is a strictly human pathogen, however, studies using mouse models provide useful insights into the immune response to gonorrhea. In mice, N. gonorrhoea appears to avoid a protective Th1 response by inducing a less protective Th17 response. In mouse models, candidate vaccines which provoke a Th1 response can accelerate the clearance of gonococcus from the mouse female genital tract. Human studies indicate that natural infection often induces a limited immune response, with modest antibody responses, which may correlate with the clinical severity of gonococcal disease. Studies of cytokine responses to gonococcal infection in humans provide conflicting evidence as to whether infection induces an IL-17 response. However, there is evidence for limited induction of protective immunity from a study of female sex workers in Kenya. A controlled human infection model (CHIM) has been used to examine the immune response to gonococcal infection in male volunteers, but has not to date demonstrated protection against re-infection. Correlates of protection for gonorrhea are lacking, which has hampered the progress towards developing a successful vaccine. However, the finding that the Neisseria meningitidis serogroup B vaccines, elicit cross-protection against gonorrhea has invigorated the gonococcal vaccine field. More studies of infection in humans, either natural infection or CHIM studies, are needed to understand better gonococcal protective immunity.
Collapse
Affiliation(s)
- Thomas Belcher
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Christina Dold
- The Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Jonathan D. C. Ross
- Sexual Health and HIV, University Hospitals Birmingham NHS Trust, Birmingham, United Kingdom
| | - Calman A. MacLennan
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Girgis MM, Christodoulides M. Vertebrate and Invertebrate Animal and New In Vitro Models for Studying Neisseria Biology. Pathogens 2023; 12:782. [PMID: 37375472 DOI: 10.3390/pathogens12060782] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/03/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
The history of Neisseria research has involved the use of a wide variety of vertebrate and invertebrate animal models, from insects to humans. In this review, we itemise these models and describe how they have made significant contributions to understanding the pathophysiology of Neisseria infections and to the development and testing of vaccines and antimicrobials. We also look ahead, briefly, to their potential replacement by complex in vitro cellular models.
Collapse
Affiliation(s)
- Michael M Girgis
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Myron Christodoulides
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|