1
|
Wang B, Farhan MHR, Yuan L, Sui Y, Chu J, Yang X, Li Y, Huang L, Cheng G. Transfer dynamics of antimicrobial resistance among gram-negative bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176347. [PMID: 39306135 DOI: 10.1016/j.scitotenv.2024.176347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
Antimicrobial resistance (AMR) in gram-negative bacteria (GNBs) is a significant global health concern, exacerbated by mobile genetic elements (MGEs). This review examines the transfer of antibiotic resistance genes (ARGs) within and between different species of GNB facilitated by MGEs, focusing on the roles of plasmids and phages. The impact of non-antibiotic chemicals, environmental factors affecting ARG transfer frequency, and underlying molecular mechanisms of bacterial resistance evolution are also discussed. Additionally, the study critically assesses the impact of fitness costs and compensatory evolution driven by MGEs in host organisms, shedding light on the transfer frequency of ARGs and host evolution within ecosystems. Overall, this comprehensive review highlights the factors and mechanisms influencing ARG movement among diverse GNB species and underscores the importance of implementing holistic One-Health strategies to effectively address the escalating public health challenges associated with AMR.
Collapse
Affiliation(s)
- Bangjuan Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Muhammad Haris Raza Farhan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Linlin Yuan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuxin Sui
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jinhua Chu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaohan Yang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuxin Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Guyue Cheng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Dabernig-Heinz J, Lohde M, Hölzer M, Cabal A, Conzemius R, Brandt C, Kohl M, Halbedel S, Hyden P, Fischer MA, Pietzka A, Daza B, Idelevich EA, Stöger A, Becker K, Fuchs S, Ruppitsch W, Steinmetz I, Kohler C, Wagner GE. A multicenter study on accuracy and reproducibility of nanopore sequencing-based genotyping of bacterial pathogens. J Clin Microbiol 2024; 62:e0062824. [PMID: 39158309 PMCID: PMC11389150 DOI: 10.1128/jcm.00628-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/25/2024] [Indexed: 08/20/2024] Open
Abstract
Nanopore sequencing has shown the potential to democratize genomic pathogen surveillance due to its ease of use and low entry cost. However, recent genotyping studies showed discrepant results compared to gold-standard short-read sequencing. Furthermore, although essential for widespread application, the reproducibility of nanopore-only genotyping remains largely unresolved. In our multicenter performance study involving five laboratories, four public health-relevant bacterial species were sequenced with the latest R10.4.1 flow cells and V14 chemistry. Core genome MLST analysis of over 500 data sets revealed highly strain-specific typing errors in all species in each laboratory. Investigation of the methylation-related errors revealed consistent DNA motifs at error-prone sites across participants at read level. Depending on the frequency of incorrect target reads, this either leads to correct or incorrect typing, whereby only minimal frequency deviations can randomly determine the final result. PCR preamplification, recent basecalling model updates and an optimized polishing strategy notably diminished the non-reproducible typing. Our study highlights the potential for new errors to appear with each newly sequenced strain and lays the foundation for computational approaches to reduce such typing errors. In conclusion, our multicenter study shows the necessity for a new validation concept for nanopore sequencing-based, standardized bacterial typing, where single nucleotide accuracy is critical.
Collapse
Affiliation(s)
- Johanna Dabernig-Heinz
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Mara Lohde
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - Martin Hölzer
- Genome Competence Center (MF1), Robert Koch Institute, Berlin, Germany
| | - Adriana Cabal
- Austrian Agency for Health and Food Safety, Vienna, Austria
| | | | - Christian Brandt
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - Matthias Kohl
- Medical and Life Sciences Faculty, Furtwangen University, Villingen-Schwenningen, Germany
| | - Sven Halbedel
- Nosocomial Pathogens and Antibiotic Resistances (FG13), Robert Koch Institute, Wernigerode, Germany
- Institute for Medical Microbiology and Hospital Hygiene, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Patrick Hyden
- Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Martin A. Fischer
- Enteropathogenic bacteria and Legionella (FG11), Consultant Laboratory for Listeria, Robert Koch Institute, Wernigerode, Germany
| | - Ariane Pietzka
- Austrian Agency for Health and Food Safety, Graz, Austria
| | - Beatriz Daza
- Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Evgeny A. Idelevich
- Friedrich Loeffler Institute for Medical Microbiology, F.-Sauerbruch-Str., Greifswald, Germany
| | - Anna Stöger
- Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Karsten Becker
- Friedrich Loeffler Institute for Medical Microbiology, F.-Sauerbruch-Str., Greifswald, Germany
| | - Stephan Fuchs
- Genome Competence Center (MF1), Robert Koch Institute, Berlin, Germany
| | | | - Ivo Steinmetz
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Christian Kohler
- Friedrich Loeffler Institute for Medical Microbiology, F.-Sauerbruch-Str., Greifswald, Germany
| | - Gabriel E. Wagner
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
3
|
Matlock W, Shaw LP, Sheppard SK, Feil E. Towards quantifying plasmid similarity. Microb Genom 2024; 10:001290. [PMID: 39264704 PMCID: PMC11392043 DOI: 10.1099/mgen.0.001290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/01/2024] [Indexed: 09/13/2024] Open
Abstract
Plasmids are extrachromosomal replicons which can quickly spread resistance and virulence genes between clinical pathogens. From the tens of thousands of currently available plasmid sequences we know that overall plasmid diversity is structured, with related plasmids sharing a largely conserved 'backbone' of genes while being able to carry very different genetic cargo. Moreover, plasmid genomes can be structurally plastic and undergo frequent rearrangements. So, how can we quantify plasmid similarity? Answering this question requires practical efforts to sample natural variation as well as theoretical considerations of what defines a group of related plasmids. Here we consider the challenges of analysing and rationalising the current plasmid data deluge to define appropriate similarity thresholds.
Collapse
Affiliation(s)
- William Matlock
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Liam P. Shaw
- Department of Biology, University of Oxford, Oxford, UK
| | | | - Edward Feil
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, UK
| |
Collapse
|
4
|
Trees E, Carleton HA, Folster JP, Gieraltowski L, Hise K, Leeper M, Nguyen TA, Poates A, Sabol A, Tagg KA, Tolar B, Vasser M, Webb HE, Wise M, Lindsey RL. Genetic Diversity in Salmonella enterica in Outbreaks of Foodborne and Zoonotic Origin in the USA in 2006-2017. Microorganisms 2024; 12:1563. [PMID: 39203405 PMCID: PMC11356229 DOI: 10.3390/microorganisms12081563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
Whole genome sequencing is replacing traditional laboratory surveillance methods as the primary tool to track and characterize clusters and outbreaks of the foodborne and zoonotic pathogen Salmonella enterica (S. enterica). In this study, 438 S. enterica isolates representing 35 serovars and 13 broad vehicle categories from one hundred epidemiologically confirmed outbreaks were evaluated for genetic variation to develop epidemiologically relevant interpretation guidelines for Salmonella disease cluster detection. The Illumina sequences were analyzed by core genome multi-locus sequence typing (cgMLST) and screened for antimicrobial resistance (AR) determinants and plasmids. Ninety-three of the one hundred outbreaks exhibited a close allele range (less than 10 allele differences with a subset closer than 5). The remaining seven outbreaks showed increased variation, of which three were considered polyclonal. A total of 16 and 28 outbreaks, respectively, showed variations in the AR and plasmid profiles. The serovars Newport and I 4,[5],12:i:-, as well as the zoonotic and poultry product vehicles, were overrepresented among the outbreaks, showing increased variation. A close allele range in cgMLST profiles can be considered a reliable proxy for epidemiological relatedness for the vast majority of S. enterica outbreak investigations. Variations associated with mobile elements happen relatively frequently during outbreaks and could be reflective of changing selective pressures.
Collapse
Affiliation(s)
- Eija Trees
- Association of Public Health Laboratories, Bethesda, MD 20814, USA
| | | | - Jason P. Folster
- Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | | | - Kelley Hise
- Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Molly Leeper
- Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Thai-An Nguyen
- Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Angela Poates
- Association of Public Health Laboratories, Bethesda, MD 20814, USA
| | - Ashley Sabol
- Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Kaitlin A. Tagg
- Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Beth Tolar
- Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Michael Vasser
- Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Hattie E. Webb
- Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Matthew Wise
- Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | | |
Collapse
|
5
|
Ye L, Liu X, Ni Y, Xu Y, Zheng Z, Chen K, Hu Q, Tan L, Guo Z, Wai CK, Chan EWC, Li R, Chen S. Comprehensive genomic and plasmid characterization of multidrug-resistant bacterial strains by R10.4.1 nanopore sequencing. Microbiol Res 2024; 283:127666. [PMID: 38460283 DOI: 10.1016/j.micres.2024.127666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/17/2024] [Accepted: 02/25/2024] [Indexed: 03/11/2024]
Abstract
The escalating prevalence of multidrug-resistant (MDR) bacteria pose a significant public health threat. Understanding the genomic features and deciphering the antibiotic resistance profiles of these pathogens is crucial for development of effective surveillance and treatment strategies. In this study, we employed the R10.4.1 nanopore sequencing technology, specifically through the use of the MinION platform, to analyze eight MDR bacterial strains originating from clinical, ecological and food sources. A single 72-hour sequencing run could yield approximately 12 million reads which covered a total of 34 gigabases (Gbp). The nanopore R10.4.1 data was processed using the Flye assembler, successfully assembling the genomes of eight bacterial strains and their 18 plasmids. Notably, the assemblies generated solely from R10.4.1 nanopore data closely matched those from next-generation sequencing data. Diverse antibiotic resistance patterns and specific resistance genes in the test strains were identified. Hospital strains that exhibited multidrug resistance were found to harbor various resistance genes that encode efflux pumps and extended-spectrum β-lactamases. Environmental and food sources were found to display resistance profiles in a species-specific manner. The composition of structurally complex plasmids in the test strains could also be revealed by analysis of nanopore long reads, which also suggested evidence of horizontal transfer of plasmids between different bacterial species. These findings provide valuable insights into the genetic characteristics of MDR bacteria and demonstrating the practicality of nanopore sequencing technology for detecting of resistance elements in bacterial pathogens.
Collapse
Affiliation(s)
- Lianwei Ye
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, SAR China; State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR China
| | - Xudong Liu
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, SAR China
| | - Ying Ni
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, Hong Kong, SAR China; Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, Guangdong, China
| | - Yating Xu
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, SAR China; State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR China
| | - Zhiwei Zheng
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR China; Shenzhen Key Lab for Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Kaichao Chen
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR China
| | - Qiao Hu
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, SAR China; State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR China
| | - Lu Tan
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, SAR China
| | - Zhihao Guo
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, SAR China
| | - Chan Kwan Wai
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR China
| | - Edward Wai Chi Chan
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR China
| | - Runsheng Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, SAR China; Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, Guangdong, China.
| | - Sheng Chen
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR China; Shenzhen Key Lab for Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China; Animal Health Research Center, City University of Hong Kong Chengdu Research Institute, Chengdu, China.
| |
Collapse
|
6
|
Li Y, Xu Y, Zhou X, Huang L, Wang G, Liao J, Dai R. From "resistance genes expression" to "horizontal migration" as well as over secretion of Extracellular Polymeric Substances: Sludge microorganism's response to the increasing of long-term disinfectant stress. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133940. [PMID: 38457979 DOI: 10.1016/j.jhazmat.2024.133940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/16/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
Glutaraldehyde-Didecyldimethylammonium bromides (GDs) has been frequently and widely employed in livestock and poultry breeding farms to avoid epidemics such as African swine fever, but its long-term effect on the active sludge microorganisms of the receiving wastewater treatment plant was keep unclear. Four simulation systems were built here to explore the performance of aerobic activated sludge with the long-term exposure of GDs and its mechanism by analyzing water qualities, resistance genes, extracellular polymeric substances and microbial community structure. The results showed that the removal rates of CODCr and ammonia nitrogen decreased with the exposure concentration of GDs increasing. It is worth noting that long-term exposure to GDs can induce the horizontal transfer and coordinated expression of a large number of resistance genes, such as qacE, sul1, tetx, and int1, in drug-resistant microorganisms. Additionally, it promotes the secretion of more extracellular proteins, including arginine, forming a "barrier-like" protection. Therefore, long-term exposure to disinfectants can alter the treatment capacity of activated sludge receiving systems, and the abundance of resistance genes generated through horizontal transfer and coordinated expression by drug-resistant microorganisms does pose a significant threat to ecosystems and health. It is recommended to develop effective pretreatment methods to eliminate disinfectants.
Collapse
Affiliation(s)
- Yuxin Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanbin Xu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Xiao Zhou
- Analysis and Test Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Lu Huang
- Analysis and Test Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Guan Wang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jingsong Liao
- Yikangsheng Environmental Science and Technology Limited Company of Guangdong, Yunfu 527400, China
| | - Ruizhi Dai
- Yikangsheng Environmental Science and Technology Limited Company of Guangdong, Yunfu 527400, China
| |
Collapse
|
7
|
Wang X, Zhang H, Yu S, Li D, Gillings MR, Ren H, Mao D, Guo J, Luo Y. Inter-plasmid transfer of antibiotic resistance genes accelerates antibiotic resistance in bacterial pathogens. THE ISME JOURNAL 2024; 18:wrad032. [PMID: 38366209 PMCID: PMC10881300 DOI: 10.1093/ismejo/wrad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 02/18/2024]
Abstract
Antimicrobial resistance is a major threat for public health. Plasmids play a critical role in the spread of antimicrobial resistance via horizontal gene transfer between bacterial species. However, it remains unclear how plasmids originally recruit and assemble various antibiotic resistance genes (ARGs). Here, we track ARG recruitment and assembly in clinically relevant plasmids by combining a systematic analysis of 2420 complete plasmid genomes and experimental validation. Results showed that ARG transfer across plasmids is prevalent, and 87% ARGs were observed to potentially transfer among various plasmids among 8229 plasmid-borne ARGs. Interestingly, recruitment and assembly of ARGs occur mostly among compatible plasmids within the same bacterial cell, with over 88% of ARG transfers occurring between compatible plasmids. Integron and insertion sequences drive the ongoing ARG acquisition by plasmids, especially in which IS26 facilitates 63.1% of ARG transfer events among plasmids. In vitro experiment validated the important role of IS26 involved in transferring gentamicin resistance gene aacC1 between compatible plasmids. Network analysis showed four beta-lactam genes (blaTEM-1, blaNDM-4, blaKPC-2, and blaSHV-1) shuffling among 1029 plasmids and 45 clinical pathogens, suggesting that clinically alarming ARGs transferred accelerate the propagation of antibiotic resistance in clinical pathogens. ARGs in plasmids are also able to transmit across clinical and environmental boundaries, in terms of the high-sequence similarities of plasmid-borne ARGs between clinical and environmental plasmids. This study demonstrated that inter-plasmid ARG transfer is a universal mechanism for plasmid to recruit various ARGs, thus advancing our understanding of the emergence of multidrug-resistant plasmids.
Collapse
Affiliation(s)
- Xiaolong Wang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Hanhui Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shenbo Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Donghang Li
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Michael R Gillings
- ARC Centre of Excellence in Synthetic Biology, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Daqing Mao
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yi Luo
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
8
|
Finks SS, Moudgalya P, Weihe C, Martiny JBH. The contribution of plasmids to trait diversity in a soil bacterium. ISME COMMUNICATIONS 2024; 4:ycae025. [PMID: 38584646 PMCID: PMC10999282 DOI: 10.1093/ismeco/ycae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 04/09/2024]
Abstract
Plasmids are so closely associated with pathogens and antibiotic resistance that their potential for conferring other traits is often overlooked. Few studies consider how the full suite of traits encoded by plasmids is related to a host's environmental adaptation, particularly for Gram-positive bacteria. To investigate the role that plasmid traits might play in microbial communities from natural ecosystems, we identified plasmids carried by isolates of Curtobacterium (phylum Actinomycetota) from a variety of soil environments. We found that plasmids were common, but not ubiquitous, in the genus and varied greatly in their size and genetic diversity. There was little evidence of phylogenetic conservation among Curtobacterium plasmids even for closely related bacterial strains within the same ecotype, indicating that horizontal transmission of plasmids is common. The plasmids carried a wide diversity of traits that were not a random subset of the host chromosome. Furthermore, the composition of these plasmid traits was associated with the environmental context of the host bacterium. Together, the results indicate that plasmids contribute substantially to the microdiversity of a soil bacterium and that this diversity may play a role in niche differentiation and a bacterium's adaptation to its local environment.
Collapse
Affiliation(s)
- Sarai S Finks
- Department of Ecology and Evolutionary Biology, University of California Irvine, 321 Steinhaus Hall, Irvine, CA 92697-2525, United States
| | - Pranav Moudgalya
- Department of Ecology and Evolutionary Biology, University of California Irvine, 321 Steinhaus Hall, Irvine, CA 92697-2525, United States
| | - Claudia Weihe
- Department of Ecology and Evolutionary Biology, University of California Irvine, 321 Steinhaus Hall, Irvine, CA 92697-2525, United States
| | - Jennifer B H Martiny
- Department of Ecology and Evolutionary Biology, University of California Irvine, 321 Steinhaus Hall, Irvine, CA 92697-2525, United States
| |
Collapse
|
9
|
Wheeler NE, Price V, Cunningham-Oakes E, Tsang KK, Nunn JG, Midega JT, Anjum MF, Wade MJ, Feasey NA, Peacock SJ, Jauneikaite E, Baker KS. Innovations in genomic antimicrobial resistance surveillance. THE LANCET. MICROBE 2023; 4:e1063-e1070. [PMID: 37977163 DOI: 10.1016/s2666-5247(23)00285-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 11/19/2023]
Abstract
Whole-genome sequencing of antimicrobial-resistant pathogens is increasingly being used for antimicrobial resistance (AMR) surveillance, particularly in high-income countries. Innovations in genome sequencing and analysis technologies promise to revolutionise AMR surveillance and epidemiology; however, routine adoption of these technologies is challenging, particularly in low-income and middle-income countries. As part of a wider series of workshops and online consultations, a group of experts in AMR pathogen genomics and computational tool development conducted a situational analysis, identifying the following under-used innovations in genomic AMR surveillance: clinical metagenomics, environmental metagenomics, gene or plasmid tracking, and machine learning. The group recommended developing cost-effective use cases for each approach and mapping data outputs to clinical outcomes of interest to justify additional investment in capacity, training, and staff required to implement these technologies. Harmonisation and standardisation of methods, and the creation of equitable data sharing and governance frameworks, will facilitate successful implementation of these innovations.
Collapse
Affiliation(s)
- Nicole E Wheeler
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, Edgbaston, UK
| | - Vivien Price
- Department of Clinical Infection, Immunology and Microbiology, Liverpool Centre for Global Health Research, University of Liverpool, Liverpool, UK
| | - Edward Cunningham-Oakes
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Kara K Tsang
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Jamie G Nunn
- Infectious Disease Challenge Area, Wellcome Trust, London, UK
| | | | - Muna F Anjum
- Department of Bacteriology, Animal and Plant Health Agency, Surrey, UK
| | - Matthew J Wade
- Data Analytics and Surveillance Group, UK Health Security Agency, London, UK; School of Engineering, Newcastle University, Newcastle-upon-Tyne, UK
| | - Nicholas A Feasey
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; Malawi Liverpool Wellcome Research Programme, Chichiri, Blantyre, Malawi
| | | | - Elita Jauneikaite
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK; NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, Hammersmith Hospital, London, UK
| | - Kate S Baker
- Centre for Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK; Department of Genetics, University of Cambridge, Cambridge, UK.
| |
Collapse
|
10
|
Alioto TS, Gut M, Rodiño-Janeiro BK, Cruz F, Gómez-Garrido J, Vázquez-Ucha JC, Mata C, Antoni R, Briansó F, Dabad M, Casals E, Ingham M, Álvarez-Tejado M, Bou G, Gut IG. Development of a novel streamlined workflow (AACRE) and database (inCREDBle) for genomic analysis of carbapenem-resistant Enterobacterales. Microb Genom 2023; 9. [PMID: 38010338 DOI: 10.1099/mgen.0.001132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
In response to the threat of increasing antimicrobial resistance, we must increase the amount of available high-quality genomic data gathered on antibiotic-resistant bacteria. To this end, we developed an integrated pipeline for high-throughput long-read sequencing, assembly, annotation and analysis of bacterial isolates and used it to generate a large genomic data set of carbapenemase-producing Enterobacterales (CPE) isolates collected in Spain. The set of 461 isolates were sequenced with a combination of both Illumina and Oxford Nanopore Technologies (ONT) DNA sequencing technologies in order to provide genomic context for chromosomal loci and, most importantly, structural resolution of plasmids, important determinants for transmission of antimicrobial resistance. We developed an informatics pipeline called Assembly and Annotation of Carbapenem-Resistant Enterobacteriaceae (AACRE) for the full assembly and annotation of the bacterial genomes and their complement of plasmids. To explore the resulting genomic data set, we developed a new database called inCREDBle that not only stores the genomic data, but provides unique ways to filter and compare data, enabling comparative genomic analyses at the level of chromosomes, plasmids and individual genes. We identified a new sequence type, ST5000, and discovered a genomic locus unique to ST15 that may be linked to its increased spread in the population. In addition to our major objective of generating a large regional data set, we took the opportunity to compare the effects of sample quality and sequencing methods, including R9 versus R10 nanopore chemistry, on genome assembly and annotation quality. We conclude that converting short-read and hybrid microbial sequencing and assembly workflows to the latest nanopore chemistry will further reduce processing time and cost, truly enabling the routine monitoring of resistance transmission patterns at the resolution of complete chromosomes and plasmids.
Collapse
Affiliation(s)
- Tyler S Alioto
- Centro Nacional de Análisis Genómico, C/Baldiri Reixac 4, 08028 Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Marta Gut
- Centro Nacional de Análisis Genómico, C/Baldiri Reixac 4, 08028 Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Bruno Kotska Rodiño-Janeiro
- Microbiology Department, Complejo Hospitalario Universitario A Coruña-Instituto Investigación Biomédica A Coruña (INIBIC), A Coruña, Spain
| | - Fernando Cruz
- Centro Nacional de Análisis Genómico, C/Baldiri Reixac 4, 08028 Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Jèssica Gómez-Garrido
- Centro Nacional de Análisis Genómico, C/Baldiri Reixac 4, 08028 Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Juan Carlos Vázquez-Ucha
- Microbiology Department, Complejo Hospitalario Universitario A Coruña-Instituto Investigación Biomédica A Coruña (INIBIC), A Coruña, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain
| | - Caterina Mata
- Centro Nacional de Análisis Genómico, C/Baldiri Reixac 4, 08028 Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Regina Antoni
- Centro Nacional de Análisis Genómico, C/Baldiri Reixac 4, 08028 Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Ferran Briansó
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona (UB), Barcelona, Spain
- Roche Diagnostics, Sant Cugat del Vallès, Barcelona, Spain
| | - Marc Dabad
- Centro Nacional de Análisis Genómico, C/Baldiri Reixac 4, 08028 Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Eloi Casals
- Centro Nacional de Análisis Genómico, C/Baldiri Reixac 4, 08028 Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Matthew Ingham
- Centro Nacional de Análisis Genómico, C/Baldiri Reixac 4, 08028 Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | | | - Germán Bou
- Microbiology Department, Complejo Hospitalario Universitario A Coruña-Instituto Investigación Biomédica A Coruña (INIBIC), A Coruña, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain
| | - Ivo G Gut
- Centro Nacional de Análisis Genómico, C/Baldiri Reixac 4, 08028 Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
11
|
Lee JH, Kim NH, Jang KM, Jin H, Shin K, Jeong BC, Kim DW, Lee SH. Prioritization of Critical Factors for Surveillance of the Dissemination of Antibiotic Resistance in Pseudomonas aeruginosa: A Systematic Review. Int J Mol Sci 2023; 24:15209. [PMID: 37894890 PMCID: PMC10607276 DOI: 10.3390/ijms242015209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Pseudomonas aeruginosa is the primary opportunistic human pathogen responsible for a range of acute and chronic infections; it poses a significant threat to immunocompromised patients and is the leading cause of morbidity and mortality for nosocomial infections. Its high resistance to a diverse array of antimicrobial agents presents an urgent health concern. Among the mechanisms contributing to resistance in P. aeruginosa, the horizontal acquisition of antibiotic resistance genes (ARGs) via mobile genetic elements (MGEs) has gained recognition as a substantial concern in clinical settings, thus indicating that a comprehensive understanding of ARG dissemination within the species is strongly required for surveillance. Here, two approaches, including a systematic literature analysis and a genome database survey, were employed to gain insights into ARG dissemination. The genome database enabled scrutinizing of all the available sequence information and various attributes of P. aeruginosa isolates, thus providing an extensive understanding of ARG dissemination within the species. By integrating both approaches, with a primary focus on the genome database survey, mobile ARGs that were linked or correlated with MGEs, important sequence types (STs) carrying diverse ARGs, and MGEs responsible for ARG dissemination were identified as critical factors requiring strict surveillance. Although human isolates play a primary role in dissemination, the importance of animal and environmental isolates has also been suggested. In this study, 25 critical mobile ARGs, 45 critical STs, and associated MGEs involved in ARG dissemination within the species, are suggested as critical factors. Surveillance and management of these prioritized factors across the One Health sectors are essential to mitigate the emergence of multidrug-resistant (MDR) and extensively resistant (XDR) P. aeruginosa in clinical settings.
Collapse
Affiliation(s)
- Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| | - Nam-Hoon Kim
- Division of Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Kyung-Min Jang
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| | - Hyeonku Jin
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| | - Kyoungmin Shin
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| | - Byeong Chul Jeong
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| | - Dae-Wi Kim
- Division of Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| |
Collapse
|
12
|
Sielemann J, Sielemann K, Brejová B, Vinař T, Chauve C. plASgraph2: using graph neural networks to detect plasmid contigs from an assembly graph. Front Microbiol 2023; 14:1267695. [PMID: 37869681 PMCID: PMC10587606 DOI: 10.3389/fmicb.2023.1267695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/08/2023] [Indexed: 10/24/2023] Open
Abstract
Identification of plasmids from sequencing data is an important and challenging problem related to antimicrobial resistance spread and other One-Health issues. We provide a new architecture for identifying plasmid contigs in fragmented genome assemblies built from short-read data. We employ graph neural networks (GNNs) and the assembly graph to propagate the information from nearby nodes, which leads to more accurate classification, especially for short contigs that are difficult to classify based on sequence features or database searches alone. We trained plASgraph2 on a data set of samples from the ESKAPEE group of pathogens. plASgraph2 either outperforms or performs on par with a wide range of state-of-the-art methods on testing sets of independent ESKAPEE samples and samples from related pathogens. On one hand, our study provides a new accurate and easy to use tool for contig classification in bacterial isolates; on the other hand, it serves as a proof-of-concept for the use of GNNs in genomics. Our software is available at https://github.com/cchauve/plasgraph2 and the training and testing data sets are available at https://github.com/fmfi-compbio/plasgraph2-datasets.
Collapse
Affiliation(s)
- Janik Sielemann
- Computational Biology, Faculty of Biology, Center for Biotechnology & Graduate School Digital Infrastructures for the Life Sciences (DILS), Bielefeld Institute for Bioinformatics Infrastructure, Bielefeld University, Bielefeld, Germany
| | - Katharina Sielemann
- Genetics and Genomics of Plants, Faculty of Biology, Center for Biotechnology & Graduate School Digital Infrastructures for the Life Sciences (DILS), Bielefeld Institute for Bioinformatics Infrastructure, Bielefeld University, Bielefeld, Germany
| | - Broňa Brejová
- Department of Computer Science, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Bratislava, Slovakia
| | - Tomáš Vinař
- Department of Applied Informatics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Bratislava, Slovakia
| | - Cedric Chauve
- Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
13
|
Diorio-Toth L, Wallace MA, Farnsworth CW, Wang B, Gul D, Kwon JH, Andleeb S, Burnham CAD, Dantas G. Intensive care unit sinks are persistently colonized with multidrug resistant bacteria and mobilizable, resistance-conferring plasmids. mSystems 2023; 8:e0020623. [PMID: 37439570 PMCID: PMC10469867 DOI: 10.1128/msystems.00206-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/02/2023] [Indexed: 07/14/2023] Open
Abstract
Contamination of hospital sinks with microbial pathogens presents a serious potential threat to patients, but our understanding of sink colonization dynamics is largely based on infection outbreaks. Here, we investigate the colonization patterns of multidrug-resistant organisms (MDROs) in intensive care unit sinks and water from two hospitals in the USA and Pakistan collected over 27 months of prospective sampling. Using culture-based methods, we recovered 822 bacterial isolates representing 104 unique species and genomospecies. Genomic analyses revealed long-term colonization by Pseudomonas spp. and Serratia marcescens strains across multiple rooms. Nanopore sequencing uncovered examples of long-term persistence of resistance-conferring plasmids in unrelated hosts. These data indicate that antibiotic resistance (AR) in Pseudomonas spp. is maintained both by strain colonization and horizontal gene transfer (HGT), while HGT maintains AR within Acinetobacter spp. and Enterobacterales, independent of colonization. These results emphasize the importance of proactive, genomic-focused surveillance of built environments to mitigate MDRO spread. IMPORTANCE Hospital sinks are frequently linked to outbreaks of antibiotic-resistant bacteria. Here, we used whole-genome sequencing to track the long-term colonization patterns in intensive care unit (ICU) sinks and water from two hospitals in the USA and Pakistan collected over 27 months of prospective sampling. We analyzed 822 bacterial genomes, representing over 100 different species. We identified long-term contamination by opportunistic pathogens, as well as transient appearance of other common pathogens. We found that bacteria recovered from the ICU had more antibiotic resistance genes (ARGs) in their genomes compared to matched community spaces. We also found that many of these ARGs are harbored on mobilizable plasmids, which were found shared in the genomes of unrelated bacteria. Overall, this study provides an in-depth view of contamination patterns for common nosocomial pathogens and identifies specific targets for surveillance.
Collapse
Affiliation(s)
- Luke Diorio-Toth
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Meghan A. Wallace
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Christopher W. Farnsworth
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Bin Wang
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Danish Gul
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Jennie H. Kwon
- Department of Medicine, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
| | - Saadia Andleeb
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Carey-Ann D. Burnham
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
- Department of Pediatrics, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
- Department of Pediatrics, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University in St Louis, St. Louis, Missouri, USA
| |
Collapse
|
14
|
Yang L, Mai G, Hu Z, Zhou H, Dai L, Deng Z, Ma Y. Global transmission of broad-host-range plasmids derived from the human gut microbiome. Nucleic Acids Res 2023; 51:8005-8019. [PMID: 37283060 PMCID: PMC10450197 DOI: 10.1093/nar/gkad498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 05/15/2023] [Accepted: 05/26/2023] [Indexed: 06/08/2023] Open
Abstract
Broad-host-range (BHR) plasmids in human gut bacteria are of considerable interest for their ability to mediate horizontal gene transfer (HGT) across large phylogenetic distance. However, the human gut plasmids, especially the BHR plasmids, remain largely unknown. Here, we identified the plasmids in the draft genomes of gut bacterial isolates from Chinese and American donors, resulting in 5372 plasmid-like clusters (PLCs), of which, 820 PLCs (comPLCs) were estimated with > 60% completeness genomes and only 155 (18.9%) were classified to known replicon types (n = 37). We observed that 175 comPLCs had a broad host range across distinct bacterial genera, of which, 71 were detected in at least two human populations of Chinese, American, Spanish, and Danish, and 13 were highly prevalent (>10%) in at least one human population. Haplotype analyses of two widespread PLCs demonstrated their spreading and evolutionary trajectory, suggesting frequent and recent exchanges of the BHR plasmids in environments. In conclusion, we obtained a large collection of plasmid sequences in human gut bacteria and demonstrated that a subset of the BHR plasmids can be transmitted globally, thus facilitating extensive HGT (e.g. antibiotic resistance genes) events. This study highlights the potential implications of the plasmids for global human health.
Collapse
Affiliation(s)
- Lili Yang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guoqin Mai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zheng Hu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Haokui Zhou
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ziqing Deng
- BGI-Shenzhen, Shenzhen 518083, China
- BGI-Beijing, Beijing 102600, China
| | - Yingfei Ma
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
15
|
Evans D, Sundermann A, Griffith M, Rangachar Srinivasa V, Mustapha M, Chen J, Dubrawski A, Cooper V, Harrison L, Van Tyne D. Empirically derived sequence similarity thresholds to study the genomic epidemiology of plasmids shared among healthcare-associated bacterial pathogens. EBioMedicine 2023; 93:104681. [PMID: 37392596 DOI: 10.1016/j.ebiom.2023.104681] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/13/2023] [Accepted: 06/13/2023] [Indexed: 07/03/2023] Open
Abstract
BACKGROUND Healthcare-associated bacterial pathogens frequently carry plasmids that contribute to antibiotic resistance and virulence. The horizontal transfer of plasmids in healthcare settings has been previously documented, but genomic and epidemiologic methods to study this phenomenon remain underdeveloped. The objectives of this study were to apply whole-genome sequencing to systematically resolve and track plasmids carried by nosocomial pathogens in a single hospital, and to identify epidemiologic links that indicated likely horizontal plasmid transfer. METHODS We performed an observational study of plasmids circulating among bacterial isolates infecting patients at a large hospital. We first examined plasmids carried by isolates sampled from the same patient over time and isolates that caused clonal outbreaks in the same hospital to develop thresholds with which horizontal plasmid transfer within a tertiary hospital could be inferred. We then applied those sequence similarity thresholds to perform a systematic screen of 3074 genomes of nosocomial bacterial isolates from a single hospital for the presence of 89 plasmids. We also collected and reviewed data from electronic health records for evidence of geotemporal links between patients infected with bacteria encoding plasmids of interest. FINDINGS Our analyses determined that 95% of analyzed genomes maintained roughly 95% of their plasmid genetic content and accumulated fewer than 15 SNPs per 100 kb of plasmid sequence. Applying these similarity thresholds to identify horizontal plasmid transfer identified 45 plasmids that potentially circulated among clinical isolates. Ten highly preserved plasmids met criteria for geotemporal links associated with horizontal transfer. Several plasmids with shared backbones also encoded different additional mobile genetic element content, and these elements were variably present among the sampled clinical isolate genomes. INTERPRETATION Evidence suggests that the horizontal transfer of plasmids among nosocomial bacterial pathogens appears to be frequent within hospitals and can be monitored with whole genome sequencing and comparative genomics approaches. These approaches should incorporate both nucleotide identity and reference sequence coverage to study the dynamics of plasmid transfer in the hospital. FUNDING This research was supported by the US National Institute of Allergy and Infectious Disease (NIAID) and the University of Pittsburgh School of Medicine.
Collapse
Affiliation(s)
- Daniel Evans
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Alexander Sundermann
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Genomic Epidemiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marissa Griffith
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Genomic Epidemiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Vatsala Rangachar Srinivasa
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Genomic Epidemiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mustapha Mustapha
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Genomic Epidemiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jieshi Chen
- Auton Laboratory, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Artur Dubrawski
- Auton Laboratory, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Vaughn Cooper
- Center for Genomic Epidemiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lee Harrison
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Genomic Epidemiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Daria Van Tyne
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Genomic Epidemiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
16
|
Prakki SRS, Hon PY, Lim ZQ, Thevasagayam NM, Loy SQD, De PP, Marimuthu K, Vasoo S, Ng OT. Dissemination of Pseudomonas aeruginosa blaNDM-1-Positive ST308 Clone in Singapore. Microbiol Spectr 2023; 11:e0403322. [PMID: 37042789 PMCID: PMC10269627 DOI: 10.1128/spectrum.04033-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/25/2023] [Indexed: 04/13/2023] Open
Abstract
Pseudomonas aeruginosa ST308 clone has been reported to carry carbapenemase genes such as blaIMP and blaVIM but has been rarely associated with blaNDM-1. A total of 199 P. aeruginosa ST308 clinical and environmental isolates obtained between April 2019 and November 2020 from a tertiary-care hospital in Singapore were characterized using whole-genome sequencing. In addition, 71 blaNDM-1-positive ST308 whole-genome sequences from two other local tertiary-care hospitals in Singapore and 83 global blaNDM-1-negative ST308 whole-genome sequences in public databases were included to assess phylogenetic relationships and perform genome analyses. Phylogenetic analysis and divergent time estimation revealed that blaNDM-1-positive P. aeruginosa ST308 was introduced into Singapore in 2005 (95 % highest posterior density: 2001 to 2008). Core genome, resistome, and analyses of all local blaNDM-1-positive ST308 isolates showed chromosomal integration of multiple antibiotic resistance genes (ARGs) [aac(3)-Id, aac(6')-Il, aadA6, aadA11, dfrB5, msr(E), floR, sul2, and qnrVC1], which was absent in global blaNDM-1-negative ST308 sequences. Most ARGs and virulence genes were conserved across isolates originating from the three different local hospitals. Close genetic relatedness of the blaNDM-1-positive ST308 clinical and environmental isolates suggests cocirculation between the hospital environment and human hosts with the hospital environment as a potential reservoir. Core genome single nucleotide polymorphism analyses revealed possible clonal transmission of blaNDM-1-positive ST308 isolates between the three hospitals over 7 years. Bloodstream isolates accounted for six of 95 (6.3%) clinical isolates. This study reports the introduction of a pathogenic blaNDM-1-positive P. aeruginosa ST308 more than a decade ago in Singapore and warrants surveillance for wider dissemination. IMPORTANCE P. aeruginosa is a Gram-negative opportunistic pathogen ubiquitously found in the environment and a major cause of nosocomial infections. While the P. aeruginosa ST308 clone has been known to bear blaIMP and blaVIM among global isolates, reports of blaNDM-1-positive P. aeruginosa ST308 are rare. The local blaNDM-1-positive P. aeruginosa ST308 isolates detected in this study appear to be unique to this region, with evidence of chromosomal acquisition of multiple ARGs compared to global blaNDM-1-negative P. aeruginosa ST308 isolates. Surveillance in Singapore and beyond for dissemination is essential to determine whether existing measures are sufficient to control the spread of this ST308 clone.
Collapse
Affiliation(s)
| | - Pei Yun Hon
- National Centre for Infectious Diseases, Singapore
- Tan Tock Seng Hospital, Singapore
| | - Ze Qin Lim
- National Centre for Infectious Diseases, Singapore
- Tan Tock Seng Hospital, Singapore
| | | | - Song Qi Dennis Loy
- National Centre for Infectious Diseases, Singapore
- Tan Tock Seng Hospital, Singapore
| | | | - Kalisvar Marimuthu
- National Centre for Infectious Diseases, Singapore
- Tan Tock Seng Hospital, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore
| | - Shawn Vasoo
- National Centre for Infectious Diseases, Singapore
- Tan Tock Seng Hospital, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Oon Tek Ng
- National Centre for Infectious Diseases, Singapore
- Tan Tock Seng Hospital, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
17
|
Stockdale SR, Hill C. Incorporating plasmid biology and metagenomics into a holistic model of the human gut microbiome. Curr Opin Microbiol 2023; 73:102307. [PMID: 37002975 DOI: 10.1016/j.mib.2023.102307] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 02/14/2023] [Accepted: 03/05/2023] [Indexed: 04/01/2023]
Abstract
The human gut microbiome is often described as the collection of bacteria, archaea, fungi, protists, and viruses associated with an individual, with no acknowledgement of the plasmid constituents. However, like viruses, plasmids are autonomous intracellular replicating entities that can influence the genotype and phenotype of their host and mediate trans-kingdom interactions. Plasmids are frequently noted as vehicles for horizontal gene transfer and for spreading antibiotic resistance, yet their multifaceted contribution to mutualistic and antagonistic interactions within the human microbiome and impact on human health is overlooked. In this review, we highlight the importance of plasmids and their biological properties as overlooked components of microbiomes. Subsequent human microbiome studies should include dedicated analyses of plasmids, particularly as a holistic understanding of human-microbial interactions is required before effective and safe interventions can be implemented to improve human well-being.
Collapse
|
18
|
Li B, Yan T. Metagenomic next generation sequencing for studying antibiotic resistance genes in the environment. ADVANCES IN APPLIED MICROBIOLOGY 2023; 123:41-89. [PMID: 37400174 DOI: 10.1016/bs.aambs.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Bacterial antimicrobial resistance (AMR) is a persisting and growing threat to human health. Characterization of antibiotic resistance genes (ARGs) in the environment is important to understand and control ARG-associated microbial risks. Numerous challenges exist in monitoring ARGs in the environment, due to the extraordinary diversity of ARGs, low abundance of ARGs with respect to the complex environmental microbiomes, difficulties in linking ARGs with bacterial hosts by molecular methods, difficulties in achieving quantification and high throughput simultaneously, difficulties in assessing mobility potential of ARGs, and difficulties in determining the specific AMR determinant genes. Advances in the next generation sequencing (NGS) technologies and related computational and bioinformatic tools are facilitating rapid identification and characterization ARGs in genomes and metagenomes from environmental samples. This chapter discusses NGS-based strategies, including amplicon-based sequencing, whole genome sequencing, bacterial population-targeted metagenome sequencing, metagenomic NGS, quantitative metagenomic sequencing, and functional/phenotypic metagenomic sequencing. Current bioinformatic tools for analyzing sequencing data for studying environmental ARGs are also discussed.
Collapse
Affiliation(s)
- Bo Li
- Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Tao Yan
- Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, HI, United States.
| |
Collapse
|
19
|
Shelenkov A, Mikhaylova Y, Voskanyan S, Egorova A, Akimkin V. Whole-Genome Sequencing Revealed the Fusion Plasmids Capable of Transmission and Acquisition of Both Antimicrobial Resistance and Hypervirulence Determinants in Multidrug-Resistant Klebsiella pneumoniae Isolates. Microorganisms 2023; 11:1314. [PMID: 37317293 DOI: 10.3390/microorganisms11051314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023] Open
Abstract
Klebsiella pneumoniae, a member of the Enterobacteriaceae family, has become a dangerous pathogen accountable for a large fraction of the various infectious diseases in both clinical and community settings. In general, the K. pneumoniae population has been divided into the so-called classical (cKp) and hypervirulent (hvKp) lineages. The former, usually developing in hospitals, can rapidly acquire resistance to a wide spectrum of antimicrobial drugs, while the latter is associated with more aggressive but less resistant infections, mostly in healthy humans. However, a growing number of reports in the last decade have confirmed the convergence of these two distinct lineages into superpathogen clones possessing the properties of both, and thus imposing a significant threat to public health worldwide. This process is associated with horizontal gene transfer, in which plasmid conjugation plays a very important role. Therefore, the investigation of plasmid structures and the ways plasmids spread within and between bacterial species will provide benefits in developing prevention measures against these powerful pathogens. In this work, we investigated clinical multidrug-resistant K. pneumoniae isolates using long- and short-read whole-genome sequencing, which allowed us to reveal fusion IncHI1B/IncFIB plasmids in ST512 isolates capable of simultaneously carrying hypervirulence (iucABCD, iutA, prmpA, peg-344) and resistance determinants (armA, blaNDM-1 and others), and to obtain insights into their formation and transmission mechanisms. Comprehensive phenotypic, genotypic and phylogenetic analysis of the isolates, as well as of their plasmid repertoire, was performed. The data obtained will facilitate epidemiological surveillance of high-risk K. pneumoniae clones and the development of prevention strategies against them.
Collapse
Affiliation(s)
- Andrey Shelenkov
- Central Research Institute of Epidemiology, Novogireevskaya Str., 3a, 111123 Moscow, Russia
| | - Yulia Mikhaylova
- Central Research Institute of Epidemiology, Novogireevskaya Str., 3a, 111123 Moscow, Russia
| | - Shushanik Voskanyan
- Central Research Institute of Epidemiology, Novogireevskaya Str., 3a, 111123 Moscow, Russia
| | - Anna Egorova
- Central Research Institute of Epidemiology, Novogireevskaya Str., 3a, 111123 Moscow, Russia
| | - Vasiliy Akimkin
- Central Research Institute of Epidemiology, Novogireevskaya Str., 3a, 111123 Moscow, Russia
| |
Collapse
|
20
|
Zhao W, Zeng W, Pang B, Luo M, Peng Y, Xu J, Kan B, Li Z, Lu X. Oxford nanopore long-read sequencing enables the generation of complete bacterial and plasmid genomes without short-read sequencing. Front Microbiol 2023; 14:1179966. [PMID: 37256057 PMCID: PMC10225699 DOI: 10.3389/fmicb.2023.1179966] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 04/27/2023] [Indexed: 06/01/2023] Open
Abstract
Introduction Genome-based analysis is crucial in monitoring antibiotic-resistant bacteria (ARB)and antibiotic-resistance genes (ARGs). Short-read sequencing is typically used to obtain incomplete draft genomes, while long-read sequencing can obtain genomes of multidrug resistance (MDR) plasmids and track the transmission of plasmid-borne antimicrobial resistance genes in bacteria. However, long-read sequencing suffers from low-accuracy base calling, and short-read sequencing is often required to improve genome accuracy. This increases costs and turnaround time. Methods In this study, a novel ONT sequencing method is described, which uses the latest ONT chemistry with improved accuracy to assemble genomes of MDR strains and plasmids from long-read sequencing data only. Three strains of Salmonella carrying MDR plasmids were sequenced using the ONT SQK-LSK114 kit with flow cell R10.4.1, and de novo genome assembly was performed with average read accuracy (Q > 10) of 98.9%. Results and Discussion For a 5-Mb-long bacterial genome, finished genome sequences with accuracy of >99.99% could be obtained at 75× sequencing coverage depth using Flye and Medaka software. Thus, this new ONT method greatly improves base-calling accuracy, allowing for the de novo assembly of high-quality finished bacterial or plasmid genomes without the need for short-read sequencing. This saves both money and time and supports the application of ONT data in critical genome-based epidemiological analyses. The novel ONT approach described in this study can take the place of traditional combination genome assembly based on short- and long-read sequencing, enabling pangenomic analyses based on high-quality complete bacterial and plasmid genomes to monitor the spread of antibiotic-resistant bacteria and antibiotic resistance genes.
Collapse
Affiliation(s)
- Wenxuan Zhao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Jinzhong, Shanxi, China
| | - Wei Zeng
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Public Health, Shandong University, Jinan, China
| | - Bo Pang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ming Luo
- Yulin Center for Disease Control and Prevention, Yulin, Shanxi, China
| | - Yao Peng
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jialiang Xu
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China
| | - Biao Kan
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Public Health, Shandong University, Jinan, China
| | - Zhenpeng Li
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xin Lu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
21
|
Moura de Sousa J, Lourenço M, Gordo I. Horizontal gene transfer among host-associated microbes. Cell Host Microbe 2023; 31:513-527. [PMID: 37054673 DOI: 10.1016/j.chom.2023.03.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Horizontal gene transfer is an important evolutionary force, facilitating bacterial diversity. It is thought to be pervasive in host-associated microbiomes, where bacterial densities are high and mobile elements are frequent. These genetic exchanges are also key for the rapid dissemination of antibiotic resistance. Here, we review recent studies that have greatly extended our knowledge of the mechanisms underlying horizontal gene transfer, the ecological complexities of a network of interactions involving bacteria and their mobile elements, and the effect of host physiology on the rates of genetic exchanges. Furthermore, we discuss other, fundamental challenges in detecting and quantifying genetic exchanges in vivo, and how studies have contributed to start overcoming these challenges. We highlight the importance of integrating novel computational approaches and theoretical models with experimental methods where multiple strains and transfer elements are studied, both in vivo and in controlled conditions that mimic the intricacies of host-associated environments.
Collapse
Affiliation(s)
- Jorge Moura de Sousa
- Institut Pasteur, Université Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris, 75015 Paris, France
| | - Marta Lourenço
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, F-75015 Paris, France
| | - Isabel Gordo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande,6, Oeiras, Portugal.
| |
Collapse
|
22
|
Al-Trad EI, Chew CH, Che Hamzah AM, Suhaili Z, Rahman NIA, Ismail S, Puah SM, Chua KH, Kwong SM, Yeo CC. The Plasmidomic Landscape of Clinical Methicillin-Resistant Staphylococcus aureus Isolates from Malaysia. Antibiotics (Basel) 2023; 12:antibiotics12040733. [PMID: 37107095 PMCID: PMC10135026 DOI: 10.3390/antibiotics12040733] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a priority nosocomial pathogen with plasmids playing a crucial role in its genetic adaptability, particularly in the acquisition and spread of antimicrobial resistance. In this study, the genome sequences of 79 MSRA clinical isolates from Terengganu, Malaysia, (obtained between 2016 and 2020) along with an additional 15 Malaysian MRSA genomes from GenBank were analyzed for their plasmid content. The majority (90%, 85/94) of the Malaysian MRSA isolates harbored 1-4 plasmids each. In total, 189 plasmid sequences were identified ranging in size from 2.3 kb to ca. 58 kb, spanning all seven distinctive plasmid replication initiator (replicase) types. Resistance genes (either to antimicrobials, heavy metals, and/or biocides) were found in 74% (140/189) of these plasmids. Small plasmids (<5 kb) were predominant (63.5%, 120/189) with a RepL replicase plasmid harboring the ermC gene that confers resistance to macrolides, lincosamides, and streptogramin B (MLSB) identified in 63 MRSA isolates. A low carriage of conjugative plasmids was observed (n = 2), but the majority (64.5%, 122/189) of the non-conjugative plasmids have mobilizable potential. The results obtained enabled us to gain a rare view of the plasmidomic landscape of Malaysian MRSA isolates and reinforces their importance in the evolution of this pathogen.
Collapse
Affiliation(s)
- Esra'a I Al-Trad
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia
| | - Ching Hoong Chew
- Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus 21300, Malaysia
| | | | - Zarizal Suhaili
- Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut 22200, Malaysia
| | - Nor Iza A Rahman
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia
| | - Salwani Ismail
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia
| | - Suat Moi Puah
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Stephen M Kwong
- Infectious Diseases & Microbiology, School of Medicine, Western Sydney University, Campbelltown 2560, Australia
| | - Chew Chieng Yeo
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia
| |
Collapse
|
23
|
Brown SD, Dreolini L, Wilson JF, Balasundaram M, Holt RA. Complete sequence verification of plasmid DNA using the Oxford Nanopore Technologies' MinION device. BMC Bioinformatics 2023; 24:116. [PMID: 36964503 PMCID: PMC10039527 DOI: 10.1186/s12859-023-05226-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/11/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND Sequence verification is essential for plasmids used as critical reagents or therapeutic products. Typically, high-quality plasmid sequence is achieved through capillary-based Sanger sequencing, requiring customized sets of primers for each plasmid. This process can become expensive, particularly for applications where the validated sequence needs to be produced within a regulated and quality-controlled environment for downstream clinical research applications. RESULTS Here, we describe a cost-effective and accurate plasmid sequencing and consensus generation procedure using the Oxford Nanopore Technologies' MinION device as an alternative to capillary-based plasmid sequencing options. This procedure can verify the identity of a pure population of plasmid, either confirming it matches the known and expected sequence, or identifying mutations present in the plasmid if any exist. We use a full MinION flow cell per plasmid, maximizing available data and allowing for stringent quality filters. Pseudopairing reads for consensus base calling reduces read error rates from 5.3 to 0.53%, and our pileup consensus approach provides per-base counts and confidence scores, allowing for interpretation of the certainty of the resulting consensus sequences. For pure plasmid samples, we demonstrate 100% accuracy in the resulting consensus sequence, and the sensitivity to detect small mutations such as insertions, deletions, and single nucleotide variants. In test cases where the sequenced pool of plasmids contains subclonal templates, detection sensitivity is similar to that of traditional capillary sequencing. CONCLUSIONS Our pipeline can provide significant cost savings compared to outsourcing clinical-grade sequencing of plasmids, making generation of high-quality plasmid sequence for clinical sequence verification more accessible. While other long-read-based methods offer higher-throughput and less cost, our pipeline produces complete and accurate sequence verification for cases where absolute sequence accuracy is required.
Collapse
Affiliation(s)
- Scott D Brown
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, 675 W 10th Ave, Vancouver, BC, V5Z 1L3, Canada
| | - Lisa Dreolini
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, 675 W 10th Ave, Vancouver, BC, V5Z 1L3, Canada
| | - Jessica F Wilson
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, 675 W 10th Ave, Vancouver, BC, V5Z 1L3, Canada
| | - Miruna Balasundaram
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, 675 W 10th Ave, Vancouver, BC, V5Z 1L3, Canada
| | - Robert A Holt
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, 675 W 10th Ave, Vancouver, BC, V5Z 1L3, Canada.
- Department of Molecular Biology and Biochemistry, Simon Fraser University, SSB8166 - 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
- Department of Medical Genetics, University of British Columbia, C201 - 4500 Oak Street, 675 W 10th Ave, Vancouver, BC, V6H 3N1, Canada.
| |
Collapse
|
24
|
Multilayer networks of plasmid genetic similarity reveal potential pathways of gene transmission. THE ISME JOURNAL 2023; 17:649-659. [PMID: 36759552 PMCID: PMC10119158 DOI: 10.1038/s41396-023-01373-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 02/11/2023]
Abstract
Antimicrobial resistance (AMR) is a significant threat to public health. Plasmids are principal vectors of AMR genes, significantly contributing to their spread and mobility across hosts. Nevertheless, little is known about the dynamics of plasmid genetic exchange across animal hosts. Here, we use theory and methodology from network and disease ecology to investigate the potential of gene transmission between plasmids using a data set of 21 plasmidomes from a single dairy cow population. We constructed a multilayer network based on pairwise plasmid genetic similarity. Genetic similarity is a signature of past genetic exchange that can aid in identifying potential routes and mechanisms of gene transmission within and between cows. Links between cows dominated the transmission network, and plasmids containing mobility genes were more connected. Modularity analysis revealed a network cluster where all plasmids contained a mobM gene, and one where all plasmids contained a beta-lactamase gene. Cows that contain both clusters also share transmission pathways with many other cows, making them candidates for super-spreading. In support, we found signatures of gene super-spreading in which a few plasmids and cows are responsible for most gene exchange. An agent-based transmission model showed that a new gene invading the cow population will likely reach all cows. Finally, we showed that edge weights contain a non-random signature for the mechanisms of gene transmission, allowing us to differentiate between dispersal and genetic exchange. These results provide insights into how genes, including those providing AMR, spread across animal hosts.
Collapse
|
25
|
Cruz-López F, Martínez-Meléndez A, Garza-González E. How Does Hospital Microbiota Contribute to Healthcare-Associated Infections? Microorganisms 2023; 11:microorganisms11010192. [PMID: 36677484 PMCID: PMC9867428 DOI: 10.3390/microorganisms11010192] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Healthcare-associated infections (HAIs) are still a global public health concern, associated with high mortality and increased by the phenomenon of antimicrobial resistance. Causative agents of HAIs are commonly found in the hospital environment and are monitored in epidemiological surveillance programs; however, the hospital environment is a potential reservoir for pathogenic microbial strains where microorganisms may persist on medical equipment surfaces, on the environment surrounding patients, and on corporal surfaces of patients and healthcare workers (HCWs). The characterization of hospital microbiota may provide knowledge regarding the relatedness between commensal and pathogenic microorganisms, their role in HAIs development, and the environmental conditions that favor its proliferation. This information may contribute to the effective control of the dissemination of pathogens and to improve infection control programs. In this review, we describe evidence of the contribution of hospital microbiota to HAI development and the role of environmental factors, antimicrobial resistance, and virulence factors of the microbial community in persistence on hospital surfaces.
Collapse
Affiliation(s)
- Flora Cruz-López
- Subdirección Académica de Químico Farmacéutico Biólogo, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Pedro de Alba S/N, Ciudad Universitaria, San Nicolás de los Garza 66450, Nuevo León, Mexico
| | - Adrián Martínez-Meléndez
- Subdirección Académica de Químico Farmacéutico Biólogo, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Pedro de Alba S/N, Ciudad Universitaria, San Nicolás de los Garza 66450, Nuevo León, Mexico
| | - Elvira Garza-González
- Laboratorio de Microbiología Molecular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina/Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Avenida Gonzalitos y Madero s/n, Colonia Mitras Centro, Monterrey 64460, Nuevo León, Mexico
- Correspondence:
| |
Collapse
|
26
|
Zhang M, Ma Y, Xu H, Wang M, Li L. Surfaces of gymnastic equipment as reservoirs of microbial pathogens with potential for transmission of bacterial infection and antimicrobial resistance. Front Microbiol 2023; 14:1182594. [PMID: 37152727 PMCID: PMC10157288 DOI: 10.3389/fmicb.2023.1182594] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Gymnastic equipment surfaces are shared by many people, and could mediate the transfer of bacterial pathogens. To better understand this detrimental potential, investigations on the reservoirs of bacterial pathogens and antimicrobial resistance on the surfaces of gymnastic equipment were performed by analyzing the bacterial community structures, prevalence of viable bacteria, and presence of antimicrobial resistance on both indoor and outdoor gymnastic facilities. The results of high-throughput 16S rDNA amplicon sequencing showed that Gram-positive bacteria on the surfaces of indoor gymnastic equipment significantly enriched, including the opportunistic pathogen Staphylococcus strains, while Enterobacteriaceae significantly enriched on surfaces of outdoor gymnastic equipment. The analysis of α-diversities showed a higher richness and diversity for bacterial communities on the surfaces of gymnastic equipment than the environment. Analysis of β-diversities showed that the bacterial communities on the surfaces of gymnastic equipment differ significantly from environmental bacterial communities, while the bacterial communities on indoor and outdoor equipment are also significantly different. Thirty-four bacterial isolates were obtained from the surfaces of gymnastic equipment, including three multidrug Staphylococcus and one multidrug resistant Pantoea. In particular, Staphylococcus hemolyticus 5-6, isolated from the dumbbell surface, is a multidrug resistant, hemolytic, high- risk pathogen. The results of quantitative PCR targeting antibiotic resistance related genes (intI1, sul1 and bla TEM) showed that the abundances of sul1 and bla TEM genes on the surfaces of gymnastic equipment are higher than the environment, while the abundances of sul1 gene on indoor equipment are higher than outdoor equipment. These results lead to the conclusion that the surfaces of gymnastic equipment are potential dissemination pathways for highly dangerous pathogens as well as antimicrobial resistance, and the risks of indoor equipment are higher than outdoor equipment.
Collapse
|
27
|
Barquero A, Marini S, Boucher C, Ruiz J, Prosperi M. KARGAMobile: Android app for portable, real-time, easily interpretable analysis of antibiotic resistance genes via nanopore sequencing. Front Bioeng Biotechnol 2022; 10:1016408. [PMID: 36324897 PMCID: PMC9618647 DOI: 10.3389/fbioe.2022.1016408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/27/2022] [Indexed: 02/03/2023] Open
Abstract
Nanopore technology enables portable, real-time sequencing of microbial populations from clinical and ecological samples. An emerging healthcare application for Nanopore includes point-of-care, timely identification of antibiotic resistance genes (ARGs) to help developing targeted treatments of bacterial infections, and monitoring resistant outbreaks in the environment. While several computational tools exist for classifying ARGs from sequencing data, to date (2022) none have been developed for mobile devices. We present here KARGAMobile, a mobile app for portable, real-time, easily interpretable analysis of ARGs from Nanopore sequencing. KARGAMobile is the porting of an existing ARG identification tool named KARGA; it retains the same algorithmic structure, but it is optimized for mobile devices. Specifically, KARGAMobile employs a compressed ARG reference database and different internal data structures to save RAM usage. The KARGAMobile app features a friendly graphical user interface that guides through file browsing, loading, parameter setup, and process execution. More importantly, the output files are post-processed to create visual, printable and shareable reports, aiding users to interpret the ARG findings. The difference in classification performance between KARGAMobile and KARGA is minimal (96.2% vs. 96.9% f-measure on semi-synthetic datasets of 1 million reads with known resistance ground truth). Using real Nanopore experiments, KARGAMobile processes on average 1 GB data every 23-48 min (targeted sequencing - metagenomics), with peak RAM usage below 500MB, independently from input file sizes, and an average temperature of 49°C after 1 h of continuous data processing. KARGAMobile is written in Java and is available at https://github.com/Ruiz-HCI-Lab/KargaMobile under the MIT license.
Collapse
Affiliation(s)
- Alexander Barquero
- Department of Computer Science and Information and Engineering, University of Florida, Gainesville, FL, United States
| | - Simone Marini
- Department of Epidemiology, University of Florida, Gainesville, FL, United States,Department of Pathology, University of Florida, Gainesville, FL, United States
| | - Christina Boucher
- Department of Computer Science and Information and Engineering, University of Florida, Gainesville, FL, United States
| | - Jaime Ruiz
- Department of Computer Science and Information and Engineering, University of Florida, Gainesville, FL, United States
| | - Mattia Prosperi
- Department of Epidemiology, University of Florida, Gainesville, FL, United States,*Correspondence: Mattia Prosperi,
| |
Collapse
|
28
|
Long-Read Whole Genome Sequencing Elucidates the Mechanisms of Amikacin Resistance in Multidrug-Resistant Klebsiella pneumoniae Isolates Obtained from COVID-19 Patients. Antibiotics (Basel) 2022; 11:antibiotics11101364. [PMID: 36290022 PMCID: PMC9598329 DOI: 10.3390/antibiotics11101364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/28/2022] Open
Abstract
Klebsiella pneumoniae is a Gram-negative, encapsulated, non-motile bacterium, which represents a global challenge to public health as one of the major causes of healthcare-associated infections worldwide. In the recent decade, the World Health Organization (WHO) noticed a critically increasing rate of carbapenem-resistant K. pneumoniae occurrence in hospitals. The situation with extended-spectrum beta-lactamase (ESBL) producing bacteria further worsened during the COVID-19 pandemic, due to an increasing number of patients in intensive care units (ICU) and extensive, while often inappropriate, use of antibiotics including carbapenems. In order to elucidate the ways and mechanisms of antibiotic resistance spreading within the K. pneumoniae population, whole genome sequencing (WGS) seems to be a promising approach, and long-read sequencing is especially useful for the investigation of mobile genetic elements carrying antibiotic resistance genes, such as plasmids. We have performed short- and long read sequencing of three carbapenem-resistant K. pneumoniae isolates obtained from COVID-19 patients in a dedicated ICU of a multipurpose medical center, which belonged to the same clone according to cgMLST analysis, in order to understand the differences in their resistance profiles. We have revealed the presence of a small plasmid carrying aph(3′)-VIa gene providing resistance to amikacin in one of these isolates, which corresponded perfectly to its phenotypic resistance profile. We believe that the results obtained will facilitate further elucidating of antibiotic resistance mechanisms for this important pathogen, and highlight the need for continuous genomic epidemiology surveillance of clinical K. pneumoniae isolates.
Collapse
|
29
|
Emergence of Tn 1999.7, a New Transposon in blaOXA-48-Harboring Plasmids Associated with Increased Plasmid Stability. Antimicrob Agents Chemother 2022; 66:e0078722. [PMID: 36200773 DOI: 10.1128/aac.00787-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
OXA-48 is the most common carbapenemase in Enterobacterales in Germany and many other European countries. Depending on the genomic location of blaOXA-48, OXA-48-producing isolates vary in phenotype and intra- and interspecies transferability of blaOXA-48. In most bacterial isolates, blaOXA-48 is located on one of seven variants of Tn1999 (Tn1999.1 to Tn1999.6 and invTn1999.2). Here, a novel Tn1999 variant, Tn1999.7, is described, which was identified in 11 clinical isolates from 2016 to 2020. Tn1999.7 differs from Tn1999.1 by the insertion of the 8,349-bp Tn3 family transposon Tn7442 between the lysR gene and blaOXA-48 open reading frame. Tn7442 carries genes coding for a restriction endonuclease and a DNA methyltransferase as cargo, forming a type III restriction modification system. Tn1999.7 was carried on an ~71-kb IncL plasmid in 9/11 isolates. In one isolate, Tn1999.7 was situated on an ~76-kb plasmid, harboring an additional insertion sequence in the plasmid backbone. In one isolate, the plasmid size is only ~63 kb due to a deletion adjacent to Tn7442 that extends into the plasmid backbone. Mean conjugation rates of the Tn1999.7-harboring plasmids in J53 ranged from 4.47 × 10-5 to 2.03 × 10-2, similar to conjugation rates of other pOXA-48-type IncL plasmids. The stability of plasmids with Tn1999.7 was significantly higher than that of a Tn1999.2-harboring plasmid in vitro. This increase in stability could be related to the insertion of a restriction-modification system, which can promote postsegregational killing. The increased plasmid stability associated with Tn1999.7 could contribute to the further spread of OXA-48.
Collapse
|
30
|
Ju Y, Pu M, Sun K, Song G, Geng J. Nanopore Electrochemistry for Pathogen Detection. Chem Asian J 2022; 17:e202200774. [PMID: 36069587 DOI: 10.1002/asia.202200774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/06/2022] [Indexed: 11/05/2022]
Abstract
Pathogen infections have seriously threatened human health, and there is an urgent demand for rapid and efficient pathogen identification to provide instructions in clinical diagnosis and therapeutic intervention. Recently, nanopore technology, a rapidly maturing technology which delivers ultrasensitive sensing and high throughput in real-time and at low cost, has achieved success in pathogen detection. Furthermore, the remarkable development of nanopore sequencing, for example, the MinION sequencer from Oxford Nanopore Technologies (ONT) as a competitive sequencing technology, has facilitated the rapid analysis of disease-related microbiomes at the whole-genome level and on a large scale. Here, we highlighted recent advances in nanopore approaches for pathogen detection at the single-molecule level. We also overviewed the applications of nanopore sequencing in pathogenic bacteria identification and diagnosis. In the end, we discussed the challenges and future developments of nanopore technology as promising tools for the management of infections, which may be helpful to aid understanding as well as decision-making.
Collapse
Affiliation(s)
- Yuan Ju
- Sichuan University, Sichuan University Library, CHINA
| | - Mengjun Pu
- Sichuan University, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, CHINA
| | - Ke Sun
- Sichuan University, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, CHINA
| | - Guiqin Song
- North Sichuan Medical College [Search North Sichuan Medical College]: North Sichuan Medical University, Shool of Basic Medical Sciences and Forensic Medicine, CHINA
| | - Jia Geng
- Sichuan University, State Key Laboratory of Biotherapy, No 17 Section 3 of South Renmin Rd, 610040, Chengdu, CHINA
| |
Collapse
|
31
|
Purushothaman S, Meola M, Egli A. Combination of Whole Genome Sequencing and Metagenomics for Microbiological Diagnostics. Int J Mol Sci 2022; 23:9834. [PMID: 36077231 PMCID: PMC9456280 DOI: 10.3390/ijms23179834] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 12/21/2022] Open
Abstract
Whole genome sequencing (WGS) provides the highest resolution for genome-based species identification and can provide insight into the antimicrobial resistance and virulence potential of a single microbiological isolate during the diagnostic process. In contrast, metagenomic sequencing allows the analysis of DNA segments from multiple microorganisms within a community, either using an amplicon- or shotgun-based approach. However, WGS and shotgun metagenomic data are rarely combined, although such an approach may generate additive or synergistic information, critical for, e.g., patient management, infection control, and pathogen surveillance. To produce a combined workflow with actionable outputs, we need to understand the pre-to-post analytical process of both technologies. This will require specific databases storing interlinked sequencing and metadata, and also involves customized bioinformatic analytical pipelines. This review article will provide an overview of the critical steps and potential clinical application of combining WGS and metagenomics together for microbiological diagnosis.
Collapse
Affiliation(s)
- Srinithi Purushothaman
- Applied Microbiology Research, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Institute of Medical Microbiology, University of Zurich, 8006 Zurich, Switzerland
| | - Marco Meola
- Applied Microbiology Research, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Institute of Medical Microbiology, University of Zurich, 8006 Zurich, Switzerland
- Swiss Institute of Bioinformatics, University of Basel, 4031 Basel, Switzerland
| | - Adrian Egli
- Applied Microbiology Research, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Institute of Medical Microbiology, University of Zurich, 8006 Zurich, Switzerland
- Clinical Bacteriology and Mycology, University Hospital Basel, 4031 Basel, Switzerland
| |
Collapse
|
32
|
Coluzzi C, Garcillán-Barcia MP, de la Cruz F, Rocha EPC. Evolution of plasmid mobility: origin and fate of conjugative and non-conjugative plasmids. Mol Biol Evol 2022; 39:6593704. [PMID: 35639760 PMCID: PMC9185392 DOI: 10.1093/molbev/msac115] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Conjugation drives the horizontal transfer of adaptive traits across prokaryotes. One-fourth of the plasmids encode the functions necessary to conjugate autonomously, the others being eventually mobilizable by conjugation. To understand the evolution of plasmid mobility, we studied plasmid size, gene repertoires, and conjugation-related genes. Plasmid gene repertoires were found to vary rapidly in relation to the evolutionary rate of relaxases, for example, most pairs of plasmids with 95% identical relaxases have fewer than 50% of homologs. Among 249 recent transitions of mobility type, we observed a clear excess of plasmids losing the capacity to conjugate. These transitions are associated with even greater changes in gene repertoires, possibly mediated by transposable elements, including pseudogenization of the conjugation locus, exchange of replicases reducing the problem of incompatibility, and extensive loss of other genes. At the microevolutionary scale of plasmid taxonomy, transitions of mobility type sometimes result in the creation of novel taxonomic units. Interestingly, most transitions from conjugative to mobilizable plasmids seem to be lost in the long term. This suggests a source-sink dynamic, where conjugative plasmids generate nonconjugative plasmids that tend to be poorly adapted and are frequently lost. Still, in some cases, these relaxases seem to have evolved to become efficient at plasmid mobilization in trans, possibly by hijacking multiple conjugative systems. This resulted in specialized relaxases of mobilizable plasmids. In conclusion, the evolution of plasmid mobility is frequent, shapes the patterns of gene flow in bacteria, the dynamics of gene repertoires, and the ecology of plasmids.
Collapse
Affiliation(s)
- Charles Coluzzi
- Institut Pasteur, Université de Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris, 75015, France
| | - M Pilar Garcillán-Barcia
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, C/Albert Einstein 22, 39011, Santander, Spain
| | - Fernando de la Cruz
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, C/Albert Einstein 22, 39011, Santander, Spain
| | - Eduardo P C Rocha
- Institut Pasteur, Université de Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris, 75015, France
| |
Collapse
|
33
|
Bloomfield S, Duong VT, Tuyen HT, Campbell JI, Thomson NR, Parkhill J, Le Phuc H, Chau TTH, Maskell DJ, Perron GG, Ngoc NM, Vi LL, Adriaenssens EM, Baker S, Mather AE. Mobility of antimicrobial resistance across serovars and disease presentations in non-typhoidal Salmonella from animals and humans in Vietnam. Microb Genom 2022; 8. [PMID: 35511231 PMCID: PMC9465066 DOI: 10.1099/mgen.0.000798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Non-typhoidal Salmonella (NTS) is a major cause of bacterial enterocolitis globally but also causes invasive bloodstream infections. Antimicrobial resistance (AMR) hampers the treatment of these infections and understanding how AMR spreads between NTS may help in developing effective strategies. We investigated NTS isolates associated with invasive disease, diarrhoeal disease and asymptomatic carriage in animals and humans from Vietnam. Isolates included multiple serovars and both common and rare phenotypic AMR profiles; long- and short-read sequencing was used to investigate the genetic mechanisms and genomic backgrounds associated with phenotypic AMR profiles. We demonstrate concordance between most AMR genotypes and phenotypes but identified large genotypic diversity in clinically relevant phenotypes and the high mobility potential of AMR genes (ARGs) in this setting. We found that 84 % of ARGs identified were located on plasmids, most commonly those containing IncHI1A_1 and IncHI1B(R27)_1_R27 replicons (33%), and those containing IncHI2_1 and IncHI2A_1 replicons (31%). The vast majority (95%) of ARGS were found within 10 kbp of IS6/IS26 elements, which provide plasmids with a mechanism to exchange ARGs between plasmids and other parts of the genome. Whole genome sequencing with targeted long-read sequencing applied in a One Health context identified a comparatively limited number of insertion sequences and plasmid replicons associated with AMR. Therefore, in the context of NTS from Vietnam and likely for other settings as well, the mechanisms by which ARGs move contribute to a more successful AMR profile than the specific ARGs, facilitating the adaptation of bacteria to different environments or selection pressures.
Collapse
Affiliation(s)
| | | | - Ha Thanh Tuyen
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - James I Campbell
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Tran Thi Hong Chau
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | - Gabriel G Perron
- Department of Biology, Bard College, Annandale-on-Hudson, New York, USA
| | | | - Lu Lan Vi
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | - Stephen Baker
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Alison E Mather
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.,University of East Anglia, Norwich, UK
| |
Collapse
|
34
|
Jamieson-Lane AD, Blasius B. The gossip paradox: Why do bacteria share genes? MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:5482-5508. [PMID: 35603365 DOI: 10.3934/mbe.2022257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bacteria, in contrast to eukaryotic cells, contain two types of genes: chromosomal genes that are fixed to the cell, and plasmids, smaller loops of DNA capable of being passed from one cell to another. The sharing of plasmid genes between individual bacteria and between bacterial lineages has contributed vastly to bacterial evolution, allowing specialized traits to 'jump ship' between one lineage or species and the next. The benefits of this generosity from the point of view of both recipient cell and plasmid are generally understood: plasmids receive new hosts and ride out selective sweeps across the population, recipient cells gain new traits (such as antibiotic resistance). Explaining this behavior from the point of view of donor cells is substantially more difficult. Donor cells pay a fitness cost in order to share plasmids, and run the risk of sharing advantageous genes with their competition and rendering their own lineage redundant, while seemingly receiving no benefit in return. Using both compartment based models and agent based simulations we demonstrate that 'secretive' genes which restrict horizontal gene transfer are favored over a wide range of models and parameter values, even when sharing carries no direct cost. 'Generous' chromosomal genes which are more permissive of plasmid transfer are found to have neutral fitness at best, and are generally disfavored by selection. Our findings lead to a peculiar paradox: given the obvious benefits of keeping secrets, why do bacteria share information so freely?
Collapse
Affiliation(s)
- Alastair D Jamieson-Lane
- Department of Mathematics, University of Auckland, Auckland, 1010, New Zealand
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky, Universität Oldenburg, Oldenburg, 26129, Germany. Helmholtz Institute for Functional Marine Biodiversity, Carl von Ossietzky, Universität Oldenburg, Oldenburg, 26129, Germany
| | - Bernd Blasius
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky, Universität Oldenburg, Oldenburg, 26129, Germany. Helmholtz Institute for Functional Marine Biodiversity, Carl von Ossietzky, Universität Oldenburg, Oldenburg, 26129, Germany
| |
Collapse
|
35
|
Jamieson-Lane A, Friedrich A, Blasius B. Comparing optimization criteria in antibiotic allocation protocols. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220181. [PMID: 35345436 PMCID: PMC8941386 DOI: 10.1098/rsos.220181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/02/2022] [Indexed: 05/03/2023]
Abstract
Clinicians prescribing antibiotics in a hospital context follow one of several possible 'treatment protocols'-heuristic rules designed to balance the immediate needs of patients against the long-term threat posed by the evolution of antibiotic resistance and multi-resistant bacteria. Several criteria have been proposed for assessing these protocols; unfortunately, these criteria frequently conflict with one another, each providing a different recommendation as to which treatment protocol is best. Here, we review and compare these optimization criteria. We are able to demonstrate that criteria focused primarily on slowing evolution of resistance are directly antagonistic to patient health both in the short and long term. We provide a new optimization criteria of our own, intended to more meaningfully balance the needs of the future and present. Asymptotic methods allow us to evaluate this criteria and provide insights not readily available through the numerical methods used previously in the literature. When cycling antibiotics, we find an antibiotic switching time which proves close to optimal across a wide range of modelling assumptions.
Collapse
Affiliation(s)
- Alastair Jamieson-Lane
- University of Auckland, Mathematics, Auckland 1142, New Zealand
- Carl von Ossietzky, Universität Oldenburg, Oldenburg, Germany
| | | | - Bernd Blasius
- Carl von Ossietzky, Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
36
|
Sanchez-Cid C, Tignat-Perrier R, Franqueville L, Delaurière L, Schagat T, Vogel TM. Sequencing Depth Has a Stronger Effect than DNA Extraction on Soil Bacterial Richness Discovery. Biomolecules 2022; 12:biom12030364. [PMID: 35327556 PMCID: PMC8945597 DOI: 10.3390/biom12030364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/08/2022] [Accepted: 02/20/2022] [Indexed: 02/04/2023] Open
Abstract
Although Next-Generation Sequencing techniques have increased our access to the soil microbiome, each step of soil metagenomics presents inherent biases that prevent the accurate definition of the soil microbiome and its ecosystem function. In this study, we compared the effects of DNA extraction and sequencing depth on bacterial richness discovery from two soil samples. Four DNA extraction methods were used, and sequencing duplicates were generated for each DNA sample. The V3–V4 region of the 16S rRNA gene was sequenced to determine the taxonomical richness measured by each method at the amplicon sequence variant (ASV) level. Both the overall functional richness and antibiotic resistance gene (ARG) richness were evaluated by metagenomics sequencing. Despite variable DNA extraction methods, sequencing depth had a greater influence on bacterial richness discovery at both the taxonomical and functional levels. Sequencing duplicates from the same sample provided access to different portions of bacterial richness, and this was related to differences in the sequencing depth. Thus, the sequencing depth introduced biases in the comparison of DNA extraction methods. An optimisation of the soil metagenomics workflow is needed in order to sequence at a sufficient and equal depth. This would improve the accuracy of metagenomic comparisons and soil microbiome profiles.
Collapse
Affiliation(s)
- Concepcion Sanchez-Cid
- Environmental Microbial Genomics, Laboratoire Ampère, CNRS UMR 5005, Ecole Centrale de Lyon, Université de Lyon, 69134 Ecully, France; (R.T.-P.); (L.F.); (T.M.V.)
- Scientific Applications and Training, Promega France, 69100 Charbonnières-les-Bains, France;
- Correspondence:
| | - Romie Tignat-Perrier
- Environmental Microbial Genomics, Laboratoire Ampère, CNRS UMR 5005, Ecole Centrale de Lyon, Université de Lyon, 69134 Ecully, France; (R.T.-P.); (L.F.); (T.M.V.)
- Institut des Géosciences de l’Environnement, Université Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, 38400 Saint-Martin-d’Hères, France
| | - Laure Franqueville
- Environmental Microbial Genomics, Laboratoire Ampère, CNRS UMR 5005, Ecole Centrale de Lyon, Université de Lyon, 69134 Ecully, France; (R.T.-P.); (L.F.); (T.M.V.)
| | - Laurence Delaurière
- Scientific Applications and Training, Promega France, 69100 Charbonnières-les-Bains, France;
| | - Trista Schagat
- Scientific Applications and Training, Promega Corporation, Madison, WI 53711, USA;
| | - Timothy M. Vogel
- Environmental Microbial Genomics, Laboratoire Ampère, CNRS UMR 5005, Ecole Centrale de Lyon, Université de Lyon, 69134 Ecully, France; (R.T.-P.); (L.F.); (T.M.V.)
| |
Collapse
|
37
|
Whittle E, Yonkus JA, Jeraldo P, Alva-Ruiz R, Nelson H, Kendrick ML, Grys TE, Patel R, Truty MJ, Chia N. Optimizing Nanopore Sequencing for Rapid Detection of Microbial Species and Antimicrobial Resistance in Patients at Risk of Surgical Site Infections. mSphere 2022; 7:e0096421. [PMID: 35171692 PMCID: PMC8849348 DOI: 10.1128/msphere.00964-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Surgical site infections (SSI) are a significant burden to patients and health care systems. We evaluated the use of Nanopore sequencing (NS) to rapidly detect microbial species and antimicrobial resistance (AMR) genes present in intraoperative bile aspirates. Bile aspirates from 42 patients undergoing pancreatic head resection were included. Three methods of DNA extraction using mechanical cell lysis or protease cell lysis were compared to determine the optimum method of DNA extraction. The impact of host DNA depletion, sequence run duration, and use of different AMR gene databases was also assessed. To determine clinical value, NS results were compared to standard culture (SC) results. NS identified microbial species in all culture positive samples. Mechanical lysis improved NS detection of cultured species from 60% to 76%, enabled detection of fungal species, and increased AMR predictions. Host DNA depletion improved detection of streptococcal species and AMR correlation with SC. Selection of AMR database influenced the number of AMR hits and resistance profile of 13 antibiotics. AMR prediction using CARD and ResFinder 4.1 correctly predicted 79% and 81% of the bile antibiogram, respectively. Sequence run duration positively correlated with detection of AMR genes. A minimum of 6 h was required to characterize the biliary microbes, resulting in a turnaround time of 14 h. Rapid identification of microbial species and AMR genes can be achieved by NS. NS results correlated with SC, suggesting that NS may be useful in guiding early antimicrobial therapy postsurgery. IMPORTANCE Surgical site infections (SSI) are a significant burden to patients and health care systems. They increase mortality rates, length of hospital stays, and associated health care costs. To reduce the risk of SSI, surgical patients are administered broad-spectrum antibiotics that are later adapted to target microbial species detected at the site of surgical incision. Use of broad-spectrum antibiotics can be harmful to the patient. We wanted to develop a rapid method of detecting microbial species and their antimicrobial resistance phenotypes. We developed a method of detecting microbial species and predicting resistance phenotypes using Nanopore sequencing. Results generated using Nanopore sequencing were similar to current methods of detection but were obtained in a significantly shorter amount of time. This suggests that Nanopore sequencing could be used to tailor antibiotics in surgical patients and reduce use of broad-spectrum antibiotics.
Collapse
Affiliation(s)
- Emma Whittle
- Division of Surgical Research, Department of Surgery, Mayo Clinicgrid.66875.3a, Rochester, Minnesota, USA
| | - Jennifer A. Yonkus
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, Mayo Clinicgrid.66875.3a, Rochester, Minnesota, USA
| | - Patricio Jeraldo
- Division of Surgical Research, Department of Surgery, Mayo Clinicgrid.66875.3a, Rochester, Minnesota, USA
| | - Roberto Alva-Ruiz
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, Mayo Clinicgrid.66875.3a, Rochester, Minnesota, USA
| | - Heidi Nelson
- Division of Research and Optimal Patient Care, Cancer Programs, American College of Surgeonsgrid.417954.a, Chicago, Illinois, USA
| | - Michael L. Kendrick
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, Mayo Clinicgrid.66875.3a, Rochester, Minnesota, USA
| | - Thomas E. Grys
- Department of Laboratory Medicine and Pathology, Mayo Clinicgrid.66875.3a, Phoenix, Arizona, USA
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinicgrid.66875.3a, Rochester, Minnesota, USA
| | - Mark J. Truty
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, Mayo Clinicgrid.66875.3a, Rochester, Minnesota, USA
| | - Nicholas Chia
- Division of Surgical Research, Department of Surgery, Mayo Clinicgrid.66875.3a, Rochester, Minnesota, USA
| |
Collapse
|
38
|
Abstract
Naturally occurring plasmids come in different sizes. The smallest are less than a kilobase of DNA, while the largest can be over three orders of magnitude larger. Historically, research has tended to focus on smaller plasmids that are usually easier to isolate, manipulate and sequence, but with improved genome assemblies made possible by long-read sequencing, there is increased appreciation that very large plasmids—known as megaplasmids—are widespread, diverse, complex, and often encode key traits in the biology of their host microorganisms. Why are megaplasmids so big? What other features come with large plasmid size that could affect bacterial ecology and evolution? Are megaplasmids 'just' big plasmids, or do they have distinct characteristics? In this perspective, we reflect on the distribution, diversity, biology, and gene content of megaplasmids, providing an overview to these large, yet often overlooked, mobile genetic elements. This article is part of the theme issue ‘The secret lives of microbial mobile genetic elements’.
Collapse
Affiliation(s)
- James P J Hall
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - João Botelho
- Antibiotic Resistance Evolution Group, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian Albrechts University, Kiel, Germany
| | - Adrian Cazares
- EMBL's European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK.,Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - David A Baltrus
- School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
39
|
"Answers in hours": A prospective clinical study using nanopore sequencing for bile duct cultures. Surgery 2021; 171:693-702. [PMID: 34973809 DOI: 10.1016/j.surg.2021.09.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/17/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Surgical site infection is a major source of morbidity in patients undergoing pancreatic head resection and is often from organisms in intraoperative bile duct cultures. As such, many institutions use prolonged prophylactic antibiotics and tailor based on bile duct cultures. However, standard cultures take days, leaving many patients unnecessarily on prolonged antibiotics. Nanopore sequencing can provide data in hours and, thus, has the potential to improve antibiotic stewardship. The present study investigates the feasibility of nanopore sequencing in intraoperative bile samples. METHODS Patients undergoing pancreatic head resection were included. Intra-operative bile microbial profiles were determined with standard cultures and nanopore sequencing. Antibiotic recommendations were generated, and time-to-results determined for both methods. Organism yields, resistance patterns, antibiotic recommendations, and costs were compared. RESULTS Out of 42 patients, 22 (52%) had samples resulting in positive standard cultures. All positive standard cultures had microbes detected using nanopore sequencing. All 20 patients with negative standard cultures had negative nanopore sequencing. Nanopore sequencing detected more bacterial species compared to standard cultures (10.5 vs 4.4, p < 0.05) and more resistance genotypes (10.3 vs 2.7, p < 0.05). Antimicrobial recommendations based on nanopore sequencing provided coverage for standard cultures in 27 out of 44 (61%) samples, with broader coverage recommended by nanopore sequencing in 13 out of 27 (48%) of these samples. Nanopore sequencing results were faster (8 vs 98 hours) than standard cultures but had higher associated costs ($165 vs $38.49). CONCLUSION Rapid microbial profiling with nanopore sequencing is feasible with broader organism and resistance profiling compared to standard cultures. Nanopore sequencing has perfect negative predictive value and can potentially improve antibiotic stewardship; thus, a randomized control trial is under development.
Collapse
|
40
|
Schmartz GP, Hartung A, Hirsch P, Kern F, Fehlmann T, Müller R, Keller A. PLSDB: advancing a comprehensive database of bacterial plasmids. Nucleic Acids Res 2021; 50:D273-D278. [PMID: 34850116 PMCID: PMC8728149 DOI: 10.1093/nar/gkab1111] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/24/2022] Open
Abstract
Plasmids are known to contain genes encoding for virulence factors and antibiotic resistance mechanisms. Their relevance in metagenomic data processing is steadily growing. However, with the increasing popularity and scale of metagenomics experiments, the number of reported plasmids is rapidly growing as well, amassing a considerable number of false positives due to undetected misassembles. Here, our previously published database PLSDB provides a reliable resource for researchers to quickly compare their sequences against selected and annotated previous findings. Within two years, the size of this resource has more than doubled from the initial 13,789 to now 34,513 entries over the course of eight regular data updates. For this update, we aggregated community feedback for major changes to the database featuring new analysis functionality as well as performance, quality, and accessibility improvements. New filtering steps, annotations, and preprocessing of existing records improve the quality of the provided data. Additionally, new features implemented in the web-server ease user interaction and allow for a deeper understanding of custom uploaded sequences, by visualizing similarity information. Lastly, an application programming interface was implemented along with a python library, to allow remote database queries in automated workflows. The latest release of PLSDB is freely accessible under https://www.ccb.uni-saarland.de/plsdb.
Collapse
Affiliation(s)
- Georges P Schmartz
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Anna Hartung
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Pascal Hirsch
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany.,Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8 1, 66123 Saarbrücken, Germany
| | - Fabian Kern
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Tobias Fehlmann
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8 1, 66123 Saarbrücken, Germany.,Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany.,Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8 1, 66123 Saarbrücken, Germany
| |
Collapse
|
41
|
Qin J, Zhao Y, Wang A, Chi X, Wen P, Li S, Wu L, Bi S, Xu H. Comparative genomic characterization of multidrug-resistant Citrobacter spp. strains in Fennec fox imported to China. Gut Pathog 2021; 13:59. [PMID: 34645508 PMCID: PMC8513245 DOI: 10.1186/s13099-021-00458-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/06/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND To investigate the antimicrobial profiles and genomic characteristics of MDR-Citrobacter spp. strains isolated from Fennec fox imported from Sudan to China. METHODS Four Citrobacter spp. strains were isolated from stool samples. Individual fresh stool samples were collected and subsequently diluted in phosphate buffered saline as described previously. The diluted fecal samples were plated on MacConkey agar supplemented with 1 mg/l cefotaxime and incubated for 20 h at 37 °C. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS) was used for identification. Antimicrobial susceptibility testing was performed using the broth microdilution method. Whole-genome sequencing was performed on an Illumina Novaseq-6000 platform. Acquired antimicrobial resistance genes and plasmid replicons were detected using ResFinder 4.1 and PlasmidFinder 1.3, respectively. Comparative genomic analysis of 277 Citrobacter genomes was also performed. RESULTS Isolate FF141 was identified as Citrobacter cronae while isolate FF371, isolate FF414, and isolate FF423 were identified as Citrobacter braakii. Of these, three C. braakii isolates were further confirmed to be extended-spectrum β-lactamases (ESBL)-producer. All isolates are all multidrug resistance (MDR) with resistance to multiple antimicrobials. Plasmid of pKPC-CAV1321 belong to incompatibility (Inc) group. Comparative genomics analysis of Citrobacter isolates generated a large core-genome. Genetic diversity was observed in our bacterial collection, which clustered into five main clades. Human, environmental and animal Citrobacter isolates were distributed into five clusters. CONCLUSIONS To our knowledge, this is the first investigation of MDR-Citrobacter from Fennec Fox. Our phenotypic and genomic data further underscore the threat of increased ESBL prevalence in wildlife and emphasize that increased effort should be committed to monitoring the potentially rapid dissemination of ESBL-producers with one health perspective.
Collapse
Affiliation(s)
- Jie Qin
- Emergency Department of Taizhou Hospital, Taizhou, China
| | - Yishu Zhao
- Department of Rheumatology and Immunology, Shandong Provincial Hospital, Jinan, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Aifang Wang
- Department of Laboratory Medicine, Zhucheng People's Hospital, Zhucheng, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaohui Chi
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Peipei Wen
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shuang Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lingjiao Wu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Bi
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hao Xu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
42
|
Hall JPJ, Wright RCT, Harrison E, Muddiman KJ, Wood AJ, Paterson S, Brockhurst MA. Plasmid fitness costs are caused by specific genetic conflicts enabling resolution by compensatory mutation. PLoS Biol 2021; 19:e3001225. [PMID: 34644303 PMCID: PMC8544851 DOI: 10.1371/journal.pbio.3001225] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 10/25/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022] Open
Abstract
Plasmids play an important role in bacterial genome evolution by transferring genes between lineages. Fitness costs associated with plasmid carriage are expected to be a barrier to gene exchange, but the causes of plasmid fitness costs are poorly understood. Single compensatory mutations are often sufficient to completely ameliorate plasmid fitness costs, suggesting that such costs are caused by specific genetic conflicts rather than generic properties of plasmids, such as their size, metabolic burden, or gene expression level. By combining the results of experimental evolution with genetics and transcriptomics, we show here that fitness costs of 2 divergent large plasmids in Pseudomonas fluorescens are caused by inducing maladaptive expression of a chromosomal tailocin toxin operon. Mutations in single genes unrelated to the toxin operon, and located on either the chromosome or the plasmid, ameliorated the disruption associated with plasmid carriage. We identify one of these compensatory loci, the chromosomal gene PFLU4242, as the key mediator of the fitness costs of both plasmids, with the other compensatory loci either reducing expression of this gene or mitigating its deleterious effects by up-regulating a putative plasmid-borne ParAB operon. The chromosomal mobile genetic element Tn6291, which uses plasmids for transmission, remained up-regulated even in compensated strains, suggesting that mobile genetic elements communicate through pathways independent of general physiological disruption. Plasmid fitness costs caused by specific genetic conflicts are unlikely to act as a long-term barrier to horizontal gene transfer (HGT) due to their propensity for amelioration by single compensatory mutations, helping to explain why plasmids are so common in bacterial genomes.
Collapse
Affiliation(s)
- James P. J. Hall
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Rosanna C. T. Wright
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
- Division of Evolution and Genomic Sciences, University of Manchester, Manchester, United Kingdom
| | - Ellie Harrison
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Katie J. Muddiman
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - A. Jamie Wood
- Department of Biology, University of York, York, United Kingdom
- Department of Mathematics, University of York, York, United Kingdom
| | - Steve Paterson
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Michael A. Brockhurst
- Division of Evolution and Genomic Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
43
|
Paganini JA, Plantinga NL, Arredondo-Alonso S, Willems RJL, Schürch AC. Recovering Escherichia coli Plasmids in the Absence of Long-Read Sequencing Data. Microorganisms 2021; 9:1613. [PMID: 34442692 PMCID: PMC8400445 DOI: 10.3390/microorganisms9081613] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
The incidence of infections caused by multidrug-resistant E. coli strains has risen in the past years. Antibiotic resistance in E. coli is often mediated by acquisition and maintenance of plasmids. The study of E. coli plasmid epidemiology and genomics often requires long-read sequencing information, but recently a number of tools that allow plasmid prediction from short-read data have been developed. Here, we reviewed 25 available plasmid prediction tools and categorized them into binary plasmid/chromosome classification tools and plasmid reconstruction tools. We benchmarked six tools (MOB-suite, plasmidSPAdes, gplas, FishingForPlasmids, HyAsP and SCAPP) that aim to reliably reconstruct distinct plasmids, with a special focus on plasmids carrying antibiotic resistance genes (ARGs) such as extended-spectrum beta-lactamase genes. We found that two thirds (n = 425, 66.3%) of all plasmids were correctly reconstructed by at least one of the six tools, with a range of 92 (14.58%) to 317 (50.23%) correctly predicted plasmids. However, the majority of plasmids that carried antibiotic resistance genes (n = 85, 57.8%) could not be completely recovered as distinct plasmids by any of the tools. MOB-suite was the only tool that was able to correctly reconstruct the majority of plasmids (n = 317, 50.23%), and performed best at reconstructing large plasmids (n = 166, 46.37%) and ARG-plasmids (n = 41, 27.9%), but predictions frequently contained chromosome contamination (40%). In contrast, plasmidSPAdes reconstructed the highest fraction of plasmids smaller than 18 kbp (n = 168, 61.54%). Large ARG-plasmids, however, were frequently merged with sequences derived from distinct replicons. Available bioinformatic tools can provide valuable insight into E. coli plasmids, but also have important limitations. This work will serve as a guideline for selecting the most appropriate plasmid reconstruction tool for studies focusing on E. coli plasmids in the absence of long-read sequencing data.
Collapse
Affiliation(s)
- Julian A. Paganini
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (J.A.P.); (N.L.P.); (R.J.L.W.)
| | - Nienke L. Plantinga
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (J.A.P.); (N.L.P.); (R.J.L.W.)
| | - Sergio Arredondo-Alonso
- Department of Biostatistics, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway;
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Rob J. L. Willems
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (J.A.P.); (N.L.P.); (R.J.L.W.)
| | - Anita C. Schürch
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (J.A.P.); (N.L.P.); (R.J.L.W.)
| |
Collapse
|
44
|
Gu Y, Lü Z, Cao C, Sheng H, Li W, Cui S, Li R, Lü X, Yang B. Cunning plasmid fusion mediates antibiotic resistance genes represented by ESBLs encoding genes transfer in foodborne Salmonella. Int J Food Microbiol 2021; 355:109336. [PMID: 34352499 DOI: 10.1016/j.ijfoodmicro.2021.109336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/10/2021] [Accepted: 07/19/2021] [Indexed: 11/17/2022]
Abstract
Foodborne disease caused by antibiotic resistant Salmonella is quite difficult to deal with. In order to further explore the antibiotic resistance associated with gene transfer among foodborne Salmonella, several wild-type Salmonella strains were used as donors and recipients, respectively, to investigate how extended spectrum β-lactamases (ESBLs) encoding genes co-transfer with transposable elements to transmit antibiotic resistance. Antibiotic susceptibility was determined by agar dilution method, the transposase encoding gene was detected via PCR combined with DNA sequencing, S1 nuclease and pulsed field gel electrophoresis (S1-PFGE), and southern-blot. Illumina HiSeq 4000 platform and Nanopore MinION long-read sequencing technology were used to determine the antibiotic resistance encoding genes (ARGs) and their surrounding gene environment. The results indicated that the conjugation frequency was from ×10-4 to ×10-5 per recipient cell. A 185,608-bp-long DNA fragment and two short backbone protein encoding regions in pG19 in the donor fused with part genes in pS3 in the recipient during conjugation, the size of this fusion plasmid is as same as that of pG19. Cefoxitin resistance of the transconjugant was mediated by a tnpA21-related blaDHA-1 transfer. Resistance of Salmonella to ceftriaxone, cefoperazone and ceftiofur was mediated by a tnpU1548 related blaTEM-1B and blaCTX-M-3 transfer. The study indicated that transposase synergy and plasmid selective fusion act as important roles for foodborne Salmonella gathering ARGs. The consistent size of the plasmid before and after fusion suggested the invisibility and complexity of bacterial conjugation without DNA sequencing, the fact reminded us that the rampant transmission of antibiotic-resistance encoding genes would pose tremendous threat to food safety.
Collapse
Affiliation(s)
- Yaxin Gu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Zexun Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Chenyang Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Huanjing Sheng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Wei Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Shenghui Cui
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
45
|
Tay AP, Hosking B, Hosking C, Bauer DC, Wilson LO. INSIDER: alignment-free detection of foreign DNA sequences. Comput Struct Biotechnol J 2021; 19:3810-3816. [PMID: 34285780 PMCID: PMC8273350 DOI: 10.1016/j.csbj.2021.06.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 11/21/2022] Open
Abstract
External DNA sequences can be inserted into an organism's genome either through natural processes such as gene transfer, or through targeted genome engineering strategies. Being able to robustly identify such foreign DNA is a crucial capability for health and biosecurity applications, such as anti-microbial resistance (AMR) detection or monitoring gene drives. This capability does not exist for poorly characterised host genomes or with limited information about the integrated sequence. To address this, we developed the INserted Sequence Information DEtectoR (INSIDER). INSIDER analyses whole genome sequencing data and identifies segments of potentially foreign origin by their significant shift in k-mer signatures. We demonstrate the power of INSIDER to separate integrated DNA sequences from normal genomic sequences on a synthetic dataset simulating the insertion of a CRISPR-Cas gene drive into wild-type yeast. As a proof-of-concept, we use INSIDER to detect the exact AMR plasmid in whole genome sequencing data from a Citrobacter freundii patient isolate. INSIDER streamlines the process of identifying integrated DNA in poorly characterised wild species or when the insert is of unknown origin, thus enhancing the monitoring of emerging biosecurity threats.
Collapse
Affiliation(s)
- Aidan P. Tay
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, New South Wales, Sydney, Australia
- Applied BioSciences, Faculty of Science and Engineering, Macquarie University, New South Wales, Sydney, Australia
| | - Brendan Hosking
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, New South Wales, Sydney, Australia
| | - Cameron Hosking
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, New South Wales, Sydney, Australia
| | - Denis C. Bauer
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, New South Wales, Sydney, Australia
- Department of Biomedical Sciences, Macquarie University, New South Wales, Sydney, Australia
- Applied BioSciences, Faculty of Science and Engineering, Macquarie University, New South Wales, Sydney, Australia
| | - Laurence O.W. Wilson
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, New South Wales, Sydney, Australia
- Applied BioSciences, Faculty of Science and Engineering, Macquarie University, New South Wales, Sydney, Australia
| |
Collapse
|
46
|
Skandalis N, Maeusli M, Papafotis D, Miller S, Lee B, Theologidis I, Luna B. Environmental Spread of Antibiotic Resistance. Antibiotics (Basel) 2021; 10:640. [PMID: 34071771 PMCID: PMC8226744 DOI: 10.3390/antibiotics10060640] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 01/07/2023] Open
Abstract
Antibiotic resistance represents a global health concern. Soil, water, livestock and plant foods are directly or indirectly exposed to antibiotics due to their agricultural use or contamination. This selective pressure has acted synergistically to bacterial competition in nature to breed antibiotic-resistant (AR) bacteria. Research over the past few decades has focused on the emergence of AR pathogens in food products that can cause disease outbreaks and the spread of antibiotic resistance genes (ARGs), but One Health approaches have lately expanded the focus to include commensal bacteria as ARG donors. Despite the attempts of national and international authorities of developed and developing countries to reduce the over-prescription of antibiotics to humans and the use of antibiotics as livestock growth promoters, the selective flow of antibiotic resistance transmission from the environment to the clinic (and vice-versa) is increasing. This review focuses on the mechanisms of ARG transmission and the hotspots of antibiotic contamination resulting in the subsequent emergence of ARGs. It follows the transmission of ARGs from farm to plant and animal food products and provides examples of the impact of ARG flow to clinical settings. Understudied and emerging antibiotic resistance selection determinants, such as heavy metal and biocide contamination, are also discussed here.
Collapse
Affiliation(s)
- Nicholas Skandalis
- Department of Medicine, Keck School of Medicine at USC, Los Angeles, CA 90033, USA; (N.S.); (M.M.)
| | - Marlène Maeusli
- Department of Medicine, Keck School of Medicine at USC, Los Angeles, CA 90033, USA; (N.S.); (M.M.)
- Department of Molecular Microbiology and Immunology, Keck School of Medicine at USC, 1441 Eastlake Ave, NTT 6419, Los Angeles, CA 90033, USA; (S.M.); (B.L.)
| | - Dimitris Papafotis
- Department of Biology, National and Kapodistrian University of Athens, 157 72 Athens, Greece; (D.P.); (I.T.)
| | - Sarah Miller
- Department of Molecular Microbiology and Immunology, Keck School of Medicine at USC, 1441 Eastlake Ave, NTT 6419, Los Angeles, CA 90033, USA; (S.M.); (B.L.)
| | - Bosul Lee
- Department of Molecular Microbiology and Immunology, Keck School of Medicine at USC, 1441 Eastlake Ave, NTT 6419, Los Angeles, CA 90033, USA; (S.M.); (B.L.)
| | - Ioannis Theologidis
- Department of Biology, National and Kapodistrian University of Athens, 157 72 Athens, Greece; (D.P.); (I.T.)
| | - Brian Luna
- Department of Molecular Microbiology and Immunology, Keck School of Medicine at USC, 1441 Eastlake Ave, NTT 6419, Los Angeles, CA 90033, USA; (S.M.); (B.L.)
| |
Collapse
|
47
|
Borelli TC, Lovate GL, Scaranello AFT, Ribeiro LF, Zaramela L, Pereira-dos-Santos FM, Silva-Rocha R, Guazzaroni ME. Combining Functional Genomics and Whole-Genome Sequencing to Detect Antibiotic Resistance Genes in Bacterial Strains Co-Occurring Simultaneously in a Brazilian Hospital. Antibiotics (Basel) 2021; 10:antibiotics10040419. [PMID: 33920372 PMCID: PMC8070361 DOI: 10.3390/antibiotics10040419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 01/01/2023] Open
Abstract
(1) Background: The rise of multi-antibiotic resistant bacteria represents an emergent threat to human health. Here, we investigate antibiotic resistance mechanisms in bacteria of several species isolated from an intensive care unit in Brazil. (2) Methods: We used whole-genome analysis to identify antibiotic resistance genes (ARGs) and plasmids in 34 strains of Gram-negative and Gram-positive bacteria, providing the first genomic description of Morganella morganii and Ralstonia mannitolilytica clinical isolates from South America. (3) Results: We identified a high abundance of beta-lactamase genes in resistant organisms, including seven extended-spectrum beta-lactamases (OXA-1, OXA-10, CTX-M-1, KPC, TEM, HYDRO, BLP) shared between organisms from different species. Additionally, we identified several ARG-carrying plasmids indicating the potential for a fast transmission of resistance mechanism between bacterial strains. Furthermore, we uncovered two pairs of (near) identical plasmids exhibiting multi-drug resistance. Finally, since many highly resistant strains carry several different ARGs, we used functional genomics to investigate which of them were indeed functional. In this sense, for three bacterial strains (Escherichia coli, Klebsiella pneumoniae, and M. morganii), we identified six beta-lactamase genes out of 15 predicted in silico as those mainly responsible for the resistance mechanisms observed, corroborating the existence of redundant resistance mechanisms in these organisms. (4) Conclusions: Systematic studies similar to the one presented here should help to prevent outbreaks of novel multidrug-resistant bacteria in healthcare facilities.
Collapse
Affiliation(s)
- Tiago Cabral Borelli
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-901, Brazil; (T.C.B.); (G.L.L.); (A.F.T.S.); (L.F.R.)
| | - Gabriel Lencioni Lovate
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-901, Brazil; (T.C.B.); (G.L.L.); (A.F.T.S.); (L.F.R.)
| | - Ana Flavia Tonelli Scaranello
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-901, Brazil; (T.C.B.); (G.L.L.); (A.F.T.S.); (L.F.R.)
| | - Lucas Ferreira Ribeiro
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-901, Brazil; (T.C.B.); (G.L.L.); (A.F.T.S.); (L.F.R.)
| | - Livia Zaramela
- Department of Pediatrics, University of California San Diego, San Diego, CA 92161, USA;
| | - Felipe Marcelo Pereira-dos-Santos
- Department of Cell and Molecular Biology, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900, Brazil; (F.M.P.-d.-S.); (R.S.-R.)
| | - Rafael Silva-Rocha
- Department of Cell and Molecular Biology, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900, Brazil; (F.M.P.-d.-S.); (R.S.-R.)
| | - María-Eugenia Guazzaroni
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-901, Brazil; (T.C.B.); (G.L.L.); (A.F.T.S.); (L.F.R.)
- Correspondence:
| |
Collapse
|
48
|
Kamathewatta K, Bushell R, Rafa F, Browning G, Billman-Jacobe H, Marenda M. Colonization of a hand washing sink in a veterinary hospital by an Enterobacter hormaechei strain carrying multiple resistances to high importance antimicrobials. Antimicrob Resist Infect Control 2020; 9:163. [PMID: 33087168 PMCID: PMC7580002 DOI: 10.1186/s13756-020-00828-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/15/2020] [Indexed: 12/27/2022] Open
Abstract
Background Hospital intensive care units (ICUs) are known reservoirs of multidrug resistant nosocomial bacteria. Targeted environmental monitoring of these organisms in health care facilities can strengthen infection control procedures. A routine surveillance of extended spectrum beta-lactamase (ESBL) producers in a large Australian veterinary teaching hospital detected the opportunistic pathogen Enterobacter hormaechei in a hand washing sink of the ICU. The organism persisted for several weeks, despite two disinfection attempts. Four isolates were characterized in this study. Methods Brilliance-ESBL selective plates were inoculated from environmental swabs collected throughout the hospital. Presumptive identification was done by conventional biochemistry. Genomes of multidrug resistant Enterobacter were entirely sequenced with Illumina and Nanopore platforms. Phylogenetic markers, mobile genetic elements and antimicrobial resistance genes were identified in silico. Antibiograms of isolates and transconjugants were established with Sensititre microdilution plates. Results The isolates possessed a chromosomal Tn7-associated silver/copper resistance locus and a large IncH12 conjugative plasmid encoding resistance against tellurium, arsenic, mercury and nine classes of antimicrobials. Clusters of antimicrobial resistance genes were associated with class 1 integrons and IS26, IS903 and ISCR transposable elements. The blaSHV-12, qnrB2 and mcr-9.1 genes, respectively conferring resistance to cephalosporins, quinolones and colistin, were present in a locus flanked by two IS903 copies. ESBL production and enrofloxacin resistance were confirmed phenotypically. The isolates appeared susceptible to colistin, possibly reflecting the inducible nature of mcr-9.1. Conclusions The persistence of this strain in the veterinary hospital represented a risk of further accumulation and dissemination of antimicrobial resistance, prompting a thorough disinfection of the ICU. The organism was not recovered from subsequent environmental swabs, and nosocomial Enterobacter infections were not observed in the hospital during that period. This study shows that targeted routine environmental surveillance programs to track organisms with major resistance phenotypes, coupled with disinfection procedures and follow-up microbiological cultures are useful to control these risks in sensitive areas of large veterinary hospitals.
Collapse
Affiliation(s)
- Kanishka Kamathewatta
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, 3030, Australia
| | - Rhys Bushell
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, 3030, Australia
| | - Fannana Rafa
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Glenn Browning
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Helen Billman-Jacobe
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Marc Marenda
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, 3030, Australia.
| |
Collapse
|