1
|
Zhang J, Yu D, Zhang L, Wang T, Zhang L, Wang L, Liu A, Yan J. The effects of polycyclic aromatic hydrocarbons on ecological assembly processes and co-occurrence patterns differ between soil bacterial and fungal communities. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136716. [PMID: 39642719 DOI: 10.1016/j.jhazmat.2024.136716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/23/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are hazardous organic pollutants prevalent in soil ecosystems. Bacteria and fungi play important roles in the degradation of PAHs in the soils. However, little is known about the differences between the bacterial and fungal community assemblies in PAH-contaminated soils. In this study, soil bacterial and fungal community distributions were investigated in maize farmlands and roadside barelands around nine coking plants in Shanxi, China. Most of the soil samples were severely polluted with PAHs. A clear microbial biogeographic pattern was observed. Bacterial communities are primarily affected by environmental factors, whereas fungal communities are primarily affected by spatial factors. Null modeling showed that homogeneous selection (deterministic processes) and dispersal limitation (stochastic processes) dominated the bacterial and fungal community assemblages, respectively. PAH concentrations were closely linked to community assembly processes, and influenced microbial co-occurrence by mediating specific network modules. Overall, the effects of PAHs on bacterial community assembly and co-occurrence relationships were greater than those on fungal communities. Some microbial taxa associated with PAH degradation can be considered potential biomarkers that reflect the degree of PAH pollution. These results expand the understanding of the mechanisms underlying the assembly and maintenance of soil microbial communities in response to PAH contamination.
Collapse
Affiliation(s)
- Jun Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030600, Shanxi, China; Shanxi Key Laboratory of Forensic Medicine, Jinzhong 030600, Shanxi, China
| | - Daijing Yu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030600, Shanxi, China; Shanxi Key Laboratory of Forensic Medicine, Jinzhong 030600, Shanxi, China
| | - Liwei Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030600, Shanxi, China; Shanxi Key Laboratory of Forensic Medicine, Jinzhong 030600, Shanxi, China
| | - Tian Wang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030600, Shanxi, China; Shanxi Key Laboratory of Forensic Medicine, Jinzhong 030600, Shanxi, China
| | - Liuyaoxing Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030600, Shanxi, China; Shanxi Key Laboratory of Forensic Medicine, Jinzhong 030600, Shanxi, China
| | - Lei Wang
- Key laboratory of Mineral Resources and Ecological Environment Monitoring, Hebei Research Center for Geoanalysis, Baoding 071051, Hebei, China
| | - Aiqin Liu
- Key laboratory of Mineral Resources and Ecological Environment Monitoring, Hebei Research Center for Geoanalysis, Baoding 071051, Hebei, China
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030600, Shanxi, China; Shanxi Key Laboratory of Forensic Medicine, Jinzhong 030600, Shanxi, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Jinzhong 030600, Shanxi, China.
| |
Collapse
|
2
|
Zulfiqar M, Singh V, Steinbeck C, Sorokina M. Review on computer-assisted biosynthetic capacities elucidation to assess metabolic interactions and communication within microbial communities. Crit Rev Microbiol 2024; 50:1053-1092. [PMID: 38270170 DOI: 10.1080/1040841x.2024.2306465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 11/17/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
Microbial communities thrive through interactions and communication, which are challenging to study as most microorganisms are not cultivable. To address this challenge, researchers focus on the extracellular space where communication events occur. Exometabolomics and interactome analysis provide insights into the molecules involved in communication and the dynamics of their interactions. Advances in sequencing technologies and computational methods enable the reconstruction of taxonomic and functional profiles of microbial communities using high-throughput multi-omics data. Network-based approaches, including community flux balance analysis, aim to model molecular interactions within and between communities. Despite these advances, challenges remain in computer-assisted biosynthetic capacities elucidation, requiring continued innovation and collaboration among diverse scientists. This review provides insights into the current state and future directions of computer-assisted biosynthetic capacities elucidation in studying microbial communities.
Collapse
Affiliation(s)
- Mahnoor Zulfiqar
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Vinay Singh
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University, Jena, Germany
| | - Christoph Steinbeck
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Maria Sorokina
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University, Jena, Germany
- Data Science and Artificial Intelligence, Research and Development, Pharmaceuticals, Bayer, Berlin, Germany
| |
Collapse
|
3
|
Berruto CA, Demirer GS. Engineering agricultural soil microbiomes and predicting plant phenotypes. Trends Microbiol 2024; 32:858-873. [PMID: 38429182 DOI: 10.1016/j.tim.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 03/03/2024]
Abstract
Plant growth-promoting rhizobacteria (PGPR) can improve crop yields, nutrient use efficiency, plant tolerance to stressors, and confer benefits to future generations of crops grown in the same soil. Unlocking the potential of microbial communities in the rhizosphere and endosphere is therefore of great interest for sustainable agriculture advancements. Before plant microbiomes can be engineered to confer desirable phenotypic effects on their plant hosts, a deeper understanding of the interacting factors influencing rhizosphere community structure and function is needed. Dealing with this complexity is becoming more feasible using computational approaches. In this review, we discuss recent advances at the intersection of experimental and computational strategies for the investigation of plant-microbiome interactions and the engineering of desirable soil microbiomes.
Collapse
Affiliation(s)
- Chiara A Berruto
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Gozde S Demirer
- Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
4
|
Fang M, Lu G, Zhang S, Liang W. Overgrazing on unmanaged grassland interfered with the restoration of adjacent grazing-banned grassland by affecting soil properties and microbial community. Front Microbiol 2024; 14:1327056. [PMID: 38239733 PMCID: PMC10794652 DOI: 10.3389/fmicb.2023.1327056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/29/2023] [Indexed: 01/22/2024] Open
Abstract
A "grazing ban" policy has been implemented in some pastoral areas in China to fence degraded grasslands for restoration. However, fencing increased grazing pressures in unmanaged grasslands. Based on the mechanism of negative edge effect, we investigated whether overgrazing on unmanaged grassland interfered with the restoration of adjacent grazing-banned grassland by affecting soil properties and microbial community using a sample in Hulun Buir of Inner Mongolia, in order to optimize the "grazing ban" policy. Plant and soil were sampled in areas 30 m away from the fence in unmanaged grassland (UM) and in areas 30 m (adjacent to UM) and 30-60 m (not adjacent to UM) away from the fence in the grazing-banned grassland (F-30 m and F-60 m). The species richness and diversity of plant communities and the ASV number of fungal communities significantly decreased in F-30 m and UM, and the Simpson index of the bacterial community significantly decreased in F-30 m compared with F-60 m. The abundance of fungi involved in soil organic matter decomposition significantly decreased and the abundance of stress-resistant bacteria significantly increased, while the abundance of bacteria involved in litter decomposition significantly decreased in UM and F-30 m compared with F-60 m. The simplification of plant communities decreased in soil water and total organic carbon contents can explain the variations of soil microbial communities in both UM and F-30 m compared with F-60 m. The results of PLS-PM show that changes in plant community and soil microbial function guilds in UM may affect those in F-30 m by changing soil water and total organic carbon contents. These results indicate that overgrazing on unmanaged grassland interfered with the restoration of adjacent grazing-banned grassland by affecting soil properties and microbial community. The grazing-banned grasslands should be adjusted periodically in order to avoid negative edge effects.
Collapse
Affiliation(s)
- Mengchao Fang
- College of Life and Environment Science, Minzu University of China, Beijing, China
| | - Guang Lu
- College of Life and Environment Science, Minzu University of China, Beijing, China
| | - Shuping Zhang
- College of Life and Environment Science, Minzu University of China, Beijing, China
| | - Wei Liang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| |
Collapse
|
5
|
Jansson JK, McClure R, Egbert RG. Soil microbiome engineering for sustainability in a changing environment. Nat Biotechnol 2023; 41:1716-1728. [PMID: 37903921 DOI: 10.1038/s41587-023-01932-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/01/2023] [Indexed: 11/01/2023]
Abstract
Recent advances in microbial ecology and synthetic biology have the potential to mitigate damage caused by anthropogenic activities that are deleteriously impacting Earth's soil ecosystems. Here, we discuss challenges and opportunities for harnessing natural and synthetic soil microbial communities, focusing on plant growth promotion under different scenarios. We explore current needs for microbial solutions in soil ecosystems, how these solutions are being developed and applied, and the potential for new biotechnology breakthroughs to tailor and target microbial products for specific applications. We highlight several scientific and technological advances in soil microbiome engineering, including characterization of microbes that impact soil ecosystems, directing how microbes assemble to interact in soil environments, and the developing suite of gene-engineering approaches. This Review underscores the need for an interdisciplinary approach to understand the composition, dynamics and deployment of beneficial soil microbiomes to drive efforts to mitigate or reverse environmental damage by restoring and protecting healthy soil ecosystems.
Collapse
Affiliation(s)
- Janet K Jansson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Ryan McClure
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Robert G Egbert
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
6
|
Timofeeva AM, Galyamova MR, Sedykh SE. Plant Growth-Promoting Bacteria of Soil: Designing of Consortia Beneficial for Crop Production. Microorganisms 2023; 11:2864. [PMID: 38138008 PMCID: PMC10745983 DOI: 10.3390/microorganisms11122864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023] Open
Abstract
Plant growth-promoting bacteria are commonly used in agriculture, particularly for seed inoculation. Multispecies consortia are believed to be the most promising form of these bacteria. However, designing and modeling bacterial consortia to achieve desired phenotypic outcomes in plants is challenging. This review aims to address this challenge by exploring key antimicrobial interactions. Special attention is given to approaches for developing soil plant growth-promoting bacteria consortia. Additionally, advanced omics-based methods are analyzed that allow soil microbiomes to be characterized, providing an understanding of the molecular and functional aspects of these microbial communities. A comprehensive discussion explores the utilization of bacterial preparations in biofertilizers for agricultural applications, focusing on the intricate design of synthetic bacterial consortia with these preparations. Overall, the review provides valuable insights and strategies for intentionally designing bacterial consortia to enhance plant growth and development.
Collapse
Affiliation(s)
- Anna M. Timofeeva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia;
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Maria R. Galyamova
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Sergey E. Sedykh
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia;
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| |
Collapse
|
7
|
Wu R, Davison MR, Nelson WC, Smith ML, Lipton MS, Jansson JK, McClure RS, McDermott JE, Hofmockel KS. Hi-C metagenome sequencing reveals soil phage-host interactions. Nat Commun 2023; 14:7666. [PMID: 37996432 PMCID: PMC10667309 DOI: 10.1038/s41467-023-42967-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023] Open
Abstract
Bacteriophages are abundant in soils. However, the majority are uncharacterized, and their hosts are unknown. Here, we apply high-throughput chromosome conformation capture (Hi-C) to directly capture phage-host relationships. Some hosts have high centralities in bacterial community co-occurrence networks, suggesting phage infections have an important impact on the soil bacterial community interactions. We observe increased average viral copies per host (VPH) and decreased viral transcriptional activity following a two-week soil-drying incubation, indicating an increase in lysogenic infections. Soil drying also alters the observed phage host range. A significant negative correlation between VPH and host abundance prior to drying indicates more lytic infections result in more host death and inversely influence host abundance. This study provides empirical evidence of phage-mediated bacterial population dynamics in soil by directly capturing specific phage-host interactions.
Collapse
Affiliation(s)
- Ruonan Wu
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Michelle R Davison
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - William C Nelson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Montana L Smith
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Mary S Lipton
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Janet K Jansson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ryan S McClure
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jason E McDermott
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Kirsten S Hofmockel
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
- Department of Agronomy, Iowa State University, Ames, IA, USA.
| |
Collapse
|
8
|
Wang J, Fu Z, Liu F, Qiao H, Bi Y. Effects of substrate improvement on winter nitrogen removal in riparian reed (Phragmites australis) wetlands: rhizospheric crosstalk between plants and microbes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:95931-95944. [PMID: 37561302 DOI: 10.1007/s11356-023-29181-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 08/01/2023] [Indexed: 08/11/2023]
Abstract
With continued anthropogenic inputs of nitrogen (N) into the environment, non-point source N pollutants produced in winter cannot be ignored. As the water-soil interface zones, riparian wetlands play important roles in intercepting and buffering N pollutants. However, winter has the antagonistic effect on the N removal. Substrate improvement has been suggested as a strategy to optimize wetland performance and there remain many uncertainties about the inner mechanism. This study explores the effects of substrate improvement on N removal in winter and rhizospheric crosstalk between reed (Phragmites australis) and microbes in subtropical riparian reed wetlands. The rates of wetland N removal in winter, root metabolite profiles, and rhizosphere soil microbial community compositions were determined following the addition of different substrates (gravel, gravel + biochar, ceramsite + biochar, and modified ceramsite + biochar) to natural riparian soil. The results showed that the addition of different substrates to initial soil enhanced N removal from the microcosms in winter. Gravel addition increased NH4+-N removal by 8.3% (P < 0.05). Gravel + biochar addition increased both TN and NH4+-N removals by 8.9% (P < 0.05). The root metabolite characteristics and microbial community compositions showed some variations under different substrate additions compared to the initial soil. The three treatments involving biochar addition decreased lipid metabolites and enhanced the contents and variety of carbon sources in rhizosphere soil, while modified ceramsite + biochar addition treatment had a greater impact on the microbial community structure. There was evidence for a complex crosstalk between plants and microbes in the rhizosphere, and some rhizosphere metabolites were seen to be significantly correlated with the bacterial composition of the rhizospheric microbial community. These results highlighted the importance of rhizospheric crosstalk in regulating winter N removal in riparian reed wetland, provided a scientific reference for the protection and restoration of riparian reed areas and the prevention and control of non-point source pollution.
Collapse
Affiliation(s)
- Junli Wang
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
- Shanghai Engineering Research Centre of Low-Carbon Agriculture (SERCLA), Shanghai, 201415, People's Republic of China
| | - Zishi Fu
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
- Shanghai Engineering Research Centre of Low-Carbon Agriculture (SERCLA), Shanghai, 201415, People's Republic of China
| | - Fuxing Liu
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China.
- Shanghai Engineering Research Centre of Low-Carbon Agriculture (SERCLA), Shanghai, 201415, People's Republic of China.
| | - Hongxia Qiao
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
- Shanghai Engineering Research Centre of Low-Carbon Agriculture (SERCLA), Shanghai, 201415, People's Republic of China
| | - Yucui Bi
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
- Shanghai Engineering Research Centre of Low-Carbon Agriculture (SERCLA), Shanghai, 201415, People's Republic of China
| |
Collapse
|
9
|
Zhu K, Jia W, Mei Y, Wu S, Huang P. Shift from flooding to drying enhances the respiration of soil aggregates by changing microbial community composition and keystone taxa. Front Microbiol 2023; 14:1167353. [PMID: 37250047 PMCID: PMC10214030 DOI: 10.3389/fmicb.2023.1167353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/19/2023] [Indexed: 05/31/2023] Open
Abstract
Changes in the water regime are among the crucial factors controlling soil carbon dynamics. However, at the aggregate scale, the microbial mechanisms that regulate soil respiration under flooding and drying conditions are obscure. In this research, we investigated how the shift from flooding to drying changes the microbial respiration of soil aggregates by affecting microbial community composition and their co-occurrence patterns. Soils collected from a riparian zone of the Three Gorges Reservoir, China, were subjected to a wet-and-dry incubation experiment. Our data illustrated that the shift from flooding to drying substantially enhanced soil respiration for all sizes of aggregate fractions. Moreover, soil respiration declined with aggregate size in both flooding and drying treatments. The keystone taxa in bacterial networks were found to be Acidobacteriales, Gemmatimonadales, Anaerolineales, and Cytophagales during the flooding treatment, and Rhizobiales, Gemmatimonadales, Sphingomonadales, and Solirubrobacterales during the drying treatment. For fungal networks, Hypocreales and Agaricalesin were the keystone taxa in the flooding and drying treatments, respectively. Furthermore, the shift from flooding to drying enhanced the microbial respiration of soil aggregates by changing keystone taxa. Notably, fungal community composition and network properties dominated the changes in the microbial respiration of soil aggregates during the shift from flooding to drying. Thus, our study highlighted that the shift from flooding to drying changes keystone taxa, hence increasing aggregate-scale soil respiration.
Collapse
|
10
|
Abstract
Soil viruses are highly abundant and have important roles in the regulation of host dynamics and soil ecology. Climate change is resulting in unprecedented changes to soil ecosystems and the life forms that reside there, including viruses. In this Review, we explore our current understanding of soil viral diversity and ecology, and we discuss how climate change (such as extended and extreme drought events or more flooding and altered precipitation patterns) is influencing soil viruses. Finally, we provide our perspective on future research needs to better understand how climate change will impact soil viral ecology.
Collapse
Affiliation(s)
- Janet K Jansson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Ruonan Wu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
11
|
McClure R, Farris Y, Danczak R, Nelson W, Song HS, Kessell A, Lee JY, Couvillion S, Henry C, Jansson JK, Hofmockel KS. Interaction Networks Are Driven by Community-Responsive Phenotypes in a Chitin-Degrading Consortium of Soil Microbes. mSystems 2022; 7:e0037222. [PMID: 36154140 PMCID: PMC9599572 DOI: 10.1128/msystems.00372-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/24/2022] [Indexed: 12/24/2022] Open
Abstract
Soil microorganisms provide key ecological functions that often rely on metabolic interactions between individual populations of the soil microbiome. To better understand these interactions and community processes, we used chitin, a major carbon and nitrogen source in soil, as a test substrate to investigate microbial interactions during its decomposition. Chitin was applied to a model soil consortium that we developed, "model soil consortium-2" (MSC-2), consisting of eight members of diverse phyla and including both chitin degraders and nondegraders. A multiomics approach revealed how MSC-2 community-level processes during chitin decomposition differ from monocultures of the constituent species. Emergent properties of both species and the community were found, including changes in the chitin degradation potential of Streptomyces species and organization of all species into distinct roles in the chitin degradation process. The members of MSC-2 were further evaluated via metatranscriptomics and community metabolomics. Intriguingly, the most abundant members of MSC-2 were not those that were able to metabolize chitin itself, but rather those that were able to take full advantage of interspecies interactions to grow on chitin decomposition products. Using a model soil consortium greatly increased our knowledge of how carbon is decomposed and metabolized in a community setting, showing that niche size, rather than species metabolic capacity, can drive success and that certain species become active carbon degraders only in the context of their surrounding community. These conclusions fill important knowledge gaps that are key to our understanding of community interactions that support carbon and nitrogen cycling in soil. IMPORTANCE The soil microbiome performs many functions that are key to ecology, agriculture, and nutrient cycling. However, because of the complexity of this ecosystem we do not know the molecular details of the interactions between microbial species that lead to these important functions. Here, we use a representative but simplified model community of bacteria to understand the details of these interactions. We show that certain species act as primary degraders of carbon sources and that the most successful species are likely those that can take the most advantage of breakdown products, not necessarily the primary degraders. We also show that a species phenotype, including whether it is a primary degrader or not, is driven in large part by the membership of the community it resides in. These conclusions are critical to a better understanding of the soil microbial interaction network and how these interactions drive central soil microbiome functions.
Collapse
Affiliation(s)
- Ryan McClure
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Yuliya Farris
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Robert Danczak
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - William Nelson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Hyun-Seob Song
- Department of Biological Systems Engineering, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
- Department of Food Science and Technology, Nebraska Food for Health Center, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| | - Aimee Kessell
- Department of Biological Systems Engineering, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| | - Joon-Yong Lee
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Sneha Couvillion
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Christopher Henry
- Data Science and Learning Division, Argonne National Laboratory, Lemont, Illinois, USA
| | - Janet K. Jansson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Kirsten S. Hofmockel
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
- Department of Agronomy, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
12
|
Soil Metabolomics Predict Microbial Taxa as Biomarkers of Moisture Status in Soils from a Tidal Wetland. Microorganisms 2022; 10:microorganisms10081653. [PMID: 36014071 PMCID: PMC9416152 DOI: 10.3390/microorganisms10081653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
We present observations from a laboratory-controlled study on the impacts of extreme wetting and drying on a wetland soil microbiome. Our approach was to experimentally challenge the soil microbiome to understand impacts on anaerobic carbon cycling processes as the system transitions from dryness to saturation and vice-versa. Specifically, we tested for impacts on stress responses related to shifts from wet to drought conditions. We used a combination of high-resolution data for small organic chemical compounds (metabolites) and biological (community structure based on 16S rRNA gene sequencing) features. Using a robust correlation-independent data approach, we further tested the predictive power of soil metabolites for the presence or absence of taxa. Here, we demonstrate that taking an untargeted, multidimensional data approach to the interpretation of metabolomics has the potential to indicate the causative pathways selecting for the observed bacterial community structure in soils.
Collapse
|
13
|
Lee JY, Mitchell HD, Burnet MC, Wu R, Jenson SC, Merkley ED, Nakayasu ES, Nicora CD, Jansson JK, Burnum-Johnson KE, Payne SH. Uncovering Hidden Members and Functions of the Soil Microbiome Using De Novo Metaproteomics. J Proteome Res 2022; 21:2023-2035. [PMID: 35793793 PMCID: PMC9361346 DOI: 10.1021/acs.jproteome.2c00334] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
![]()
Metaproteomics has
been increasingly utilized for high-throughput
characterization of proteins in complex environments and has been
demonstrated to provide insights into microbial composition and functional
roles. However, significant challenges remain in metaproteomic data
analysis, including creation of a sample-specific protein sequence
database. A well-matched database is a requirement for successful
metaproteomics analysis, and the accuracy and sensitivity of PSM identification
algorithms suffer when the database is incomplete or contains extraneous
sequences. When matched DNA sequencing data of the sample is unavailable
or incomplete, creating the proteome database that accurately represents
the organisms in the sample is a challenge. Here, we leverage a de novo peptide sequencing approach to identify the sample
composition directly from metaproteomic data. First, we created a
deep learning model, Kaiko, to predict the peptide sequences from
mass spectrometry data and trained it on 5 million peptide–spectrum
matches from 55 phylogenetically diverse bacteria. After training,
Kaiko successfully identified organisms from soil isolates and synthetic
communities directly from proteomics data. Finally, we created a pipeline
for metaproteome database generation using Kaiko. We tested the pipeline
on native soils collected in Kansas, showing that the de novo sequencing model can be employed as an alternative and complementary
method to construct the sample-specific protein database instead of
relying on (un)matched metagenomes. Our pipeline identified all highly
abundant taxa from 16S rRNA sequencing of the soil samples and uncovered
several additional species which were strongly represented only in
proteomic data.
Collapse
Affiliation(s)
- Joon-Yong Lee
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Hugh D Mitchell
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Meagan C Burnet
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Ruonan Wu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Sarah C Jenson
- Signature Sciences and Technology Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Eric D Merkley
- Signature Sciences and Technology Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Ernesto S Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Janet K Jansson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Kristin E Burnum-Johnson
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Samuel H Payne
- Biology Department, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
14
|
Sarkar S, Kamke A, Ward K, Rudick AK, Baer SG, Ran Q, Feehan B, Thapa S, Anderson L, Galliart M, Jumpponen A, Johnson L, Lee STM. Bacterial but Not Fungal Rhizosphere Community Composition Differ among Perennial Grass Ecotypes under Abiotic Environmental Stress. Microbiol Spectr 2022; 10:e0239121. [PMID: 35442065 PMCID: PMC9241903 DOI: 10.1128/spectrum.02391-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/01/2022] [Indexed: 11/20/2022] Open
Abstract
Environmental change, especially frequent droughts, is predicted to detrimentally impact the North American perennial grasslands. Consistent dry spells will affect plant communities as well as their associated rhizobiomes, possibly altering the plant host performance under environmental stress. Therefore, there is a need to understand the impact of drought on the rhizobiome, and how the rhizobiome may modulate host performance and ameliorate its response to drought stress. In this study, we analyzed bacterial and fungal communities in the rhizospheres of three ecotypes (dry, mesic, and wet) of dominant prairie grass, Andropogon gerardii. The ecotypes were established in 2010 in a common garden design and grown for a decade under persistent dry conditions at the arid margin of the species' range in Colby, Kansas. The experiment aimed to answer whether and to what extent do the different ecotypes maintain or recruit distinct rhizobiomes after 10 years in an arid climate. In order to answer this question, we screened the bacterial and fungal rhizobiome profiles of the ecotypes under the arid conditions of western Kansas as a surrogate for future climate environmental stress using 16S rRNA and ITS2 metabarcoding sequencing. Under these conditions, bacterial communities differed compositionally among the A. gerardii ecotypes, whereas the fungal communities did not. The ecotypes were instrumental in driving the differences among bacterial rhizobiomes, as the ecotypes maintained distinct bacterial rhizobiomes even after 10 years at the edge of the host species range. This study will aid us to optimize plant productivity through the use of different ecotypes under future abiotic environmental stress, especially drought. IMPORTANCE In this study, we used a 10-year long reciprocal garden system, and reports that different ecotypes (dry, mesic, and wet) of dominant prairie grass, Andropogon gerardii can maintain or recruit distinct bacterial but not fungal rhizobiomes after 10 years in an arid environment. We used both 16S rRNA and ITS2 amplicons to analyze the bacterial and fungal communities in the rhizospheres of the respective ecotypes. We showed that A. gerardii might regulate the bacterial community to adapt to the arid environment, in which some ecotypes were not adapted to. Our study also suggested a possible tradeoff between the generalist and the specialist bacterial communities in specific environments, which could benefit the plant host. Our study will provide insights into the plant host regulation of the rhizosphere bacterial and fungal communities, especially during frequent drought conditions anticipated in the future.
Collapse
Affiliation(s)
- Soumyadev Sarkar
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Abigail Kamke
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Kaitlyn Ward
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Aoesta K. Rudick
- Kansas Biological Survey & Center for Ecological Research, University of Kansas, Lawrence, Kansas, USA
| | - Sara G. Baer
- Kansas Biological Survey & Center for Ecological Research, University of Kansas, Lawrence, Kansas, USA
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, USA
| | - QingHong Ran
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Brandi Feehan
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Shiva Thapa
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Lauren Anderson
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Matthew Galliart
- Department of Biological Sciences, Fort Hays State University, Hays, Kansas, USA
| | - Ari Jumpponen
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Loretta Johnson
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Sonny T. M. Lee
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
15
|
Silva I, Alves M, Malheiro C, Silva ARR, Loureiro S, Henriques I, González-Alcaraz MN. Short-Term Responses of Soil Microbial Communities to Changes in Air Temperature, Soil Moisture and UV Radiation. Genes (Basel) 2022; 13:genes13050850. [PMID: 35627235 PMCID: PMC9142034 DOI: 10.3390/genes13050850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/04/2022] [Accepted: 05/07/2022] [Indexed: 01/31/2023] Open
Abstract
We analyzed the effects on a soil microbial community of short-term alterations in air temperature, soil moisture and ultraviolet radiation and assessed the role of invertebrates (species Enchytraeus crypticus) in modulating the community’s response to these factors. The reference soil, Lufa 2.2, was incubated for 48 h, with and without invertebrates, under the following conditions: standard (20 °C + 50% water holding capacity (WHC)); increased air temperature (15–25 °C or 20–30 °C + 50% WHC); flood (20 °C + 75% WHC); drought (20 °C + 25% WHC); and ultraviolet radiation (UV) (20 °C + 50% WHC + UV). BIOLOG EcoPlates and 16S rDNA sequencing (Illumina) were used to assess the microbial community’s physiological profile and the bacterial community’s structure, respectively. The bacterial abundance (estimated by 16S rDNA qPCR) did not change. Most of the conditions led to an increase in microbial activity and a decrease in diversity. The structure of the bacterial community was particularly affected by higher air temperatures (20–30 °C, without E. crypticus) and floods (with E. crypticus). Effects were observed at the class, genera and OTU levels. The presence of invertebrates mostly resulted in the attenuation of the observed effects, highlighting the importance of considering microbiome–invertebrate interactions. Considering future climate changes, the effects described here raise concern. This study provides fundamental knowledge to develop effective strategies to mitigate these negative outcomes. However, long-term studies integrating biotic and abiotic factors are needed.
Collapse
Affiliation(s)
- Isabel Silva
- CEF (Center for Functional Ecology), Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456 Coimbra, Portugal;
- CESAM (Centre for Marine and Environmental Studies), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (C.M.); (A.R.R.S.); (S.L.)
| | - Marta Alves
- CBQF—Center for Biotechnology and Fine Chemistry, School of Biotechnology, Portuguese Catholic University, 4169-005 Porto, Portugal;
| | - Catarina Malheiro
- CESAM (Centre for Marine and Environmental Studies), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (C.M.); (A.R.R.S.); (S.L.)
| | - Ana Rita R. Silva
- CESAM (Centre for Marine and Environmental Studies), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (C.M.); (A.R.R.S.); (S.L.)
| | - Susana Loureiro
- CESAM (Centre for Marine and Environmental Studies), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (C.M.); (A.R.R.S.); (S.L.)
| | - Isabel Henriques
- CEF (Center for Functional Ecology), Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456 Coimbra, Portugal;
- Correspondence: (I.H.); (M.N.G.-A.)
| | - M. Nazaret González-Alcaraz
- Department of Agricultural Engineering of the E.T.S.I.A. & Soil Ecology and Biotechnology Unit of the Institute of Plant Biotechnology, Technical University of Cartagena, 30203 Cartagena, Spain
- Correspondence: (I.H.); (M.N.G.-A.)
| |
Collapse
|
16
|
Smercina D, Zambare N, Hofmockel K, Sadler N, Bredeweg EL, Nicora C, Markillie LM, Aufrecht J. Synthetic Soil Aggregates: Bioprinted Habitats for High-Throughput Microbial Metaphenomics. Microorganisms 2022; 10:microorganisms10050944. [PMID: 35630387 PMCID: PMC9146112 DOI: 10.3390/microorganisms10050944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
The dynamics of microbial processes are difficult to study in natural soil, owing to the small spatial scales on which microorganisms operate and to the opacity and chemical complexity of the soil habitat. To circumvent these challenges, we have created a 3D-bioprinted habitat that mimics aspects of natural soil aggregates while providing a chemically defined and translucent alternative culturing method for soil microorganisms. Our Synthetic Soil Aggregates (SSAs) retain the porosity, permeability, and patchy resource distribution of natural soil aggregates—parameters that are expected to influence emergent microbial community interactions. We demonstrate the printability and viability of several different microorganisms within SSAs and show how the SSAs can be integrated into a multi-omics workflow for single SSA resolution genomics, metabolomics, proteomics, lipidomics, and biogeochemical assays. We study the impact of the structured habitat on the distribution of a model co-culture microbial community and find that it is significantly different from the spatial organization of the same community in liquid culture, indicating a potential for SSAs to reproduce naturally occurring emergent community phenotypes. The SSAs have the potential as a tool to help researchers quantify microbial scale processes in situ and achieve high-resolution data from the interplay between environmental properties and microbial ecology.
Collapse
|
17
|
Beale DJ, Jones OA, Bose U, Broadbent JA, Walsh TK, van de Kamp J, Bissett A. Omics-based ecosurveillance for the assessment of ecosystem function, health, and resilience. Emerg Top Life Sci 2022; 6:185-199. [PMID: 35403668 PMCID: PMC9023019 DOI: 10.1042/etls20210261] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 12/15/2022]
Abstract
Current environmental monitoring efforts often focus on known, regulated contaminants ignoring the potential effects of unmeasured compounds and/or environmental factors. These specific, targeted approaches lack broader environmental information and understanding, hindering effective environmental management and policy. Switching to comprehensive, untargeted monitoring of contaminants, organism health, and environmental factors, such as nutrients, temperature, and pH, would provide more effective monitoring with a likely concomitant increase in environmental health. However, even this method would not capture subtle biochemical changes in organisms induced by chronic toxicant exposure. Ecosurveillance is the systematic collection, analysis, and interpretation of ecosystem health-related data that can address this knowledge gap and provide much-needed additional lines of evidence to environmental monitoring programs. Its use would therefore be of great benefit to environmental management and assessment. Unfortunately, the science of 'ecosurveillance', especially omics-based ecosurveillance is not well known. Here, we give an overview of this emerging area and show how it has been beneficially applied in a range of systems. We anticipate this review to be a starting point for further efforts to improve environmental monitoring via the integration of comprehensive chemical assessments and molecular biology-based approaches. Bringing multiple levels of omics technology-based assessment together into a systems-wide ecosurveillance approach will bring a greater understanding of the environment, particularly the microbial communities upon which we ultimately rely to remediate perturbed ecosystems.
Collapse
Affiliation(s)
- David J. Beale
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park QLD 4102, Australia
| | - Oliver A.H. Jones
- Australian Centre for Research on Separation Science (ACROSS), School of Science, RMIT University, Bundoora West Campus, PO Box 71, Bundoora, VIC 3083, Australia
| | - Utpal Bose
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Queensland Bioscience Precinct, St Lucia, QLD 4067, Australia
| | - James A. Broadbent
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Queensland Bioscience Precinct, St Lucia, QLD 4067, Australia
| | - Thomas K. Walsh
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT 2601, Australia
| | - Jodie van de Kamp
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Battery Point, TAS 7004, Australia
| | - Andrew Bissett
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Battery Point, TAS 7004, Australia
| |
Collapse
|
18
|
Evans S, Allison S, Hawkes C. Microbes, memory, and moisture: predicting microbial moisture responses and their impact on carbon cycling. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sarah Evans
- W.K. Kellogg Biological Station, Ecology and Evolutionary Biology Program Department of Integrative Biology Michigan State University Hickory Corners MI 49083 USA
| | - Steve Allison
- Department of Ecology and Evolutionary Biology Department of Earth System Science University of California Irvine California 92697 USA
| | - Christine Hawkes
- Department of Plant and Microbial Biology North Carolina State University Raleigh NC 27607 USA
| |
Collapse
|
19
|
Stengel A, Stanke KM, Quattrone AC, Herr JR. Improving Taxonomic Delimitation of Fungal Species in the Age of Genomics and Phenomics. Front Microbiol 2022; 13:847067. [PMID: 35250961 PMCID: PMC8892103 DOI: 10.3389/fmicb.2022.847067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 01/28/2022] [Indexed: 01/04/2023] Open
Abstract
Species concepts have long provided a source of debate among biologists. These lively debates have been important for reaching consensus on how to communicate across scientific disciplines and for advancing innovative strategies to study evolution, population biology, ecology, natural history, and disease epidemiology. Species concepts are also important for evaluating variability and diversity among communities, understanding biogeographical distributions, and identifying causal agents of disease across animal and plant hosts. While there have been many attempts to address the concept of species in the fungi, there are several concepts that have made taxonomic delimitation especially challenging. In this review we discuss these major challenges and describe methodological approaches that show promise for resolving ambiguity in fungal taxonomy by improving discrimination of genetic and functional traits. We highlight the relevance of eco-evolutionary theory used in conjunction with integrative taxonomy approaches to improve the understanding of interactions between environment, ecology, and evolution that give rise to distinct species boundaries. Beyond recent advances in genomic and phenomic methods, bioinformatics tools and modeling approaches enable researchers to test hypothesis and expand our knowledge of fungal biodiversity. Looking to the future, the pairing of integrative taxonomy approaches with multi-locus genomic sequencing and phenomic techniques, such as transcriptomics and proteomics, holds great potential to resolve many unknowns in fungal taxonomic classification.
Collapse
Affiliation(s)
- Ashley Stengel
- Complex Biosystems Interdisciplinary Life Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Kimberly M. Stanke
- Complex Biosystems Interdisciplinary Life Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Amanda C. Quattrone
- Complex Biosystems Interdisciplinary Life Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Joshua R. Herr
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, United States
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
20
|
DNA Viral Diversity, Abundance, and Functional Potential Vary across Grassland Soils with a Range of Historical Moisture Regimes. mBio 2021; 12:e0259521. [PMID: 34724822 PMCID: PMC8567247 DOI: 10.1128/mbio.02595-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Soil viruses are abundant, but the influence of the environment and climate on soil viruses remains poorly understood. Here, we addressed this gap by comparing the diversity, abundance, lifestyle, and metabolic potential of DNA viruses in three grassland soils with historical differences in average annual precipitation, low in eastern Washington (WA), high in Iowa (IA), and intermediate in Kansas (KS). Bioinformatics analyses were applied to identify a total of 2,631 viral contigs, including 14 complete viral genomes from three deep metagenomes (1 terabase [Tb] each) that were sequenced from bulk soil DNA. An additional three replicate metagenomes (∼0.5 Tb each) were obtained from each location for statistical comparisons. Identified viruses were primarily bacteriophages targeting dominant bacterial taxa. Both viral and host diversity were higher in soil with lower precipitation. Viral abundance was also significantly higher in the arid WA location than in IA and KS. More lysogenic markers and fewer clustered regularly interspaced short palindromic repeats (CRISPR) spacer hits were found in WA, reflecting more lysogeny in historically drier soil. More putative auxiliary metabolic genes (AMGs) were also detected in WA than in the historically wetter locations. The AMGs occurring in 18 pathways could potentially contribute to carbon metabolism and energy acquisition in their hosts. Structural equation modeling (SEM) suggested that historical precipitation influenced viral life cycle and selection of AMGs. The observed and predicted relationships between soil viruses and various biotic and abiotic variables have value for predicting viral responses to environmental change.
Collapse
|
21
|
Wu R, Davison MR, Gao Y, Nicora CD, Mcdermott JE, Burnum-Johnson KE, Hofmockel KS, Jansson JK. Moisture modulates soil reservoirs of active DNA and RNA viruses. Commun Biol 2021; 4:992. [PMID: 34446837 PMCID: PMC8390657 DOI: 10.1038/s42003-021-02514-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 07/18/2021] [Indexed: 02/07/2023] Open
Abstract
Soil is known to harbor viruses, but the majority are uncharacterized and their responses to environmental changes are unknown. Here, we used a multi-omics approach (metagenomics, metatranscriptomics and metaproteomics) to detect active DNA viruses and RNA viruses in a native prairie soil and to determine their responses to extremes in soil moisture. The majority of transcribed DNA viruses were bacteriophage, but some were assigned to eukaryotic hosts, mainly insects. We also demonstrated that higher soil moisture increased transcription of a subset of DNA viruses. Metaproteome data validated that the specific viral transcripts were translated into proteins, including chaperonins known to be essential for virion replication and assembly. The soil viral chaperonins were phylogenetically distinct from previously described marine viral chaperonins. The soil also had a high abundance of RNA viruses, with highest representation of Reoviridae. Leviviridae were the most diverse RNA viruses in the samples, with higher amounts in wet soil. This study demonstrates that extreme shifts in soil moisture have dramatic impacts on the composition, activity and potential functions of both DNA and RNA soil viruses.
Collapse
Affiliation(s)
- Ruonan Wu
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Michelle R Davison
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Yuqian Gao
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Carrie D Nicora
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jason E Mcdermott
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kristin E Burnum-Johnson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kirsten S Hofmockel
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
- Department of Agronomy, Iowa State University, Ames, IA, USA
| | - Janet K Jansson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
| |
Collapse
|
22
|
Qiu L, Zhang Q, Zhu H, Reich PB, Banerjee S, van der Heijden MGA, Sadowsky MJ, Ishii S, Jia X, Shao M, Liu B, Jiao H, Li H, Wei X. Erosion reduces soil microbial diversity, network complexity and multifunctionality. THE ISME JOURNAL 2021; 15:2474-2489. [PMID: 33712698 PMCID: PMC8319411 DOI: 10.1038/s41396-021-00913-1] [Citation(s) in RCA: 209] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 01/18/2021] [Accepted: 01/25/2021] [Indexed: 01/31/2023]
Abstract
While soil erosion drives land degradation, the impact of erosion on soil microbial communities and multiple soil functions remains unclear. This hinders our ability to assess the true impact of erosion on soil ecosystem services and our ability to restore eroded environments. Here we examined the effect of erosion on microbial communities at two sites with contrasting soil texture and climates. Eroded plots had lower microbial network complexity, fewer microbial taxa, and fewer associations among microbial taxa, relative to non-eroded plots. Soil erosion also shifted microbial community composition, with decreased relative abundances of dominant phyla such as Proteobacteria, Bacteroidetes, and Gemmatimonadetes. In contrast, erosion led to an increase in the relative abundances of some bacterial families involved in N cycling, such as Acetobacteraceae and Beijerinckiaceae. Changes in microbiota characteristics were strongly related with erosion-induced changes in soil multifunctionality. Together, these results demonstrate that soil erosion has a significant negative impact on soil microbial diversity and functionality.
Collapse
Affiliation(s)
- Liping Qiu
- grid.144022.10000 0004 1760 4150State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi China ,CAS Center for Excellence in Quaternary Science and Global Change, Xi’an, Shaanxi China ,grid.144022.10000 0004 1760 4150College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi China
| | - Qian Zhang
- grid.17635.360000000419368657BioTechnology Institute, University of Minnesota, St. Paul, MN USA ,grid.12955.3a0000 0001 2264 7233College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Hansong Zhu
- grid.144022.10000 0004 1760 4150State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi China ,grid.144022.10000 0004 1760 4150College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi China
| | - Peter B. Reich
- grid.17635.360000000419368657Department of Forest Resources, University of Minnesota, St. Paul, MN USA ,grid.1029.a0000 0000 9939 5719Hawkesbury Institute for the Environment, Western Sydney University, Penrith South DC, NSW Australia
| | - Samiran Banerjee
- grid.261055.50000 0001 2293 4611Department of Microbiological Sciences, North Dakota State University, Fargo, ND USA
| | - Marcel G. A. van der Heijden
- grid.417771.30000 0004 4681 910XAgroscope, Department of Agroecology & Environment, Zürich, Switzerland ,grid.7400.30000 0004 1937 0650Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| | - Michael J. Sadowsky
- grid.17635.360000000419368657BioTechnology Institute, University of Minnesota, St. Paul, MN USA ,grid.17635.360000000419368657Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN USA
| | - Satoshi Ishii
- grid.17635.360000000419368657BioTechnology Institute, University of Minnesota, St. Paul, MN USA ,grid.17635.360000000419368657Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN USA
| | - Xiaoxu Jia
- grid.144022.10000 0004 1760 4150State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi China ,grid.9227.e0000000119573309Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Mingan Shao
- grid.144022.10000 0004 1760 4150State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi China ,grid.9227.e0000000119573309Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Baoyuan Liu
- grid.144022.10000 0004 1760 4150State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi China
| | - Huan Jiao
- grid.144022.10000 0004 1760 4150State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi China ,grid.144022.10000 0004 1760 4150College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi China
| | - Haiqiang Li
- grid.144022.10000 0004 1760 4150State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi China ,grid.144022.10000 0004 1760 4150College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi China
| | - Xiaorong Wei
- grid.144022.10000 0004 1760 4150State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi China ,CAS Center for Excellence in Quaternary Science and Global Change, Xi’an, Shaanxi China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
23
|
Decrypting bacterial polyphenol metabolism in an anoxic wetland soil. Nat Commun 2021; 12:2466. [PMID: 33927199 PMCID: PMC8084988 DOI: 10.1038/s41467-021-22765-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 03/17/2021] [Indexed: 02/02/2023] Open
Abstract
Microorganisms play vital roles in modulating organic matter decomposition and nutrient cycling in soil ecosystems. The enzyme latch paradigm posits microbial degradation of polyphenols is hindered in anoxic peat leading to polyphenol accumulation, and consequently diminished microbial activity. This model assumes that polyphenols are microbially unavailable under anoxia, a supposition that has not been thoroughly investigated in any soil type. Here, we use anoxic soil reactors amended with and without a chemically defined polyphenol to test this hypothesis, employing metabolomics and genome-resolved metaproteomics to interrogate soil microbial polyphenol metabolism. Challenging the idea that polyphenols are not bioavailable under anoxia, we provide metabolite evidence that polyphenols are depolymerized, resulting in monomer accumulation, followed by the generation of small phenolic degradation products. Further, we show that soil microbiome function is maintained, and possibly enhanced, with polyphenol addition. In summary, this study provides chemical and enzymatic evidence that some soil microbiota can degrade polyphenols under anoxia and subvert the assumed polyphenol lock on soil microbial metabolism.
Collapse
|
24
|
Saw NMMT, Suwanchaikasem P, Zuniga-Montanez R, Qiu G, Marzinelli EM, Wuertz S, Williams RBH. Influence of Extraction Solvent on Nontargeted Metabolomics Analysis of Enrichment Reactor Cultures Performing Enhanced Biological Phosphorus Removal (EBPR). Metabolites 2021; 11:269. [PMID: 33925970 PMCID: PMC8145293 DOI: 10.3390/metabo11050269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 12/23/2022] Open
Abstract
Metabolome profiling is becoming more commonly used in the study of complex microbial communities and microbiomes; however, to date, little information is available concerning appropriate extraction procedures. We studied the influence of different extraction solvent mixtures on untargeted metabolomics analysis of two continuous culture enrichment communities performing enhanced biological phosphate removal (EBPR), with each enrichment targeting distinct populations of polyphosphate-accumulating organisms (PAOs). We employed one non-polar solvent and up to four polar solvents for extracting metabolites from biomass. In one of the reactor microbial communities, we surveyed both intracellular and extracellular metabolites using the same set of solvents. All samples were analysed using ultra-performance liquid chromatography mass spectrometry (UPLC-MS). UPLC-MS data obtained from polar and non-polar solvents were analysed separately and evaluated using extent of repeatability, overall extraction capacity and the extent of differential abundance between physiological states. Despite both reactors demonstrating the same bioprocess phenotype, the most appropriate extraction method was biomass specific, with methanol: water (50:50 v/v) and methanol: chloroform: water (40:40:20 v/v) being chosen as the most appropriate for each of the two different bioreactors, respectively. Our approach provides new data on the influence of solvent choice on the untargeted surveys of the metabolome of PAO enriched EBPR communities and suggests that metabolome extraction methods need to be carefully tailored to the specific complex microbial community under study.
Collapse
Affiliation(s)
- Nay Min Min Thaw Saw
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; (N.M.M.T.S.); (R.Z.-M.); (G.Q.); (E.M.M.); (S.W.)
| | - Pipob Suwanchaikasem
- Singapore Phenome Centre, Nanyang Technological University, Singapore 636921, Singapore;
| | - Rogelio Zuniga-Montanez
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; (N.M.M.T.S.); (R.Z.-M.); (G.Q.); (E.M.M.); (S.W.)
- Department of Civil and Environmental Engineering, One Shields Avenue, University of California, Davis, CA 95616, USA
| | - Guanglei Qiu
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; (N.M.M.T.S.); (R.Z.-M.); (G.Q.); (E.M.M.); (S.W.)
| | - Ezequiel M. Marzinelli
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; (N.M.M.T.S.); (R.Z.-M.); (G.Q.); (E.M.M.); (S.W.)
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; (N.M.M.T.S.); (R.Z.-M.); (G.Q.); (E.M.M.); (S.W.)
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Rohan B. H. Williams
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore 117456, Singapore
| |
Collapse
|
25
|
McClure R, Naylor D, Farris Y, Davison M, Fansler SJ, Hofmockel KS, Jansson JK. Development and Analysis of a Stable, Reduced Complexity Model Soil Microbiome. Front Microbiol 2020; 11:1987. [PMID: 32983014 PMCID: PMC7479069 DOI: 10.3389/fmicb.2020.01987] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
The soil microbiome is central to the cycling of carbon and other nutrients and to the promotion of plant growth. Despite its importance, analysis of the soil microbiome is difficult due to its sheer complexity, with thousands of interacting species. Here, we reduced this complexity by developing model soil microbial consortia that are simpler and more amenable to experimental analysis but still represent important microbial functions of the native soil ecosystem. Samples were collected from an arid grassland soil and microbial communities (consisting mainly of bacterial species) were enriched on agar plates containing chitin as the main carbon source. Chitin was chosen because it is an abundant carbon and nitrogen polymer in soil that often requires the coordinated action of several microorganisms for complete metabolic degradation. Several soil consortia were derived that had tractable richness (30–50 OTUs) with diverse phyla representative of the native soil, including Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria, and Verrucomicrobia. The resulting consortia could be stored as glycerol or lyophilized stocks at −80°C and revived while retaining community composition, greatly increasing their use as tools for the research community at large. One of the consortia that was particularly stable was chosen as a model soil consortium (MSC-1) for further analysis. MSC-1 species interactions were studied using both pairwise co-cultivation in liquid media and during growth in soil under several perturbations. Co-abundance analyses highlighted interspecies interactions and helped to define keystone species, including Mycobacterium, Rhodococcus, and Rhizobiales taxa. These experiments demonstrate the success of an approach based on naturally enriching a community of interacting species that can be stored, revived, and shared. The knowledge gained from querying these communities and their interactions will enable better understanding of the soil microbiome and the roles these interactions play in this environment.
Collapse
Affiliation(s)
- Ryan McClure
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Dan Naylor
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Yuliya Farris
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Michelle Davison
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Sarah J Fansler
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Kirsten S Hofmockel
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States.,Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, United States
| | - Janet K Jansson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| |
Collapse
|
26
|
Canarini A, Wanek W, Watzka M, Sandén T, Spiegel H, Šantrůček J, Schnecker J. Quantifying microbial growth and carbon use efficiency in dry soil environments via 18 O water vapor equilibration. GLOBAL CHANGE BIOLOGY 2020; 26:5333-5341. [PMID: 32472728 PMCID: PMC7497233 DOI: 10.1111/gcb.15168] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/29/2020] [Indexed: 05/10/2023]
Abstract
Soil microbial physiology controls large fluxes of C to the atmosphere, thus, improving our ability to accurately quantify microbial physiology in soil is essential. However, current methods to determine microbial C metabolism require liquid water addition, which makes it practically impossible to measure microbial physiology in dry soil samples without stimulating microbial growth and respiration (namely, the "Birch effect"). We developed a new method based on in vivo 18 O-water vapor equilibration to minimize soil rewetting effects. This method allows the isotopic labeling of soil water without direct liquid water addition. This was compared to the main current method (direct 18 O-liquid water addition) in moist and air-dry soils. We determined the time kinetics and calculated the average 18 O enrichment of soil water over incubation time, which is necessary to calculate microbial growth from 18 O incorporation in genomic DNA. We tested isotopic equilibration patterns in three natural and six artificially constructed soils covering a wide range of soil texture and soil organic matter content. We then measured microbial growth, respiration and carbon use efficiency (CUE) in three natural soils (either air-dry or moist). The proposed 18 O-vapor equilibration method provided similar results as the current method of liquid 18 O-water addition when used for moist soils. However, when applied to air-dry soils the liquid 18 O-water addition method overestimated growth by up to 250%, respiration by up to 500%, and underestimated CUE by up to 40%. We finally describe the new insights into biogeochemical cycling of C that the new method can help uncover, and we consider a range of questions regarding microbial physiology and its response to global change that can now be addressed.
Collapse
Affiliation(s)
- Alberto Canarini
- Terrestrial Ecosystem ResearchCentre for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaAustria
| | - Wolfgang Wanek
- Terrestrial Ecosystem ResearchCentre for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaAustria
| | - Margarete Watzka
- Terrestrial Ecosystem ResearchCentre for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaAustria
| | - Taru Sandén
- Department for Soil Health and Plant NutritionAustrian Agency for Health and Food SafetyViennaAustria
| | - Heide Spiegel
- Department for Soil Health and Plant NutritionAustrian Agency for Health and Food SafetyViennaAustria
| | - Jiří Šantrůček
- Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
| | - Jörg Schnecker
- Terrestrial Ecosystem ResearchCentre for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaAustria
| |
Collapse
|
27
|
Maurya S, Abraham JS, Somasundaram S, Toteja R, Gupta R, Makhija S. Indicators for assessment of soil quality: a mini-review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:604. [PMID: 32857216 DOI: 10.1007/s10661-020-08556-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/16/2020] [Indexed: 05/20/2023]
Abstract
Soil quality is the competence of soil to perform necessary functions that are able to maintain animal and plant productivity of the soil. Soil consists of various physical, chemical, and biological parameters, and all these parameters are involved in the critical functioning of soil. There is a need for continuous assessment of soil quality as soil is a complex and dynamic constituent of Earth's biosphere that is continuously changing by natural and anthropogenic disturbances. Any perturbations in the soil cause disturbances in the physical (soil texture, bulk density, etc.), chemical (pH, salinity, organic carbon, etc.), and biological (microbes and enzymes) parameters. These physical, chemical, and biological parameters can serve as indicators for soil quality assessment. However, soil quality assessment cannot be possible by evaluating only one parameter out of physical, chemical, or biological. So, there is an emergent need to establish a minimum dataset (MDS) which shall include physical, chemical, and biological parameters to assess the quality of the given soil. This review attempts to describe various physical, chemical, and biological parameters, combinations of which can be used in the establishment of MDS.
Collapse
Affiliation(s)
- Swati Maurya
- Department of Zoology, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi, 110019, India
| | - Jeeva Susan Abraham
- Department of Zoology, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi, 110019, India
| | - Sripoorna Somasundaram
- Department of Zoology, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi, 110019, India
| | - Ravi Toteja
- Department of Zoology, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi, 110019, India
| | - Renu Gupta
- Department of Zoology, Maitreyi College, University of Delhi, Bapu dham, Chanakyapuri, New Delhi, 110021, India
| | - Seema Makhija
- Department of Zoology, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi, 110019, India.
| |
Collapse
|
28
|
Integrated network modeling approach defines key metabolic responses of soil microbiomes to perturbations. Sci Rep 2020; 10:10882. [PMID: 32616808 PMCID: PMC7331712 DOI: 10.1038/s41598-020-67878-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/21/2020] [Indexed: 11/16/2022] Open
Abstract
The soil environment is constantly changing due to shifts in soil moisture, nutrient availability and other conditions. To contend with these changes, soil microorganisms have evolved a variety of ways to adapt to environmental perturbations, including regulation of gene expression. However, it is challenging to untangle the complex phenotypic response of the soil to environmental change, partly due to the absence of predictive modeling frameworks that can mechanistically link molecular-level changes in soil microorganisms to a community’s functional phenotypes (or metaphenome). Towards filling this gap, we performed a combined analysis of metabolic and gene co-expression networks to explore how the soil microbiome responded to changes in soil moisture and nutrient conditions and to determine which genes were expressed under a given condition. Our integrated modeling approach revealed previously unknown, but critically important aspects of the soil microbiomes’ response to environmental perturbations. Incorporation of metabolomic and transcriptomic data into metabolic reaction networks identified condition-specific signature genes that are uniquely associated with dry, wet, and glycine-amended conditions. A subsequent gene co-expression network analysis revealed that drought-associated genes occupied more central positions in a network model of the soil community, compared to the genes associated with wet, and glycine-amended conditions. These results indicate the occurrence of system-wide metabolic coordination when soil microbiomes cope with moisture or nutrient perturbations. Importantly, the approach that we demonstrate here to analyze large-scale multi-omics data from a natural soil environment is applicable to other microbiome systems for which multi-omics data are available.
Collapse
|
29
|
|