1
|
Faitova T, Coelho M, Da Cunha-Bang C, Ozturk S, Kartal E, Bork P, Seiffert M, Niemann CU. The diversity of the microbiome impacts chronic lymphocytic leukemia development in mice and humans. Haematologica 2024; 109:3237-3250. [PMID: 38721725 PMCID: PMC11443378 DOI: 10.3324/haematol.2023.284693] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/30/2024] [Indexed: 10/02/2024] Open
Abstract
The gut microbiota plays a critical role in maintaining a healthy human body and its dysregulation is associated with various diseases. In this study, we investigated the influence of gut microbiome diversity on the development of chronic lymphocytic leukemia (CLL). Analysis of stool samples from 59 CLL patients revealed individual and heterogeneous microbiome compositions, but allowed for grouping of patients according to their microbiome diversity. Interestingly, CLL patients with lower microbiome diversity and an enrichment of bacteria linked to poor health suffered from a more advanced or aggressive form of CLL. In the Eµ-TCL1 mouse model of CLL, we observed a faster course of disease when mice were housed in high hygiene conditions. Shotgun DNA sequencing of fecal samples showed that this was associated with a lower microbiome diversity which was dominated by Mucispirillum and Parabacteroides genera in comparison to mice kept under lower hygiene conditions. In conclusion, we applied taxonomic microbiome analyses to demonstrate a link between gut microbiome diversity and the clinical course of CLL in humans, as well as the development of CLL in mice. Our novel data serve as a basis for further investigations to decipher the pathological and mechanistic role of intestinal microbiota in CLL development.
Collapse
Affiliation(s)
| | - Mariana Coelho
- Department of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Biosciences of the University of Heidelberg, Heidelberg
| | | | - Selcen Ozturk
- Department of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg
| | - Ece Kartal
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany; Department of Bioinformatics, Biocenter, University of Wurzburg, Wurzburg, Germany; Yonsei Frontier Lab (YFL), Yonsei University, Seoul, South Korea; Max Delbruck Center for Molecular Medicine, Berlin
| | - Martina Seiffert
- Department of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg. m.seiffert@dkfzheidelberg
| | - Carsten U Niemann
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen.
| |
Collapse
|
2
|
Abedi Elkhichi P, Aslanimehr M, Javadi A, Yadegar A. Immunomodulatory effects of live and UV-killed Bacillus subtilis natto on inflammatory response in human colorectal adenocarcinoma cell line in vitro. IRANIAN JOURNAL OF MICROBIOLOGY 2024; 16:434-442. [PMID: 39267934 PMCID: PMC11389770 DOI: 10.18502/ijm.v16i4.16301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Background and Objectives Colorectal cancer (CRC) is a heterogeneous disease of the colon or rectum arising from adenoma precursors and serrated polyps. Recently, probiotics have been proposed as an effective and potential therapeutic approach for CRC prevention and treatment. Probiotics have been shown to alleviate inflammation by restoring the integrity of the mucosal barrier and impeding cancer progression. Materials and Methods In this study, we aimed to investigate the immunomodulatory effects of live and UV-killed Bacillus subtilis natto on the inflammatory response in CRC. Caco-2 cells were exposed to various concentrations of live and UV- killed B. subtilis natto, and cell viability was assessed using MTT assay. Gene expression analysis of IL-10, TGF-β, TLR2 and TLR4 was performed using RT-qPCR. Results Our findings showed that both live and UV-killed B. subtilis natto caused significant reduction in inflammatory response by decreasing the gene expression of TLR2 and TLR4, and enhancing the gene expression of IL-10 and TGF-β in Caco-2 cells as compared to control group. Conclusion The results of this study suggest that live and UV-killed B. subtilis natto may hold potential as a therapeutic supplement for modulating inflammation in CRC.
Collapse
Affiliation(s)
- Parisa Abedi Elkhichi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Masoumeh Aslanimehr
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Amir Javadi
- Department of Statistics, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Gobert AP, Finley J, Asim M, Barry DP, Allaman MM, Hawkins CV, Williams KJ, Delagado AG, Mirmira RG, Zhao S, Piazuelo MB, Washington MK, Coburn LA, Wilson KT. Analysis of the effect of hypusination in myeloid cells on colitis and colitis-associated cancer. Heliyon 2024; 10:e33838. [PMID: 39027559 PMCID: PMC11255582 DOI: 10.1016/j.heliyon.2024.e33838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024] Open
Abstract
Hypusine is an amino acid synthesized by the enzyme deoxyhypusine synthase (DHPS). It is critical for the activity of eukaryotic translation initiation factor 5A (EIF5A). We reported that hypusination i) in macrophages supports the innate response towards pathogenic bacteria and ii) in epithelial cells maintains intestinal homeostasis. Herein, we investigated the effect of myeloid hypusination on the outcome of colitis and colitis-associated cancer. We found that patients with Crohn's disease exhibit increased levels of DHPS and EIF5AHyp in cells infiltrating the colon lamina propria. However, the specific deletion of Dhps in myeloid cells had no impact on clinical, histological, or inflammatory parameters in mice treated with dextran sulfate sodium (DSS). Further, tumorigenesis and level of dysplasia were not affected by myeloid deletion of Dhps in the azoxymethane-DSS model. The composition of the fecal and the mucosa-associated microbiome was similar in animals lacking or not DHPS in myeloid cells. Thus, hypusination in myeloid cells does not regulate colitis associated with epithelial injury and colitis-associated cancer. Enhancement of the DHPS/hypusine pathway in patients with inflammatory bowel disease could have therapeutic impact through epithelial effects, but modulation of hypusination in myeloid cells will be unlikely to affect the disease.
Collapse
Affiliation(s)
- Alain P. Gobert
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Program in Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Jordan Finley
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Mohammad Asim
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Daniel P. Barry
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Margaret M. Allaman
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Caroline V. Hawkins
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Kamery J. Williams
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Alberto G. Delagado
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Raghavendra G. Mirmira
- Kovler Diabetes Center, Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Shilin Zhao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - M. Blanca Piazuelo
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - M. Kay Washington
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Lori A. Coburn
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Program in Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, 37232, USA
| | - Keith T. Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Program in Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, 37232, USA
| |
Collapse
|
4
|
Wu H, Ma W, Wang Y, Wang Y, Sun X, Zheng Q. Gut microbiome-metabolites axis: A friend or foe to colorectal cancer progression. Biomed Pharmacother 2024; 173:116410. [PMID: 38460373 DOI: 10.1016/j.biopha.2024.116410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024] Open
Abstract
An expanding corpus of research robustly substantiates the complex interrelation between gut microbiota and the onset, progression, and metastasis of colorectal cancer. Investigations in both animal models and human subjects have consistently underscored the role of gut bacteria in a variety of metabolic activities, driven by dietary intake. These activities include amino acid metabolism, carbohydrate fermentation, and the generation and regulation of bile acids. These metabolic derivatives, in turn, have been identified as significant contributors to the progression of colorectal cancer. This thorough review meticulously explores the dynamic interaction between gut bacteria and metabolites derived from the breakdown of amino acids, fatty acid metabolism, and bile acid synthesis. Notably, bile acids have been recognized for their potential carcinogenic properties, which may expedite tumor development. Extensive research has revealed a reciprocal influence of gut microbiota on the intricate spectrum of colorectal cancer pathologies. Furthermore, strategies to modulate gut microbiota, such as dietary modifications or probiotic supplementation, may offer promising avenues for both the prevention and adjunctive treatment of colorectal cancer. Nevertheless, additional research is imperative to corroborate these findings and enhance our comprehension of the underlying mechanisms in colorectal cancer development.
Collapse
Affiliation(s)
- Hao Wu
- Department of Immunology, Basic Medicine College, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China
| | - Wenmeng Ma
- Department of Immunology, Basic Medicine College, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China
| | - Yiyao Wang
- Department of Immunology, Basic Medicine College, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China
| | - Yuanyuan Wang
- Department of anesthesiology, The Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning Province, PR China
| | - Xun Sun
- Department of Immunology, Basic Medicine College, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China.
| | - Qianqian Zheng
- Department of Pathophysiology, Basic Medicine College, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China.
| |
Collapse
|
5
|
Yang Y, He Y, Yang X, Qiao Y, Yi G, Fan W, Liu H, Tong M. Effect of Trichinella spiralis-Derived Antigens on Nonalcoholic Fatty Liver Disease Induced by High-Fat Diet in Mice. ACS Pharmacol Transl Sci 2024; 7:432-444. [PMID: 38357280 PMCID: PMC10863434 DOI: 10.1021/acsptsci.3c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 02/16/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a liver disease characterized by hepatic steatosis, inflammation, and fibrosis, as well as gut dysbiosis. No approved effective therapeutic medicine is available to date for NAFLD. Helminth therapy is believed to be a novel direction and therapeutic strategy for NAFLD. Our previous study showed that Trichinella spiralis-derived antigens (TsAg) had the potential for partially alleviating obesity via regulating gut microbiota. However, the effect of TsAg on NAFLD remains unclear. In this study, high-fat diet (HFD)-induced model mice were treated with TsAg and microbiota transplantation experiments, and alterations in the pathogenesis of nonalcoholic liver disease were assessed. The results showed that TsAg markedly reduced hepatic steatosis, improved insulin resistance, and regulated the abnormal expression of hepatic lipid-related genes. Of note, TsAg ameliorated hepatic inflammation by decreasing pro-inflammatory TNF-α and IL-1β, suppressing hepatic macrophage infiltration, as well as promoting M2 macrophage polarization. Moreover, TsAg reversed gut dysbiosis, as especially indicated by an increase in beneficial bacteria (e.g., Akkermansiaceae and Rikenellaceae). Furthermore, our study found that TsAg reduced LPS hepatic translocation and hepatic TLR4/NF-κB signaling, which further contributed to inhibiting hepatic inflammation. In addition, TsAg inhibited hepatic oxidative stress involving Nrf2/NQO-1 signaling. Microbiota transplantation showed that TsAg-altered microbiota is sufficient to confer protection against NAFLD in HFD-induced mice. Overall, these findings suggest that TsAg involving gut-liver axis and Nrf2/NQO-1 signaling is a novel promising candidate for NAFLD treatment. TsAg restores intestinal microbiota and intestinal barrier to inhibit bacteria and LPS translocation into the liver, contributing to reduce inflammation, oxidative stress, and hepatic steatosis in the liver of NAFLD mice. The effects were attributed to, at least in part, the inactivation of NF-κB pathway and the activation of Nrf-2/NQO-1 pathway. This study provides new insights for understanding immune modulation by T. spiralis-derived products as well as the potential application of TsAg as a modality for NAFLD.
Collapse
Affiliation(s)
- Yong Yang
- School
of Basic Medical Sciences, Shanxi Medical
University, Jinzhong 030619, China
- Key
Laboratory of Cellular Physiology, Ministry of Education, and Shanxi
Key Laboratory of Cellular Physiology, Shanxi
Medical University, Taiyuan 030001, China
| | - Yanzhao He
- School
of Basic Medical Sciences, Shanxi Medical
University, Jinzhong 030619, China
| | - Xiaodan Yang
- School
of Basic Medical Sciences, Shanxi Medical
University, Jinzhong 030619, China
| | - Yuyu Qiao
- School
of Basic Medical Sciences, Shanxi Medical
University, Jinzhong 030619, China
| | - Gaoqin Yi
- School
of Basic Medical Sciences, Shanxi Medical
University, Jinzhong 030619, China
| | - Weiping Fan
- School
of Basic Medical Sciences, Shanxi Medical
University, Jinzhong 030619, China
- Key
Laboratory of Cellular Physiology, Ministry of Education, and Shanxi
Key Laboratory of Cellular Physiology, Shanxi
Medical University, Taiyuan 030001, China
| | - Hongli Liu
- School
of Basic Medical Sciences, Shanxi Medical
University, Jinzhong 030619, China
- Key
Laboratory of Cellular Physiology, Ministry of Education, and Shanxi
Key Laboratory of Cellular Physiology, Shanxi
Medical University, Taiyuan 030001, China
| | - Mingwei Tong
- School
of Basic Medical Sciences, Shanxi Medical
University, Jinzhong 030619, China
- Key
Laboratory of Cellular Physiology, Ministry of Education, and Shanxi
Key Laboratory of Cellular Physiology, Shanxi
Medical University, Taiyuan 030001, China
| |
Collapse
|
6
|
Jollet M, Mariadassou M, Rué O, Pessemesse L, Ollendorff V, Ramdani S, Vernus B, Bonnieu A, Bertrand-Gaday C, Goustard B, Koechlin-Ramonatxo C. Insight into the Role of Gut Microbiota in Duchenne Muscular Dystrophy: An Age-Related Study in Mdx Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:264-279. [PMID: 37981219 DOI: 10.1016/j.ajpath.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 10/06/2023] [Accepted: 10/31/2023] [Indexed: 11/21/2023]
Abstract
Dystrophin deficiency alters the sarcolemma structure, leading to muscle dystrophy, muscle disuse, and ultimately death. Beyond limb muscle deficits, patients with Duchenne muscular dystrophy have numerous transit disorders. Many studies have highlighted the strong relationship between gut microbiota and skeletal muscle. The aims of this study were: i) to characterize the gut microbiota composition over time up to 1 year in dystrophin-deficient mdx mice, and ii) to analyze the intestine structure and function and expression of genes linked to bacterial-derived metabolites in ileum, blood, and skeletal muscles to study interorgan interactions. Mdx mice displayed a significant reduction in the overall number of different operational taxonomic units and their abundance (α-diversity). Mdx genotype predicted 20% of β-diversity divergence, with a large taxonomic modification of Actinobacteria, Proteobacteria, Tenericutes, and Deferribacteres phyla and the included genera. Interestingly, mdx intestinal motility and gene expressions of tight junction and Ffar2 receptor were down-regulated in the ileum. Concomitantly, circulating inflammatory markers related to gut microbiota (tumor necrosis factor, IL-6, monocyte chemoattractant protein-1) and muscle inflammation Tlr4/Myd88 pathway (Toll-like receptor 4, which recognizes pathogen-associated molecular patterns) were up-regulated. Finally, in mdx mice, adiponectin was reduced in blood and its receptor modulated in muscles. This study highlights a specific gut microbiota composition and highlights interorgan interactions in mdx physiopathology with gut microbiota as the potential central metabolic organ.
Collapse
Affiliation(s)
- Maxence Jollet
- DMEM, Université de Montpellier, INRAE, Montpellier, France.
| | - Mahendra Mariadassou
- Université Paris-Saclay, INRAE, BioinfOmics, MIGALE Bioinformatics Facility, Jouy-en-Josas, France; Université Paris-Saclay, INRAE, MaIAGE, Jouy-en-Josas, France
| | - Olivier Rué
- Université Paris-Saclay, INRAE, BioinfOmics, MIGALE Bioinformatics Facility, Jouy-en-Josas, France; Université Paris-Saclay, INRAE, MaIAGE, Jouy-en-Josas, France
| | | | | | | | - Barbara Vernus
- DMEM, Université de Montpellier, INRAE, Montpellier, France
| | - Anne Bonnieu
- DMEM, Université de Montpellier, INRAE, Montpellier, France
| | | | | | | |
Collapse
|
7
|
Liu Y, Liang Y, Su Y, Hu J, Sun J, Zheng M, Huang Z. Exploring the potential mechanisms of Yi-Yi-Fu-Zi-Bai-Jiang-San therapy on the immune-inflamed phenotype of colorectal cancer via combined network pharmacology and bioinformatics analyses. Comput Biol Med 2023; 166:107432. [PMID: 37729701 DOI: 10.1016/j.compbiomed.2023.107432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/16/2023] [Accepted: 08/28/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND The development and progression of colorectal cancer (CRC) is closely associated with its complex tumor microenvironment (TME). Assessment of the modified pattern of immune cell infiltration (ICI) will help increase knowledge regarding the characteristics of TME infiltration. Yi-Yi-Fu-Zi-Bai-Jiang-San (YYFZBJS) has been shown to have positive effects on the regulation of the immune microenvironment of CRC. However, its pharmacological targets and molecular mechanisms remain to be elucidated. METHODS Network pharmacological analysis was used to identify the target of YYFZBJS in the TME of CRC. Patients with the immune-inflamed phenotype (IIP) were identified using CRC samples from The Cancer Genome Atlas (TCGA) database. Consensus genes were identified by intersecting YYFZBJS targets, CRC disease targets and differentially expressed genes in the CRC microenvironment. Then, least absolute shrinkage and selection operator (LASSO) Cox analyses were used to identify a prognostic signature from the consensus genes. Cytoscape software was further used to build a unique herb-compound-target network diagram of the important components of YYFZBJS and prognostic gene targets. In addition, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was performed using the prognostic gene sets to explore the molecular mechanism of the prognostic genes in drug therapy for CRC IIP patients. Finally, single-cell analysis was performed to validate the expression of the prognostic genes in the TME of CRC using the TISCH2 database. RESULTS A total of 284 IIP patients were identified from 480 patients with CRC. A total of 35 consensus genes were identified as targets of YYFZBJS in the TME of CRC patients. An eleven-gene prognostic signature, including PIK3CG, C5AR1, PRF1, CAV1, HPGDS, PTGS2, SERPINE1, IDO1, TGFB1, CXCR2 and MMP9, was identified from the consensus genes, with areas under the receiver operating characteristic (ROC) curve (AUCs) values of 0.84 and 0.793 for the training and test cohorts, respectively. In the herb-compound-target network, twenty-four compounds were shown to interact with the 11 prognostic genes, which were significantly enriched in the IL-17 signaling, arachidonic acid metabolism and metabolic pathways. Single-cell analysis of the prognostic genes confirmed that their abnormal expression was associated with the TME of CRC. CONCLUSION This study organically integrated network pharmacology and bioinformatics analyses to identify prognostic genes in CRC IIP patients from the targets of YYFZBJS. Although this data mining work was limited to the study of mechanisms related to prognosis based on the immune microenvironment, the methodology provides new perspectives in the search for novel therapeutic targets of traditional Chinese medicines (TCMs) and accurate diagnostic indicators of cancers targeted by TCMs.
Collapse
Affiliation(s)
- Yong Liu
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, Guangdong, PR China; Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, Guangdong, PR China
| | - Youcheng Liang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, PR China
| | - Yongjian Su
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, Guangdong, PR China; Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, Guangdong, PR China
| | - Jiaqi Hu
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, Guangdong, PR China; Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, Guangdong, PR China
| | - Jianbo Sun
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, Guangdong, PR China
| | - Mingbin Zheng
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, Guangdong, PR China; National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518112, Guangdong, PR China.
| | - Zunnan Huang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, Guangdong, PR China; Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, Guangdong, PR China; Marine Medical Research Institute of Guangdong Zhanjiang, Zhanjiang, 524023, Guangdong, PR China.
| |
Collapse
|
8
|
Lee DF, Atencio N, Bouchey S, Shoemaker MR, Dodd JS, Satre M, Miller KA, McFarlane JS. Kinetic and structural characterization of carboxyspermidine dehydrogenase of polyamine biosynthesis. J Biol Chem 2023; 299:105033. [PMID: 37437886 PMCID: PMC10413350 DOI: 10.1016/j.jbc.2023.105033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/21/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023] Open
Abstract
Polyamines are positively charged alkylamines ubiquitous among eukaryotes, prokaryotes, and archaea. Humans obtain polyamines through dietary intake, metabolic production, or uptake of polyamines made by gut microbes. The polyamine biosynthetic pathway used by most gut microbes differs from that used by human cells. This alternative pathway employs carboxyspermidine dehydrogenase (CASDH), an enzyme with limited characterization. Here, we solved a 1.94 Å X-ray crystal structure of Bacteroides fragilis CASDH by molecular replacement. BfCASDH is composed of three domains with a fold similar to saccharopine dehydrogenase but with a distinct active site arrangement. Using steady-state methods, we determined kcat and kcat/Km for BfCASDH and Clostridium leptum CASDH using putrescine, diaminopropane, aspartate semi-aldehyde, NADH, and NADPH as substrates. These data revealed evidence of cooperativity in BfCASDH. Putrescine is the likely polyamine substrate and NADPH is the coenzyme used to complete the reaction, forming carboxyspermidine as a product. These data provide the first kinetic characterization of CASDH-a key enzyme in the production of microbial polyamines.
Collapse
Affiliation(s)
- Danielle F Lee
- Department of Chemistry and Biochemistry, Fort Lewis College, Durango, Colorado, USA
| | - Niko Atencio
- Department of Chemistry and Biochemistry, Fort Lewis College, Durango, Colorado, USA
| | - Shade Bouchey
- Department of Chemistry and Biochemistry, Fort Lewis College, Durango, Colorado, USA
| | - Madeline R Shoemaker
- Department of Chemistry and Biochemistry, Fort Lewis College, Durango, Colorado, USA
| | - Joshua S Dodd
- Department of Chemistry and Biochemistry, Fort Lewis College, Durango, Colorado, USA
| | - Meredith Satre
- Department of Chemistry and Biochemistry, Fort Lewis College, Durango, Colorado, USA
| | - Kenneth A Miller
- Department of Chemistry and Biochemistry, Fort Lewis College, Durango, Colorado, USA
| | - Jeffrey S McFarlane
- Department of Chemistry and Biochemistry, Fort Lewis College, Durango, Colorado, USA.
| |
Collapse
|
9
|
Xu M, Su S, Jiang S, Li W, Zhang Z, Zhang J, Hu X. Short-term arecoline exposure affected the systemic health state of mice, in which gut microbes played an important role. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115055. [PMID: 37224782 DOI: 10.1016/j.ecoenv.2023.115055] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/16/2023] [Accepted: 05/20/2023] [Indexed: 05/26/2023]
Abstract
Arecoline is a critical bioactive component in areca nuts with toxicity and pharmacological activities. However, its effects on body health remain unclear. Here, we investigated the effects of arecoline on physiologic and biochemical parameters in mouse serum, liver, brain, and intestine. The effect of arecoline on gut microbiota was investigated based on shotgun metagenomic sequencing. The results showed that arecoline promoted lipid metabolism in mice, manifested as significantly reduced serum TC and TG and liver TC levels and a reduction in abdominal fat accumulation. Arecoline intake significantly modulated the neurotransmitters 5-HT and NE levels in the brain. Notably, arecoline intervention significantly increased serum IL-6 and LPS levels, leading to inflammation in the body. High-dose arecoline significantly reduced liver GSH levels and increased MDA levels, which led to oxidative stress in the liver. Arecoline intake promoted the release of intestinal IL-6 and IL-1β, causing intestinal injury. In addition, we observed a significant response of gut microbiota to arecoline intake, reflecting significant changes in diversity and function of the gut microbes. Further mechanistic exploration suggested that arecoline intake can regulate gut microbes and ultimately affect the host's health. This study provided technical help for the pharmacochemical application and toxicity control of arecoline.
Collapse
Affiliation(s)
- Meng Xu
- School of Food Science and Engineering, School of public administration, Hainan University, Haikou 570228, China
| | - Shunyong Su
- School of Food Science and Engineering, School of public administration, Hainan University, Haikou 570228, China
| | - Shuaiming Jiang
- School of Food Science and Engineering, School of public administration, Hainan University, Haikou 570228, China
| | - Wanggao Li
- School of Food Science and Engineering, School of public administration, Hainan University, Haikou 570228, China
| | - Zeng Zhang
- School of Food Science and Engineering, School of public administration, Hainan University, Haikou 570228, China
| | - Jiachao Zhang
- School of Food Science and Engineering, School of public administration, Hainan University, Haikou 570228, China; One Health Institute, Hainan University, Haikou 570228, China.
| | - Xiaosong Hu
- School of Food Science and Engineering, School of public administration, Hainan University, Haikou 570228, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
10
|
Wang AJ, Song D, Hong YM, Liu NN. Multi-omics insights into the interplay between gut microbiota and colorectal cancer in the "microworld" age. Mol Omics 2023; 19:283-296. [PMID: 36916422 DOI: 10.1039/d2mo00288d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Colorectal cancer (CRC) is a multifactorial heterogeneous disease largely due to both genetic predisposition and environmental factors including the gut microbiota, a dynamic microbial ecosystem inhabiting the gastrointestinal tract. Elucidation of the molecular mechanisms by which the gut microbiota interacts with the host may contribute to the pathogenesis, diagnosis, and promotion of CRC. However, deciphering the influence of genetic variants and interactions with the gut microbial ecosystem is rather challenging. Despite recent advancements in single omics analysis, the application of multi-omics approaches to integrate multiple layers of information in the microbiome and host to introduce effective prevention, diagnosis, and treatment strategies is still in its infancy. Here, we integrate host- and microbe-based multi-omics studies, respectively, to provide a strategy to explore potential causal relationships between gut microbiota and colorectal cancer. Specifically, we summarize the recent multi-omics studies such as metagenomics combined with metabolomics and metagenomics combined with genomics. Meanwhile, the sample size and sample types commonly used in multi-omics research, as well as the methods of data analysis, were also generalized. We highlight multiple layers of information from multi-omics that need to be verified by different types of models. Together, this review provides new insights into the clinical diagnosis and treatment of colorectal cancer patients.
Collapse
Affiliation(s)
- An-Jun Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China.
| | - Dingka Song
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China.
| | - Yue-Mei Hong
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China.
| | - Ning-Ning Liu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China.
| |
Collapse
|
11
|
Tong M, Yang X, Liu H, Ge H, Huang G, Kang X, Yang H, Liu Q, Ren P, Kuang X, Yan H, Shen X, Qiao Y, Kang Y, Li L, Yang Y, Fan W. The Trichinella spiralis-derived antigens alleviate HFD-induced obesity and inflammation in mice. Int Immunopharmacol 2023; 117:109924. [PMID: 36848791 DOI: 10.1016/j.intimp.2023.109924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 03/01/2023]
Abstract
Obesity, an increasingly prevalent disease worldwide, is accompanied by chronic inflammation and intestinal dysbiosis. Helminth infections have been increasingly proved to exhibit a protective role in several inflammation-associated diseases. Considering the side effects of live parasite therapy, efforts have been made to develop helminth-derived antigens as promising candidates with fewer adverse effects. This study aimed to evaluate the effect and mechanisms of TsAg (T. spiralis-derived antigens) on obesity and the associated inflammation in high-fat diet (HFD)-fed mice. C57BL/6J mice were fed a normal diet or HFD with or without TsAg treatment. The results reported that TsAg treatment alleviated body weight gain and chronic inflammation induced by HFD. In the adipose tissue, TsAg treatment prevented macrophage infiltration, reduced the expression of Th1-type (IFN-γ) and Th17-type (IL-17A) cytokines while upregulating the production of Th2-type (IL-4) cytokines. Furthermore, TsAg treatment enhanced brown adipose tissue activation and energy and lipid metabolism and reduced intestinal dysbiosis, intestinal barrier permeability and LPS/TLR4 axis inflammation. Finally, the protective role of TsAg against obesity was transmissible via the fecal microbiota transplantation approach. For the first time, our findings showed that TsAg alleviated HFD-induced obesity and inflammation via modulation of the gut microbiota and balancing the immune disorders, suggesting that TsAg might be a safer promising therapeutic strategy for obesity.
Collapse
Affiliation(s)
- Mingwei Tong
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and Shanxi Key Laboratory of Cellular Physiology, Taiyuan 030001, China
| | - Xiaodan Yang
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Haixia Liu
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Huihui Ge
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Guangrong Huang
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Xing Kang
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Hao Yang
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Qingqing Liu
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Peng Ren
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Xiaoyu Kuang
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Huan Yan
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Xiaorong Shen
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Yuyu Qiao
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Yongbo Kang
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and Shanxi Key Laboratory of Cellular Physiology, Taiyuan 030001, China
| | - Lin Li
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and Shanxi Key Laboratory of Cellular Physiology, Taiyuan 030001, China
| | - Yong Yang
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and Shanxi Key Laboratory of Cellular Physiology, Taiyuan 030001, China.
| | - Weiping Fan
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and Shanxi Key Laboratory of Cellular Physiology, Taiyuan 030001, China.
| |
Collapse
|
12
|
Ni B, Kong X, Yan Y, Fu B, Zhou F, Xu S. Combined analysis of gut microbiome and serum metabolomics reveals novel biomarkers in patients with early-stage non-small cell lung cancer. Front Cell Infect Microbiol 2023; 13:1091825. [PMID: 36743312 PMCID: PMC9895385 DOI: 10.3389/fcimb.2023.1091825] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/03/2023] [Indexed: 01/22/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the predominant form of lung cancer and is one of the most fatal cancers worldwide. Recently, the International Association for the Study of Lung Cancer (IASLC) proposed a novel grading system based on the predominant and high-grade histological patterns for invasive pulmonary adenocarcinoma (IPA). To improve outcomes for NSCLC patients, we combined serum metabolomics and fecal microbiology to screen biomarkers in patients with early-stage NSCLC and identified characteristic microbial profiles in patients with different grades of IPA. 26 genera and 123 metabolites were significantly altered in the early-stage NSCLC patients. Agathobacter, Blautia, Clostridium, and Muribaculacea were more abundant in the early-stage NSCLC patients compared with healthy controls. For the different grades of IPA, the characteristic microorganisms are as follows: Blautia and Marinobacter in IPA grade type 1; Dorea in IPA grade type 2; and Agathobacter in IPA grade type 3. In the metabolome results, the early-stage NSCLC group mainly included higher levels of sphingolipids (D-erythro-sphingosine 1-phosphate, palmitoyl sphingomyelin), fatty acyl (Avocadyne 1-acetate, 12(S)-HETE, 20-Carboxy-Leukotriene B4, Thromboxane B3, 6-Keto-prostaglandin f1alpha, Sebacic acid, Tetradecanedioic acid) and glycerophospholipids (LPC 20:2, LPC 18:0, LPC 18:4, LPE 20:2, LPC 20:1, LPC 16:1, LPC 20:0, LPA 18:2, LPC 17:1, LPC 17:2, LPC 19:0). Dysregulation of pathways, such as sphingolipid metabolism and sphingolipid signaling pathway may become an emerging therapeutic strategy for early-NSCLC. Correlation analysis showed that gut microbiota and serum metabolic profiles were closely related, while Muribaculacea and Clostridium were the core genera. These findings provide new biomarkers for the diagnosis of early-stage NSCLC and the precise grading assessment of prognostic-related IPAs, which are of clinical importance and warrant further investigation of the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Boxiong Ni
- Department of Thoracic Surgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xianglong Kong
- Department of Thoracic Surgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yubo Yan
- Department of Thoracic Surgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bicheng Fu
- Department of Thoracic Surgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fucheng Zhou
- Department of Thoracic Surgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, China
| | | |
Collapse
|
13
|
Xiang B, Geng R, Zhang Z, Ji X, Zou J, Chen L, Liu J. Identification of the effect and mechanism of Yiyi Fuzi Baijiang powder against colorectal cancer using network pharmacology and experimental validation. Front Pharmacol 2022; 13:929836. [PMID: 36353478 PMCID: PMC9637639 DOI: 10.3389/fphar.2022.929836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/03/2022] [Indexed: 12/22/2023] Open
Abstract
Background: Yiyi Fuzi Baijiang powder (YFBP) is a traditional Chinese medicine used to treat colorectal cancer, although its bioactivity and mechanisms of action have not been studied in depth yet. The study intended to identify the potential targets and signaling pathways affected by YFBP during the treatment of colorectal cancer through pharmacological network analysis and to further analyze its chemical compositions and molecular mechanisms of action. Methods: The Traditional Chinese Medicine Systems Pharmacology (TCMSP), Traditional Chinese Medicine Integrated Database (TCMID), HitPredict (HIT), and Search Tool for Interactions of Chemicals (STITCH) databases were used to screen the bioactive components and promising targets of YFBP. Targets related to colorectal cancer were retrieved from the GeneCards and Gene Ontology databases. Cytoscape software was used to construct the "herb-active ingredient-target" network. The STRING database was used to construct and analyze protein-protein interactions (PPIs). Afterward, the R packages clusterProfiler and Cytoscape Hub plug-in were used to perform Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of target genes. The results of the network pharmacological analysis were also experimentally validated. Results: In total, 33 active components and 128 target genes were screened. Among them, 46 target genes were considered potential therapeutic targets that crossed the CRC target genes. The network pharmacology analysis showed that the active components of YFBP were correlated positively with CRC inflammatory target genes such as TLR4, TNF, and IL-6. The inflammation-related signaling pathways affected by the active components included the TNF-α, interleukin-17, and toll-like receptor signaling pathways. The active ingredients of YFBP, such as luteolin, β-sitosterol, myristic acid, and vanillin, may exert anti-tumor effects by downregulating SMOX expression via anti-inflammatory signaling and regulation of the TLR4/NF-κB signaling pathway. Conclusion: In the present study, the potential active components, potential targets, and key biological pathways involved in the YFBP treatment of CRC were determined, providing a theoretical foundation for further anti-tumor research.
Collapse
Affiliation(s)
- Bin Xiang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Ruiman Geng
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Zhengkun Zhang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xuxu Ji
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Jiaqiong Zou
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
- Department of Laboratory Medicine, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Lihong Chen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Ji Liu
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Liu L, Ma L, Feng J, Lu X. Dynamic Fluctuation and Niche Differentiation of Fungal Pathogens Infecting Bell Pepper Plants. Appl Environ Microbiol 2022; 88:e0100322. [PMID: 36036572 PMCID: PMC9499033 DOI: 10.1128/aem.01003-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/12/2022] [Indexed: 11/20/2022] Open
Abstract
The plant microbiome is shaped by plant development and microbial interaction. Fungal pathogens infecting bell pepper plants may fluctuate across the growing seasons. Dynamic fluctuation of the microbiome and fungal pathogens in bell pepper plants is poorly understood, and the origin of fungal pathogens causing fruit rot and leaf wilt has been barely investigated. In this study, we used amplicon sequencing (i.e., 16S rRNA and internal transcribed spacer [ITS] sequencing) to explore the compositional variations of the microbiome in bell pepper plants and studied the fluctuation of fungal pathogens across the growing seasons. Co-occurrence network analysis was applied to track the origin and dissemination route of fungal pathogens that infected bell pepper plants. ITS and 16S rRNA sequencing analyses demonstrated that fungal pathogens infecting fruits and leaves probably belonged to the Penicillium, Cladosporium, Fusarium, and unclassified_Sclerotiniaceae genera rather than one specific genus. The dominant fungal pathogens were different, along with the development of bell pepper plants. Both plant development and fungal pathogens shaped microbial communities in bell pepper plants across the growing seasons. Fungal pathogens decreased species richness and diversity of fungal communities in fungus-infected fruit and leaf tissues but not the uninfected stem tissues. Bacterial metabolic functions of xenobiotics increased in fungus-infected leaves at a mature developmental stage. Competitive interaction was present between fungal and bacterial communities in leaves. Co-occurrence network analysis revealed that the origins of fungal pathogens included the greenhouse, packing house, and storage room. Niche differentiation of microbes was discovered among these locations. IMPORTANCE Bell peppers are widely consumed worldwide. Fungal pathogen infections of bell peppers lead to enormous economic loss. To control fungal pathogens and increase economic benefit, it is essential to investigate the shifting patterns of the microbiome and fungal pathogens in bell pepper plants across the growing seasons. In this study, bell pepper plant diseases observed in fruits and leaves were caused by different fungal pathogens. Fungal pathogens originated from the greenhouse, packing house, and storage room, and niche differentiation existed among microbes. This study improves the understanding of dynamic fluctuation and source of fungal pathogens infecting bell pepper plants in the farming system. It also facilitates precise management of fungal pathogens in the greenhouse.
Collapse
Affiliation(s)
- Lixue Liu
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Luyao Ma
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Jinsong Feng
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Xiaonan Lu
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
15
|
Chakrabarti M, Bhattacharya A, Gebere MG, Johnson J, Ayub ZA, Chatzistamou I, Vyavahare NR, Azhar M. Increased TGFβ1 and SMAD3 Contribute to Age-Related Aortic Valve Calcification. Front Cardiovasc Med 2022; 9:770065. [PMID: 35928937 PMCID: PMC9343688 DOI: 10.3389/fcvm.2022.770065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 06/20/2022] [Indexed: 12/01/2022] Open
Abstract
Aims Calcific aortic valve disease (CAVD) is a progressive heart disease that is particularly prevalent in elderly patients. The current treatment of CAVD is surgical valve replacement, but this is not a permanent solution, and it is very challenging for elderly patients. Thus, a pharmacological intervention for CAVD may be beneficial. In this study, we intended to rescue aortic valve (AV) calcification through inhibition of TGFβ1 and SMAD3 signaling pathways. Methods and Results The klotho gene, which was discovered as an aging-suppressor gene, has been observed to play a crucial role in AV calcification. The klotho knockout (Kl–/–) mice have shorter life span (8–12 weeks) and develop severe AV calcification. Here, we showed that increased TGFβ1 and TGFβ-dependent SMAD3 signaling were associated with AV calcification in Kl–/– mice. Next, we generated Tgfb1- and Smad3-haploinsufficient Kl–/– mice to determine the contribution of TGFβ1 and SMAD3 to the AV calcification in Kl–/– mice. The histological and morphometric evaluation suggested a significant reduction of AV calcification in Kl–/–; Tgfb1± mice compared to Kl–/– mice. Smad3 heterozygous deletion was observed to be more potent in reducing AV calcification in Kl–/– mice compared to the Kl–/–; Tgfb1± mice. We observed significant inhibition of Tgfb1, Pai1, Bmp2, Alk2, Spp1, and Runx2 mRNA expression in Kl–/–; Tgfb1± and Kl–/–; Smad3± mice compared to Kl–/– mice. Western blot analysis confirmed that the inhibition of TGFβ canonical and non-canonical signaling pathways were associated with the rescue of AV calcification of both Kl–/–; Tgfb1± and Kl–/–; Smad3± mice. Conclusion Overall, inhibition of the TGFβ1-dependent SMAD3 signaling pathway significantly blocks the development of AV calcification in Kl–/– mice. This information is useful in understanding the signaling mechanisms involved in CAVD.
Collapse
Affiliation(s)
- Mrinmay Chakrabarti
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Aniket Bhattacharya
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, United States
- Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Mengistu G. Gebere
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - John Johnson
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Zeeshan A. Ayub
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Ioulia Chatzistamou
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | | | - Mohamad Azhar
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, United States
- William Jennings Bryan Dorn VA Medical Center, Columbia, SC, United States
- *Correspondence: Mohamad Azhar,
| |
Collapse
|
16
|
Qin X, Bi L, Yang W, He Y, Gu Y, Yang Y, Gong Y, Wang Y, Yan X, Xu L, Xiao H, Jiao L. Dysbiosis of the Gut Microbiome Is Associated With Histopathology of Lung Cancer. Front Microbiol 2022; 13:918823. [PMID: 35774470 PMCID: PMC9237568 DOI: 10.3389/fmicb.2022.918823] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/23/2022] [Indexed: 11/20/2022] Open
Abstract
Lung cancer is a malignancy with high incidence and mortality worldwide. Previous studies have shown that the gut microbiome plays an important role in the development and progression of metabolic cancers. However, data on the characteristics of the gut microbiome with different histopathology types of lung cancer remain scant. We collected stool samples from 28 healthy people (HP) and 61 lung cancer patients. The lung cancer patients were classified into three types according to their histopathology: Atypical Adenomatous Hyperplasia/Adenocarcinoma in situ (AAH/AIS), Minimally Invasive Adenocarcinoma (MIA), and Invasive Adenocarcinoma (IA). In addition, we employed 16S rRNA gene amplicon sequencing to analyze the characteristics of the gut microbiome in these patients. Our analysis revealed that the categorized cancer patients had unique intestinal flora characteristics, and had lower density and flora diversity compared to healthy people. Besides, the structure of the flora families and genera was more complex, and each group presented specific pathogenic microbiota. The patients in the AAH/AIS group and HP group had relatively similar flora structure compared with the IA and MIA groups. In addition, we identified several flora markers that showed significant changes with the development of lung cancer. Lung cancer gut microbiota showed a decrease in short-chain fatty acids (SCFAs) producing and anti-inflammatory bacteria compared to healthy people, while some pathogenic bacteria such as proinflammatory or tumor-promoting bacteria were more abundant in lung cancer patients. On the other hand, the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Clusters of Orthologous Group (COG) annotation demonstrated suppression of some dominant metabolism-related pathways in lung cancer. These findings provide new biomarkers for the diagnosis and prognostic assessment of lung cancer and lay the basis for novel targeted therapeutic strategies for the prevention and treatment of lung cancer.
Collapse
Affiliation(s)
- Xiong Qin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Ling Bi
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenxiao Yang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiyun He
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifeng Gu
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Yabin Gong
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yichao Wang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoxia Yan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Ling Xu
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haibo Xiao
- Department of Cardiothoracic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Haibo Xiao,
| | - Lijing Jiao
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Institute of Clinical Immunology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Lijing Jiao,
| |
Collapse
|
17
|
AL-Ishaq RK, Koklesova L, Kubatka P, Büsselberg D. Immunomodulation by Gut Microbiome on Gastrointestinal Cancers: Focusing on Colorectal Cancer. Cancers (Basel) 2022; 14:2140. [PMID: 35565269 PMCID: PMC9101278 DOI: 10.3390/cancers14092140] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 12/14/2022] Open
Abstract
Gastrointestinal cancer (GI) is a global health disease with a huge burden on a patient's physical and psychological aspects of life and on health care providers. It is associated with multiple disease related challenges which can alter the patient's quality of life and well-being. GI cancer development is influenced by multiple factors such as diet, infection, environment, and genetics. Although activating immune pathways and components during cancer is critical for the host's survival, cancerous cells can target those pathways to escape and survive. As the gut microbiome influences the development and function of the immune system, research is conducted to investigate the gut microbiome-immune interactions, the underlying mechanisms, and how they reduce the risk of GI cancer. This review addresses and summarizes the current knowledge on the major immune cells and gut microbiome interactions. Additionally, it highlights the underlying mechanisms of immune dysregulation caused by gut microbiota on four major cancerous pathways, inflammation, cellular proliferation, apoptosis, and metastasis. Overall, gut-immune interactions might be a key to understanding GI cancer development, but further research is needed for more detailed clarification.
Collapse
Affiliation(s)
| | - Lenka Koklesova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| |
Collapse
|
18
|
Jiang H, Zeng W, Zhang X, Pei Y, Zhang H, Li Y. The role of gut microbiota in patients with benign and malignant brain tumors: a pilot study. Bioengineered 2022; 13:7847-7859. [PMID: 35291914 PMCID: PMC9208447 DOI: 10.1080/21655979.2022.2049959] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Gut microbiota is associated with the growth of various tumors, including malignant gliomas, through the brain-gut axis. Moreover, the gut microbiota in patients with malignant tumors may considerably differ from those with benign tumors. However, the associations of gut microbiota with benign and malignant brain tumors remain unclear. Hence, in order to explore these underlying relationships, patients with benign meningioma (n = 32), malignant glioma (n = 27), and healthy individuals (n = 41) were selected to participate in this study. The results showed that the diversity of the microbial ecosystem in brain tumor patients were less than the healthy controls, while no significant differences were observed between the meningioma and glioma groups. The microbial composition also differed significantly between individuals with brain tumors and healthy participants. In meningioma group, pathogenic bacteria like Enterobacteriaceae were increased, whereas certain carcinogenic bacteria were overrepresented in the glioma group, including Fusobacterium and Akkermansia. Furthermore, benign and malignant brain tumor patients lacked SCFA-producing probiotics. Thus, a microbial biomarker panel including Fusobacterium, Akkermansia, Escherichia/Shigella, Lachnospira, Agathobacter, and Bifidobacterium was established. Diagnostic models confirmed that this panel could distinguish between brain tumor patients and healthy patients. Additionally, gut microbiota can affect the differentiation and proliferation of brain tumors via several metabolic pathways based on annotations from the Kyoto Encyclopedia of Genes and Genomes (KEGG). This is the first study designed to investigate whether gut microbiota differs between benign and malignant brain tumor patients, and our work concluded that intestinal flora is a valuable tool for the diagnosis and treatment of brain tumors.
Collapse
Affiliation(s)
- Haixiao Jiang
- Department of Clinical Medicine,School of Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Department of Neurosurgery, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Wei Zeng
- Department of Clinical Medicine,School of Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Department of Neurosurgery, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaoli Zhang
- Department of Clinical Medicine,School of Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Department of Medical Imaging, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China
| | - Yunlong Pei
- Department of Neurosurgery, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Hengzhu Zhang
- Department of Clinical Medicine,School of Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Department of Neurosurgery, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Yuping Li
- Department of Clinical Medicine,School of Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Department of Neurosurgery, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
19
|
Steiner HE, Gee K, Giles J, Knight H, Hurwitz BL, Karnes JH. Role of the gut microbiome in cardiovascular drug response: The potential for clinical application. Pharmacotherapy 2022; 42:165-176. [PMID: 34820870 DOI: 10.1002/phar.2650] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022]
Abstract
Response to cardiovascular drugs can vary greatly between individuals, and the role of the microbiome in this variability is being increasingly appreciated. Recent evidence indicates that bacteria and other microbes are responsible for direct and indirect effects on drug efficacy and toxicity. Pharmacomicrobiomics aims to uncover variability in drug response due to microbes in the human body, which may alter drug disposition through microbial metabolism, interference by microbial metabolites, or modification of host enzymes. In this review, we present recent advances in our understanding of the interplay between microbes, host metabolism, and cardiovascular drugs. We report numerous cardiovascular drugs with evidence of, or potential for, gut-microbe interactions. However, the effects of gut microbiota on many cardiovascular drugs are yet uninvestigated. Finally, we consider potential clinical applications for the described findings.
Collapse
Affiliation(s)
- Heidi E Steiner
- Department of Pharmacy Practice and Science, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - Kevin Gee
- Department of Pharmacy Practice and Science, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - Jason Giles
- Department of Pharmacy Practice and Science, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - Hayley Knight
- Department of Pharmacy Practice and Science, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - Bonnie L Hurwitz
- Department of Biosystems Engineering, University of Arizona, Tucson, Arizona, USA.,BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Jason H Karnes
- Department of Pharmacy Practice and Science, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona, USA.,Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
20
|
Gao G, Ma T, Zhang T, Jin H, Li Y, Kwok LY, Zhang H, Sun Z. Adjunctive Probiotic Lactobacillus rhamnosus Probio-M9 Administration Enhances the Effect of Anti-PD-1 Antitumor Therapy via Restoring Antibiotic-Disrupted Gut Microbiota. Front Immunol 2021; 12:772532. [PMID: 34970262 PMCID: PMC8712698 DOI: 10.3389/fimmu.2021.772532] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Emerging evidence supports that the efficacy of immune checkpoint blockade (ICB) therapy is associated with the host's gut microbiota, as prior antibiotic intake often leads to poor outcome and low responsiveness toward ICB treatment. Therefore, we hypothesized that the efficacy of ICB therapy like anti-programmed cell death protein-1 (PD-1) treatment required an intact host gut microbiota, and it was established that probiotics could enhance the recovery of gut microbiota disruption by external stimuli. Thus, the present study aimed to evaluate the effect of the probiotics, Lactobacillus rhamnosus Probio-M9, on recovering antibiotic-disrupted gut microbiota and its impact on the outcome of ICB therapy in tumor-bearing mice. We first disrupted the mouse microbiota by antibiotics and then remediated the gut microbiota by probiotics or naturally. Tumor transplantation was then performed, followed by anti-PD-1-based antitumor therapy. Changes in the fecal metagenomes and the tumor suppression effect were monitored during different stages of the experiment. Our results showed that Probio-M9 synergized with ICB therapy, significantly improving tumor inhibition compared with groups not receiving the probiotic treatment (P < 0.05 at most time points). The synergistic effect was accompanied by effective restoration of antibiotic-disrupted fecal microbiome that was characterized by a drastically reduced Shannon diversity value and shifted composition of dominating taxa. Moreover, probiotic administration significantly increased the relative abundance of beneficial bacteria (e.g., Bifidobacterium pseudolongum, Parabacteroides distasonis, and some Bacteroides species; 0.0001 < P < 0.05). The gut microbiome changes were accompanied by mild reshaping of the functional metagenomes characterized by enrichment in sugar degradation and vitamin and amino acid synthesis pathways. Collectively, this study supported that probiotic administration could enhance the efficacy and responsiveness of anti-PD-1-based immunotherapy, and Probio-M9 could be a potential candidate of microbe-based synergistic tumor therapeutics. The preclinical data obtained here would support the design of future human clinical trials for further consolidating the current findings and for safety assessment of probiotic adjunctive treatment in ICB therapy.
Collapse
Affiliation(s)
- Guangqi Gao
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
| | - Teng Ma
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
| | - Tao Zhang
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
| | - Hao Jin
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
| | - Yalin Li
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
| | - Lai-Yu Kwok
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
| | - Heping Zhang
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhihong Sun
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
21
|
Abstract
El cuerpo humano está expuesto continuamente a microorganismos tanto fijos como transitorios, así como sus metabolitos tóxicos, lo cual puede conducir a la aparición y progresión del cáncer en sitios distantes al hábitat particular de cada microbio. Diversos estudios científicos han hecho posible entender la relación estrecha que existe entre microbioma y cáncer, ya que los componentes del primero, al tener la capacidad de migrar a diferentes zonas del cuerpo, pueden contribuir al desarrollo de diversas enfermedades crónicas. Los estudios de metagenómica sugieren que la disbiosis, en la microbiota comensal, está asociada con trastornos inflamatorios y varios tipos de cáncer, los cuales pueden ocurrir por sus efectos sobre el metabolismo, la proliferación celular y la inmunidad. La microbiota puede producir el cáncer cuando existen condiciones predisponentes, como en la etapa inicial de la progresión tumoral (iniciación), inestabilidad genética, susceptibilidad a la respuesta inmune del huésped, a la progresión y la respuesta a la terapia. La relación más estrecha, entre el microbioma y el cáncer, es a través de la desregulación del sistema inmune. En este trabajo revisamos las actuales evidencias sobre la asociación entre la microbiota y algunos tipos de cáncer como el cáncer gástrico, colorrectal, próstata, ovario, oral, pulmón y mama.
Collapse
Affiliation(s)
- Francisco Arvelo
- Centro de Biociencias, Fundación Instituto de Estudios Avanzados-IDEA, Caracas, Venezuela
| | - Felipe Sojo
- Centro de Biociencias, Fundación Instituto de Estudios Avanzados-IDEA, Caracas, Venezuela
| | - Carlos Cotte
- Laboratorio de Cultivo de Tejidos y Biología de Tumores, Instituto de Biología Experimental, Universidad Central de Venezuela, Caracas, Venezuela
| |
Collapse
|
22
|
Zong Y, Zhou Y, Liao B, Liao M, Shi Y, Wei Y, Huang Y, Zhou X, Cheng L, Ren B. The Interaction Between the Microbiome and Tumors. Front Cell Infect Microbiol 2021; 11:673724. [PMID: 34532297 PMCID: PMC8438519 DOI: 10.3389/fcimb.2021.673724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 08/09/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is a significant global health problem and is characterized by a consistent increase in incidence and mortality rate. Deciphering the etiology and risk factors are essential parts of cancer research. Recently, the altered microbiome has been identified within the tumor microenvironment, tumor tissue, and even nonadjacent environments, which indicates a strong correlation between the microbiome and tumor development. However, the causation and mechanisms of this correlation remain unclear. Herein, we summarized and discussed the interaction between the microbiome and tumor progression. Firstly, the microbiome, which can be located in the tumor microenvironment, inside tumor tissues and in the nonadjacent environment, is different between cancer patients and healthy individuals. Secondly, the tumor can remodel microbial profiles by creating a more beneficial condition for the shifted microbiome. Third, the microbiome can promote tumorigenesis through a direct pathogenic process, including the establishment of an inflammatory environment and its effect on host immunity. The interactions between the microbiome and tumors can promote an understanding of the carcinogenesis and provide novel therapeutic strategies for cancers.
Collapse
Affiliation(s)
- Yawen Zong
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yujie Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Binyou Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Min Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yangyang Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yu Wei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yuyao Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
LaGamma EF, Hu F, Pena Cruz F, Bouchev P, Nankova BB. Bacteria - derived short chain fatty acids restore sympathoadrenal responsiveness to hypoglycemia after antibiotic-induced gut microbiota depletion. Neurobiol Stress 2021; 15:100376. [PMID: 34401412 PMCID: PMC8358200 DOI: 10.1016/j.ynstr.2021.100376] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/09/2021] [Accepted: 07/30/2021] [Indexed: 12/21/2022] Open
Abstract
The microbiome co-evolved with their mammalian host over thousands of years. This commensal relationship serves a pivotal role in various metabolic, physiological, and immunological processes. Recently we discovered impaired adrenal catecholamine stress responses in germ-free mice suggesting developmental modification of the reflex arc or absence of an ongoing microbiome signal. To determine whether maturational arrest or an absent bacteria-derived metabolite was the cause, we tested whether depleting gut microbiome in young adult animals could also alter the peripheral stress responses to insulin-induced hypoglycemia. Groups of C57Bl6 male mice were given regular water (control) or a cocktail of non-absorbable broad-spectrum antibiotics (Abx) in the drinking water for two weeks before injection with insulin or saline. Abx mice displayed a profound decrease in microbial diversity and abundance of Bacteroidetes and Firmicutes, plus a markedly enlarged caecum and no detectable by-products of bacterial fermentation (sp. short chain fatty acids, SCFA). Tonic and stress-induced epinephrine levels were attenuated. Recolonization (Abx + R) restored bacterial diversity, but not the sympathoadrenal system responsiveness or caecal acetate, propionate and butyrate levels. In contrast, corticosterone (HPA) and glucagon (parasympathetic) resting values and responses to hypoglycemia remained similar across all conditions. Oral supplementation with SCFA improved epinephrine responses to hypoglycaemia. Whole genome shotgun sequence profiling of fecal samples from control, Abx and Abx + R cohorts identified nine microbes (SCFA producers) absent from both Abx and Abx + R groups. These results implicate gut microbiome depletion plus its attendant reduction in SCFA signalling in adversely affecting the release of epinephrine in response to hypoglycemia. We speculate that regardless of postnatal age, a mutable microbiome messaging system exists throughout life. Unravelling these mechanisms could lead to new therapeutic possibilities through controlled manipulation of the gut microbiota and its ability to alter systemic neurotransmitter responsiveness. Gut microbiome depletion affects sympathoadrenal medullary stress axis. Recolonization restores bacterial diversity, but not the epinephrine response to hypoglycaemia. SCFA supplement during antibiotic treatment improves tonic and stress-induced epinephrine release. Delayed recovery of several SCFA producers after recolonization modulates peripheral catecholaminergic pathways.
Collapse
Affiliation(s)
- Edmund F. LaGamma
- Division of Newborn Medicine, Departments of Pediatrics, Biochemistry and Molecular Biology, New York Medical College, USA
- The Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center, Valhalla, NY, 10595, USA
| | - Furong Hu
- Division of Newborn Medicine, Departments of Pediatrics, Biochemistry and Molecular Biology, New York Medical College, USA
| | - Fernando Pena Cruz
- The Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center, Valhalla, NY, 10595, USA
| | - Philip Bouchev
- Ridgefield High School, Junior, Ridgefield, CT, 06877, USA
| | - Bistra B. Nankova
- Division of Newborn Medicine, Departments of Pediatrics, Biochemistry and Molecular Biology, New York Medical College, USA
- Corresponding author. Department of Pediatrics, Biochemistry and Molecular Biology, Division of Newborn Medicine, New York Medical College, Valhalla, NY, 10595, USA.
| |
Collapse
|
24
|
Wei LQ, Cheong IH, Yang GH, Li XG, Kozlakidis Z, Ding L, Liu NN, Wang H. The Application of High-Throughput Technologies for the Study of Microbiome and Cancer. Front Genet 2021; 12:699793. [PMID: 34394190 PMCID: PMC8355622 DOI: 10.3389/fgene.2021.699793] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/21/2021] [Indexed: 12/14/2022] Open
Abstract
Human gut microbiome research, especially gut microbiome, has been developing at a considerable pace over the last decades, driven by a rapid technological advancement. The emergence of high-throughput technologies, such as genomics, transcriptomics, and others, has afforded the generation of large volumes of data, and in relation to specific pathologies such as different cancer types. The current review identifies high-throughput technologies as they have been implemented in the study of microbiome and cancer. Four main thematic areas have emerged: the characterization of microbial diversity and composition, microbial functional analyses, biomarker prediction, and, lastly, potential therapeutic applications. The majority of studies identified focus on the microbiome diversity characterization, which is reaching technological maturity, while the remaining three thematic areas could be described as emerging.
Collapse
Affiliation(s)
- Lu Qi Wei
- State Key Laboratory of Oncogenes and Related Genes, Centre for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Io Hong Cheong
- State Key Laboratory of Oncogenes and Related Genes, Centre for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Huan Yang
- State Key Laboratory of Oncogenes and Related Genes, Centre for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Guang Li
- State Key Laboratory of Oncogenes and Related Genes, Centre for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zisis Kozlakidis
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Lei Ding
- State Key Laboratory of Oncogenes and Related Genes, Centre for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Ning Liu
- State Key Laboratory of Oncogenes and Related Genes, Centre for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Centre for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Zhang Y, Thompson KN, Branck T, Yan Yan, Nguyen LH, Franzosa EA, Huttenhower C. Metatranscriptomics for the Human Microbiome and Microbial Community Functional Profiling. Annu Rev Biomed Data Sci 2021; 4:279-311. [PMID: 34465175 DOI: 10.1146/annurev-biodatasci-031121-103035] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Shotgun metatranscriptomics (MTX) is an increasingly practical way to survey microbial community gene function and regulation at scale. This review begins by summarizing the motivations for community transcriptomics and the history of the field. We then explore the principles, best practices, and challenges of contemporary MTX workflows: beginning with laboratory methods for isolation and sequencing of community RNA, followed by informatics methods for quantifying RNA features, and finally statistical methods for detecting differential expression in a community context. In thesecond half of the review, we survey important biological findings from the MTX literature, drawing examples from the human microbiome, other (nonhuman) host-associated microbiomes, and the environment. Across these examples, MTX methods prove invaluable for probing microbe-microbe and host-microbe interactions, the dynamics of energy harvest and chemical cycling, and responses to environmental stresses. We conclude with a review of open challenges in the MTX field, including making assays and analyses more robust, accessible, and adaptable to new technologies; deciphering roles for millions of uncharacterized microbial transcripts; and solving applied problems such as biomarker discovery and development of microbial therapeutics.
Collapse
Affiliation(s)
- Yancong Zhang
- Harvard Chan Microbiome in Public Health Center and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA; , .,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Kelsey N Thompson
- Harvard Chan Microbiome in Public Health Center and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA; , .,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Tobyn Branck
- Harvard Chan Microbiome in Public Health Center and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA; , .,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Department of Systems, Synthetic, and Quantitative Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Yan Yan
- Harvard Chan Microbiome in Public Health Center and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA; , .,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Long H Nguyen
- Harvard Chan Microbiome in Public Health Center and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA; , .,Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA.,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02108, USA
| | - Eric A Franzosa
- Harvard Chan Microbiome in Public Health Center and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA; , .,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Curtis Huttenhower
- Harvard Chan Microbiome in Public Health Center and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA; , .,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| |
Collapse
|
26
|
Selmin OI, Papoutsis AJ, Hazan S, Smith C, Greenfield N, Donovan MG, Wren SN, Doetschman TC, Snider JM, Snider AJ, Chow SHH, Romagnolo DF. n-6 High Fat Diet Induces Gut Microbiome Dysbiosis and Colonic Inflammation. Int J Mol Sci 2021; 22:ijms22136919. [PMID: 34203196 PMCID: PMC8269411 DOI: 10.3390/ijms22136919] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Concerns are emerging that a high-fat diet rich in n-6 PUFA (n-6HFD) may alter gut microbiome and increase the risk of intestinal disorders. Research is needed to model the relationships between consumption of an n-6HFD starting at weaning and development of gut dysbiosis and colonic inflammation in adulthood. We used a C57BL/6J mouse model to compare the effects of exposure to a typical American Western diet (WD) providing 58.4%, 27.8%, and 13.7% energy (%E) from carbohydrates, fat, and protein, respectively, with those of an isocaloric and isoproteic soybean oil-rich n-6HFD providing 50%E and 35.9%E from total fat and carbohydrates, respectively on gut inflammation and microbiome profile. Methods: At weaning, male offspring were assigned to either the WD or n-6HFD through 10-16 weeks of age. The WD included fat exclusively from palm oil whereas the n-6HFD contained fat exclusively from soybean oil. We recorded changes in body weight, cyclooxygenase-2 (COX-2) expression, colon histopathology, and gut microbiome profile. Results: Compared to the WD, the n-6HFD increased plasma levels of n-6 fatty acids; colonic expression of COX-2; and the number of colonic inflammatory and hyperplastic lesions. At 16 weeks of age, the n-6HFD caused a marked reduction in the gut presence of Firmicutes, Clostridia, and Lachnospiraceae, and induced growth of Bacteroidetes and Deferribacteraceae. At the species level, the n-6HFD sustains the gut growth of proinflammatory Mucispirillum schaedleri and Lactobacillus murinus. Conclusions: An n-6HFD consumed from weaning to adulthood induces a shift in gut bacterial profile associated with colonic inflammation.
Collapse
Affiliation(s)
- Ornella I. Selmin
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ 85721, USA; (O.I.S.); (S.N.W.); (J.M.S.); (A.J.S.)
- The University of Arizona Cancer Center, Tucson, AZ 85724, USA;
| | | | - Sabine Hazan
- ProgenomaBiome, Ventura, CA 93003, USA; (A.J.P.); (S.H.)
| | | | | | - Micah G. Donovan
- Cancer Biology Graduate Interdisciplinary Program, The University of Arizona, Tucson, AZ 85724, USA;
| | - Spencer N. Wren
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ 85721, USA; (O.I.S.); (S.N.W.); (J.M.S.); (A.J.S.)
| | - Thomas C. Doetschman
- Department of Molecular and Cellular Medicine, The University of Arizona, Tucson, AZ 85724, USA;
| | - Justin M. Snider
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ 85721, USA; (O.I.S.); (S.N.W.); (J.M.S.); (A.J.S.)
| | - Ashley J. Snider
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ 85721, USA; (O.I.S.); (S.N.W.); (J.M.S.); (A.J.S.)
| | - Sherry H.-H. Chow
- The University of Arizona Cancer Center, Tucson, AZ 85724, USA;
- Department of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Donato F. Romagnolo
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ 85721, USA; (O.I.S.); (S.N.W.); (J.M.S.); (A.J.S.)
- The University of Arizona Cancer Center, Tucson, AZ 85724, USA;
- Cancer Biology Graduate Interdisciplinary Program, The University of Arizona, Tucson, AZ 85724, USA;
- Correspondence:
| |
Collapse
|
27
|
Chen R, Song J, Lin L, Liu J, Yang C, Wang W. Visualizing the Growth and Division of Rat Gut Bacteria by D-Amino Acid-Based in vivo Labeling and FISH Staining. Front Mol Biosci 2021; 8:681938. [PMID: 34124162 PMCID: PMC8193097 DOI: 10.3389/fmolb.2021.681938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/04/2021] [Indexed: 12/16/2022] Open
Abstract
Rat is a widely used mammalian model for gut microbiota research. However, due to the difficulties of individual in vitro culture of many of the gut bacteria, much information about the microbial behaviors in the rat gut remains largely unknown. Here, to characterize the in situ growth and division of rat gut bacteria, we apply a chemical strategy that integrates the use of sequential tagging with D-amino acid-based metabolic probes (STAMP) with fluorescence in situ hybridization (FISH) to rat gut microbiota. Following sequential gavages of two different fluorescent D-amino acid probes to rats, the resulting dually labeled gut bacteria provides chronological information of their in situ cell wall synthesis. After taxonomical labeling with FISH probes, most of which are newly designed in this study, we successfully identify the growth patterns of 15 bacterial species, including two that have not been cultured separately in the laboratory. Furthermore, using our labeling protocol, we record Butyrivibrio fibrisolvens cells growing at different growth stages of a complete cell division cycle, which offers a new scope for understanding basic microbial activities in the gut of mammalian hosts.
Collapse
Affiliation(s)
- Ru Chen
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jia Song
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liyuan Lin
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Liu
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Wei Wang
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
28
|
Alam MS, Gangiredla J, Hasan NA, Barnaba T, Tartera C. Aging-Induced Dysbiosis of Gut Microbiota as a Risk Factor for Increased Listeria monocytogenes Infection. Front Immunol 2021; 12:672353. [PMID: 33995413 PMCID: PMC8115019 DOI: 10.3389/fimmu.2021.672353] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
Invasive foodborne Listeria monocytogenes infection causes gastroenteritis, septicemia, meningitis, and chorioamnionitis, and is associated with high case-fatality rates in the elderly. It is unclear how aging alters gut microbiota, increases risk of listeriosis, and causes dysbiosis post-infection. We used a geriatric murine model of listeriosis as human surrogate of listeriosis for aging individuals to study the effect of aging and L. monocytogenes infection. Aging and listeriosis-induced perturbation of gut microbiota and disease severity were compared between young-adult and old mice. Young-adult and old mice were dosed intragastrically with L. monocytogenes. Fecal pellets were collected pre- and post-infection for microbiome analysis. Infected old mice had higher Listeria colonization in liver, spleen, and feces. Metagenomics analyses of fecal DNA-sequences showed increase in α-diversity as mice aged, and infection reduced its diversity. The relative abundance of major bacterial phylum like, Bacteroidetes and Firmicutes remained stable over aging or infection, while the Verrucomicrobia phylum was significantly reduced only in infected old mice. Old mice showed a marked reduction in Clostridaiceae and Lactobacillaceae bacteria even before infection when compared to uninfected young-adult mice. L. monocytogenes infection increased the abundance of Porphyromonadaceae and Prevotellaceae in young-adult mice, while members of the Ruminococcaceae and Lachnospiraceae family were significantly increased in old mice. The abundance of the genera Blautia and Alistipes were significantly reduced post-infection in young-adult and in old mice as compared to their uninfected counterparts. Butyrate producing, immune-modulating bacterial species, like Pseudoflavonifractor and Faecalibacterium were significantly increased only in old infected mice, correlating with increased intestinal inflammatory mRNA up-regulation from old mice tissue. Histologic analyses of gastric tissues showed extensive lesions in the Listeria-infected old mice, more so in the non-glandular region and fundus than in the pylorus. Commensal species like Lactobacillus, Clostridiales, and Akkermansia were only abundant in infected young-adult mice but their abundance diminished in the infected old mice. Listeriosis in old mice enhances the abundance of butyrate-producing inflammatory members of the Ruminococcaceae/Lachnospiraceae bacteria while reducing/eliminating beneficial commensals in the gut. Results of this study indicate that, aging may affect the composition of gut microbiota and increase the risk of invasive L. monocytogenes infection.
Collapse
Affiliation(s)
- Mohammad S Alam
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Jayanthi Gangiredla
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | | | - Tammy Barnaba
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Carmen Tartera
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| |
Collapse
|
29
|
Tong Y, Gao H, Qi Q, Liu X, Li J, Gao J, Li P, Wang Y, Du L, Wang C. High fat diet, gut microbiome and gastrointestinal cancer. Theranostics 2021; 11:5889-5910. [PMID: 33897888 PMCID: PMC8058730 DOI: 10.7150/thno.56157] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/09/2021] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal cancer is currently one of the main causes of cancer death, with a large number of cases and a wide range of lesioned sites. A high fat diet, as a public health problem, has been shown to be correlated with various digestive system diseases and tumors, and can accelerate the occurrence of cancer due to inflammation and altered metabolism. The gut microbiome has been the focus of research in recent years, and associated with cell damage or tumor immune microenvironment changes via direct or extra-intestinal effects; this may facilitate the occurrence and development of gastrointestinal tumors. Based on research showing that both a high fat diet and gut microbes can promote the occurrence of gastrointestinal tumors, and that a high fat diet imbalances intestinal microbes, we propose that a high fat diet drives gastrointestinal tumors by changing the composition of intestinal microbes.
Collapse
Affiliation(s)
- Yao Tong
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Huiru Gao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qiuchen Qi
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaoyan Liu
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jie Gao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Peilong Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yunshan Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, Shandong, China
| |
Collapse
|
30
|
Touchefeu Y, Duchalais E, Bruley des Varannes S, Alameddine J, Mirallie E, Matysiak-Budnik T, Le Bastard Q, Javaudin F, Rimbert M, Jotereau F, Montassier E. Concomitant decrease of double-positive lymphocyte population CD4CD8αα and Faecalibacterium prausnitzii in patients with colorectal cancer. Eur J Gastroenterol Hepatol 2021; 32:149-156. [PMID: 32675782 DOI: 10.1097/meg.0000000000001842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION AND AIMS Changes in the composition of the gut microbiota in patients with colorectal cancer (CRC) compatible with a contribution of the gut microbiota in carcinogenesis have been reported. In particular, a decrease Faecalibacterium prausnitzii has been identified. A CD4CD8αα, double-positive lymphocyte population (DP8α) has recently been demonstrated in the human colon and blood with regulatory functions and specificity for F. prausnitzii. Here, we aimed to detect dysbiosis in the fecal microbiome of patients with CRC by metagenomic analysis, and to look for changes in the levels of DP8α circulating T cells specific for F. prausnitzii in these patients. PATIENTS AND METHODS Patients with CRC and control subjects were prospectively included. None had received antibiotics in the previous month or any anti-tumor treatment. A stool sample was collected for each participant, and analyzed by shotgun sequencing. The DP8α T cell population was identified and quantified on fresh whole blood by flow cytometry with anti-CD45, anti-CD3, anti-CD4 and anti-CD8α co-labeling. RESULTS Twenty-one patients with CRC and 20 controls subjects were included. We found that mean relative abundance of five species was significantly decreased in CRC patients compared with controls, including F. prausnitzii, Barnesiella intestinihominis, Alistipes finegoldii, Bacteroides eggerthii and Eubacterium siraeum. We also found that the DP8α T cell population was significantly decreased in the blood of CRC patients compared with controls. CONCLUSION In our work, we showed that a reduced abundance of F. prausnitzii in CRC patients was associated to a significant decrease in the circulating DP8α Treg population, suggesting a potential involvement of reduced activity of DP8α T cells in colonic carcinogenesis. These findings open new diagnostic and therapeutic strategies for CRC.
Collapse
Affiliation(s)
- Yann Touchefeu
- Institut des Maladies de l'Appareil Digestif, CHU Nantes
- INSERM U1235
| | - Emilie Duchalais
- Institut des Maladies de l'Appareil Digestif, CHU Nantes
- INSERM U1235
| | | | | | - Eric Mirallie
- Institut des Maladies de l'Appareil Digestif, CHU Nantes
| | | | - Quentin Le Bastard
- Université de Nantes, Microbiotas Hosts Antibiotics and bacterial Resistances (MiHAR)
- Department of Emergency Medicine, CHU Nantes
| | - François Javaudin
- Université de Nantes, Microbiotas Hosts Antibiotics and bacterial Resistances (MiHAR)
- Department of Emergency Medicine, CHU Nantes
| | - Marie Rimbert
- Laboratoire d'immunologie, CIMNA, CHU de Nantes
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, INSERM
| | | | - Emmanuel Montassier
- Université de Nantes, Microbiotas Hosts Antibiotics and bacterial Resistances (MiHAR)
- Department of Emergency Medicine, CHU Nantes
- EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Medical University of Nantes
- Surgical Intensive Care Unit, Hotel Dieu, CHU Nantes, Nantes, France
| |
Collapse
|
31
|
Lin W, Lai Y, Kalyanam N, Ho C, Pan M. S
‐Allylcysteine Inhibits PhIP/DSS‐Induced Colon Carcinogenesis through Mitigating Inflammation, Targeting Keap1, and Modulating Microbiota Composition in Mice. Mol Nutr Food Res 2020. [DOI: 10.1002/mnfr.202000576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Wei‐Sheng Lin
- Institute of Food Science and Technology National Taiwan University Taipei 10617 Taiwan
| | - Ying‐Jang Lai
- Department of Food Science National Quemoy University Quemoy County 89250 Taiwan
| | | | - Chi‐Tang Ho
- Department of Food Science Rutgers University New Brunswick NJ 08901 USA
| | - Min‐Hsiung Pan
- Institute of Food Science and Technology National Taiwan University Taipei 10617 Taiwan
- Department of Medical Research China Medical University Hospital China Medical University Taichung 40402 Taiwan
- Department of Health and Nutrition Biotechnology Asia University Taichung 41354 Taiwan
| |
Collapse
|
32
|
Trichinella spiralis infection ameliorated diet-induced obesity model in mice. Int J Parasitol 2020; 51:63-71. [PMID: 32966835 DOI: 10.1016/j.ijpara.2020.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022]
Abstract
Obesity is an increasingly prevalent disease worldwide, and genetic and environmental factors are known to regulate the development of obesity and associated metabolic diseases. Emerging studies indicate that innate and adaptive immune cell responses in adipose tissue play critical roles in the regulation of metabolic homeostasis. Parasitic helminths are the strongest natural inducers of type 2 inflammatory responses, and several studies have revealed that helminth infections inversely correlate with metabolic syndrome. Hence, this study investigated whether helminth infections could have preventative effects on high fat diet-induced obesity. Female C57BL/6 mice were maintained on either a low fat diet (LFD, 10% fat) or a high fat diet (HFD, 60% fat) for 6 weeks after Trichinella spiralis infection. The mice were randomly divided into four groups and were fed a normal diet, LFD, LFD after T. spiralis infection (Inf + LFD), a high fat diet (HFD), or HFD after T. spiralis infection (HFD + inf). All groups were assayed for body weight, food efficiency ratio (FER), total body weight gain (g)/total food intake amount (g) fat weight, and blood biochemical parameters. Our data indicate that the HFD + inf group significantly reduced body weight gain, fat mass, total cholesterol, and FER. Analysis of immune cell composition by flow cytometry revealed that T. spiralis promoted strong decreases in proinflammatory adipose macrophages (F4/80+CD11c+) and T cells. The alterations in microbiota from fecal samples of mice were analyzed, which showed that T. spiralis infection decreased the ratio of Firmicutes to Bacteriodetes, thereby restoring the previously increased ratio of Firmicutes to Bacteriodetes in HFD-fed mice. Moreover, elimination of T. spiralis retained the protective effects in the HFD-fed obese mice whereas flubendazole (FLBZ) treatment increased levels of the families Lachnospiraceae and Ruminococcaceae. In summary, we provided novel data suggesting that helminth infection protects against obesity and the protection was closely related to M2 macrophage proliferation, an inhibiting proinflammatory response. In addition, it alters the microbiota in the gut.
Collapse
|
33
|
Wu L, Lyu Y, Srinivasagan R, Wu J, Ojo B, Tang M, El-Rassi GD, Metzinger K, Smith BJ, Lucas EA, Clarke SL, Chowanadisai W, Shen X, He H, Conway T, von Lintig J, Lin D. Astaxanthin-Shifted Gut Microbiota Is Associated with Inflammation and Metabolic Homeostasis in Mice. J Nutr 2020; 150:2687-2698. [PMID: 32810865 PMCID: PMC8023541 DOI: 10.1093/jn/nxaa222] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/06/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Astaxanthin is a red lipophilic carotenoid that is often undetectable in human plasma due to the limited supply in typical Western diets. Despite its presence at lower than detectable concentrations, previous clinical feeding studies have reported that astaxanthin exhibits potent antioxidant properties. OBJECTIVE We examined astaxanthin accumulation and its effects on gut microbiota, inflammation, and whole-body metabolic homeostasis in wild-type C57BL/6 J (WT) and β-carotene oxygenase 2 (BCO2) knockout (KO) mice. METHODS Six-wk-old male and female BCO2 KO and WT mice were provided with either nonpurified AIN93M (e.g., control diet) or the control diet supplemented with 0.04% astaxanthin (wt/wt) ad libitum for 8 wk. Whole-body energy expenditure was measured by indirect calorimetry. Feces were collected from individual mice for short-chain fatty acid assessment. Hepatic astaxanthin concentrations and liver metabolic markers, cecal gut microbiota profiling, inflammation markers in colonic lamina propria, and plasma samples were assessed. Data were analyzed by 3-way ANOVA followed by Tukey's post hoc analysis. RESULTS BCO2 KO but not WT mice fed astaxanthin had ∼10-fold more of this compound in liver than controls (P < 0.05). In terms of the microbiota composition, deletion of BCO2 was associated with a significantly increased abundance of Mucispirillum schaedleri in mice regardless of gender. In addition to more liver astaxanthin in male KO compared with WT mice fed astaxanthin, the abundance of gut Akkermansia muciniphila was 385% greater, plasma glucagon-like peptide 1 was 27% greater, plasma glucagon and IL-1β were 53% and 30% lower, respectively, and colon NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome activation was 23% lower (all P < 0.05) in male KO mice than the WT mice. CONCLUSIONS Astaxanthin affects the gut microbiota composition in both genders, but the association with reductions in local and systemic inflammation, oxidative stress, and improvement of metabolic homeostasis only occurs in male mice.
Collapse
Affiliation(s)
- Lei Wu
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Yi Lyu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Ramkumar Srinivasagan
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jinlong Wu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Babajide Ojo
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Minghua Tang
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Katherine Metzinger
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Brenda J Smith
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Edralin A Lucas
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Stephen L Clarke
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Winyoo Chowanadisai
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | | | - Hui He
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Tyrrell Conway
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Johannes von Lintig
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | |
Collapse
|
34
|
Wang Y, Zhou Y, Xiao X, Zheng J, Zhou H. Metaproteomics: A strategy to study the taxonomy and functionality of the gut microbiota. J Proteomics 2020; 219:103737. [DOI: 10.1016/j.jprot.2020.103737] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/15/2022]
|
35
|
Dynamic Culture Systems and 3D Interfaces Models for Cancer Drugs Testing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1230:137-159. [PMID: 32285369 DOI: 10.1007/978-3-030-36588-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
The mass use of biological agents for pharmaceutical purposes started with the development and distribution of vaccines, followed by the industrial production of antibiotics. The use of dynamic systems, such as bioreactors, had been already applied in the food industry in fermentation processes and started being used for the development of pharmaceutical agents from this point on. In the last decades, the use of bioreactors and microfluidic systems has been expanded in different fields. The emergence of the tissue engineering led to the development of in vitro models cultured in dynamic systems. This is particularly relevant considering the urgent reduction of the total dependence on animal disease models that is undermining the development of novel drugs, using alternatively human-based models to make the drug discovery process more reliable. The failure out coming from animal models has been more prevalent in certain types of cancer, such as glioblastoma multiform and in high-grade metastatic cancers like bone metastasis of breast or prostatic cancer. The difficulty in obtaining novel drugs for these purposes is mostly linked to the barriers around the tumors, which these bioactive molecules have to overcome to become effective. For that reason, the individualized study of each interface is paramount and is only realistic once applying human-based samples (e.g. cells or tissues) in three-dimensions for in vitro modeling under dynamic conditions. In this chapter, the most recent approaches to model these interfaces in 3D systems will be explored, highlighting their major contributions to the field. In this section, these systems' impact on increased knowledge in relevant aspects of cancer aggressiveness as invasive or motile cellular capacity, or even resistance to chemotherapeutic agents will have particular focus. The last section of this chapter will focus on the integration of the tumor interfaces in dynamic systems, particularly its application on high-throughput drug screening. The industrial translation of such platforms will be discussed, as well as the main upcoming challenges and future perspectives.
Collapse
|
36
|
Yan Y, Drew DA, Markowitz A, Lloyd-Price J, Abu-Ali G, Nguyen LH, Tran C, Chung DC, Gilpin KK, Meixell D, Parziale M, Schuck M, Patel Z, Richter JM, Kelsey PB, Garrett WS, Chan AT, Stadler ZK, Huttenhower C. Structure of the Mucosal and Stool Microbiome in Lynch Syndrome. Cell Host Microbe 2020; 27:585-600.e4. [PMID: 32240601 PMCID: PMC7453618 DOI: 10.1016/j.chom.2020.03.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 11/22/2019] [Accepted: 03/10/2020] [Indexed: 12/12/2022]
Abstract
The gut microbiota has been associated with colorectal cancer (CRC), but causal alterations preceding CRC have not been elucidated. To prospectively assess microbiome changes prior to colorectal neoplasia, we investigated samples from 100 Lynch syndrome patients using 16S rRNA gene sequencing of colon biopsies, coupled with metagenomic and metatranscriptomic sequencing of feces. Colectomy and CRC history represented the largest effects on microbiome profiles. A subset of Clostridiaceae were depleted in stool corresponding with baseline adenomas, while Desulfovibrio was enriched both in stool and in mucosal biopsies. A classifier leveraging stool metatranscriptomes resulted in modest power to predict interval development of preneoplastic colonic adenoma. Predictive transcripts corresponded with a shift in flagellin contributors and oxidative metabolic microenvironment, potentially factors in local CRC pathogenesis. This suggests that the effectiveness of prospective microbiome monitoring for adenomas may be limited but supports the potential causality of these consistent, early microbial changes in colonic neoplasia.
Collapse
Affiliation(s)
- Yan Yan
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - David A Drew
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Arnold Markowitz
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jason Lloyd-Price
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Galeb Abu-Ali
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Long H Nguyen
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Christina Tran
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel C Chung
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Katherine K Gilpin
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Dana Meixell
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Melanie Parziale
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Madeline Schuck
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Zalak Patel
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - James M Richter
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Peter B Kelsey
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Wendy S Garrett
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Immunology & Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Zsofia K Stadler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Immunology & Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
37
|
Chung YW, Gwak HJ, Moon S, Rho M, Ryu JH. Functional dynamics of bacterial species in the mouse gut microbiome revealed by metagenomic and metatranscriptomic analyses. PLoS One 2020; 15:e0227886. [PMID: 31978162 PMCID: PMC6980644 DOI: 10.1371/journal.pone.0227886] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/31/2019] [Indexed: 01/14/2023] Open
Abstract
Background Microbial communities of the mouse gut have been extensively studied; however, their functional roles and regulation are yet to be elucidated. Metagenomic and metatranscriptomic analyses may allow us a comprehensive profiling of bacterial composition and functions of the complex gut microbiota. The present study aimed to investigate the active functions of the microbial communities in the murine cecum by analyzing both metagenomic and metatranscriptomic data on specific bacterial species within the microbial communities, in addition to the whole microbiome. Results Bacterial composition of the healthy mouse gut microbiome was profiled using the following three different approaches: 16S rRNA-based profiling based on amplicon and shotgun sequencing data, and genome-based profiling based on shotgun sequencing data. Consistently, Bacteroidetes, Firmicutes, and Deferribacteres emerged as the major phyla. Based on NCBI taxonomy, Muribaculaceae, Lachnospiraceae, and Deferribacteraceae were the predominant families identified in each phylum. The genes for carbohydrate metabolism were upregulated in Muribaculaceae, while genes for cofactors and vitamin metabolism and amino acid metabolism were upregulated in Deferribacteraceae. The genes for translation were commonly enhanced in all three families. Notably, combined analysis of metagenomic and metatranscriptomic sequencing data revealed that the functions of translation and metabolism were largely upregulated in all three families in the mouse gut environment. The ratio of the genes in the metagenome and their expression in the metatranscriptome indicated higher expression of carbohydrate metabolism in Muribaculum, Duncaniella, and Mucispirillum. Conclusions We demonstrated a fundamental methodology for linking genomic and transcriptomic datasets to examine functional activities of specific bacterial species in a complicated microbial environment. We investigated the normal flora of the mouse gut using three different approaches and identified Muribaculaceae, Lachnospiraceae, and Deferribacteraceae as the predominant families. The functional distribution of these families was reflected in the entire microbiome. By comparing the metagenomic and metatranscriptomic data, we found that the expression rates differed for different functional categories in the mouse gut environment. Application of these methods to track microbial transcription in individuals over time, or before and after administration of a specific stimulus will significantly facilitate future development of diagnostics and treatments.
Collapse
Affiliation(s)
- Youn Wook Chung
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Ho-Jin Gwak
- Department of Computer Science and Engineering, Hanyang University, Seoul, Korea
| | - Sungmin Moon
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Mina Rho
- Department of Computer Science and Engineering, Hanyang University, Seoul, Korea
- Department of Biomedical Informatics, Hanyang University, Seoul, Korea
- * E-mail: (JHR); (MT)
| | - Ji-Hwan Ryu
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
- * E-mail: (JHR); (MT)
| |
Collapse
|
38
|
Li L, Li R, Zhu R, Chen B, Tian Y, Zhang H, Xia B, Jia Q, Wang L, Zhao D, Mo F, Li Y, Zhang S, Gao S, Zhang D, Guo S. Salvianolic acid B prevents body weight gain and regulates gut microbiota and LPS/TLR4 signaling pathway in high-fat diet-induced obese mice. Food Funct 2020; 11:8743-8756. [DOI: 10.1039/d0fo01116a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Salvianolic acid B prevents body weight gain and improves insulin sensitivity in obese mice. The underlying mechanism behind these effects may be associated with the regulation of metabolic endotoxemia, gut microbiota homeostasis and LPS/TLR4 pathway.
Collapse
|
39
|
Sumner SE, Markley RL, Kirimanjeswara GS. Role of Selenoproteins in Bacterial Pathogenesis. Biol Trace Elem Res 2019; 192:69-82. [PMID: 31489516 PMCID: PMC6801102 DOI: 10.1007/s12011-019-01877-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022]
Abstract
The trace element selenium is an essential micronutrient that plays an important role in maintaining homeostasis of several tissues including the immune system of mammals. The vast majority of the biological functions of selenium are mediated via selenoproteins, proteins which incorporate the selenium-containing amino acid selenocysteine. Several bacterial infections of humans and animals are associated with decreased levels of selenium in the blood and an adjunct therapy with selenium often leads to favorable outcomes. Many pathogenic bacteria are also capable of synthesizing selenocysteine suggesting that selenoproteins may have a role in bacterial physiology. Interestingly, the composition of host microbiota is also regulated by dietary selenium levels. Therefore, bacterial pathogens, microbiome, and host immune cells may be competing for a limited supply of selenium. Elucidating how selenium, in particular selenoproteins, may regulate pathogen virulence, microbiome diversity, and host immune response during a bacterial infection is critical for clinical management of infectious diseases.
Collapse
Affiliation(s)
- Sarah E Sumner
- Pathobiology Graduate Program, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Rachel L Markley
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Girish S Kirimanjeswara
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
- Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
40
|
Liu F, Li J, Guan Y, Lou Y, Chen H, Xu M, Deng D, Chen J, Ni B, Zhao L, Li H, Sang H, Cai X. Dysbiosis of the Gut Microbiome is associated with Tumor Biomarkers in Lung Cancer. Int J Biol Sci 2019; 15:2381-2392. [PMID: 31595156 PMCID: PMC6775324 DOI: 10.7150/ijbs.35980] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/18/2019] [Indexed: 12/22/2022] Open
Abstract
Lung cancer is a malignancy with high morbidity and mortality worldwide. More evidences indicated that gut microbiome plays an important role in the carcinogenesis and progression of cancers by metabolism, inflammation and immune response. However, the study about the characterizations of gut microbiome in lung cancer is limited. In this study, the fecal samples were collected from 16 healthy individuals and 30 lung cancer patients who were divided into 3 groups based on different tumor biomarkers (cytokeratin 19 fragment, neuron specific enolase and carcinoembryonic antigen, respectively) and were analyzed using 16S rRNA gene amplicon sequencing. Each lung cancer group has characterized gut microbial community and presents an elimination, low-density, and loss of bacterial diversity microbial ecosystem compared to that of the healthy control. The microbiome structures in family and genera levels are more complex and significantly varied from each group presenting more different and special pathogen microbiome such as Enterobacteriaceae, Streptococcus, Prevotella, etc and fewer probiotic genera including Blautia, Coprococcus, Bifidobacterium and Lachnospiraceae. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and COG annotation demonstrated decreased abundance of some dominant metabolism-related pathways in the lung cancer. This study explores for the first time the features of gut microbiome in lung cancer patients and may provide new insight into the pathogenesis of lung cancer system, with the implication that gut microbiota may serve as a microbial marker and contribute to the derived metabolites, development and differentiation in lung cancer system.
Collapse
Affiliation(s)
- Fang Liu
- Nanjing School of Clinical Medicine, Southern Medical University, Jinling Hospital, Nanjing, 210002, People's Republic of China
| | - Jingjing Li
- Institute of Biotherapy, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Yubin Guan
- Clinical Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, People's Republic of China
| | - Yanfeng Lou
- Nanjing School of Clinical Medicine, Southern Medical University, Jinling Hospital, Nanjing, 210002, People's Republic of China
| | - Huiying Chen
- Institute of Biotherapy, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Mingyu Xu
- Institute of Biotherapy, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Dequan Deng
- Nanjing School of Clinical Medicine, Southern Medical University, Jinling Hospital, Nanjing, 210002, People's Republic of China
| | - Jun Chen
- Nanjing School of Clinical Medicine, Southern Medical University, Jinling Hospital, Nanjing, 210002, People's Republic of China
| | - Beibei Ni
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| | - Lan Zhao
- Technology center, Guangdong Vitalife Bio-tech Co.,Ltd., Foshan, 528200, People's Republic of China
| | - Hongwei Li
- Institute of Biotherapy, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Hong Sang
- Nanjing School of Clinical Medicine, Southern Medical University, Jinling Hospital, Nanjing, 210002, People's Republic of China
| | - Xiangsheng Cai
- Nanjing School of Clinical Medicine, Southern Medical University, Jinling Hospital, Nanjing, 210002, People's Republic of China
- Clinical Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, People's Republic of China
| |
Collapse
|
41
|
Stashenko P, Yost S, Choi Y, Danciu T, Chen T, Yoganathan S, Kressirer C, Ruiz-Tourrella M, Das B, Kokaras A, Frias-Lopez J. The Oral Mouse Microbiome Promotes Tumorigenesis in Oral Squamous Cell Carcinoma. mSystems 2019; 4:e00323-19. [PMID: 31387932 PMCID: PMC6687944 DOI: 10.1128/msystems.00323-19] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/15/2019] [Indexed: 12/11/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignancy of the head and neck worldwide. Dysbiosis of the microbiome has increasingly been linked to the development of different kinds of cancer. Applying 16S rRNA gene sequence analysis and metatranscriptomic analyses, we characterized the longitudinal changes in the profiles and the function of the oral microbiome in a 4-nitroquinoline-1-oxide (4-NQO)-induced model of OSCC in gnotobiotic mice. We characterized the dynamics of the oral microbiome in this model using two different microbiome inocula: one from healthy mice and the other from mice bearing a 4-NQO-induced tumor. Mice colonized with different oral microbiomes and exposed to 4-NQO had increased tumor numbers and sizes compared to controls exposed to 4-NQO but lacking a microbiome. We observed an overall increase in diversity in the tumorigenic samples compared to that in the nontumor group not exposed to 4-NQO. Despite the variability in community dynamics, specific patterns emerged during the progression of the disease. In the two groups that were inoculated with the OSCC-associated microbiome, we observed opposite profiles of abundance in Parabacteroides and Corynebacterium While the percentage of Parabacteroides bacteria decreased in the control group, it increased in the OSCC group, and the opposite was observed for Corynebacterium The metatranscriptomic analysis revealed overexpression of the same metabolic signatures associated with OSCC regardless of the community profile. These included nitrogen transport, response to stress, interspecies interactions, Wnt pathway modulation, and amino acid and lipid biosynthesis. Thus, these results seem to suggest that certain collective physiological activities are critical for microbiome-mediated OSCC progression.IMPORTANCE There is growing evidence that changes in the microbiome are associated with carcinogenesis. To date, no consistent oral microbiome composition associated with OSCC has been identified. Longitudinal and functional studies like the study presented here should yield a better understanding of the role that the oral microbiome plays in OSCC. Our findings, obtained using a germ-free mouse model, indicate that the presence of different oral microbiomes enhances tumorigenesis and increases the final number of tumors in mice. By studying community-wide expression profiles, we found that regardless of the phylogenetic composition of the microbiome, the same metabolic activities were consistently associated with OSCC. Therefore, due to the functional redundancy of the microbiome, the critical element in explaining the contribution of the microbiota in OSCC is the collective physiological activity of the community, thus accounting for the previous inability to identify a consensus community profile or etiologic agents for OSCC.
Collapse
Affiliation(s)
- Philip Stashenko
- Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts, USA
| | - Susan Yost
- Forsyth Institute, Cambridge, Massachusetts, USA
| | - Yoonhee Choi
- Forsyth Institute, Cambridge, Massachusetts, USA
| | - Theodora Danciu
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Tsute Chen
- Forsyth Institute, Cambridge, Massachusetts, USA
| | | | | | | | - Bikul Das
- Department of Cancer and Stem Cell Biology, Thoreau Lab for Global Health, University of Massachusetts-Lowell, Lowell, Massachusetts, USA
| | | | - Jorge Frias-Lopez
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| |
Collapse
|
42
|
Paik J, Meeker S, Hsu CC, Seamons A, Pershutkina O, Snyder JM, Brabb T, Maggio-Price L. Validation studies for germ-free Smad3-/- mice as a bio-assay to test the causative role of fecal microbiomes in IBD. Gut Microbes 2019; 11:21-31. [PMID: 31138018 PMCID: PMC6973324 DOI: 10.1080/19490976.2019.1611151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
While the association between microbiomes and inflammatory bowel disease (IBD) is well known, establishing causal relationships between the two is difficult in humans. Germ-free (GF) mice genetically susceptible to IBD can address this question. Smad3-/- mice with defective transforming growth factor ß signaling are a model of IBD and colon cancer. They develop IBD upon colonization with Helicobacter under specific pathogen-free conditions, suggesting a role of the microbiome in IBD in this model. Thus, we rederived Smad3-/- mice GF to determine the potential of using these mice for testing the causative role of microbiomes in IBD. We found that fecal microbiomes from mice with IBD cause more severe gut inflammation in GF Smad3-/- and wild type mice compared to microbiomes from healthy mice and that Helicobacter induces gut inflammation within the context of other microbiomes but not by itself. Unexpectedly, GF Smad3+/+ and Smad3+/- mice given IBD microbiomes develop IBD despite their lack of disease in SPF conditions upon Helicobacter infection. This was not unique to the background strain of our Smad3 model (129); both wild type C57BL/6 and 129 strains developed IBD upon fecal transfer. However, wild type Swiss Webster stock was not susceptible, indicating that the genetic background of recipient mice influences the severity of IBD following fecal transfer. Our data suggest that the microbiome is an independent risk factor contributing to IBD development, and careful characterization of new GF models is needed to understand potential sources of confounding factors influencing microbiome studies in these mice.
Collapse
Affiliation(s)
- Jisun Paik
- The Department of Comparative Medicine, University of Washington, Seattle, WA, USA,CONTACT Jisun Paik The Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Stacey Meeker
- The Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Charlie C. Hsu
- The Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Audrey Seamons
- The Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Olesya Pershutkina
- The Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Jessica M. Snyder
- The Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Thea Brabb
- The Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Lillian Maggio-Price
- The Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
43
|
Han X, Huang T, Han J. Cytokines derived from innate lymphoid cells assist Helicobacter hepaticus to aggravate hepatocellular tumorigenesis in viral transgenic mice. Gut Pathog 2019; 11:23. [PMID: 31123503 PMCID: PMC6521485 DOI: 10.1186/s13099-019-0302-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/27/2019] [Indexed: 02/08/2023] Open
Abstract
Background Recently, intestinal microbiome has been involved in hepatic diseases due to the immunologic and metabolic communication between liver and intestine. Initiation of hepatocellular carcinoma (HCC) frequently attributes to conspiracy between immune cells and infectious carcinogens. Here, the hypothesis that the tumorigenesis of HCC with HBV infection will be aggravated by specific intestinal bacteria was verified in viral transgenic mouse models. Methods Comparative 16S rRNA sequencing was adopted to observe the intestinal enrichment of Helicobacter hepaticus in HCC. Oral administration of Helicobacter hepaticus was carried out to evaluate its hepatic carcinogenic effect in HBV transgenic mice or wildtype C57BL/6. The livers of experimental mice were collected and examined for the degree of tumorigenesis. Results We found that Helicobacter hepaticus more likely colonized at lower colon of HBV-infected mice with HCC, compared with C57BL/6 and HBV-infected mice without neoplasm. Pretreatment of Helicobacter hepaticus in transgenic mice aggravated tumor formation, with higher incidence, more tumor nodule and higher serum AFP. Then, a cytokines expression patterns with inclined IFN-γ, IFN-γR1, IL-17 and IL-23 was found in HBV-infected mice with Helicobacter hepaticus. Furthermore, innate lymphoid cells, especially Th17 and NK cells which can secret IL-17 and IFN-γ respectively, might be recruited by Helicobacter hepaticus cooperated with HBV. Besides, increased expression of CD69, NKG2D and IFN-γ showed activation of cytokine production in intrahepatic NK cells. Finally, IFN-γ decreased E-cadherin expression through p-STAT1 pathway, resulting in epithelial–mesenchymal transition with inclined expression of Snail2, SIP1 and CXCR4 in vitro. p-STAT1 inhibitor was able to reverse the expression of E-cadherin and EMT resulted from IFN-γ function on HBsAg-positive hepatocytes. Conclusions Helicobacter hepaticus generate a detrimental immune microenvironment by IFN-γ/p-STAT1 axis which can promote the tumorigenesis of hepatitis B via recruiting innate lymphoid cells. Electronic supplementary material The online version of this article (10.1186/s13099-019-0302-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiao Han
- 1Department of Experiment, Tumor Hospital Affiliated to Guangxi Medical University, 71# Hedi Road, Nanning, 530021 China
| | - Tianren Huang
- 1Department of Experiment, Tumor Hospital Affiliated to Guangxi Medical University, 71# Hedi Road, Nanning, 530021 China
| | - Junqing Han
- 2Department of Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong University, 324# Jingwu Road, Jinan, 250021 China
| |
Collapse
|
44
|
Zangara MT, McDonald C. How diet and the microbiome shape health or contribute to disease: A mini-review of current models and clinical studies. Exp Biol Med (Maywood) 2019; 244:484-493. [PMID: 30704299 PMCID: PMC6547010 DOI: 10.1177/1535370219826070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
IMPACT STATEMENT The studies reviewed in this article combine diet in the context of disease progression or treatment with analysis of the microbiome. First, we present findings on how diet manipulation impacts the microbiome and disease pathogenesis in a broad variety of rodent models of disease. Then, we describe results from clinical trials that are using diet therapies to attempt to shift the microbiome and treat disease symptoms. Finally, we discuss what these studies have taught us about the influence of the microbiome of disease and health states and highlight the evidence suggesting that dietary modulation of the microbiome is an emerging therapeutic option for a variety of different diseases.
Collapse
Affiliation(s)
- Megan T Zangara
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve, Cleveland, OH 44106, USA
| | - Christine McDonald
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve, Cleveland, OH 44106, USA
| |
Collapse
|
45
|
Ringel-Scaia VM, Qin Y, Thomas CA, Huie KE, McDaniel DK, Eden K, Wade PA, Allen IC. Maternal Influence and Murine Housing Confound Impact of NLRP1 Inflammasome on Microbiome Composition. J Innate Immun 2019; 11:416-431. [PMID: 30759441 PMCID: PMC6738257 DOI: 10.1159/000495850] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 12/17/2022] Open
Abstract
The NLRP1 inflammasome attenuates inflammatory bowel disease (IBD) progression and colitis-associated tumorigenesis. A possible mechanism postulates that the lack of the NLRP1 inflammasome creates permissive niches in the gut for pathogenic bacteria to flourish, causing dysbiosis and increased IBD susceptibility. To evaluate this hypothesis, we characterized the gut microbiome of wild-type, Nlrp1b-/-, and Asc-/- mice under naïve conditions by sequencing the V3 region of the 16s rRNA gene. For both genetically modified mouse lines, the microbiome composition reflected overrepresentation of bacteria associated with dysbiosis relative to wild-type animals. Measurement of short- and medium-chain fatty acids by mass spectrometry further revealed significant differences between genotypes. However, prior to concluding that the NLRP1 inflammasome plays a role in regulating the composition of the microbiome, we evaluated two additional strategies for cohousing wild-type and Nlrp1b-/- mice: breeding homozygous parents and cohousing at weaning, and breeding from heterozygous parents and cohousing littermates. We found that maternal influence was the greater predictor of microbiome composition rather than genotype. With the rise in microbiome research across disciplines, our study should be viewed as a cautionary example that illustrates the importance of careful breeding and housing strategies when evaluating host-microbiome interactions.
Collapse
Affiliation(s)
- Veronica M. Ringel-Scaia
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, Virginia, USA
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, USA
| | - Yufeng Qin
- Eukaryotic Transcriptional Regulation Group, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Cassidy A. Thomas
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, USA
| | - Kathleen E. Huie
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, USA
| | - Dylan K. McDaniel
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, USA
| | - Kristin Eden
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, USA
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | - Paul A. Wade
- Eukaryotic Transcriptional Regulation Group, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Irving C. Allen
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, Virginia, USA
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, USA
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| |
Collapse
|
46
|
Gerner EW, Bruckheimer E, Cohen A. Cancer pharmacoprevention: Targeting polyamine metabolism to manage risk factors for colon cancer. J Biol Chem 2018; 293:18770-18778. [PMID: 30355737 DOI: 10.1074/jbc.tm118.003343] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cancer is a set of diseases characterized by uncontrolled cell growth. In certain cancers of the gastrointestinal tract, the adenomatous polyposis coli (APC) tumor suppressor gene is altered in either germline or somatic cells and causes formation of risk factors, such as benign colonic or intestinal neoplasia, which can progress to invasive cancer. APC is a key component of the WNT pathway, contributing to normal GI tract development, and APC alteration results in dysregulation of the pathway for production of polyamines, which are ubiquitous cations essential for cell growth. Studies with mice have identified nonsteroidal anti-inflammatory drugs (NSAIDs) and difluoromethylornithine (DFMO), an inhibitor of polyamine synthesis, as potent inhibitors of colon carcinogenesis. Moreover, gene expression profiling has uncovered that NSAIDs activate polyamine catabolism and export. Several DFMO-NSAID combination strategies are effective and safe methods for reducing risk factors in clinical trials with patients having genetic or sporadic risk of colon cancer. These strategies affect cancer stem cells, inflammation, immune surveillance, and the microbiome. Pharmacotherapies consisting of drug combinations targeting the polyamine pathway provide a complementary approach to surgery and cytotoxic cancer treatments for treating patients with cancer risk factors. In this Minireview, we discuss the role of polyamines in colon cancer and highlight the mechanisms of select pharmacoprevention agents to delay or prevent carcinogenesis in humans.
Collapse
Affiliation(s)
- Eugene W Gerner
- From Cancer Prevention Pharmaceuticals, Tucson, Arizona 85718 and .,the Department of Cell and Molecular Medicine, University of Arizona, Tucson, Arizona 85711
| | | | - Alfred Cohen
- From Cancer Prevention Pharmaceuticals, Tucson, Arizona 85718 and
| |
Collapse
|
47
|
Colonic Mucosal Microbiota in Colorectal Cancer: A Single-Center Metagenomic Study in Saudi Arabia. Gastroenterol Res Pract 2018; 2018:5284754. [PMID: 29887882 PMCID: PMC5977013 DOI: 10.1155/2018/5284754] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/22/2018] [Accepted: 04/10/2018] [Indexed: 12/16/2022] Open
Abstract
Background and Aim Because genetic and geographic variations in intestinal microbiota are known to exist, the focus of this study was to establish an estimation of microbiota in colorectal cancer (CRC) patients in Saudi Arabia by means of metagenomic studies. Methods From July 2010 to November 2012, colorectal cancer patients attending our hospital were enrolled for the metagenomic studies. All underwent clinical, endoscopic, and histological assessment. Mucosal microbiota samples were collected from each patient by jet-flushing colonic mucosa with distilled water at unified segments of the colon, followed by aspiration, during colonoscopy. Total purified dsDNA was extracted and quantified prior to metagenomic sequencing using an Illumina platform. Satisfactory DNA samples (n = 29) were subjected to metagenomics studies, followed by comprehensive comparative phylogenetic analysis. An equal number of healthy age-matched controls were also examined for colonic mucosal microbiota. Results Metagenomics data on 29 patients (14 females) in the age range 38-77 years were analyzed. The majority 11 (37%) of our patients were overweight (BMI = 25-30). Rectal bleeding was the presenting symptom in 18/29 (62%), while symptomatic anemia was the presenting symptom in 11/29 (37%). The location of colon cancer was rectal in 14 (48%), while cecal growth was observed in 8 (27%). Hepatic flexure growth was found in 1 (3%), descending colonic growth was found in 2 (6%), and 4 (13%) patients had transverse colon growth. The metagenomics analysis was carried out, and a total of 3.58G reads were sequenced, and about 321.91G data were used in the analysis. This study identified 11 genera specific to colorectal cancer patients when compared to genera in the control group. Bacteroides fragilis and Fusobacterium were found to be significantly prevalent in the carcinoma group when compared to the control group. Conclusion The current study has given an insight into the microbiota of colorectal cancer patients in Saudi Arabia and has identified various genera significantly present in these patients when compared to those of the control group.
Collapse
|