1
|
Alghamdi AK, Parween S, Hirt H, Saad MM. Unveiling the bacterial diversity and potential of the Avicennia marina ecosystem for enhancing plant resilience to saline conditions. ENVIRONMENTAL MICROBIOME 2024; 19:101. [PMID: 39633419 PMCID: PMC11619459 DOI: 10.1186/s40793-024-00642-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Avicennia marina ecosystems are critical for coastal protection, water quality enhancement, and biodiversity support. These unique ecosystems thrive in extreme saline conditions and host a diverse microbiome that significantly contributes to plant resilience and growth. Global food security is increasingly threatened by crop yield losses due to abiotic stresses, including saline soils. Traditional plant breeding for salt tolerance is both costly and time-consuming. This study explores the potential of bacteria from A. marina to enhance plant growth under saline conditions, emphasizing their ecological significance. RESULTS We analyzed the microbiome of A. marina from the Red Sea coast using high-throughput Illumina sequencing and culture-dependent methods across various compartments (bulk soil, rhizosphere, rhizoplane, roots, and leaves). Our findings revealed distinct compartment-specific microbial communities, with Proteobacteria being the dominant phylum. Functional predictions indicated diverse microbial roles in metal uptake and plant growth promotion (PGP). Remarkably, our culture-dependent methods allowed us to recover 56% of the bacterial diversity present in the microbiome, resulting in the isolation and characterization of 256 bacterial strains. These isolates were screened for PGP traits, including salt and heat tolerance, siderophore production, and pectinase activity. Out of the 77 bacterial isolates tested, 11 demonstrated a significant ability to enhance Arabidopsis growth under salt stress. CONCLUSIONS Our study highlights the ecological significance of mangrove microbiomes and the potential of culture collections in offering innovative solutions for ecological restoration and crop production in saline conditions. The unique collection of mangrove bacteria, particularly from the rhizosphere and endophytes, showcases significant PGP traits and stress tolerance capabilities. These findings emphasize the importance of functional traits, such as salt tolerance, in the recruitment of endophytic bacteria by plants over taxonomic affiliation. The identified bacterial strains hold potential not only for developing biofertilizers to improve crop productivity but also for ecological restoration projects aimed at rehabilitating saline-degraded lands, thereby contributing to overall ecosystem health and sustainability.
Collapse
Affiliation(s)
- Amal Khalaf Alghamdi
- DARWIN21, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Sabiha Parween
- DARWIN21, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Heribert Hirt
- DARWIN21, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- Max Perutz Laboratories, University of Vienna, Vienna, Austria.
| | - Maged M Saad
- DARWIN21, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
2
|
Cheng X, Zhao R, Bodelier PLE, Song Y, Yang K, Tuovinen OH, Wang H. Differential response of subterranean microbiome to exogenous organic matter input in a cave ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176584. [PMID: 39349195 DOI: 10.1016/j.scitotenv.2024.176584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
As a recurrent climatic phenomenon in the context of climate change, extreme rainstorms induce vertical translocation of organic matter and increase moisture content in terrestrial ecosystems. However, it remains unclear whether heavy rainstorms can impact microbial communities in the deep biosphere by modulating organic matter input. In this study, we present findings on the different responses of bacterial and fungal communities in a subsurface cave to rainstorms and moisture variations through field surveys and microcosm experiments. During periods of rainstorms, the influx of dissolved organic matter (DOM) from soil overlying the cave into cave sediments significantly enhanced the correlation between core bacteria and environmental factors, particularly fluorescence spectral indices. The resource utilization of core bacteria was diminished, while the functional diversity of core fungi remained relatively unaltered. We also performed simulated experiments with restricted external DOM inputs, in which DOM content was observed to decrease and microbial diversity increase in response to artificially increased moisture content (MC). The niche breadth of core bacteria decreased and became more closely associated with DOM as the MC increased, while the niche breadth of core fungi remained predominantly unchanged. Compared to fungi, cave bacteria exhibited higher sensitivity towards variations in DOM. The core microbiome can efficiently utilize the available organic matter and participate in nitrogen- and sulfur-related metabolic processes. The study systematically revealed distinct microbial responses to rainstorm events, thereby providing valuable insights for future investigations into energy utilization within deep biospheres.
Collapse
Affiliation(s)
- Xiaoyu Cheng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, the Netherlands
| | - Rui Zhao
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Paul L E Bodelier
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, the Netherlands
| | - Yuyang Song
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Kang Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Olli H Tuovinen
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | - Hongmei Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
3
|
García-Estrada DA, Selem-Mojica N, Martínez-Hernández A, Lara-Reyna J, Dávila-Ramos S, Verdel-Aranda K. Diversity of bacterial communities in wetlands of Calakmul Biosphere Reserve: a comparative analysis between conserved and semi-urbanized zones in pre-Mayan Train era. BMC Microbiol 2024; 24:376. [PMID: 39342129 PMCID: PMC11437969 DOI: 10.1186/s12866-024-03523-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND The Calakmul Biosphere Reserve (CBR) is known for its rich animal and plant biodiversity, yet its microbial communities remain largely unknown. The reserve does not possess permanent bodies of water; nevertheless, seasonal depressions associated with fractures create wetlands, known locally as aguadas. Given the recent construction of the Maya train that crosses the CRB, it is essential to assess the biodiversity of its microorganisms and recognize their potential as a valuable source of goods. This evaluation is pivotal in mitigating potential mismanagement of the forest ecosystem. To enhance comprehension of microbial communities, we characterized the microbiota in three different wetlands. Ag-UD1 and Ag-UD2 wetlands are located in a zone without human disturbances, while the third, Ag-SU3, is in a semi-urbanized zone. Sampling was carried out over three years (2017, 2018, and 2019), enabling the monitoring of spatiotemporal variations in bacterial community diversity. The characterization of microbiome composition was conducted using 16S rRNA metabarcoding. Concurrently, the genomic potential of select samples was examined through shotgun metagenomics. RESULTS Statistical analysis of alpha and beta diversity indices showed significant differences among the bacterial communities found in undisturbed sites Ag-UD1 and Ag-UD2 compared to Ag-SU3. However, no significant differences were observed among sites belonging to the undisturbed area. Furthermore, a comparative analysis at the zone level reveals substantial divergence among the communities, indicating that the geographic location of the samples significantly influences these patterns. The bacterial communities in the CBR wetlands predominantly consist of genera from phyla Actinobacteria, Acidobacteria, and Proteobacteria. CONCLUSION This characterization has identified the composition of microbial communities and provided the initial overview of the metabolic capacities of the microbiomes inhabiting the aguadas across diverse conservation zones. The three sites exhibit distinct microbial compositions, suggesting that variables such as chemical composition, natural and anthropogenic disturbances, vegetation, and fauna may play a pivotal role in determining the microbial structure of the aguadas. This study establishes a foundational baseline for evaluating the impact of climatic factors and human interventions on critical environments such as wetlands.
Collapse
Affiliation(s)
- David Alberto García-Estrada
- Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, Mexico
| | - Nelly Selem-Mojica
- Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México (UNAM), Morelia, Michoacán, Mexico
| | | | - Joel Lara-Reyna
- Colegio de Postgraduados Campus Campeche, Sihochac, Champotón, Campeche, Mexico.
| | - Sonia Dávila-Ramos
- Centro de Investigación en Dinámica Celular, IICBA, Universidad Autónoma del Estado de Morelos (UAEM), Cuernavaca, Morelos, Mexico
| | - Karina Verdel-Aranda
- Conahcyt-Colegio de Postgraduados Campus Campeche, Sihochac, Champotón, Campeche, Mexico.
- Present address: Tecnológico Nacional de México-Instituto Tecnológico de Chiná, Chiná, Campeche, Mexico.
| |
Collapse
|
4
|
Laux M, Ciapina LP, de Carvalho FM, Gerber AL, Guimarães APC, Apolinário M, Paes JES, Jonck CR, de Vasconcelos ATR. Living in mangroves: a syntrophic scenario unveiling a resourceful microbiome. BMC Microbiol 2024; 24:228. [PMID: 38943070 PMCID: PMC11212195 DOI: 10.1186/s12866-024-03390-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/19/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Mangroves are complex and dynamic coastal ecosystems under frequent fluctuations in physicochemical conditions related to the tidal regime. The frequent variation in organic matter concentration, nutrients, and oxygen availability, among other factors, drives the microbial community composition, favoring syntrophic populations harboring a rich and diverse, stress-driven metabolism. Mangroves are known for their carbon sequestration capability, and their complex and integrated metabolic activity is essential to global biogeochemical cycling. Here, we present a metabolic reconstruction based on the genomic functional capability and flux profile between sympatric MAGs co-assembled from a tropical restored mangrove. RESULTS Eleven MAGs were assigned to six Bacteria phyla, all distantly related to the available reference genomes. The metabolic reconstruction showed several potential coupling points and shortcuts between complementary routes and predicted syntrophic interactions. Two metabolic scenarios were drawn: a heterotrophic scenario with plenty of carbon sources and an autotrophic scenario with limited carbon sources or under inhibitory conditions. The sulfur cycle was dominant over methane and the major pathways identified were acetate oxidation coupled to sulfate reduction, heterotrophic acetogenesis coupled to carbohydrate catabolism, ethanol production and carbon fixation. Interestingly, several gene sets and metabolic routes similar to those described for wastewater and organic effluent treatment processes were identified. CONCLUSION The mangrove microbial community metabolic reconstruction reflected the flexibility required to survive in fluctuating environments as the microhabitats created by the tidal regime in mangrove sediments. The metabolic components related to wastewater and organic effluent treatment processes identified strongly suggest that mangrove microbial communities could represent a resourceful microbial model for biotechnological applications that occur naturally in the environment.
Collapse
Affiliation(s)
- Marcele Laux
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| | - Luciane Prioli Ciapina
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil.
| | - Fabíola Marques de Carvalho
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| | - Alexandra Lehmkuhl Gerber
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| | - Ana Paula C Guimarães
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| | - Moacir Apolinário
- Petróleo Brasileiro S. A., Centro de Pesquisa Leopoldo Américo Miguez de Mello, Rio de Janeiro, RJ, Brasil
| | - Jorge Eduardo Santos Paes
- Petróleo Brasileiro S. A., Centro de Pesquisa Leopoldo Américo Miguez de Mello, Rio de Janeiro, RJ, Brasil
| | - Célio Roberto Jonck
- Petróleo Brasileiro S. A., Centro de Pesquisa Leopoldo Américo Miguez de Mello, Rio de Janeiro, RJ, Brasil
| | - Ana Tereza R de Vasconcelos
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| |
Collapse
|
5
|
Huang H, Shi Y, Gong Z, Wang J, Zheng L, Gao S. Revealing the characteristics of biofilms on different polypropylene plastic products: Comparison between disposable masks and takeaway boxes. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133400. [PMID: 38198871 DOI: 10.1016/j.jhazmat.2023.133400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
The increasingly severe plastic pollution issue was intensified by the enormous plastic emissions into ecosystems during the Covid-19 pandemic. Plastic wastes entering the environment were swiftly exposed to microorganisms and colonized by biofilms, and the plastic-biofilm combined effects further influenced the ecosystem. However, the non-woven structure of disposable masks discarded carelessly during the COVID-19 pandemic was different from those of plastics with flat surface. To reveal the potential effects of plastic structure on colonized biofilms, white disposable surgical masks (DM) and transparent takeaway boxes (TB), both made of polyethylene, were selected for the incubation of organic conditioning films and biofilms. The results indicated that the non-woven structure of disposable mask was destroyed by the influence of water infiltration and biofilm colonization. The influence of surface structure on conditioning films led to a relatively higher proportion of tryptophan-like substances on DM than those on TB samples. Therefore, biofilms with significantly higher microbial biomass and carbon metabolic capacity were formed on DM than those on TB samples owing to the combined effects of their differences in surface structure and conditioning films. Moreover, abundant functional microorganisms associated with stress tolerance, carbon metabolism and biofilm formation were observed in biofilms on disposable mask. Combining with the results of partial least squares regression analysis, the selective colonization of functional microorganisms on disposable masks with uneven surface longitudinal fluctuation was revealed. Although the predicted functions of biofilms on disposable masks and takeaway boxes showed more similarity to each other than to those of free-living aquatic microorganisms owing to the existence of the plastisphere, biofilms on disposable masks may potentially trigger environmental risks different from those of takeaway boxes by unique carbon metabolism and abundant biomass.
Collapse
Affiliation(s)
- Hexinyue Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Yanqi Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Zhimin Gong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Jiahao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Lezhou Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China.
| |
Collapse
|
6
|
Li X, Cheng X, Cheng K, Cai Z, Feng S, Zhou J. The influence of tide-brought nutrients on microbial carbon metabolic profiles of mangrove sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167732. [PMID: 37827311 DOI: 10.1016/j.scitotenv.2023.167732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/14/2023]
Abstract
Mangrove ecosystems in the intertidal zone are continually affected by tidal inundation, but the impact of tidal-driven nutrient inputs upon bacterial communities and carbon metabolic features in mangrove surface sediments remains underexplored, and the differences in such impacts across backgrounds are not known. Here, two mangrove habitats with contrasting nutrient backgrounds in Shenzhen Bay and Daya Bay in Shenzhen City, China, respectively, were studied to investigate the effects of varying tidal nutrient inputs (especially dissolved inorganic nitrogen and PO43--P) on bacterial community composition and functioning in sediment via field sampling, 16S rDNA amplicon sequencing, and the quantitative potential of microbial element cycling. Results showed that tidal input increased Shenzhen Bay mangrove's eutrophication level whereas it maintained the Daya Bay mangrove's relatively oligotrophic status. Dissolved inorganic nitrogen and PO43--P levels in Shenzhen Bay were respectively 12.6-39.6 and 7.3-29.1 times higher than those in Daya Bay (p < 0.05). In terms of microbial features, Desulfobacteraceae was the dominant family in Shenzhen Bay, while the Anaerolineaceae family dominated in Daya Bay. Co-occurrence network analysis revealed more interconnected and complex microbial networks in Shenzhen Bay. The quantitative gene-chip analysis uncovered more carbon-related functional genes (including carbon degradation and fixation) enriched in Shenzhen Bay's sediment microbial communities than Daya Bay's. Partial least squares path modeling indicated that tidal behavior directly affected mangrove sediments' physicochemical characteristics, with cascading effects shaping microbial diversity and C-cycling function. Altogether, these findings demonstrate that how tides influence the microbial carbon cycle in mangrove sediments is co-correlated with the concentration of nutrient inputs and background status of sediment. This work offers an insightful lens for better understanding bacterial community structure and carbon metabolic features in mangrove sediments under their tidal influences. It provides a theoretical basis to better evaluate and protect mangroves in the context of global change.
Collapse
Affiliation(s)
- Xinyang Li
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Xueyu Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Keke Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Shuying Feng
- Medical College, Henan University of Chinese Medicine, Zhengzhou, Henan 450056, PR China.
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| |
Collapse
|
7
|
Wang F, Guo R, Zhang N, Yang S, Cao W. Soil organic carbon storages and bacterial communities along a restored mangrove soil chronosequence in the Jiulong River Estuary: From tidal flats to mangrove afforestation. FUNDAMENTAL RESEARCH 2023; 3:880-889. [PMID: 38933017 PMCID: PMC11197722 DOI: 10.1016/j.fmre.2022.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/12/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
Among many ecological services provided by mangrove ecosystems, soil organic carbon (SOC) storages have recently received much attention owing to the increasing atmospheric partial pressure of dissolved CO2 (pCO2). Bacteria are fundamental to ecosystem functions and strongly influence the coupling of coastal carbon, nitrogen, and sulfur cycling in soils. The SOC storage and bacterial communities along a restored mangrove soil chronosequence in the Jiulong River Estuary were explored using the 16S rDNA sequencing technique. The results showed the SOC storage in the 100 cm soil profile was 103.31 ± 5.87 kg C m-2 and 93.10 ± 11.28 kg C m-2 for mangroves with afforestation ages of 36 and 60 years, respectively. The total nitrogen (TN) and total sulfur (TS) contents exhibited significant correlations with the SOC in the mangrove soils, but only TN and SOC showed significant correlation in tidal flat soils. Although the tidal flats and mangroves occupied the contiguous intertidal zone within several kilometers, the variations in the SOC storage along the restored mangrove soil chronosequence were notably higher. The Functional Annotation of Prokaryotic Taxa (FAPROTAX) database was used to annotate the metabolic functions of the bacteria in the soils. The annotation revealed that only four metabolic functions were enriched with a higher relative abundance of the corresponding bacteria, and these enriched functions were largely associated with sulfate reduction. In addition, the specifically critical bacterial taxa that were associated with the SOC accumulation and nutrient cycling, shaped the distinct metabolic functions, and consequently facilitated the SOC accumulation in the mangrove soils with various afforestation ages. The general homogenization of the microbial community and composition along the intertidal soil chronosequence was primarily driven by the reciprocating tidal flows and geographical contiguity.
Collapse
Affiliation(s)
- Feifei Wang
- State Key Laboratory of Marine Environmental Science, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Rui Guo
- State Key Laboratory of Marine Environmental Science, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Ning Zhang
- State Key Laboratory of Marine Environmental Science, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Shengchang Yang
- State Key Laboratory of Marine Environmental Science, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Wenzhi Cao
- State Key Laboratory of Marine Environmental Science, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
8
|
Zhou Y, Lian Y, Liu T, Jin X, Wang Z, Liu X, Zhou M, Jing D, Yin W, Feng J, Wang H, Zhang D. Impacts of high-quality coal mine drainage recycling for replenishment of aquatic ecosystems in arid regions of China: Bacterial community responses. ENVIRONMENTAL RESEARCH 2023; 223:115083. [PMID: 36529333 DOI: 10.1016/j.envres.2022.115083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/05/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Coal mine water is usually recycled as supplementary water for aquatic ecosystems in arid and semiarid mining regions of China. To ensure ecosystem health, the coal mine water is rigorously treated using several processes, including reverse osmosis, to meet surface water quality standards. However, the potential environmental impacts of this management pattern on the ecological function of receiving water bodies are unclear. In this study, we built several microcosm water ecosystems to simulate the receiving water bodies. High-quality treated coal mine drainage was mixed into the model water bodies at different concentrations, and the sediment bacterial community response and functional changes were systematically investigated. The results showed that the high-quality coal mine drainage could still shape bacterial taxonomic diversity, community composition and structure, with a concentration threshold of approximately 50%. Moreover, both the Mantel test and the structural equation model indicated that the salinity fluctuation caused by the receiving of coal mine drainage was the primary factor shaping the bacterial communities. 10 core taxa in the molecular ecological network influenced by coal mine drainage were identified, with the most critical taxa being patescibacteria and g_Geothermobacter. Furthermore, the pathway of carbohydrate metabolism as well as signaling molecules and interactions was up-regulated, whereas amino acid metabolism showed the opposite trend. All results suggested that the complex physical-chemical and biochemical processes in water ecosystems may be affected by the coal mine drainage. The bacterial community response and underlying functional changes may accelerate internal nutrient cycling, which may have a potential impact on algal bloom outbreaks.
Collapse
Affiliation(s)
- Yaqian Zhou
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, PR China
| | - Ying Lian
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Tengxiang Liu
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Xian Jin
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Zhigang Wang
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Xin Liu
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Mengling Zhou
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Dan Jing
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Weiwen Yin
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Jiaying Feng
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Heli Wang
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, PR China.
| | - Daxin Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, PR China; School of Soil & Water Conservation, Beijing Forestry University, Beijing, 100083, PR China.
| |
Collapse
|
9
|
Liu L, Wang N, Liu M, Guo Z, Shi S. Assembly processes underlying bacterial community differentiation among geographically close mangrove forests. MLIFE 2023; 2:73-88. [PMID: 38818341 PMCID: PMC10989747 DOI: 10.1002/mlf2.12060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 06/01/2024]
Abstract
Bacterial communities play pivotal roles in nutrient cycling in mangrove forests. The assembly of mangrove microbial communities has been found to be influenced by complex factors, such as geographic distance, physicochemical conditions, and plant identity, but the relative importance of these factors and how these factors shape the assembling process remain elusive. We analyzed the bacterial communities sampled from three mangrove species (Aegiceras corniculatum, Bruguiera sexangula, and Kandelia obovata) at three locations along the estuarine Dongzhai Harbor in Hainan, China. We revealed larger differences in rhizosphere bacterial communities among geographical locations than among plant species, indicated by differences in diversity, composition, and interaction networks. We found that dispersal limitation and homogeneous selection have substantial contributions to the assembly of mangrove rhizosphere bacterial communities in all three locations. Following the phylogenetic-bin-based null model analysis (iCAMP) framework, we also found dispersal limitation and homogeneous selection showing dominance in some bins. The greater differences among geographic locations may be mainly attributed to the larger proportions of dispersal limitation even at such a short geographic distance. We also found that beta diversity was positively correlated with environmental distances, implying that the more similar environmental conditions (such as rich carbon and nitrogen contents) among plant species may have shaped similar bacterial communities. We concluded that the geographic distances, which are associated with dispersal limitation, played a key role in assembling mangrove rhizosphere bacterial communities, while physicochemical conditions and plant identity contributed less.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Nan Wang
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Min Liu
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Zixiao Guo
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
10
|
Marasco R, Michoud G, Sefrji FO, Fusi M, Antony CP, Seferji KA, Barozzi A, Merlino G, Daffonchio D. The identification of the new species Nitratireductor thuwali sp. nov. reveals the untapped diversity of hydrocarbon-degrading culturable bacteria from the arid mangrove sediments of the Red Sea. Front Microbiol 2023; 14:1155381. [PMID: 37200916 PMCID: PMC10185800 DOI: 10.3389/fmicb.2023.1155381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/04/2023] [Indexed: 05/20/2023] Open
Abstract
Introduction The geological isolation, lack of freshwater inputs and specific internal water circulations make the Red Sea one of the most extreme-and unique-oceans on the planet. Its high temperature, salinity and oligotrophy, along with the consistent input of hydrocarbons due to its geology (e.g., deep-sea vents) and high oil tankers traffic, create the conditions that can drive and influence the assembly of unique marine (micro)biomes that evolved to cope with these multiple stressors. We hypothesize that mangrove sediments, as a model-specific marine environment of the Red Sea, act as microbial hotspots/reservoirs of such diversity not yet explored and described. Methods To test our hypothesis, we combined oligotrophic media to mimic the Red Sea conditions and hydrocarbons as C-source (i.e., crude oil) with long incubation time to allow the cultivation of slow-growing environmentally (rare or uncommon) relevant bacteria. Results and discussion This approach reveals the vast diversity of taxonomically novel microbial hydrocarbon degraders within a collection of a few hundred isolates. Among these isolates, we characterized a novel species, Nitratireductor thuwali sp. nov., namely, Nit1536T. It is an aerobic, heterotrophic, Gram-stain-negative bacterium with optimum growth at 37°C, 8 pH and 4% NaCl, whose genome and physiological analysis confirmed the adaptation to extreme and oligotrophic conditions of the Red Sea mangrove sediments. For instance, Nit1536T metabolizes different carbon substrates, including straight-chain alkanes and organic acids, and synthesizes compatible solutes to survive in salty mangrove sediments. Our results showed that the Red Sea represent a source of yet unknown novel hydrocarbon degraders adapted to extreme marine conditions, and their discovery and characterization deserve further effort to unlock their biotechnological potential.
Collapse
|
11
|
Study of Wetland Soils of the Salar de Atacama with Different Azonal Vegetative Formations Reveals Changes in the Microbiota Associated with Hygrophile Plant Type on the Soil Surface. Microbiol Spectr 2022; 10:e0053322. [PMID: 36121227 DOI: 10.1128/spectrum.00533-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salar de Atacama is located approximately 55 km south of San Pedro de Atacama in the Antofagasta region, Chile. The high UV irradiation and salt concentration and extreme drought make Salar de Atacama an ideal site to search for novel soil microorganisms with unique properties. Here, we used a metataxonomic approach (16S rRNA V3-V4) to identify and characterize the soil microbiota associated with different surface azonal vegetation formations, including strict hygrophiles (Baccharis juncea, Juncus balticus, and Schoenoplectus americanus), transitional hygrophiles (Distichlis spicata, Lycium humile, and Tessaria absinthioides), and their various combinations. We detected compositional differences among the soil surface microbiota associated with each plant formation in the sampling area. There were changes in soil microbial phylogenetic diversity from the strict to the transitional hygrophiles. Moreover, we found alterations in the abundance of bacterial phyla and genera. Halobacteriota and Actinobacteriota might have facilitated water uptake by the transitional hygrophiles. Our findings helped to elucidate the microbiota of Salar de Atacama and associate them with the strict and transitional hygrophiles indigenous to the region. These findings could be highly relevant to future research on the symbiotic relationships between microbiota and salt-tolerant plants in the face of climate change-induced desertification. IMPORTANCE The study of the composition and diversity of the wetland soil microbiota associated with hygrophilous plants in a desert ecosystem of the high Puna in northern Chile makes it an ideal approach to search for novel extremophilic microorganisms with unique properties. These microorganisms are adapted to survive in ecological niches, such as those with high UV irradiation, extreme drought, and high salt concentration; they can be applied in various fields, such as biotechnology and astrobiology, and industries, including the pharmaceutical, food, agricultural, biofuel, cosmetic, and textile industries. These microorganisms can also be used for ecological conservation and restoration. Extreme ecosystems are a unique biological resource and biodiversity hot spots that play a crucial role in maintaining environmental sustainability. The findings could be highly relevant to future research on the symbiotic relationships between microbiota and extreme-environment-tolerant plants in the face of climate change-induced desertification.
Collapse
|
12
|
Fusi M, Booth JM, Marasco R, Merlino G, Garcias-Bonet N, Barozzi A, Garuglieri E, Mbobo T, Diele K, Duarte CM, Daffonchio D. Bioturbation Intensity Modifies the Sediment Microbiome and Biochemistry and Supports Plant Growth in an Arid Mangrove System. Microbiol Spectr 2022; 10:e0111722. [PMID: 35647697 PMCID: PMC9241789 DOI: 10.1128/spectrum.01117-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/06/2022] [Indexed: 01/04/2023] Open
Abstract
In intertidal systems, the type and role of interactions among sediment microorganisms, animals, plants and abiotic factors are complex and not well understood. Such interactions are known to promote nutrient provision and cycling, and their dynamics and relationships may be of particular importance in arid microtidal systems characterized by minimal nutrient input. Focusing on an arid mangrove ecosystem on the central Red Sea coast, we investigated the effect of crab bioturbation intensity (comparing natural and manipulated high levels of bioturbation intensity) on biogeochemistry and bacterial communities of mangrove sediments, and on growth performance of Avicennia marina, over a period of 16 months. Along with pronounced seasonal patterns with harsh summer conditions, in which high sediment salinity, sulfate and temperature, and absence of tidal flooding occur, sediment bacterial diversity and composition, sediment physicochemical conditions, and plant performance were significantly affected by crab bioturbation intensity. For instance, bioturbation intensity influenced components of nitrogen, carbon, and phosphate cycling, bacterial relative abundance (i.e., Bacteroidia, Proteobacteria and Rhodothermi) and their predicted functionality (i.e., chemoheterotrophy), likely resulting from enhanced metabolic activity of aerobic bacteria. The complex interactions among bacteria, animals, and sediment chemistry in this arid mangrove positively impact plant growth. We show that a comprehensive approach targeting multiple biological levels provides useful information on the ecological status of mangrove forests. IMPORTANCE Bioturbation is one of the most important processes that governs sediment biocenosis in intertidal systems. By facilitating oxygen penetration into anoxic layers, bioturbation alters the overall sediment biogeochemistry. Here, we investigate how high crab bioturbation intensity modifies the mangrove sediment bacterial community, which is the second largest component of mangrove sediment biomass and plays a significant role in major biogeochemical processes. We show that the increase in crab bioturbation intensity, by ameliorating the anoxic condition of mangrove sediment and promoting sediment bacterial diversity in favor of a beneficial bacterial microbiome, improves mangrove tree growth in arid environments. These findings have significant implications because they show how crabs, by farming the mangrove sediment, can enhance the overall capacity of the system to sustain mangrove growth, fighting climate change.
Collapse
Affiliation(s)
- Marco Fusi
- Division of Biological and Environmental Science and Engineering (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Centre for Conservation and Restoration Science, School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Jenny Marie Booth
- Division of Biological and Environmental Science and Engineering (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Coastal Research Group, Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa
| | - Ramona Marasco
- Division of Biological and Environmental Science and Engineering (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Giuseppe Merlino
- Division of Biological and Environmental Science and Engineering (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Neus Garcias-Bonet
- Division of Biological and Environmental Science and Engineering (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Alan Barozzi
- Division of Biological and Environmental Science and Engineering (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Elisa Garuglieri
- Division of Biological and Environmental Science and Engineering (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Tumeka Mbobo
- National Research Foundation-South African Institute for Aquatic Biodiversity Institute, Makhanda, South Africa
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Cape Town, South Africa
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - Karen Diele
- Centre for Conservation and Restoration Science, School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Carlos M. Duarte
- Division of Biological and Environmental Science and Engineering (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Daniele Daffonchio
- Division of Biological and Environmental Science and Engineering (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|