1
|
Chacón RD, Astolfi-Ferreira CS, Valdeiglesias Ichillumpa S, Lage Hagemann H, Furlan Rocha M, Fernandes Magalhães L, Freitas Raso T, Ferreira AJP. First Complete Genome of Reticuloendotheliosis Virus in a Mallard Duck from Brazil: Phylogenetic Insights and Evolutionary Analysis. Pathogens 2025; 14:189. [PMID: 40005564 PMCID: PMC11858360 DOI: 10.3390/pathogens14020189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Reticuloendotheliosis virus (REV) is an oncogenic retrovirus that affects both commercial and free-ranging birds. To date, only two complete REV genome sequences have been identified in chickens from South America, with no records in other avian species. This study reports the first complete genome of REV detected in a mallard duck (Anas platyrhynchos domesticus) in South America. In 2021, a mallard duck in Brazil died from severe lymphoproliferative disease affecting multiple organs. Molecular detection and histopathological analysis confirmed REV as the causative agent. Using dideoxy sequencing and phylogenetic analysis, the virus was classified as subtype 3 (REV-3). The phylogenetic analysis identified three clades, each with a bootstrap value of 100, corresponding to the three REV subtypes. Furthermore, a comprehensive comparative genomic analysis revealed two distinct REV-3 subclusters-'East' (38 strains) and 'West' (24 strains)-with notable geographical associations. Additionally, 27 genomes in chimeric states with fowlpox virus (FWPV) were distributed across the phylogenetic tree, emphasizing the critical role of FWPV in the dissemination of REV. Selective pressure analysis revealed evidence of positive selection acting on several codons within the gag, pol, and env genes, particularly in domains such as matrix, p18, reverse transcriptase/ribonuclease H, and surface. These findings provide valuable insights into REV evolution and underscore the importance of genomic surveillance for detecting REV circulation in diverse hosts.
Collapse
Affiliation(s)
- Ruy D. Chacón
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, Av. Prof. Orlando Marques de Paiva, 87, São Paulo 05508-900, Brazil; (R.D.C.); (C.S.A.-F.); (H.L.H.)
| | - Claudete S. Astolfi-Ferreira
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, Av. Prof. Orlando Marques de Paiva, 87, São Paulo 05508-900, Brazil; (R.D.C.); (C.S.A.-F.); (H.L.H.)
| | - Stefhany Valdeiglesias Ichillumpa
- Laboratorio de Fisiología Molecular, Instituto de Investigación en Ganadería y Biotecnología, Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru;
| | - Henrique Lage Hagemann
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, Av. Prof. Orlando Marques de Paiva, 87, São Paulo 05508-900, Brazil; (R.D.C.); (C.S.A.-F.); (H.L.H.)
| | - Maristela Furlan Rocha
- Clínica de Aves, Rua Voluntario Mario Mazini, 1697, São Paulo 14405-094, Brazil; (M.F.R.); (L.F.M.)
| | | | - Tânia Freitas Raso
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, Av. Prof. Orlando Marques de Paiva, 87, São Paulo 05508-900, Brazil; (R.D.C.); (C.S.A.-F.); (H.L.H.)
| | - Antonio J. Piantino Ferreira
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, Av. Prof. Orlando Marques de Paiva, 87, São Paulo 05508-900, Brazil; (R.D.C.); (C.S.A.-F.); (H.L.H.)
| |
Collapse
|
2
|
Klikha A, Schiavone A, Djemai S, Samarelli R, Aissi M, Pugliese N, Khoualed Y, Camarda A. Molecular detection of avian pathogens in poultry red mite (Dermanyssus gallinae) in Algerian layer farms as a potential predictive tool. Acta Trop 2024; 258:107345. [PMID: 39094829 DOI: 10.1016/j.actatropica.2024.107345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
The poultry red mite Dermanyssus gallinae is a hematophagous ectoparasite of layer hens. Infestations with poultry red mites pose an increasing threat to the egg production industry, causing serious problems to animal health and welfare, directly or indirectly as a vector of several infectious agents. In this study, we aimed to investigate common avian pathogens in mites. The mite samples were collected from 58 poultry farms in 7 regions accounting for more than 70 % of the national egg production in Algeria. The presence of 13 avian pathogens was detected using DNA and RNA samples from mites collected. Results revealed significant associations between PRM and potential pathogens such as Escherichia coli, Salmonella enterica, fowlpox virus, and gallid herpesvirus 1. Pathogen detection in Dermanyssus gallinae could serve as an early diagnostic or a risk analysis tool for infectious diseases in poultry farms, facilitating effective disease management strategies. Despite further research being necessary to address uncertainties, such a strategy could be used to enhance the integrated management of poultry health.
Collapse
Affiliation(s)
- Abdennour Klikha
- National Veterinary Higher School of Algiers Rabie Bouchama, Rue Issad Abbes, Oued Smar, Algiers, Algeria; Laboratory of Animal Health and Production (SPA); National Veterinary Higher School of Algiers, Algiers, Algeria
| | - Antonella Schiavone
- Department of Veterinary Medicine, University of Bari, S.P. per Casamassima, km 3, Valenzano, BA 70010, Italy; Moredun Research Institute, Edinburgh, United Kingdom
| | - Samir Djemai
- Padesca Laboratory, Institute of Veterinary Sciences, University of Constantine, Constantine, Algeria
| | - Rossella Samarelli
- Department of Veterinary Medicine, University of Bari, S.P. per Casamassima, km 3, Valenzano, BA 70010, Italy
| | - Miriem Aissi
- National Veterinary Higher School of Algiers Rabie Bouchama, Rue Issad Abbes, Oued Smar, Algiers, Algeria; Laboratory of Animal Health and Production (SPA); National Veterinary Higher School of Algiers, Algiers, Algeria
| | - Nicola Pugliese
- Department of Veterinary Medicine, University of Bari, S.P. per Casamassima, km 3, Valenzano, BA 70010, Italy.
| | - Yassine Khoualed
- Laboratory of Biology and Animal Physiology, Higher Normal School of Kouba, Algiers, Algeria
| | - Antonio Camarda
- Department of Veterinary Medicine, University of Bari, S.P. per Casamassima, km 3, Valenzano, BA 70010, Italy
| |
Collapse
|
3
|
Al Hamrashdi M, Sanchez Perez C, Haas DA, Vishwakarma J, Pichlmair A, Bowie AG, Brady G. Molluscum contagiosum virus protein MC089 inhibits interferon regulatory factor 3 activation. J Gen Virol 2024; 105:002015. [PMID: 39167082 PMCID: PMC11338640 DOI: 10.1099/jgv.0.002015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
Molluscum contagiosum virus (MCV) is a human-specific poxvirus that causes a highly common but mild infection characterized by distinctive and persistent papular skin lesions. These lesions can persist for long periods without an effective clearance response from the host. MCV, like all poxviruses, encodes multiple known immunosuppressive proteins which target innate immune signalling pathways involved in viral nucleic acid sensing, interferon production and inflammation which should trigger antiviral immunity leading to clearance. Two major families of transcription factors responsible for driving the immune response to viruses are the NF-κB and the interferon regulatory factor (IRF) families. While NF-κB broadly drives pro-inflammatory gene expression and IRFs chiefly drive interferon induction, both collaborate in transactivating many of the same genes in a concerted immune response to viral infection. Here, we report that the MCV protein MC089 specifically inhibits IRF activation from both DNA- and RNA-sensing pathways, making it the first characterized MCV inhibitor to selectively target IRF activation to date. MC089 interacts with proteins required for IRF activation, namely IKKε, TBKBP1 and NAP1. Additionally, MC089 targets RNA sensing by associating with the RNA-sensing adaptor protein mitochondrial antiviral-signalling protein on mitochondria. MC089 displays specificity in its inhibition of IRF3 activation by suppressing immunostimulatory nucleic acid-induced serine 396 phosphorylation without affecting the phosphorylation of serine 386. The selective interaction of MC089 with IRF-regulatory proteins and site-specific inhibition of IRF3 phosphorylation may offer a tool to provide novel insights into the biology of IRF3 regulation.
Collapse
Affiliation(s)
- Mariya Al Hamrashdi
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Trinity College Dublin, St. James’ Hospital Campus, Dublin, Ireland
| | - Carla Sanchez Perez
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Trinity College Dublin, St. James’ Hospital Campus, Dublin, Ireland
| | - Darya A. Haas
- Technical University of Munich, School of Medicine, Institute of Virology, Munich, Germany
| | - Jyoti Vishwakarma
- Technical University of Munich, School of Medicine, Institute of Virology, Munich, Germany
| | - Andreas Pichlmair
- Technical University of Munich, School of Medicine, Institute of Virology, Munich, Germany
- German Centre for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| | - Andrew G. Bowie
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Gareth Brady
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Trinity College Dublin, St. James’ Hospital Campus, Dublin, Ireland
| |
Collapse
|
4
|
Souci L, Denesvre C. Interactions between avian viruses and skin in farm birds. Vet Res 2024; 55:54. [PMID: 38671518 PMCID: PMC11055369 DOI: 10.1186/s13567-024-01310-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/24/2024] [Indexed: 04/28/2024] Open
Abstract
This article reviews the avian viruses that infect the skin of domestic farm birds of primary economic importance: chicken, duck, turkey, and goose. Many avian viruses (e.g., poxviruses, herpesviruses, Influenza viruses, retroviruses) leading to pathologies infect the skin and the appendages of these birds. Some of these viruses (e.g., Marek's disease virus, avian influenza viruses) have had and/or still have a devasting impact on the poultry economy. The skin tropism of these viruses is key to the pathology and virus life cycle, in particular for virus entry, shedding, and/or transmission. In addition, for some emergent arboviruses, such as flaviviruses, the skin is often the entry gate of the virus after mosquito bites, whether or not the host develops symptoms (e.g., West Nile virus). Various avian skin models, from primary cells to three-dimensional models, are currently available to better understand virus-skin interactions (such as replication, pathogenesis, cell response, and co-infection). These models may be key to finding solutions to prevent or halt viral infection in poultry.
Collapse
Affiliation(s)
- Laurent Souci
- Laboratoire de Biologie des Virus Aviaires, UMR1282 ISP, INRAE Centre Val-de-Loire, 37380, Nouzilly, France
| | - Caroline Denesvre
- Laboratoire de Biologie des Virus Aviaires, UMR1282 ISP, INRAE Centre Val-de-Loire, 37380, Nouzilly, France.
| |
Collapse
|
5
|
Xie S, Cui L, Liao Z, Zhu J, Ren S, Niu K, Li H, Jiang F, Wu J, Wang J, Wu J, Song B, Wu W, Peng C. Genomic analysis of lumpy skin disease virus asian variants and evaluation of its cellular tropism. NPJ Vaccines 2024; 9:65. [PMID: 38514651 PMCID: PMC10957905 DOI: 10.1038/s41541-024-00846-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/21/2024] [Indexed: 03/23/2024] Open
Abstract
Lumpy skin disease virus (LSDV) is a poxvirus that mainly affects cattle and can lead to symptoms such as severe reduction in milk production as well as infertility and mortality, which has resulted in dramatic economic loss in affected countries in Africa, Europe, and Asia. In this study, we successfully isolated two strains of LSDV from different geographical regions in China. Comparative genomic analyses were performed by incorporating additional LSDV whole genome sequences reported in other areas of Asia. Our analyses revealed that LSDV exhibited an 'open' pan-genome. Phylogenetic analysis unveiled distinct branches of LSDV evolution, signifying the prevalence of multiple lineages of LSDV across various regions in Asia. In addition, a reporter LSDV expressing eGFP directed by a synthetic poxvirus promoter was generated and used to evaluate the cell tropism of LSDV in various mammalian and avian cell lines. Our results demonstrated that LSDV replicated efficiently in several mammalian cell lines, including human A549 cells. In conclusion, our results underscore the necessity for strengthening LSD outbreak control measures and continuous epidemiological surveillance.
Collapse
Affiliation(s)
- Shijie Xie
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine (CVM), China Agricultural University, Beijing, 100193, China
| | - Lianxin Cui
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine (CVM), China Agricultural University, Beijing, 100193, China
| | - Zhiyi Liao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine (CVM), China Agricultural University, Beijing, 100193, China
| | - Junda Zhu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine (CVM), China Agricultural University, Beijing, 100193, China
| | - Shuning Ren
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine (CVM), China Agricultural University, Beijing, 100193, China
| | - Kang Niu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine (CVM), China Agricultural University, Beijing, 100193, China
| | - Hua Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine (CVM), China Agricultural University, Beijing, 100193, China
| | - Fei Jiang
- China Animal Disease Control Center, Beijing, 102618, China
| | - Jiajun Wu
- China Animal Disease Control Center, Beijing, 102618, China
| | - Jie Wang
- Xinjiang Key Laboratory of Animal Infectious Diseases/Institute of Veterinary Medicine, Xinjiang Academy of Animal Sciences, Urumqi, 830013, China
| | - Jian Wu
- Xinjiang Key Laboratory of Animal Infectious Diseases/Institute of Veterinary Medicine, Xinjiang Academy of Animal Sciences, Urumqi, 830013, China
| | - Baifen Song
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine (CVM), China Agricultural University, Beijing, 100193, China
| | - Wenxue Wu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine (CVM), China Agricultural University, Beijing, 100193, China.
| | - Chen Peng
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine (CVM), China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
6
|
Ganapathy K, Parthiban S. Pros and Cons on Use of Live Viral Vaccines in Commercial Chicken Flocks. Avian Dis 2024; 67:410-420. [PMID: 38300660 DOI: 10.1637/aviandiseases-d-23-99998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/06/2023] [Indexed: 02/02/2024]
Abstract
The poultry industry is the largest source of meat and eggs for the growing human population worldwide. Key concerns in poultry farming are nutrition, management, flock health, and biosecurity measures. As part of the flock health, use of live viral vaccines plays a vital role in the prevention of economically important and common viral diseases. This includes diseases and production losses caused by Newcastle disease virus, infectious bronchitis virus, infectious laryngotracheitis virus, infectious bursal disease virus, Marek's disease virus, chicken infectious anemia virus, avian encephalomyelitis virus, fowlpox virus, and avian metapneumovirus. These viruses cause direct and indirect harms, such as financial losses worth millions of dollars, loss of protein sources, and threats to animal welfare. Flock losses vary by type of poultry, age of affected animals, co-infections, immune status, and environmental factors. Losses in broiler birds can consist of high mortality, poor body weight gain, high feed conversion ratio, and increased carcass condemnation. In commercial layers and breeder flocks, losses include higher than normal mortality rate, poor flock uniformity, drops in egg production and quality, poor hatchability, and poor day-old-chick quality. Despite the emergence of technology-based vaccines, such as inactivated, subunit, vector-based, DNA or RNA, and others, the attenuated live vaccines remain as important as before. Live vaccines are preferred in the global veterinary vaccine market, accounting for 24.3% of the global market share in 2022. The remaining 75% includes inactivated, DNA, subunit, conjugate, recombinant, and toxoid vaccines. The main reason for this is that live vaccines can induce innate, mucosal, cellular, and humoral immunities by single or multiple applications. Some live vaccine combinations provide higher and broader protection against several diseases or strains of viruses. This review aimed to explore insights on the pros and cons of attenuated live vaccines commonly used against major viral infections of the global chicken industry, and the future road map for improvement.
Collapse
Affiliation(s)
- Kannan Ganapathy
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Cheshire, U.K.,
| | - Sivamurthy Parthiban
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Cheshire, U.K
- Department of Animal Biotechnology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| |
Collapse
|