1
|
Xu B, Xiong D, Zhang X, Wei H, Yu J. Development of an ARMS-Quadruplex-qPCR assay for the rapid identification of MPXV and the clades Ia, Ib, IIa and IIb. J Virol Methods 2025; 334:115125. [PMID: 39947350 DOI: 10.1016/j.jviromet.2025.115125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/04/2025] [Accepted: 02/08/2025] [Indexed: 02/16/2025]
Abstract
Monkeypox was re-emerging in 2022 and spread to more than 100 countries. Two clades of Monkeypox virus (MPXV) result in different lethality rates and varying transmission capabilities. Rapid identification of MPXV and differentiation of its clades and subclades are crucial for effective control of the disease. In this study, we developed an ARMS-Quadruplex-qPCR method to detect MPXV and distinguish clades (Ia, Ib, IIa and IIb). F3L gene was used to detect all clades of MPXV from other orthopoxviruses. A 1953 bp fragment containing the C3L gene was found to be completely absent in clade II. Additionally, a sequence spanning from the 177th to the 1318th position (1142 bp) within the 1953 bp fragment was missing in Ib. Therefore, the 1142 bp sequence was used to distinguish Ia from other subclades, and the sequence with the 1142 bp region missing in Ib was used to discriminate Ib from other subclades. Since subclades IIa and IIb are too close to have large deletions and insertions, a unique single nucleotide polymorphism (SNP) was used to design a primer/probe set for ARMS-qPCR to differentiate clade IIa from IIb. The ARMS-Quadruplex-qPCR system can detect down to 2 copies per reaction of MPXV and effectively differentiate all the four subclades. Altogether, four qPCR primer/probe sets in one tube were deployed to recognize MPXV and differentiate MPXV subclades. The high sensitivity, rapidity and specificity of the developed system make it a promising alternative for the diagnosis of MPXV and the determination of the subclades of the infected MPXV.
Collapse
Affiliation(s)
- Bohan Xu
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongyan Xiong
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxu Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Hongping Wei
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Junping Yu
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Xiong D, Zhang X, Xu B, Shi M, Chen M, Dong Z, Zhong J, Gong R, Wu C, Li J, Wei H, Yu J. PHDtools: A platform for pathogen detection and multi-dimensional genetic signatures decoding to realize pathogen genomics data analyses online. Gene 2024; 909:148306. [PMID: 38408616 DOI: 10.1016/j.gene.2024.148306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
OBJECTIVES Facing the emerging diseases, rapid identification of the pathogen and multi-dimensional characterization of the genomic features at both isolate-level and population-level through high-throughput sequencing data can provide invaluable information to guide the development of antiviral agents and strategies. However, a user-friendly program is in urgent need for clinical laboratories without bioinformatics background to decode the complex big genomics data. METHODS In this study, we developed an interactive online platform named PHDtools with a total of 15 functions to analyze metagenomics data to identify the potential pathogen and decode multi-dimensional genetic signatures including intra-/inter-host variations and lineage-level variations. The platform was applied to analyze the meta-genomic data of the samples collected from the 172 imported COVID-19 cases. RESULTS According to the analytical results of mNGS, 27 patients were found to have the co-infections of SARS-CoV-2 with either influenza virus (n = 9) or human picobirnavirus (n = 19). Enough coverages of all the assembled SARS-CoV-2 genomes provided the sub-lineages of Omicron variant, and the number of mutations in the non-structural genes and M gene was increased, as well as the intra-host variations occurred in E and M gene were under positive selection (Ka/Ks > 1). These findings of increased or changed mutations in the SARS-CoV-2 genome characterized the current adaptive evolution patterns of Omicron sub-lineages, and revealed the evolution speed of these sub-lineages might increase. CONCLUSIONS Consequently, the application of PHDtools has proved that this platform is accurate, user-friendly and convenient for clinical users who are deficient in bioinformatics, and the clinical monitor of SARS-CoV-2 genomes by PHDtools also highlighted the potential evolution features of current SARS-CoV-2 and indicated that the development of anti-SARS-CoV-2 agents and new-designed vaccines should incorporate the gene variations other than S gene.
Collapse
Affiliation(s)
- Dongyan Xiong
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Xiaoxu Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Bohan Xu
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengjuan Shi
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuo Dong
- Hubei International Travel Healthcare Center (Wuhan Customs Port Outpatient Department), Wuhan 430070, China
| | - Jie Zhong
- Hubei International Travel Healthcare Center (Wuhan Customs Port Outpatient Department), Wuhan 430070, China
| | - Rui Gong
- Hubei International Travel Healthcare Center (Wuhan Customs Port Outpatient Department), Wuhan 430070, China
| | - Chang Wu
- Hubei International Travel Healthcare Center (Wuhan Customs Port Outpatient Department), Wuhan 430070, China
| | - Ji Li
- Hubei International Travel Healthcare Center (Wuhan Customs Port Outpatient Department), Wuhan 430070, China
| | - Hongping Wei
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Junping Yu
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Fu Y, He X, Fang Q, Kong F, Zhang Y, Fu T, Chen L, Liu Y, Wang Z, Lyu J, Chen L. Rapid identification of SARS-CoV-2 variants using stable high-frequency mutation sites. APMIS 2024; 132:348-357. [PMID: 38488266 DOI: 10.1111/apm.13388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/25/2024] [Indexed: 04/16/2024]
Abstract
Respiratory infectious viruses, including SARS-CoV-2, undergo rapid genetic evolution, resulting in diverse subtypes with complex mutations. Detecting and differentiating these subtypes pose significant challenges in respiratory virus surveillance. To address these challenges, we integrated ARMS-PCR with molecular beacon probes, allowing selective amplification and discrimination of subtypes based on adjacent mutation sites. The method exhibited high specificity and sensitivity, detecting as low as 104 copies/mL via direct fluorescence analysis and ~106 copies/mL using real-time PCR. Our robust detection approach offers a reliable and efficient solution for monitoring evolving respiratory infections, aiding early diagnosis and control measures. Further research could extend its application to other respiratory viruses and optimize its implementation in clinical settings.
Collapse
Affiliation(s)
- Yu Fu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Xiaobai He
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Quan Fang
- Department of laboratory, Physical Examination Center, Air Force Hangzhou Special Service Convalescence Center Zone 1, Hangzhou, China
| | - Fei Kong
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Yan Zhang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Ting Fu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Liang Chen
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - YanXin Liu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Zhen Wang
- Center for Laboratory Medicine, Allergy center, Department of Transfusion medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jianxin Lyu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Linjie Chen
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
4
|
Liu Y, Li Y, Hang Y, Wang L, Wang J, Bao N, Kim Y, Jang HW. Rapid assays of SARS-CoV-2 virus and noble biosensors by nanomaterials. NANO CONVERGENCE 2024; 11:2. [PMID: 38190075 PMCID: PMC10774473 DOI: 10.1186/s40580-023-00408-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024]
Abstract
The COVID-19 outbreak caused by SARS-CoV-2 in late 2019 has spread rapidly across the world to form a global epidemic of respiratory infectious diseases. Increased investigations on diagnostic tools are currently implemented to assist rapid identification of the virus because mass and rapid diagnosis might be the best way to prevent the outbreak of the virus. This critical review discusses the detection principles, fabrication techniques, and applications on the rapid detection of SARS-CoV-2 with three categories: rapid nuclear acid augmentation test, rapid immunoassay test and biosensors. Special efforts were put on enhancement of nanomaterials on biosensors for rapid, sensitive, and low-cost diagnostics of SARS-CoV-2 virus. Future developments are suggested regarding potential candidates in hospitals, clinics and laboratories for control and prevention of large-scale epidemic.
Collapse
Affiliation(s)
- Yang Liu
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
- NantongEgens Biotechnology Co., LTD, Nantong, 226019, Jiangsu, People's Republic of China
| | - Yilong Li
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Yuteng Hang
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Lei Wang
- NantongEgens Biotechnology Co., LTD, Nantong, 226019, Jiangsu, People's Republic of China
| | - Jinghan Wang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ning Bao
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Youngeun Kim
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
5
|
Kong X, Gao P, Jiang Y, Lu L, Zhao M, Liu Y, Deng G, Zhu H, Cao Y, Ma L. Discrimination of SARS-CoV-2 omicron variant and its lineages by rapid detection of immune-escape mutations in spike protein RBD using asymmetric PCR-based melting curve analysis. Virol J 2023; 20:192. [PMID: 37626353 PMCID: PMC10463914 DOI: 10.1186/s12985-023-02137-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 07/22/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND The SARS-CoV-2 Omicron strain has multiple immune-escape mutations in the spike protein receptor-binding domain (RBD). Rapid detection of these mutations to identify Omicron and its lineages is essential for guiding public health strategies and patient treatments. We developed a two-tube, four-color assay employing asymmetric polymerase chain reaction (PCR)-based melting curve analysis to detect Omicron mutations and discriminate the BA.1, BA.2, BA.4/5, and BA.2.75 lineages. METHODS The presented technique involves combinatory analysis of the detection of six fluorescent probes targeting the immune-escape mutations L452R, N460K, E484A, F486V, Q493R, Q498R, and Y505H within one amplicon in the spike RBD and probes targeting the ORF1ab and N genes. After protocol optimization, the analytical performance of the technique was evaluated using plasmid templates. Sensitivity was assessed based on the limit of detection (LOD), and reliability was assessed by calculating the intra- and inter-run precision of melting temperatures (Tms). Specificity was assessed using pseudotyped lentivirus of common human respiratory pathogens and human genomic DNA. The assay was used to analyze 40 SARS-CoV-2-positive clinical samples (including 36 BA.2 and 4 BA.4/5 samples) and pseudotyped lentiviruses of wild-type and BA.1 viral RNA control materials, as well as 20 SARS-CoV-2-negative clinical samples, and its accuracy was evaluated by comparing the results with those of sequencing. RESULTS All genotypes were sensitively identified using the developed method with a LOD of 39.1 copies per reaction. The intra- and inter-run coefficients of variation for the Tms were ≤ 0.69% and ≤ 0.84%, with standard deviations ≤ 0.38 °C and ≤ 0.41 °C, respectively. Validation of the assay using known SARS-CoV-2-positive samples demonstrated its ability to correctly identify the targeted mutations and preliminarily characterize the Omicron lineages. CONCLUSION The developed assay can provide accurate, reliable, rapid, simple and low-cost detection of the immune-escape mutations located in the spike RBD to detect the Omicron variant and discriminate its lineages, and its use can be easily generalized in clinical laboratories with a fluorescent PCR platform.
Collapse
Affiliation(s)
- Xiaomu Kong
- Department of Clinical Laboratory, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Peng Gao
- Department of Clinical Laboratory, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Yongwei Jiang
- Department of Clinical Laboratory, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Lixia Lu
- Department of Clinical Laboratory, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Meimei Zhao
- Department of Clinical Laboratory, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Yi Liu
- Department of Clinical Laboratory, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Guoxiong Deng
- Department of Clinical Laboratory, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Haoyan Zhu
- Department of Clinical Laboratory, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Yongtong Cao
- Department of Clinical Laboratory, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, People's Republic of China.
| | - Liang Ma
- Department of Clinical Laboratory, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, People's Republic of China.
| |
Collapse
|
6
|
Lü X, Feng C, Lü R, Wei X, Fan S, Yan M, Zhu X, Zhang Z, Yang Z. Identification of potential inhibitors of omicron variant of SARS-Cov-2 RBD based virtual screening, MD simulation, and DFT. Front Chem 2022; 10:1063374. [PMID: 36569957 PMCID: PMC9772825 DOI: 10.3389/fchem.2022.1063374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
Emergence of the SARS-CoV-2 Omicron variant of concern (VOC; B.1.1.529) resulted in a new peak of the COVID-19 pandemic, which called for development of effective therapeutics against the Omicron VOC. The receptor binding domain (RBD) of the spike protein, which is responsible for recognition and binding of the human ACE2 receptor protein, is a potential drug target. Mutations in receptor binding domain of the S-protein have been postulated to enhance the binding strength of the Omicron VOC to host proteins. In this study, bioinformatic analyses were performed to screen for potential therapeutic compounds targeting the omicron VOC. A total of 92,699 compounds were screened from different libraries based on receptor binding domain of the S-protein via docking and binding free energy analysis, yielding the top 5 best hits. Dynamic simulation trajectory analysis and binding free energy decomposition were used to determine the inhibitory mechanism of candidate molecules by focusing on their interactions with recognized residues on receptor binding domain. The ADMET prediction and DFT calculations were conducted to determine the pharmacokinetic parameters and precise chemical properties of the identified molecules. The molecular properties of the identified molecules and their ability to interfere with recognition of the human ACE2 receptors by receptor binding domain suggest that they are potential therapeutic agents for SARS-CoV-2 Omicron VOC.
Collapse
Affiliation(s)
- Xudong Lü
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Cuiyue Feng
- School of Pharmacy, North China University of Science and Technology, Tangshan, China
| | - Ruijie Lü
- School of Pharmacy, North China University of Science and Technology, Tangshan, China
| | - Xiyu Wei
- School of Pharmacy, North China University of Science and Technology, Tangshan, China
| | - Shuai Fan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Maocai Yan
- School of Pharmacy, Jining Medical University, Rizhao, China
| | - Xiandui Zhu
- North China University of Science and Technology, Tangshan, China
| | - Zhifei Zhang
- School of Pharmacy, North China University of Science and Technology, Tangshan, China,*Correspondence: Zhaoyong Yang, ; Zhifei Zhang,
| | - Zhaoyong Yang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China,*Correspondence: Zhaoyong Yang, ; Zhifei Zhang,
| |
Collapse
|
7
|
Xiong D, Zhang X, Yu J, Wei H. Distribution of intra-host variations and mutations in the genomes of SARS-CoV-2 and their implications on detection and therapeutics. MedComm (Beijing) 2022; 3:e186. [PMID: 36474856 PMCID: PMC9717708 DOI: 10.1002/mco2.186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 12/03/2022] Open
Abstract
The ongoing circulation of SARS-CoV-2 variants of concern (VOCs) has caused global concerns, because VOCs could escape current vaccines, antiviral drugs, and diagnosis. Analyzing mutations and intra-host diversities in different and widespread VOCs can provide important insights to virus adaptive evolution and validity of vaccines, antiviral drugs, and diagnosis. In this study, by analyzing 1744 high-throughput sequencing data for intra-host single-nucleotide variations (iSNVs) and 3,668,205 genome sequences for mutations in different VOCs, it was found that Omicron variant is still evolving at high speed, especially having high iSNVs frequency in its S and N genes. The efficacies of antibodies or detection primers targeting these two genes are at high risks to be invalid. Instead, highly conserved regions such as NSP8 gene could be better therapeutic and detection targets. Furthermore, mutations in later VOCs could be traced to the minor alleles in the previous variant samples such as Alpha and Delta in different countries. Finally, it was found that mutations C14408T in RdRp and A18163G in NSP14 gene might be associated with the higher genetic diversity in Omicron. Our findings not only contribute to understanding the adaptive evolution of SARS-CoV-2 VOCs, but also provide useful information for both drugs and diagnostic kits development.
Collapse
Affiliation(s)
- Dongyan Xiong
- CAS Key Laboratory of Special Pathogens and BiosafetyCenter for Biosafety Mega‐ScienceWuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- CAS Key Laboratory of Special Pathogens and BiosafetyUniversity of Chinese Academy of SciencesBeijingChina
| | - Xiaoxu Zhang
- CAS Key Laboratory of Special Pathogens and BiosafetyCenter for Biosafety Mega‐ScienceWuhan Institute of VirologyChinese Academy of SciencesWuhanChina
| | - Junping Yu
- CAS Key Laboratory of Special Pathogens and BiosafetyCenter for Biosafety Mega‐ScienceWuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- CAS Key Laboratory of Special Pathogens and BiosafetyUniversity of Chinese Academy of SciencesBeijingChina
| | - Hongping Wei
- CAS Key Laboratory of Special Pathogens and BiosafetyCenter for Biosafety Mega‐ScienceWuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- CAS Key Laboratory of Special Pathogens and BiosafetyUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
8
|
Accessible and Adaptable Multiplexed Real-Time PCR Approaches to Identify SARS-CoV-2 Variants of Concern. Microbiol Spectr 2022; 10:e0322222. [PMID: 36106882 PMCID: PMC9603638 DOI: 10.1128/spectrum.03222-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Rapid identification and continuous surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants are critical for guiding the response to the COVID-19 pandemic. Whole-genome sequencing (WGS) is a preferred tool for this aim, but many laboratories suffer from a lack of resources to support population-level sequencing. Here, we describe two PCR strategies targeting spike protein mutations to identify the Alpha, Delta, and Omicron variants. Signature mutations were selected using a dedicated bioinformatic program. The selected mutations in Alpha and Delta variants were detected using multicolor melting curve analysis (MMCA). Thirty-two mutations of the Omicron variant were targeted using the MeltArray approach in one reaction, which was able to detect the Omicron subvariants BA.1, BA.2, BA.3, and BA.4/5. The limits of detection varied from five to 50 copies of RNA templates/reactions. No cross-reactivity was observed with nine other respiratory viruses, including other coronaviruses. We validated the MMCA and MeltArray assays using 309 SARS-CoV-2 positive samples collected at different time points. These assays exhibited 98.3% to 100% sensitivity and 100% specificity compared with WGS. Multiplexed real-time PCR strategies represent an alternative tool capable of identifying current SARS-CoV-2 VOCs, adaptable for emerging variants and accessible for laboratories using existing equipment and personnel. IMPORTANCE Rapid detection and mutation surveillance of SARS-CoV-2 VOCs is crucial for COVID-19 control, management, and prevention. We developed two rapid molecular assays based on the real-time PCR platform to identify important variants of concern, including the Omicron variant with a large number of mutations. Signature mutations were selected by an R program. Then, MMCA assays were established for Alpha and Delta variants, and a MeltArray assay targeting 32 mutations was developed for Omicron variant. These multiplexed PCR assays could be performed in a 96-well real-time PCR instrument within 2.5 h, offering a high-throughput choice for dynamic monitoring of SARS-CoV-2 VOCs in a standard microbiology laboratory.
Collapse
|
9
|
Jiang W, Ji W, Zhang Y, Xie Y, Chen S, Jin Y, Duan G. An Update on Detection Technologies for SARS-CoV-2 Variants of Concern. Viruses 2022; 14:v14112324. [PMID: 36366421 PMCID: PMC9693800 DOI: 10.3390/v14112324] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/15/2022] [Accepted: 10/20/2022] [Indexed: 01/18/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is responsible for the global epidemic of Coronavirus Disease 2019 (COVID-19), with a significant impact on the global economy and human safety. Reverse transcription-quantitative polymerase chain reaction (RT-PCR) is the gold standard for detecting SARS-CoV-2, but because the virus's genome is prone to mutations, the effectiveness of vaccines and the sensitivity of detection methods are declining. Variants of concern (VOCs) include Alpha, Beta, Gamma, Delta, and Omicron, which are able to evade recognition by host immune mechanisms leading to increased transmissibility, morbidity, and mortality of COVID-19. A range of research has been reported on detection techniques for VOCs, which is beneficial to prevent the rapid spread of the epidemic, improve the effectiveness of public health and social measures, and reduce the harm to human health and safety. However, a meaningful translation of this that reduces the burden of disease, and delivers a clear and cohesive message to guide daily clinical practice, remains preliminary. Herein, we summarize the capabilities of various nucleic acid and protein-based detection methods developed for VOCs in identifying and differentiating current VOCs and compare the advantages and disadvantages of each method, providing a basis for the rapid detection of VOCs strains and their future variants and the adoption of corresponding preventive and control measures.
Collapse
Affiliation(s)
- Wenjie Jiang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yu Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yaqi Xie
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Molecular Medicine, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: (S.C.); (Y.J.); (G.D.); Tel.: +86-13523408394 (S.C.); +86-0371-67781453 (Y.J.); +86-0371-67789797 (G.D.)
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: (S.C.); (Y.J.); (G.D.); Tel.: +86-13523408394 (S.C.); +86-0371-67781453 (Y.J.); +86-0371-67789797 (G.D.)
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Molecular Medicine, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: (S.C.); (Y.J.); (G.D.); Tel.: +86-13523408394 (S.C.); +86-0371-67781453 (Y.J.); +86-0371-67789797 (G.D.)
| |
Collapse
|
10
|
Ma Y, Ma X, Bu L, Shan J, Liu D, Zhang L, Qi X, Chu Y, Wu H, Zou B, Zhou G. Flap Endonuclease-Induced Steric Hindrance Change Enables the Construction of Multiplex and Versatile Lateral Flow Strips for DNA Detection. Anal Chem 2022; 94:14725-14733. [PMID: 36223239 DOI: 10.1021/acs.analchem.2c03143] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A lateral flow strip (LFS) is an ideal tool for point-of-care testing (POCT), but traditional LFSs cannot be used for multiplex detection. Herein, a multiplex and versatile LFS based on flap endonuclease 1 (FEN1)-induced steric hindrance change (FISH-LFS) is proposed. In this method, multiplex PCR coupled with cascade invasive reactions was employed to yield single-stranded flaps, which were target-specific but independent of target sequences. Then, the amplicons were applied for FISH-LFS, and the single-stranded flaps would be efficiently captured by the complementary LFS-probes at different test lines. As flaps were cleaved from the specially designed hairpin probes, competition among flaps and hairpin probes would occur in capturing the probes at test lines. We enabled the hairpin probes to flow through the test lines while the flaps to stay at the test lines by making use of the difference in steric hindrance between hairpin probes and flaps. The assay is able to detect as low as two copies of blood pathogens (HBV, HCV, and HIV), to pick up as low as 0.1% mutants from wild-type gDNA, and to genotype 200 copies of SARS-CoV-2 variants α and β within 75 min at a conventional PCR engine. As the method is free of dye, a portable PCR engine could be used for a cost-effective multiplex detection on site. Results using an ultrafast mobile PCR system for FISH-LFS showed that as fast as 30 min was achieved for detecting three pathogens (HBV, HCV, and HIV) in blood, very suitable for POCT of pathogen screening. The method is convenient in operation, simple in instrumentation, specific in genotyping, and very easy in setting up multiplex POCT assays.
Collapse
Affiliation(s)
- Yi Ma
- Department of Clinical Pharmacy, State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Xueping Ma
- Department of Clinical Pharmacy, State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Li Bu
- Department of Clinical Pharmacy, State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Jingwen Shan
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Danni Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Likun Zhang
- Department of Clinical Pharmacy, State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Xiemin Qi
- Department of Clinical Pharmacy, State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Yanan Chu
- Department of Clinical Pharmacy, State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Haiping Wu
- Department of Clinical Pharmacy, State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China.,School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Bingjie Zou
- Key Laboratory of Drug Quality Control and Pharmacovigilance of Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Guohua Zhou
- Department of Clinical Pharmacy, State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China.,School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.,School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.,School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
11
|
Wang Y, Chen H, Wei H, Rong Z, Wang S. Tetra-primer ARMS-PCR combined with dual-color fluorescent lateral flow assay for the discrimination of SARS-CoV-2 and its mutations with a handheld wireless reader. LAB ON A CHIP 2022; 22:1531-1541. [PMID: 35266944 DOI: 10.1039/d1lc01167g] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Several virulent variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have emerged along with the spread of this virus throughout the population. Some variants can exhibit increased transmissibility and reduced immune neutralization reactivity. These changes are deeply concerning issues that may hinder the ongoing effort of epidemic control measures, especially mass vaccination campaigns. The accurate discrimination of SARS-CoV-2 and its emerging variants is essential to contain the coronavirus disease 2019 pandemic. Herein, we report a low-cost, facile, and highly sensitive diagnostic platform that can simultaneously distinguish wild-type (WT) SARS-CoV-2 and its two mutations, namely, D614G and N501Y, within 2 h. WT or mutant (M) nucleic acid fragments at each allelic locus were selectively amplified by the tetra-primer amplification refractory mutation system (ARMS)-PCR assay. Allele-specific amplicons were simultaneously detected by two test lines on a quantum dot nanobead (QB)-based dual-color fluorescent test strip, which could be interpreted by the naked eye or by a home-made fluorescent strip readout device that was wirelessly connected to a smartphone for quantitative data analysis and result presentation. The WT and M viruses were indicated and were strictly discriminated by the presence of a green or red band on test line 1 for the D614G site and test line 2 for the N501Y site. The limits of detection (LODs) for the WT and M D614G were estimated as 78.91 and 33.53 copies per μL, respectively. This assay was also modified for the simultaneous detection of the N and ORF1ab genes of SARS-CoV-2 with LODs of 1.90 and 6.07 copies per μL, respectively. The proposed platform can provide a simple, accurate, and affordable diagnostic approach for the screening of SARS-CoV-2 and its variants of concern even in resource-limited settings.
Collapse
Affiliation(s)
- Yunxiang Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, P. R. China.
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing 100850, P. R. China
| | - Hong Chen
- Beijing Institute of Radiation Medicine, Beijing 100850, P. R. China.
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing 100850, P. R. China
| | - Hongjuan Wei
- Beijing Institute of Radiation Medicine, Beijing 100850, P. R. China.
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing 100850, P. R. China
| | - Zhen Rong
- Beijing Institute of Radiation Medicine, Beijing 100850, P. R. China.
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing 100850, P. R. China
| | - Shengqi Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, P. R. China.
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing 100850, P. R. China
| |
Collapse
|