1
|
Chen J, Wu Y, Zhu Y, Zhang L, Xu Y, Liu Y. Adaptation for Staphylococcus aureus to hosts via insertion mutation in the accessory gene regulator agrC gene: decreased virulence and enhanced persistence capacity. Microbiol Spectr 2025; 13:e0149724. [PMID: 39611824 PMCID: PMC11705864 DOI: 10.1128/spectrum.01497-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/01/2024] [Indexed: 11/30/2024] Open
Abstract
Staphylococcus aureus is an important human pathogen due to its vast array of virulence factors regulated by multiple regulatory mechanisms, including the accessory gene regulator. In this study, two S. aureus strains were simultaneously isolated from the blood of a febrile patient, belonging to the same clone, designated as 23H with a complete hemolytic phenotype, and 23B, exhibiting an incomplete hemolytic phenotype. The genomic comparison between strains 23B and 23H revealed that 23B had a single adenine base insertion at position 923 in the agrC gene, leading to a functional loss of the encoded AgrC. Experimental findings showed that strain 23B had decreased hemolytic activity, lower cytotoxicity against human alveolar epithelial A549 cells and in the Galleria mellonella model, and a reduced ability to survive intracellularly after infecting macrophages, in comparison to 23H. Conversely, 23B exhibited enhanced biofilm formation, greater adherence to A549 cells, and increased persistence in the face of vancomycin and daptomycin treatment. Transcriptomic analysis revealed that 23B upregulated surface protein-encoding genes while simultaneously reducing the expression levels of virulence factors, highlighting the intricate regulatory adjustments facilitating its persistence and reducing pathogenic potential. ATP assay results indicated that 23B maintained elevated ATP levels during the exponential phase yet exhibited reduced levels in the stationary phase when compared with 23H. Our findings suggested that the mutation in the agrC gene of S. aureus results in diminished virulence but markedly enhances persistence. This mutated strain warrants clinical attention because it may lead to treatment failures and persist in patients. IMPORTANCE In clinical antimicrobial therapy, bacterial strains often develop resistance to antimicrobial agents. Additionally, mutations in their gene regulatory networks can increase their persistence, especially in immunocompromised patients. This study identified an insertion mutation in the accessory gene regulator, agrC gene, carried by a Staphylococcus aureus strain isolated from the blood of a febrile patient, leading to the functional loss of AgrC. Further research revealed that despite the reduced virulence of the mutated strain, it significantly bolstered the capacity to adapt and endure within the host during prolonged infections. This was evidenced by increased adhesion and biofilm formation capabilities, development of antimicrobial tolerance, and decreased ATP levels linked to persistence. Therefore, monitoring these mutations in S. aureus is crucial clinically, as they can complicate treatment strategies.
Collapse
Affiliation(s)
- Jiawei Chen
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yun Wu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ying Zhu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Li Zhang
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yingchun Xu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yali Liu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Koumaki D, Maraki S, Evangelou G, Rovithi E, Petrou D, Apokidou ES, Gregoriou S, Koumaki V, Ioannou P, Zografaki K, Doxastaki A, Papadopoulou K, Stafylaki D, Mavromanolaki VE, Krasagakis K. Clinical Significance and Microbiological Characteristics of Staphylococcus lugdunensis in Cutaneous Infections. J Clin Med 2024; 13:4327. [PMID: 39124594 PMCID: PMC11312498 DOI: 10.3390/jcm13154327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Background/Objectives:Staphylococcus lugdunensis is a coagulase-negative staphylococcus (CoNS) commonly found on human skin. Unlike other CoNS, S. lugdunensis has a notable potential to cause severe infections comparable to Staphylococcus aureus. This study aimed to characterize the clinical and microbiological profile of patients with S. lugdunensis skin infections at a single center. Methods: We conducted a retrospective analysis of patient records from the Dermatology Department of the University Hospital of Heraklion, Greece, covering the period from January 2014 to January 2024. Patients' clinical presentations, demographics, infection sites, comorbidities, prior infections, antimicrobial treatments, and therapeutic responses were examined. Specimens were collected, transported, and processed according to standardized microbiological protocols. Bacterial identification and antibiotic susceptibility testing were performed using the Vitek 2 automated system and MALDI-TOF MS, with results interpreted according to Clinical and Laboratory Standards Institute (CLSI) criteria. Results: A total of 123 skin specimens positive for S. lugdunensis were analyzed. The cohort comprised 62 males (50.4%) and 61 females (49.6%), with a mean age of 40.24 ± 20.14 years. Most specimens were collected from pus (84%), primarily from below the waist (66.7%). Hidradenitis suppurativa (26%) was the most common condition associated with S. lugdunensis, followed by folliculitis, abscesses, ulcers, cellulitis, and acne. Co-infections with other bacteria were noted in 49.6% of cases, and 25.2% of infections were nosocomially acquired. The majority of patients (65%) received systemic antibiotics, predominantly amoxicillin/clavulanic acid, cefuroxime axetil, and doxycycline, with a cure rate of 100%. All isolates were susceptible to several antibiotics, though resistance to penicillin (28.5%) and clindamycin (36%) was observed. Conclusions:S. lugdunensis is a significant pathogen in skin infections, capable of causing severe disease. The high cure rate demonstrates the effectiveness of appropriate antibiotic therapy. Continued monitoring and antimicrobial stewardship are essential to manage resistance and ensure effective treatment.
Collapse
Affiliation(s)
- Dimitra Koumaki
- Dermatology Department, University Hospital of Heraklion, 71110 Heraklion, Greece; (G.E.); (E.R.); (D.P.); (K.Z.); (A.D.); (K.K.)
| | - Sofia Maraki
- Department of Clinical Microbiology, University Hospital of Heraklion, 71110 Heraklion, Greece; (S.M.); (D.S.)
| | - Georgios Evangelou
- Dermatology Department, University Hospital of Heraklion, 71110 Heraklion, Greece; (G.E.); (E.R.); (D.P.); (K.Z.); (A.D.); (K.K.)
| | - Evangelia Rovithi
- Dermatology Department, University Hospital of Heraklion, 71110 Heraklion, Greece; (G.E.); (E.R.); (D.P.); (K.Z.); (A.D.); (K.K.)
| | - Danae Petrou
- Dermatology Department, University Hospital of Heraklion, 71110 Heraklion, Greece; (G.E.); (E.R.); (D.P.); (K.Z.); (A.D.); (K.K.)
| | - Erato Solia Apokidou
- Department of Internal Medicine, Agios Nikolaos General Hospital, Knosou 4, 72100 Agios Nikolaos, Greece;
| | - Stamatios Gregoriou
- 1st Department of Dermatology and Venereology, Medical School of Athens, National and Kapodistrian University of Athens, Andreas Sygros Hospital, I. Dragoumi 5, 16121 Athens, Greece;
| | - Vasiliki Koumaki
- Department of Medical Microbiology, Medical School of Athens, National and Kapodistrian University of Athens, 75 Mikras Asias Str., Goudi, 11527 Athens, Greece;
| | - Petros Ioannou
- Department of Internal Medicine, University Hospital of Heraklion, 71110 Heraklion, Greece
- School of Medicine, University of Crete, 70003 Heraklion, Greece
| | - Kyriaki Zografaki
- Dermatology Department, University Hospital of Heraklion, 71110 Heraklion, Greece; (G.E.); (E.R.); (D.P.); (K.Z.); (A.D.); (K.K.)
| | - Aikaterini Doxastaki
- Dermatology Department, University Hospital of Heraklion, 71110 Heraklion, Greece; (G.E.); (E.R.); (D.P.); (K.Z.); (A.D.); (K.K.)
| | - Kalliopi Papadopoulou
- 2nd Department of Internal Medicine, General Hospital of Venizeleio, Knossou Avenue 44, 71409 Heraklion, Greece;
| | - Dimitra Stafylaki
- Department of Clinical Microbiology, University Hospital of Heraklion, 71110 Heraklion, Greece; (S.M.); (D.S.)
| | | | - Konstantinos Krasagakis
- Dermatology Department, University Hospital of Heraklion, 71110 Heraklion, Greece; (G.E.); (E.R.); (D.P.); (K.Z.); (A.D.); (K.K.)
| |
Collapse
|
3
|
Cho JA, Jeon S, Kwon Y, Roh YJ, Lee CH, Kim SJ. Comparative proteomics analysis of biofilms and planktonic cells of Enterococcus faecalis and Staphylococcus lugdunensis with contrasting biofilm-forming ability. PLoS One 2024; 19:e0298283. [PMID: 38809833 PMCID: PMC11135667 DOI: 10.1371/journal.pone.0298283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/18/2024] [Indexed: 05/31/2024] Open
Abstract
Biofilms make it difficult to eradicate bacterial infections through antibiotic treatments and lead to numerous complications. Previously, two periprosthetic infection-related pathogens, Enterococcus faecalis and Staphylococcus lugdunensis were reported to have relatively contrasting biofilm-forming abilities. In this study, we examined the proteomics of the two microorganisms' biofilms using LC-MS/MS. The results showed that each microbe exhibited an overall different profile for differential gene expressions between biofilm and planktonic cells as well as between each other. Of a total of 929 proteins identified in the biofilms of E. faecalis, 870 proteins were shared in biofilm and planktonic cells, and 59 proteins were found only in the biofilm. In S. lugdunensis, a total of 1125 proteins were identified, of which 1072 proteins were found in common in the biofilm and planktonic cells, and 53 proteins were present only in the biofilms. The functional analysis for the proteins identified only in the biofilms using UniProt keywords demonstrated that they were mostly assigned to membrane, transmembrane, and transmembrane helix in both microorganisms, while hydrolase and transferase were found only in E. faecalis. Protein-protein interaction analysis using STRING-db indicated that the resulting networks did not have significantly more interactions than expected. GO term analysis exhibited that the highest number of proteins were assigned to cellular process, catalytic activity, and cellular anatomical entity. KEGG pathway analysis revealed that microbial metabolism in diverse environments was notable for both microorganisms. Taken together, proteomics data discovered in this study present a unique set of biofilm-embedded proteins of each microorganism, providing useful information for diagnostic purposes and the establishment of appropriately tailored treatment strategies. Furthermore, this study has significance in discovering the target candidate molecules to control the biofilm-associated infections of E. faecalis and S. lugdunensis.
Collapse
Affiliation(s)
- Jung-Ah Cho
- Department of Orthopedic Surgery, Dongtan Sacred Hospital, Hallym University, Hwaseong, Republic of Korea
- College of Transdisciplinary Studies, School of Undergraduate Studies, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Sangsoo Jeon
- College of Transdisciplinary Studies, School of Undergraduate Studies, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Youngmin Kwon
- Department of Orthopedic Surgery, Dongtan Sacred Hospital, Hallym University, Hwaseong, Republic of Korea
| | - Yoo Jin Roh
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Chang-Hun Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Sung Jae Kim
- Department of Orthopedic Surgery, Dongtan Sacred Hospital, Hallym University, Hwaseong, Republic of Korea
| |
Collapse
|
4
|
Peran JE, Salvador-Reyes LA. Modified oxylipins as inhibitors of biofilm formation in Staphylococcus epidermidis. Front Pharmacol 2024; 15:1379643. [PMID: 38846101 PMCID: PMC11153713 DOI: 10.3389/fphar.2024.1379643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/23/2024] [Indexed: 06/09/2024] Open
Abstract
New approaches to combating microbial drug resistance are being sought, with the discovery of biofilm inhibitors considered as alternative arsenal for treating infections. Natural products have been at the forefront of antimicrobial discovery and serve as inspiration for the design of new antibiotics. We probed the potency, selectivity, and mechanism of anti-biofilm activity of modified oxylipins inspired by the marine natural product turneroic acid. Structure-activity relationship (SAR) evaluation revealed the importance of the trans-epoxide moiety, regardless of the position, for inhibiting biofilm formation. trans-12,13-epoxyoctadecanoic acid (1) and trans-9,10 epoxyoctadecanoic acid (4) selectively target the early stage of biofilm formation, with no effect on planktonic cells. These compounds interrupt the formation of a protective polysaccharide barrier by significantly upregulating the ica operon's transcriptional repressor. This was corroborated by docking experiment with SarA and scanning electron micrographs showing reduced biofilm aggregates and the absence of thread-like structures of extrapolymeric substances. In silico evaluation revealed that 1 and 4 can interfere with the AgrA-mediated communication language in Staphylococci, typical to the diffusible signal factor (DSF) capacity of lipophilic chains.
Collapse
Affiliation(s)
| | - Lilibeth A. Salvador-Reyes
- Marine Science Institute, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| |
Collapse
|
5
|
Vadakkan K, Sathishkumar K, Kuttiyachan Urumbil S, Ponnenkunnathu Govindankutty S, Kumar Ngangbam A, Devi Nongmaithem B. A review of chemical signaling mechanisms underlying quorum sensing and its inhibition in Staphylococcus aureus. Bioorg Chem 2024; 148:107465. [PMID: 38761705 DOI: 10.1016/j.bioorg.2024.107465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/29/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
Staphylococcus aureus is a significant bacterium responsible for multiple infections and is a primary cause of fatalities among patients in hospital environments. The advent of pathogenic bacteria such as methicillin-resistant S. aureus revealed the shortcomings of employing antibiotics to treat bacterial infectious diseases. Quorum sensing enhances S. aureus's survivability through signaling processes. Targeting the key components of quorum sensing has drawn much interest nowadays as a promising strategy for combating infections caused by bacteria. Concentrating on the accessory gene regulator quorum-sensing mechanism is the most commonly suggested anti-virulence approach for S.aureus. Quorum quenching is a common strategy for controlling illnesses triggered by microorganisms since it reduces the pathogenicity of bacteria and improves bacterial biofilm susceptibility to antibiotics, thus providing an intriguing prospect for drug discovery. Quorum sensing inhibition reduces selective stresses and constrains the emergence of antibiotic resistance while limiting bacterial pathogenicity. This review examines the quorum sensing mechanisms involved in S. aureus, quorum sensing targets and gene regulation, environmental factors affecting quorum sensing, quorum sensing inhibition, natural products as quorum sensing inhibitory agents and novel therapeutical strategies to target quorum sensing in S. aureus as drug developing technique to augment conventional antibiotic approaches.
Collapse
Affiliation(s)
- Kayeen Vadakkan
- Department of Biotechnology, St. Mary's College (Autonomous), Thrissur, Kerala 680020, India; Manipur International University, Imphal, Manipur 795140, India.
| | - Kuppusamy Sathishkumar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Thandalam, Chennai, Tamil Nadu 602105, India
| | | | | | | | | |
Collapse
|
6
|
Pont CL, Bernay B, Gérard M, Dhalluin A, Gravey F, Giard JC. Proteomic characterization of persisters in Enterococcus faecium. BMC Microbiol 2024; 24:9. [PMID: 38172710 PMCID: PMC10765921 DOI: 10.1186/s12866-023-03162-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Enterococcus faecium is a Gram-positive bacterium, naturally present in the human intestinal microbiota, but is also an opportunistic pathogen responsible for healthcare-associated infections. Persisters are individuals of a subpopulation able to survive by arrest of growth coping with conditions that are lethal for the rest of the population. These persistent cells can grow again when the stress disappears from their environment and can cause relapses. RESULTS In this study, we highlighted that ciprofloxacin (10-fold the MIC) led to the formation of persister cells of E. faecium. The kill curve was typically biphasic with an initial drop of survival (more than 2 orders of magnitude reduction) followed by a constant bacterial count. Growth curves and antimicrobial susceptibility tests of these persisters were similar to those of the original cells. In addition, by genomic analyses, we confirmed that the persisters were genotypically identical to the wild type. Comparative proteomic analysis revealed that 56 proteins have significantly different abundances in persisters compared to cells harvested before the addition of stressing agent. Most of them were related to energetic metabolisms, some polypeptides were involved in transcription regulation, and seven were stress proteins like CspA, PrsA, ClpX and particularly enzymes linked to the oxidative stress response. CONCLUSIONS This work provided evidences that the pathogen E. faecium was able to enter a state of persister that may have an impact in chronic infections and relapses. Moreover, putative key effectors of this phenotypical behavior were identified by proteomic approach.
Collapse
Affiliation(s)
- Charlotte Le Pont
- UNICAEN, Univ Rouen Normandie, INSERM, DYNAMICURE UMR 1311, Caen, F-14000, France
| | - Benoît Bernay
- Plateforme Proteogen SFR ICORE 4206, Université de Caen Normandie, Caen, 14000, France
| | - Mattéo Gérard
- UNICAEN, Univ Rouen Normandie, INSERM, DYNAMICURE UMR 1311, Caen, F-14000, France
| | - Anne Dhalluin
- UNICAEN, Univ Rouen Normandie, INSERM, DYNAMICURE UMR 1311, Caen, F-14000, France
| | - François Gravey
- Department of infectious agents, UNICAEN, Univ Rouen Normandie, INSERM, DYNAMICURE UMR 1311, CHU Caen, Caen, F-14000, France
| | | |
Collapse
|
7
|
Chang SC, Kao CY, Lin LC, Hidrosollo JH, Lu JJ. Lugdunin production and activity in Staphylococcus lugdunensis isolates are associated with its genotypes. Microbiol Spectr 2023; 11:e0129823. [PMID: 37732790 PMCID: PMC10580833 DOI: 10.1128/spectrum.01298-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/20/2023] [Indexed: 09/22/2023] Open
Abstract
Lugdunin produced by Staphylococcus lugdunensis has been shown to have broad inhibitory activity against Gram-positive bacteria; however, lugdunin activity among S. lugdunensis isolates and its association with different agr, SCCmec, and sequence types remain unclear. We used matrix-assisted laser desorption ionization-time-of-flight mass spectrometry to identify S. lugdunensis and collected 202 S. lugdunensis samples for further assays. Agar spot tests were performed to characterize S. lugdunensis lugdunin production and activity. Multilocus sequence typing, SCCmec, and agr genotyping were performed on S. lugdunensis. In all, 91 Staphylococcus aureus strains with varying vancomycin susceptibilities were used to examine lugdunin activity in S. lugdunensis. In total, 48 S. lugdunensis strains (23.8%) were found to be oxacillin-resistant S. lugdunensis (ORSL), whereas 154 (76.2%) were classified as oxacillin-sensitive S. lugdunensis (OSSL). Moreover, 16 (33.3%) ORSL and 35 (22.7%) OSSL strains showed antibacterial activity against S. aureus. Our data showed that most lugdunin-producing ORSL strains (14/48, 29.2%) were of ST3-SCCmec V-agr II genotypes, whereas most lugdunin-producing OSSL strains (15/154, 9.7%) were of ST3-agr II, followed by ST1-agr I (10/154, 6.5%). Our data also revealed that lugdunin exhibited weak inhibitory activity against the VISA ST239 isolate. In addition, we observed that ST239 VSSA was more resistant to lugdunin than ST5, ST59, and ST45 VSSA. Taken together, our data pioneered the epidemiology of lugdunin production in S. lugdunensis isolates and revealed its association with genotypes. However, further molecular and bioinformatics investigations are needed to elucidate the regulatory mechanisms of lugdunin production and activity. IMPORTANCE Lugdunin is active against both methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci by dissipating their membrane potential. However, the association of lugdunin activity with the genotypes of Staphylococcus lugdunensis has not been addressed. Here, we show the high prevalence of lugdunin-producing strains among ST1 (83.3%), ST2 (66.7%), and ST3 (53.3%) S. lugdunensis. Moreover, we identified the antibacterial activity of lugdunin-producing strains against VISA and hVISA. These results shed light on the potential application of lugdunin for the treatment of drug-resistant pathogens.
Collapse
Affiliation(s)
- Shih-Cheng Chang
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Yen Kao
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Lee-Chung Lin
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jazon Harl Hidrosollo
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jang-Jih Lu
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
8
|
Cosetta CM, Niccum B, Kamkari N, Dente M, Podniesinski M, Wolfe BE. Bacterial-fungal interactions promote parallel evolution of global transcriptional regulators in a widespread Staphylococcus species. THE ISME JOURNAL 2023; 17:1504-1516. [PMID: 37524910 PMCID: PMC10432416 DOI: 10.1038/s41396-023-01462-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/06/2023] [Accepted: 06/15/2023] [Indexed: 08/02/2023]
Abstract
Experimental studies of microbial evolution have largely focused on monocultures of model organisms, but most microbes live in communities where interactions with other species may impact rates and modes of evolution. Using the cheese rind model microbial community, we determined how species interactions shape the evolution of the widespread food- and animal-associated bacterium Staphylococcus xylosus. We evolved S. xylosus for 450 generations alone or in co-culture with one of three microbes: the yeast Debaryomyces hansenii, the bacterium Brevibacterium aurantiacum, and the mold Penicillium solitum. We used the frequency of colony morphology mutants (pigment and colony texture phenotypes) and whole-genome sequencing of isolates to quantify phenotypic and genomic evolution. The yeast D. hansenii strongly promoted diversification of S. xylosus. By the end of the experiment, all populations co-cultured with the yeast were dominated by pigment and colony morphology mutant phenotypes. Populations of S. xylosus grown alone, with B. aurantiacum, or with P. solitum did not evolve novel phenotypic diversity. Whole-genome sequencing of individual mutant isolates across all four treatments identified numerous unique mutations in the operons for the SigB, Agr, and WalRK global regulators, but only in the D. hansenii treatment. Phenotyping and RNA-seq experiments highlighted altered pigment and biofilm production, spreading, stress tolerance, and metabolism of S. xylosus mutants. Fitness experiments revealed antagonistic pleiotropy, where beneficial mutations that evolved in the presence of the yeast had strong negative fitness effects in other biotic environments. This work demonstrates that bacterial-fungal interactions can have long-term evolutionary consequences within multispecies microbiomes by facilitating the evolution of strain diversity.
Collapse
Affiliation(s)
- Casey M Cosetta
- Department of Biology, Tufts University, Medford, MA, 02155, USA
| | - Brittany Niccum
- Department of Biology, Tufts University, Medford, MA, 02155, USA
| | - Nick Kamkari
- Department of Biology, Tufts University, Medford, MA, 02155, USA
| | - Michael Dente
- Department of Biology, Tufts University, Medford, MA, 02155, USA
| | | | - Benjamin E Wolfe
- Department of Biology, Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
9
|
Qin J, Yu L, Peng F, Ye X, Li G, Sun C, Cheng F, Peng C, Xie X. Tannin extracted from Penthorum chinense Pursh, a potential drug with antimicrobial and antibiofilm effects against methicillin-sensitive Staphylococcus aureus and methicillin-resistant Staphylococcus aureus. Front Microbiol 2023; 14:1134207. [PMID: 37465024 PMCID: PMC10351983 DOI: 10.3389/fmicb.2023.1134207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 06/13/2023] [Indexed: 07/20/2023] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen. Due to the widespread use and abuse of antibiotics, various drug-resistant strains of S. aureus have emerged, with methicillin-resistant Staphylococcus aureus (MRSA) being the most prevalent. Bacterial biofilm is a significant contributor to bacterial infection and drug resistance. Consequently, bacterial biofilm formation has emerged as a therapeutic strategy. In this study, the chemical constituents, antimicrobial and antibiofilm properties of tannins isolated from Penthorum chinense Pursh (TPCP) were investigated. In vitro, TPCP exhibited antimicrobial properties. The minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) for methicillin-sensitive Staphylococcus aureus (MSSA) and MRSA were 156.25 and 312.5 μg/mL, and 312.5 and 625 μg/mL, respectively. According to the growth curves, TPCP significantly inhibited the growth of MSSA and MRSA. The results of the crystal violet biofilm assay in conjunction with confocal laser scanning and scanning electron microscopy demonstrated that TPCP destroyed preformed MSSA and MRSA biofilms. TPCP significantly decreased the secretion of exopolysaccharides and extracellular DNA. Subsequently, the mechanism was investigated using RT-PCR. Examining the expression of icaA, cidA, sigB, agrA, and sarA genes in MRSA, we discovered that TPCP inhibited biofilm formation by affecting the quorum-sensing system in bacteria. Our study demonstrates that TPCP exerts antibacterial effects by disrupting the formation of bacterial biofilms, suggesting that TPCP has clinical potential as a novel antibacterial agent for the prevention and treatment of MSSA and MRSA infections.
Collapse
Affiliation(s)
- Junyuan Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lei Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Xin Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gangmin Li
- Department of Pharmacy, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Chen Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Integrative Multiomics Analysis of the Heat Stress Response of Enterococcus faecium. Biomolecules 2023; 13:biom13030437. [PMID: 36979372 PMCID: PMC10046512 DOI: 10.3390/biom13030437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
A continuous heat-adaptation test was conducted for one Enterococcus faecium (E. faecium) strain wild-type (WT) RS047 to obtain a high-temperature-resistant strain. After domestication, the strain was screened with a significantly higher ability of heat resistance. which is named RS047-wl. Then a multi-omics analysis of transcriptomics and metabolomics was used to analyze the mechanism of the heat resistance of the mutant. A total of 98 differentially expressed genes (DEGs) and 115 differential metabolites covering multiple metabolic processes were detected in the mutant, which indicated that the tolerance of heat resistance was regulated by multiple mechanisms. The changes in AgrB, AgrC, and AgrA gene expressions were involved in quorum-sensing (QS) system pathways, which regulate biofilm formation. Second, highly soluble osmotic substances such as putrescine, spermidine, glycine betaine (GB), and trehalose-6P were accumulated for the membrane transport system. Third, organic acids metabolism and purine metabolism were down-regulated. The findings can provide target genes for subsequent genetic modification of E. faecium, and provide indications for screening heat-resistant bacteria, so as to improve the heat-resistant ability of E. faecium for production.
Collapse
|
11
|
Staphylococcus lugdunensis Uses the Agr Regulatory System to Resist Killing by Host Innate Immune Effectors. Infect Immun 2022; 90:e0009922. [PMID: 36069592 PMCID: PMC9584346 DOI: 10.1128/iai.00099-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coagulase-negative staphylococci (CoNS) are frequently commensal bacteria that rarely cause disease in mammals. Staphylococcus lugdunensis is an exceptional CoNS that causes disease in humans similar to virulent Staphylococcus aureus, but the factors that enhance the virulence of this bacterium remain ill defined. Here, we used random transposon insertion mutagenesis to identify the agr quorum sensing system as a regulator of hemolysins in S. lugdunensis. Using RNA sequencing (RNA-seq), we revealed that agr regulates dozens of genes, including hemolytic S. lugdunensis synergistic hemolysins (SLUSH) peptides and the protease lugdulysin. A murine bacteremia model was used to show that mice infected systemically with wild-type S. lugdunensis do not show overt signs of disease despite there being high numbers of bacteria in the livers and kidneys of mice. Moreover, proliferation of the agr mutant in these organs was no different from that of the wild-type strain, leaving the role of the SLUSH peptides and the metalloprotease lugdulysin in pathogenesis still unclear. Nonetheless, the tropism of S. lugdunensis for humans led us to investigate the role of virulence factors in other ways. We show that agr-regulated effectors, but not SLUSH or lugdulysin alone, are important for S. lugdunensis survival in whole human blood. Moreover, we demonstrate that Agr contributes to survival of S. lugdunensis during encounters with murine and primary human macrophages. These findings demonstrate that, in S. lugdunensis, Agr regulates expression of virulence factors and is required for resistance to host innate antimicrobial defenses. This study therefore provides insight into strategies that this Staphylococcus species uses to cause disease.
Collapse
|
12
|
Kosecka-Strojek M, Wolska-Gębarzewska M, Podbielska-Kubera A, Samet A, Krawczyk B, Międzobrodzki J, Michalik M. May Staphylococcus lugdunensis Be an Etiological Factor of Chronic Maxillary Sinuses Infection? Int J Mol Sci 2022; 23:ijms23126450. [PMID: 35742895 PMCID: PMC9224237 DOI: 10.3390/ijms23126450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 02/05/2023] Open
Abstract
Staphylococcus lugdunensis is an opportunistic pathogen found in the healthy human skin microbiome bacterial community that is able to cause infections of diverse localization, manifestation, and course, including laryngological infections, such as necrotizing sinusitis. Chronic maxillary sinusitis is a disease present in up to one third of European and American populations, and its etiology is not fully described. Within this study, we aimed to characterize 18 S. lugdunensis strains recovered from maxillary sinuses and evaluate them as etiological agents of chronic disease. We performed MLST analysis, the complex analysis of both phenotypic and genetic virulence factors, antibiotic susceptibility profiles, and biofilm formation assay for the detection of biofilm-associated genes. Altogether, S. lugdunensis strains were clustered into eight different STs, and we demonstrated several virulence factors associated with the chronic disease. All tested strains were able to produce biofilm in vitro with numerous strains with a very strong ability, and overall, they were mostly susceptible to antibiotics, although we found resistance to fosfomycin, erythromycin, and clindamycin in several strains. We believe that further in-depth analysis of S. lugdunensis strains from different niches, including the nasal one, should be performed in the future in order to reduce infection rate and broaden the knowledge about this opportunistic pathogen that is gaining attention.
Collapse
Affiliation(s)
- Maja Kosecka-Strojek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387 Krakow, Poland; (M.W.-G.); (J.M.)
- Correspondence:
| | - Mariola Wolska-Gębarzewska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387 Krakow, Poland; (M.W.-G.); (J.M.)
| | | | - Alfred Samet
- MML Centre, Bagno 2, 00-112 Warsaw, Poland; (A.P.-K.); (A.S.); (M.M.)
| | - Beata Krawczyk
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdansk, Poland;
| | - Jacek Międzobrodzki
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387 Krakow, Poland; (M.W.-G.); (J.M.)
| | - Michał Michalik
- MML Centre, Bagno 2, 00-112 Warsaw, Poland; (A.P.-K.); (A.S.); (M.M.)
| |
Collapse
|