1
|
Boattini M, Bianco G, Comini S, Costa C, Gaibani P. In vivo development of resistance to novel β-lactam/β-lactamase inhibitor combinations in KPC-producing Klebsiella pneumoniae infections: a case series. Eur J Clin Microbiol Infect Dis 2024; 43:2407-2417. [PMID: 39384682 DOI: 10.1007/s10096-024-04958-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
INTRODUCTION Understanding the dynamics that may characterize the emergence of KPC variants with resistance to novel β-lactam/β-lactamase inhibitor combinations (βL/βLICs) represents a challenge to be overcome in the appropriate use of recently introduced antibiotics. METHODS Retrospective case series describing development of multiple resistance to novel βL/βLICs in patients with KPC-producing Klebsiella pneumoniae (KPC-Kp) infections treated with these drugs. Clinical-microbiological investigation and characterization of longitudinal strains by Whole-Genome Sequencing were performed. RESULTS Four patients with KPC-Kp bloodstream infections were included. Most frequent clinical features were kidney disease, obesity, cardiac surgery as reason for admission, ICU stay, treatment with ceftazidime/avibactam, and pneumonia and/or acute kidney injury needing renal replacement therapy as KPC-Kp sepsis-associated complications. The development of resistance to ceftazidime/avibactam was observed in four longitudinal strains (three of which were co-resistant to aztreonam/avibactam and cefiderocol) following treatments with ceftazidime/avibactam (n = 3) or cefiderocol (n = 1). Resistance to meropenem/vaborbactam and imipenem/cilastatin/relebactam was observed in one case after exposure to ceftazidime/avibactam and imipenem/cilastatin/relebactam. Resistome analysis showed that resistance to novel βL/βLICs was related to specific mutations within blaKPC carbapenemase gene (D179Y mutation [KPC-33]; deletion Δ242-GT-243 [KPC-14]) in three longitudinal strains, while porin loss (truncated OmpK35 and OmpK36 porins) was observed in one case. CONCLUSION Therapy with novel βL/βLICs or cefiderocol may lead to the selection of resistant mutants in the presence of factors influencing the achievement of PK/PD targets. KPC variants are mainly associated with resistance to ceftazidime/avibactam, and some of them (e.g. KPC-14) may also be associated with reduced susceptibility to aztreonam/avibactam and/or cefiderocol. Loss of function of the OmpK35 and OmpK36 porins appears to play a role in the development of resistance to meropenem/vaborbactam and/or imipenem/relebactam, but other mechanisms may also be involved.
Collapse
Affiliation(s)
- Matteo Boattini
- Department of Public Health and Paediatrics, University of Torino, Turin, Italy.
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, Corso Bramante 88/90, Turin, 10126, Italy.
- Lisbon Academic Medical Centre, Lisbon, Portugal.
| | - Gabriele Bianco
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, Corso Bramante 88/90, Turin, 10126, Italy
- Department of Experimental Medicine, University of Salento, Via Provinciale Monteroni n. 165, Lecce, 73100, Italy
| | - Sara Comini
- Operative Unit of Clinical Pathology, Carlo Urbani Hospital, Jesi, 60035, Italy
| | - Cristina Costa
- Department of Public Health and Paediatrics, University of Torino, Turin, Italy
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, Corso Bramante 88/90, Turin, 10126, Italy
| | - Paolo Gaibani
- Microbiology and Virology Unit, Azienda Ospedaliera Universitaria Integrata Di Verona, Verona, Italy
- Department of Diagnostics and Public Health, Microbiology Section, Verona University, Verona, Italy
| |
Collapse
|
2
|
Pariona JGM, Vásquez-Ponce F, Pariona EMM, Sousa-Carmo RR, Martins-Gonçalves T, Becerra J, de Lima AV, Queiroga G, Sampaio JLM, Lincopan N. Efficacy of meropenem against ceftazidime-avibactam-resistant Klebsiella pneumoniae producing KPC-31, KPC-33, KPC-90, KPC-106 and KPC-114. J Antimicrob Chemother 2024:dkae389. [PMID: 39468752 DOI: 10.1093/jac/dkae389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Klebsiella pneumoniae producing KPC variants conferring resistance to ceftazidime-avibactam often remain susceptible to meropenem, suggesting a potential therapeutic use of this antibiotic. OBJECTIVES In this study, the efficacy of clinically relevant concentrations of meropenem was evaluated against high-risk clones of ceftazidime-avibactam-resistant K. pneumoniae strains producing KPC variants, in a tandem in vitro time-kill/in vivo Galleria mellonella survival model. METHODS In vitro/in vivo efficacy of meropenem against ceftazidime-avibactam-resistant K. pneumoniae of CG16, CG25 and CG258, producing KPC-31, KPC-33, KPC-90, KPC-106 and KPC-114 variants, was evaluated using EUCAST dosing recommendation adjusted to the G. mellonella model. For in vivo assays, untreated, meropenem (40 mg/kg × 1)-treated and ceftazidime-avibactam (40 mg/kg ceftazidime-10 mg/kg avibactam × 1)-treated groups were established, with 60 larvae per group. Kaplan-Meier curves, log-rank tests, univariate Cox regression and hazard ratios (HR) were used to assess treatment effects (P < 0.05). RESULTS For all KPC-variant producers, time-kill assays showed >3 log-kills reduction (-6.91 ± 1.28 SD) after 6 h interaction when exposed to 8-32 mg/L meropenem MIC values (i.e. ≥ × 4 MIC). In the assessment of in vivo efficacy of meropenem, at the 4-day follow-up, mortality rates were 96.7% (untreated), 83.3% (ceftazidime-avibactam-treated) and 13.3% (meropenem-treated) (P < 0.05). Univariate Cox regression analysis showed significantly lower risk in the meropenem group compared to untreated group [HR 0.02 (95% CI: 0.01-0.05)]. CONCLUSIONS These pre-clinical results might support use of meropenem as a potential alternative for treatment of infections due to KPC-variant producers displaying in vitro susceptibility to meropenem.
Collapse
Affiliation(s)
- Jesus G M Pariona
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, Universidade de São Paulo, São Paulo, Brazil
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
| | - Felipe Vásquez-Ponce
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
| | - Eva M M Pariona
- Unidad de Investigación de Enfermedades Emergentes y Cambio Climático, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Rubens R Sousa-Carmo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
| | - Thais Martins-Gonçalves
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
| | - Johana Becerra
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Antimicrobial Resistance Institute of São Paulo (ARIES), São Paulo, Brazil
| | - Aline V de Lima
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Gustavo Queiroga
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, Universidade de São Paulo, São Paulo, Brazil
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
| | - Jorge L M Sampaio
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Nilton Lincopan
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, Universidade de São Paulo, São Paulo, Brazil
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Antimicrobial Resistance Institute of São Paulo (ARIES), São Paulo, Brazil
| |
Collapse
|
3
|
Zhu J, Chen T, Ju Y, Dai J, Zhuge X. Transmission Dynamics and Novel Treatments of High Risk Carbapenem-Resistant Klebsiella pneumoniae: The Lens of One Health. Pharmaceuticals (Basel) 2024; 17:1206. [PMID: 39338368 PMCID: PMC11434721 DOI: 10.3390/ph17091206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The rise of antibiotic resistance and the dwindling antimicrobial pipeline have emerged as significant threats to public health. The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) poses a global threat, with limited options available for targeted therapy. The CRKP has experienced various changes and discoveries in recent years regarding its frequency, transmission traits, and mechanisms of resistance. In this comprehensive review, we present an in-depth analysis of the global epidemiology of K. pneumoniae, elucidate resistance mechanisms underlying its spread, explore evolutionary dynamics concerning carbapenem-resistant hypervirulent strains as well as KL64 strains of K. pneumoniae, and discuss recent therapeutic advancements and effective control strategies while providing insights into future directions. By going through up-to-date reports, we found that the ST11 KL64 CRKP subclone with high risk demonstrated significant potential for expansion and survival benefits, likely due to genetic influences. In addition, it should be noted that phage and nanoparticle treatments still pose significant risks for resistance development; hence, innovative infection prevention and control initiatives rooted in One Health principles are advocated as effective measures against K. pneumoniae transmission. In the future, further imperative research is warranted to comprehend bacterial resistance mechanisms by focusing particularly on microbiome studies' application and implementation of the One Health strategy.
Collapse
Affiliation(s)
- Jiaying Zhu
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226019, China
| | - Taoyu Chen
- Department of Orthopaedics, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Yanmin Ju
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jianjun Dai
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangkai Zhuge
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226019, China
| |
Collapse
|
4
|
Gong Y, Feng Y, Lv X. Identification of a Novel KPC Variant, KPC-204, Conferring Resistance to Both Carbapenems and Ceftazidime-Avibactam in an ST11 Klebsiella pneumoniae Strain. Microorganisms 2024; 12:1193. [PMID: 38930575 PMCID: PMC11205768 DOI: 10.3390/microorganisms12061193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
This study describes KPC-204, a novel variant of Klebsiella pneumoniae carbapenemase, characterized by a Lys-Asp-Asp (KDD) amino acid insertion at Ambler position 269 deviates from KPC-2. This variant was identified in an ST11-type clinical isolate of carbapenem-resistant Klebsiella pneumoniae from China. Notably, KPC-204 exhibits resistance to both ceftazidime-avibactam and carbapenems. Genetic analysis revealed that blaKPC-204 was located on a highly mobile IncFII/IncR plasmid within a complex genetic structure that facilitates its spread. Functional analysis, achieved through cloning into E. coli DH5α, validates KPC-204's contribution to increased resistance to ceftazidime-avibactam. The kinetic parameters showed that KPC-204 exhibited similar affinity to KPC-2 toward ceftazidime and reduced sensitivity to avibactam. Docking simulations revealed a weaker interaction between KPC-204 and avibactam compared to KPC-2. Mating experiments demonstrated the resistance's transmissibility. This investigation underscores the evolving diversity of KPC variants affecting ceftazidime-avibactam resistance, highlighting the necessity for continuous monitoring.
Collapse
Affiliation(s)
- Yanqiao Gong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.G.); (Y.F.)
- Department of Infection Control, Minda Hospital, Hubei Minzu University, Enshi 445000, China
| | - Yu Feng
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.G.); (Y.F.)
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoju Lv
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.G.); (Y.F.)
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu 610041, China
| |
Collapse
|
5
|
Zhou J, Yan G, Tang C, Liu J, Fu P, Ding L, Yang W, Guo Y, Wang C, Lu G, Hu F. Emergence of ceftazidime-avibactam resistance in bla KPC-33-harbouring ST11 Klebsiella pneumoniae in a paediatric patient. Int J Antimicrob Agents 2024; 63:107163. [PMID: 38570018 DOI: 10.1016/j.ijantimicag.2024.107163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) poses immense threats to the health of infected patients worldwide, especially children. This study reports the infection caused by CRKP in a paediatric intensive care unit (PICU) child and its drug-resistant mutation during the treatment. Twelve Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae strains were isolated from the child. Broth microdilution method, plasmid transformation assay, and whole genome sequencing (WGS) were performed to investigate the antimicrobial susceptibility, resistance mechanisms, and genetic structural features of CRKPs. The results showed that 12 strains were highly resistant to most available antimicrobial agents. Among them, K. pneumoniae FD11 and K. pneumoniae FD12 were resistant to ceftazidime-avibactam (CZA, MIC >64 mg/L) and restored the carbapenem susceptibility (Imipenem, MIC =0.25 mg/L; Meropenem, MIC =2 mg/L). The patient improved after treatment with CZA in combination with aztreonam. Plasmid transformation assay demonstrated that the blaKPC-33-positive transformant increased MICs of CZA by at least 33-fold and 8-fold compared with the recipient Escherichia coli DH5α and blaKPC-2-positive transformants. WGS analysis revealed that all strains belonged to the ST11-KL64 type and showed highly homologous (3-26 single nucleotide polymorphisms [SNPs]). A single base mutation (G532T) of blaKPC-2 resulted in a tyrosine to aspartic acid substitution at Ambler amino acid position 179 (D179Y), which conferred CZA resistance in K. pneumoniae. This is the first report of a drug-resistant mutation evolving into blaKPC-33 during the treatment of blaKPC-2-positive CRKP in paediatric-infected patients. It advises clinicians that routine sequential antimicrobial susceptibility testing and KPC genotyping are critical during CZA therapy in children infected with CRKP.
Collapse
Affiliation(s)
- Jinlan Zhou
- Intensive Care Unit, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Gangfeng Yan
- Intensive Care Unit, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Chengkang Tang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Jing Liu
- Intensive Care Unit, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Pan Fu
- Department of Clinical Microbiology Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Li Ding
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Weiwei Yang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Yan Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Chuanqing Wang
- Department of Clinical Microbiology Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Guoping Lu
- Intensive Care Unit, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China; Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China.
| |
Collapse
|
6
|
Pimentel MIS, Beltrão EMB, de Oliveira ÉM, Martins LR, Jucá MB, Lopes ACDS. Virulent Klebsiella pneumoniae ST11 clone carrying blaKPC and blaNDM from patients with and without COVID-19 in Brazil. J Appl Microbiol 2024; 135:lxae079. [PMID: 38520165 DOI: 10.1093/jambio/lxae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/10/2024] [Accepted: 03/21/2024] [Indexed: 03/25/2024]
Abstract
AIMS Investigated and compared the occurrence of virulence genes fimH, mrkD, irp2, entB, cps, rmpA, and wabG, resistance genes blaKPC and blaNDM, and the genetic variability and clonal relationship of 29 Klebsiella pneumoniae clinical isolates of patients with and without COVID-19, from a hospital in Brazil. METHODS AND RESULTS All isolates were resistant to beta-lactams. The genes were investigated by PCR, and for molecular typing, enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) and MLST were used. The detection of blaNDM was greater (n = 23) when compared to that of blaKPC (n = 14). The virulence genes that most occurred were fimH, entB, cps, and wabG, which are responsible for adhesins, siderophore enterobactin, capsule, and lipopolysaccharides, respectively. Among the isolates, 21 distinct genetic profiles were found by ERIC-PCR, with multiclonal dissemination. Four isolates belonged to the ST11 clone. CONCLUSIONS The occurrence of the ST11 is worrying as it is a high-risk clone involved in the dissemination of virulent strains throughout the world.
Collapse
Affiliation(s)
- Maria Izabely Silva Pimentel
- Universidade Federal de Pernambuco-UFPE, Laboratório de Microbiologia, Área de Medicina Tropical, Centro de Ciências Médicas-CCM, 50670-901, Recife-PE, Brasil
| | - Elizabeth Maria Bispo Beltrão
- Universidade Federal de Pernambuco-UFPE, Laboratório de Microbiologia, Área de Medicina Tropical, Centro de Ciências Médicas-CCM, 50670-901, Recife-PE, Brasil
| | - Érica Maria de Oliveira
- Universidade Federal de Pernambuco-UFPE, Laboratório de Microbiologia, Área de Medicina Tropical, Centro de Ciências Médicas-CCM, 50670-901, Recife-PE, Brasil
| | - Lamartine Rodrigues Martins
- Universidade Federal de Pernambuco-UFPE, Laboratório de Microbiologia, Área de Medicina Tropical, Centro de Ciências Médicas-CCM, 50670-901, Recife-PE, Brasil
| | | | - Ana Catarina de Souza Lopes
- Universidade Federal de Pernambuco-UFPE, Laboratório de Microbiologia, Área de Medicina Tropical, Centro de Ciências Médicas-CCM, 50670-901, Recife-PE, Brasil
| |
Collapse
|
7
|
Abdelaziz Abdelmoneim S, Mohamed Ghazy R, Anwar Sultan E, Hassaan MA, Anwar Mahgoub M. Antimicrobial resistance burden pre and post-COVID-19 pandemic with mapping the multidrug resistance in Egypt: a comparative cross-sectional study. Sci Rep 2024; 14:7176. [PMID: 38531847 DOI: 10.1038/s41598-024-56254-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Abstract
Overuse of antibiotics during coronavirus disease 2019 (COVID-19) in an attempt to reduce COVID-19 mortality in the short term may have contributed to long-term mortality from antimicrobial resistance (AMR). The aim of this study was to evaluate the impact of the COVID-19 pandemic on AMR in Egypt and map the distribution of multidrug-resistant (MDR) and extensive drug-resistant (XDR) across Egypt. Through a multicenter cross-sectional study 2430 culture results were collected in 2019 and 2022 pre and post-COVID-19 pandemic in Egypt, including 400 Klebsiella pneumoniae, 760 Escherichia coli, 650 Acinetobacter baumannii, and 620 Methicillin-resistant staphylococcus aureus (MRSA) culture results. MDR and XDR culture results distribution across Egypt was highlighted through the geographic information system. Mixed effect logistic regression models and sub-group analysis were performed according to the type of specimens to test the impact of COVID-19 on resistance. Adjusted analysis demonstrated K. pneumoniae resistance has increased against quinolones and carbapenems (P < 0.001). Resistance of E. coli has increased significantly against imipenem and meropenem. While E.coli susceptibility has increased to cefoxitin, levofloxacin, and ciprofloxacin. A. baumannii resistance has increased more than double against ceftazidime, cefepime, and piperacillin-tazobactam (P < 0.001). MRSA reserved its susceptibility to vancomycin and linezolid. MDR K. pneumoniae and A. baumannii have increased post-COVID-19 from 67% to 94% and from 79% to 98%, respectively (P < 0.001). XDR K. pneumoniae and A. baumannii have increased from 6% to 46%, and from 47% to 69%, respectively (P < 0.001). COVID-19 has changed the profile of AMR in Egypt so that urgent action is required to mitigate this threat and preserve our capacity to face infections in future decades.
Collapse
Affiliation(s)
- Shaimaa Abdelaziz Abdelmoneim
- Medical Research Institute, Alexandria University, Alexandria, Egypt.
- Clinical Research Administration, Alexandria Directorate of Health Affairs, Egyptian Ministry of Health and Population, Alexandria, Egypt.
| | - Ramy Mohamed Ghazy
- Family and Community Medicine Department, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Tropical Health Department, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Eman Anwar Sultan
- Community Medicine Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mahmoud A Hassaan
- Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Mohamed Anwar Mahgoub
- Department of Microbiology, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| |
Collapse
|
8
|
Boattini M, Bianco G, Bastos P, Comini S, Corcione S, Almeida A, Costa C, De Rosa FG, Cavallo R. Prevalence and mortality of ceftazidime/avibactam-resistant KPC-producing Klebsiella pneumoniae bloodstream infections (2018-2022). Eur J Clin Microbiol Infect Dis 2024; 43:155-166. [PMID: 37985552 PMCID: PMC10774640 DOI: 10.1007/s10096-023-04712-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/10/2023] [Indexed: 11/22/2023]
Abstract
INTRODUCTION Ceftazidime/avibactam-resistance in Klebsiella pneumoniae carbapenemase-producing Klebsiella pneumoniae (KPC-Kp) is a topic of great interest for epidemiological, diagnostic, and therapeutical reasons. However, data on its prevalence and burden on mortality in patients with bloodstream infection (BSI) are lacking. This study was aimed at identifying risk factors for mortality in patients suffering from ceftazidime/avibactam-resistant KPC-Kp BSI. METHODS An observational retrospective study (January 2018-December 2022) was conducted at a tertiary hospital including all consecutive hospitalized adult patients with a ceftazidime/avibactam-resistant KPC-Kp BSI. Data on baseline clinical features, management, and admission outcomes were analyzed. RESULTS Over the study period, among all the KPC-Kp BSI events recorded, 38 (10.5%) were caused by ceftazidime/avibactam-resistant KPC-Kp strains, 37 events being finally included. The ceftazidime/avibactam-resistant KPC-Kp strains revealed susceptibility restoration to at least one carbapenem in more than 60% of cases. In-hospital and 30-day all-cause mortality rates were 22% and 16.2%, respectively. Non-survivors suffered from more baseline comorbidities and experienced a more severe ceftazidime/avibactam-resistant KPC-Kp BSI presentation (i.e., both the Pitt Bacteremia and INCREMENT-CPE scores were significantly higher). Presenting with a higher Charlson Comorbidity Index, chronic kidney disease-KDIGO stage 3A or worse-having recently gone through renal replacement therapy, having suffered from an acute kidney injury following the ceftazidime/avibactam-resistant KPC-Kp BSI, and being admitted for cardiac surgery were the strongest predictors of mortality. CONCLUSION Ceftazidime/avibactam resistance in KPC-Kp BSI easily emerged in our highly KPC-Kp endemic area with remarkable mortality rates. Our findings might provide physicians possibly actionable information when managing patients with a ceftazidime/avibactam-resistant KPC-Kp BSI.
Collapse
Affiliation(s)
- Matteo Boattini
- Microbiology and Virology Unit, University Hospital Città Della Salute E Della Scienza Di Torino, Corso Bramante 88/90, 10126, Turin, Italy.
- Department of Public Health and Paediatrics, University of Torino, Turin, Italy.
- Lisbon Academic Medical Centre, Lisbon, Portugal.
| | - Gabriele Bianco
- Microbiology and Virology Unit, University Hospital Città Della Salute E Della Scienza Di Torino, Corso Bramante 88/90, 10126, Turin, Italy
| | - Paulo Bastos
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Lisbon, Portugal
| | - Sara Comini
- Microbiology and Virology Unit, University Hospital Città Della Salute E Della Scienza Di Torino, Corso Bramante 88/90, 10126, Turin, Italy
- Department of Public Health and Paediatrics, University of Torino, Turin, Italy
| | - Silvia Corcione
- Department of Medical Sciences, Infectious Diseases, University of Turin, 10126, Turin, Italy
| | - André Almeida
- Department of Internal Medicine 4, Hospital de Santa Marta, Central Lisbon Hospital Centre, Lisbon, Portugal
- NOVA Medical School, Universidade Nova de Lisboa, Campo Dos Mártires da Pátria 130, 1169-056, Lisbon, Portugal
| | - Cristina Costa
- Microbiology and Virology Unit, University Hospital Città Della Salute E Della Scienza Di Torino, Corso Bramante 88/90, 10126, Turin, Italy
- Department of Public Health and Paediatrics, University of Torino, Turin, Italy
| | - Francesco Giuseppe De Rosa
- Department of Medical Sciences, Infectious Diseases, University of Turin, 10126, Turin, Italy
- Unit of Infectious Diseases, Cardinal Massaia, 14100, Asti, Italy
| | - Rossana Cavallo
- Microbiology and Virology Unit, University Hospital Città Della Salute E Della Scienza Di Torino, Corso Bramante 88/90, 10126, Turin, Italy
- Department of Public Health and Paediatrics, University of Torino, Turin, Italy
| |
Collapse
|
9
|
Ding L, Shen S, Chen J, Tian Z, Shi Q, Han R, Guo Y, Hu F. Klebsiella pneumoniae carbapenemase variants: the new threat to global public health. Clin Microbiol Rev 2023; 36:e0000823. [PMID: 37937997 PMCID: PMC10732083 DOI: 10.1128/cmr.00008-23] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/31/2023] [Indexed: 11/09/2023] Open
Abstract
Klebsiella pneumoniae carbapenemase (KPC) variants, which refer to the substitution, insertion, or deletion of amino acid sequence compared to wild blaKPC type, have reduced utility of ceftazidime-avibactam (CZA), a pioneer antimicrobial agent in treating carbapenem-resistant Enterobacterales infections. So far, more than 150 blaKPC variants have been reported worldwide, and most of the new variants were discovered in the past 3 years, which calls for public alarm. The KPC variant protein enhances the affinity to ceftazidime and weakens the affinity to avibactam by changing the KPC structure, thereby mediating bacterial resistance to CZA. At present, there are still no guidelines or expert consensus to make recommendations for the diagnosis and treatment of infections caused by KPC variants. In addition, meropenem-vaborbactam, imipenem-relebactam, and other new β-lactam-β-lactamase inhibitor combinations have little discussion on KPC variants. This review aims to discuss the clinical characteristics, risk factors, epidemiological characteristics, antimicrobial susceptibility profiles, methods for detecting blaKPC variants, treatment options, and future perspectives of blaKPC variants worldwide to alert this new great public health threat.
Collapse
Affiliation(s)
- Li Ding
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Siquan Shen
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Jing Chen
- Hangzhou Matridx Biotechnology Co., Ltd., Hangzhou, Zhejiang, China
| | - Zhen Tian
- Hangzhou Matridx Biotechnology Co., Ltd., Hangzhou, Zhejiang, China
| | - Qingyu Shi
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Renru Han
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Yan Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| |
Collapse
|
10
|
Cercenado E. What are the most relevant publications in Clinical Microbiology in the last two years? REVISTA ESPANOLA DE QUIMIOTERAPIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE QUIMIOTERAPIA 2023; 36 Suppl 1:64-67. [PMID: 37997875 PMCID: PMC10793556 DOI: 10.37201/req/s01.15.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
This minireview describes some of the articles published in the last two years related to innovative technologies including CRISPR-Cas, surface-enhanced Raman spectroscopy, microfluidics, flow cytometry, Fourier transform infrared spectroscopy, and artificial intelligence and their application to microbiological diagnosis, molecular typing and antimicrobial susceptibility testing. In addition, some articles related to resistance to new antimicrobials (ceftazidime-avibactam, meropenem-vaborbactam, imipenem-relebactam, and cefiderocol) are also described.
Collapse
Affiliation(s)
- E Cercenado
- Emilia Cercenado, Servicio de Microbiología y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Dr Esquerdo 46; 28007 Madrid, Spain.
| |
Collapse
|
11
|
Casale R, Bianco G, Bastos P, Comini S, Corcione S, Boattini M, Cavallo R, Rosa FGD, Costa C. Prevalence and Impact on Mortality of Colonization and Super-Infection by Carbapenem-Resistant Gram-Negative Organisms in COVID-19 Hospitalized Patients. Viruses 2023; 15:1934. [PMID: 37766340 PMCID: PMC10534345 DOI: 10.3390/v15091934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND The relationship between superinfection by multidrug-resistant Gram-negative bacteria and mortality among SARS-CoV-2 hospitalized patients is still unclear. Carbapenem-resistant Acinetobacter baumannii and carbapenemase-producing Enterobacterales are among the most frequently isolated species when it comes to hospital-acquired superinfections among SARS-CoV-2 patients. METHODS Herein, a retrospective study was carried out using data from adult patients hospitalized for COVID-19. The interaction between in-hospital mortality and rectal carriage and superinfection by carbapenemase-producing Enterobacterales and/or carbapenem-resistant Acinetobacter baumannii was assessed. RESULTS The incidence of KPC-producing Klebsiella pneumoniae and/or carbapenem-resistant Acinetobacter baumannii rectal carriage was 30%. Bloodstream infection and/or pneumonia due to KPC-producing Klebsiella pneumoniae and/or carbapenem-resistant Acinetobacter baumannii occurred in 20% of patients. A higher Charlson comorbidity index (OR 1.41, 95% CI 1.24-1.59), being submitted to invasive mechanical ventilation/ECMO ≥ 96 h (OR 6.34, 95% CI 3.18-12.62), being treated with systemic corticosteroids (OR 4.67, 95% CI 2.43-9.05) and having lymphopenia at the time of admission (OR 0.54, 95% CI 0.40-0.72) were the features most strongly associated with in-hospital mortality. CONCLUSIONS Although KPC-producing Klebsiella pneumoniae and/or carbapenem-resistant Acinetobacter baumannii rectal carriage, and/or bloodstream infection/pneumonia were diagnosed in a remarkable percentage of COVID-19 patients, their impact on in-hospital mortality was not significant. Further studies are needed to assess the burden of antimicrobial resistance as a legacy of COVID-19 in order to identify future prevention opportunities.
Collapse
Affiliation(s)
- Roberto Casale
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, 10126 Turin, Italy; (R.C.); (S.C.); (M.B.); (R.C.); (C.C.)
- Department of Public Health and Paediatrics, University of Torino, 10126 Turin, Italy
| | - Gabriele Bianco
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, 10126 Turin, Italy; (R.C.); (S.C.); (M.B.); (R.C.); (C.C.)
| | - Paulo Bastos
- Independent Researcher, 1169-056 Lisbon, Portugal;
| | - Sara Comini
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, 10126 Turin, Italy; (R.C.); (S.C.); (M.B.); (R.C.); (C.C.)
- Department of Public Health and Paediatrics, University of Torino, 10126 Turin, Italy
| | - Silvia Corcione
- Department of Medical Sciences, Infectious Diseases, University of Turin, 10126 Turin, Italy; (S.C.); (F.G.D.R.)
| | - Matteo Boattini
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, 10126 Turin, Italy; (R.C.); (S.C.); (M.B.); (R.C.); (C.C.)
- Department of Public Health and Paediatrics, University of Torino, 10126 Turin, Italy
- Lisbon Academic Medical Centre, 1169-056 Lisbon, Portugal
| | - Rossana Cavallo
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, 10126 Turin, Italy; (R.C.); (S.C.); (M.B.); (R.C.); (C.C.)
- Department of Public Health and Paediatrics, University of Torino, 10126 Turin, Italy
| | - Francesco Giuseppe De Rosa
- Department of Medical Sciences, Infectious Diseases, University of Turin, 10126 Turin, Italy; (S.C.); (F.G.D.R.)
- Unit of Infectious Diseases, Cardinal Massaia, 14100 Asti, Italy
| | - Cristina Costa
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, 10126 Turin, Italy; (R.C.); (S.C.); (M.B.); (R.C.); (C.C.)
- Department of Public Health and Paediatrics, University of Torino, 10126 Turin, Italy
| |
Collapse
|
12
|
Vásquez-Ponce F, Bispo J, Becerra J, Fontana H, Pariona JGM, Esposito F, Fuga B, Oliveira FA, Brunetti F, Power P, Gutkind G, Schreiber AZ, Lincopan N. Emergence of KPC-113 and KPC-114 variants in ceftazidime-avibactam-resistant Klebsiella pneumoniae belonging to high-risk clones ST11 and ST16 in South America. Microbiol Spectr 2023; 11:e0037423. [PMID: 37671877 PMCID: PMC10580961 DOI: 10.1128/spectrum.00374-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/18/2023] [Indexed: 09/07/2023] Open
Abstract
Two novel variants of Klebsiella pneumoniae carbapenemase (KPC) associated with resistance to ceftazidime-avibactam (CZA) and designated as KPC-113 and KPC-114 by NCBI were identified in 2020, in clinical isolates of Klebsiella pneumoniae in Brazil. While K. pneumoniae of ST16 harbored the blaKPC-113 variant on an IncFII-IncFIB plasmid, K. pneumoniae of ST11 carried the blaKPC-114 variant on an IncN plasmid. Both isolates displayed resistance to broad-spectrum cephalosporins, β-lactam inhibitors, and ertapenem and doripenem, whereas K. pneumoniae producing KPC-114 showed susceptibility to imipenem and meropenem. Whole-genome sequencing and in silico analysis revealed that KPC-113 presented a Gly insertion between Ambler positions 264 and 265 (R264_A265insG), whereas KPC-114 displayed two amino acid insertions (Ser-Ser) between Ambler positions 181 and 182 (S181_P182insSS) in KPC-2, responsible for CZA resistance profiles. Our results confirm the emergence of novel KPC variants associated with resistance to CZA in international clones of K. pneumoniae circulating in South America. IMPORTANCE KPC-2 carbapenemases are endemic in Latin America. In this regard, in 2018, ceftazidime-avibactam (CZA) was authorized for clinical use in Brazil due to its significant activity against KPC-2 producers. In recent years, reports of resistance to CZA have increased in this country, limiting its clinical application. In this study, we report the emergence of two novel KPC-2 variants, named KPC-113 and KPC-114, associated with CZA resistance in Klebsiella pneumoniae strains belonging to high-risk clones ST11 and ST16. Our finding suggests that novel mutations in KPC-2 are increasing in South America, which is a critical issue deserving active surveillance.
Collapse
Affiliation(s)
- Felipe Vásquez-Ponce
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
| | - Jessica Bispo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
| | - Johana Becerra
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
| | - Herrison Fontana
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Jesus G. M. Pariona
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Fernanda Esposito
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Bruna Fuga
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Flavio A. Oliveira
- School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Florencia Brunetti
- Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriologia y Virología Molecular, Universidad de Buenos Aires, and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Pablo Power
- Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriologia y Virología Molecular, Universidad de Buenos Aires, and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Gabriel Gutkind
- Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriologia y Virología Molecular, Universidad de Buenos Aires, and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - Nilton Lincopan
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Errico G, Del Grosso M, Pagnotta M, Marra M, Carollo M, Cerquetti M, Fogato E, Cesana E, Gentiloni Silverj F, Zabzuni D, Rossini A, Pantosti A, Tinelli M, Monaco M, Giufrè M. Whole-Genome Sequencing and Molecular Analysis of Ceftazidime-Avibactam-Resistant KPC-Producing Klebsiella pneumoniae from Intestinal Colonization in Elderly Patients. Antibiotics (Basel) 2023; 12:1282. [PMID: 37627702 PMCID: PMC10451778 DOI: 10.3390/antibiotics12081282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Ceftazidime-avibactam (CAZ-AVI) is an active antibiotic combination of a β-lactam-β-lactamase inhibitor against carbapenemase-producing Enterobacterales. Reports of resistance to CAZ-AVI other than metallo-β-lactamases have increased in recent years. The aim of this study was to analyze KPC-Klebsiella pneumoniae (KP) isolates resistant to CAZ-AVI from the intestinal carriage of hospitalized elderly patients in Italy, in February 2018-January 2020. Characterization of CAZ-AVI-resistant KP isolates, including MLST, resistome, virulome and plasmid content, was performed by WGS analysis. Out of six CAZ-AVI-resistant KP isolates, three belonged to ST101 and three to ST512; two isolates produced KPC-3 (both ST512), four had mutated KPC-3 (KPC-31, in ST101 and ST512, and KPC-46, both ST101). All CAZ-AVI-resistant KP isolates were multidrug-resistant and carried several resistance genes. The yersiniabactin ybt9 gene cluster was present in all ST101 isolates, while, in ST512 isolates, no virulence genes were detected. Several plasmids were detected: IncF was present in all isolates, as well as IncR and Col440 in ST101 and IncX3 in ST512 isolates. In conclusion, it is important to monitor the circulation of K. pneumoniae resistant to CAZ-AVI to prevent the spread of clones causing difficult-to-treat infections. The presence of mutated KPC-3 in high-risk K. pneumoniae clones resistant to CAZ-AVI in hospitalized patients deserves attention.
Collapse
Affiliation(s)
- Giulia Errico
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Maria Del Grosso
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Michela Pagnotta
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Manuela Marra
- Core Facilities Technical-Scientific Service (FAST), Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Maria Carollo
- Core Facilities Technical-Scientific Service (FAST), Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Marina Cerquetti
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Elena Fogato
- Laboratory of Clinical Microbiology, ASP ‘Golgi-Redaelli’, 20146 Milan, Italy
| | - Elisabetta Cesana
- IRCCS Istituto Auxologico Italiano, San Luca Hospital, 20149 Milan, Italy
| | | | - Dorjan Zabzuni
- IRCCS Istituto Auxologico Italiano, San Luca Hospital, 20149 Milan, Italy
| | | | - Annalisa Pantosti
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Marco Tinelli
- IRCCS Istituto Auxologico Italiano, San Luca Hospital, 20149 Milan, Italy
| | - Monica Monaco
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Maria Giufrè
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| |
Collapse
|
14
|
Molecular Mechanisms of Resistance to Ceftazidime/Avibactam in Clinical Isolates of Enterobacterales and Pseudomonas aeruginosa in Latin American Hospitals. mSphere 2023; 8:e0065122. [PMID: 36877058 PMCID: PMC10117078 DOI: 10.1128/msphere.00651-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
Ceftazidime-avibactam (CZA) is the combination of a third-generation cephalosporin and a new non-β-lactam β-lactamase inhibitor capable of inactivating class A, C, and some D β-lactamases. From a collection of 2,727 clinical isolates of Enterobacterales (n = 2,235) and P. aeruginosa (n = 492) that were collected between 2016 and 2017 from five Latin American countries, we investigated the molecular resistance mechanisms to CZA of 127 (18/2,235 [0.8%] Enterobacterales and 109/492 [22.1%] P. aeruginosa). First, by qPCR for the presence of genes encoding KPC, NDM, VIM, IMP, OXA-48-like, and SPM-1 carbapenemases, and second, by whole-genome sequencing (WGS). From the CZA-resistant isolates, MBL-encoding genes were detected in all 18 Enterobacterales and 42/109 P. aeruginosa isolates, explaining their resistant phenotype. Resistant isolates that yielded a negative qPCR result for any of the MBL encoding genes were subjected to WGS. The WGS analysis of the 67 remaining P. aeruginosa isolates showed mutations in genes previously associated with reduced susceptibility to CZA, such as those involved in the MexAB-OprM efflux pump and AmpC (PDC) hyperproduction, PoxB (blaOXA-50-like), FtsI (PBP3), DacB (PBP4), and OprD. The results presented here offer a snapshot of the molecular epidemiological landscape for CZA resistance before the introduction of this antibiotic into the Latin American market. Therefore, these results serve as a valuable comparison tool to trace the evolution of the resistance to CZA in this carbapenemase-endemic geographical region. IMPORTANCE In this manuscript, we determine the molecular mechanisms of ceftazidime-avibactam resistance in Enterobacterales and P. aeruginosa isolates from five Latin American countries. Our results reveal a low rate of resistance to ceftazidime-avibactam among Enterobacterales; in contrast, resistance in P. aeruginosa has proven to be more complex, as it might involve multiple known and possibly unknown resistance mechanisms.
Collapse
|