1
|
Giwa AS, Shafique E, Ali N, Vakili M. Recent Advances in Food Waste Transformations into Essential Bioplastic Materials. Molecules 2024; 29:3838. [PMID: 39202917 PMCID: PMC11357003 DOI: 10.3390/molecules29163838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Lignocellulose is a major biopolymer in plant biomass with a complex structure and composition. It consists of a significant amount of high molecular aromatic compounds, particularly vanillin, syringeal, ferulic acid, and muconic acid, that could be converted into intracellular metabolites such as polyhydroxyalkanoates (PHA) and hydroxybutyrate (PHB), a key component of bioplastic production. Several pre-treatment methods were utilized to release monosaccharides, which are the precursors of the relevant pathway. The consolidated bioprocessing of lignocellulose-capable microbes for biomass depolymerization was discussed in this study. Carbon can be stored in a variety of forms, including PHAs, PHBs, wax esters, and triacylglycerides. From a biotechnology standpoint, these compounds are quite adaptable due to their precursors' utilization of hydrogen energy. This study lays the groundwork for the idea of lignocellulose valorization into value-added products through several significant dominant pathways.
Collapse
Affiliation(s)
- Abdulmoseen Segun Giwa
- School of Civil and Environmental Engineering, Nanchang Institute of Science and Technology, Nanchang 330108, China;
| | - Ehtisham Shafique
- Department of Biological and Health Sciences, Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology, Khanpur Road Haripur 22621, Pakistan;
| | - Nasir Ali
- Department of Biological and Health Sciences, Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology, Khanpur Road Haripur 22621, Pakistan;
| | | |
Collapse
|
2
|
de Andrades D, Alnoch RC, Alves GS, Salgado JCS, Almeida PZ, Berto GL, Segato F, Ward RJ, Buckeridge MS, Polizeli MDLTM. Recombinant GH3 β-glucosidase stimulated by xylose and tolerant to furfural and 5-hydroxymethylfurfural obtained from Aspergillus nidulans. BIORESOUR BIOPROCESS 2024; 11:77. [PMID: 39073555 PMCID: PMC11286919 DOI: 10.1186/s40643-024-00784-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
The β-glucosidase gene from Aspergillus nidulans FGSC A4 was cloned and overexpressed in the A. nidulans A773. The resulting purified β-glucosidase, named AnGH3, is a monomeric enzyme with a molecular weight of approximately 80 kDa, as confirmed by SDS-PAGE. Circular dichroism further validated its unique canonical barrel fold (β/α), a feature also observed in the 3D homology model of AnGH3. The most striking aspect of this recombinant enzyme is its robustness, as it retained 100% activity after 24 h of incubation at 45 and 50 ºC and pH 6.0. Even at 55 °C, it maintained 72% of its enzymatic activity after 6 h of incubation at the same pH. The kinetic parameters Vmax, KM, and Kcat/KM for ρ-nitrophenyl-β-D-glucopyranoside (ρNPG) and cellobiose were also determined. Using ρNPG, the enzyme demonstrated a Vmax of 212 U mg - 1, KM of 0.0607 mmol L - 1, and Kcat/KM of 4521 mmol L - 1 s - 1 when incubated at pH 6.0 and 65 °C. The KM, Vmax, and Kcat/KM using cellobiose were 2.7 mmol L - 1, 57 U mg - 1, and 27 mmol -1 s - 1, respectively. AnGH3 activity was significantly enhanced by xylose and ethanol at concentrations up to 1.5 mol L - 1 and 25%, respectively. Even in challenging conditions, at 65 °C and pH 6.0, the enzyme maintained its activity, retaining 100% and 70% of its initial activity in the presence of 200 mmol L - 1 furfural and 5-hydroxymethylfurfural (HMF), respectively. The potential of this enzyme was further demonstrated by its application in the saccharification of the forage grass Panicum maximum, where it led to a 48% increase in glucose release after 24 h. These unique characteristics, including high catalytic performance, good thermal stability in hydrolysis temperature, and tolerance to elevated concentrations of ethanol, D-xylose, furfural, and HMF, position this recombinant enzyme as a promising tool in the hydrolysis of lignocellulosic biomass as part of an efficient multi-enzyme cocktail, thereby opening new avenues in the field of biotechnology and enzymology.
Collapse
Affiliation(s)
- Diandra de Andrades
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
| | - Robson C Alnoch
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
- Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Gabriela S Alves
- Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
- Laboratory of Enzymology and Molecular Biology of Microorganisms, Institute of Biology, Campinas State University (UNICAMP), Campinas, 13083-970, SP, Brazil
| | - Jose C S Salgado
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
| | - Paula Z Almeida
- Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Gabriela Leila Berto
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, 12602-810, Brazil
| | - Fernando Segato
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, 12602-810, Brazil
| | - Richard J Ward
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
| | | | - Maria de Lourdes T M Polizeli
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil.
- Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil.
| |
Collapse
|
3
|
Zhou T, Hu Y, Yan X, Cui J, Wang Y, Luo F, Yuan Y, Yu Z, Zhou Y. Molecular Cloning and Characterization of a Novel Exo-β-1,3-Galactanase from Penicillium oxalicum sp. 68. J Microbiol Biotechnol 2022; 32:1064-1071. [PMID: 35879293 PMCID: PMC9628948 DOI: 10.4014/jmb.2204.04012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022]
Abstract
Arabinogalactans have diverse biological properties and can be used as pharmaceutical agents. Most arabinogalactans are composed of β-(1→3)-galactan, so it is particularly important to identify β-1,3-galactanases that can selectively degrade them. In this study, a novel exo-β-1,3-galactanase, named PoGal3, was screened from Penicillium oxalicum sp. 68, and hetero-expressed in P. pastoris GS115 as a soluble protein. PoGal3 belongs to glycoside hydrolase family 43 (GH43) and has a 1,356-bp gene length that encodes 451 amino acids residues. To study the enzymatic properties and substrate selectivity of PoGal3, β-1,3-galactan (AG-P-I) from larch wood arabinogalactan (LWAG) was prepared and characterized by HPLC and NMR. Using AG-P-I as substrate, purified PoGal3 exhibited an optimal pH of 5.0 and temperature of 40°C. We also discovered that Zn2+ had the strongest promoting effect on enzyme activity, increasing it by 28.6%. Substrate specificity suggests that PoGal3 functions as an exo-β-1,3-galactanase, with its greatest catalytic activity observed on AG-P-I. Hydrolytic products of AG-P-I are mainly composed of galactose and β-1,6-galactobiose. In addition, PoGal3 can catalyze hydrolysis of LWAG to produce galacto-oligomers. PoGal3 is the first enzyme identified as an exo-β-1,3-galactanase that can be used in building glycan blocks of crucial glycoconjugates to assess their biological functions.
Collapse
Affiliation(s)
- Tong Zhou
- Department of Endocrinology and Metabolism, Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun 130021, P.R. China
| | - Yanbo Hu
- School of Food Sciences and Engineering, Chang Chun University, Changchun 130022, P.R. China
| | - Xuecui Yan
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, P.R. China
| | - Jing Cui
- Central Laboratory, Changchun Normal University, Changchun Jilin province, P.R. China
| | - Yibing Wang
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, P.R. China
| | - Feng Luo
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, P.R. China
| | - Ye Yuan
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, P.R. China
| | - Zhenxiang Yu
- Department of Endocrinology and Metabolism, Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun 130021, P.R. China,Corresponding authors Y. Zhou Phone/Fax: +86-431-85098212 E-mail:
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, P.R. China,
Z. Yu Phone: +86-431-85098212 Fax: +86-431-85098212 E-mail:
| |
Collapse
|
4
|
Shen L, Su Y, Sun Y, Wang G, Chen H, Yu X, Zhang S, Chen G. Establishment of a highly efficient and low cost mixed cellulase system for bioconversion of corn stover by Trichoderma reesei and Aspergillus niger. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2020.101849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
5
|
Chen Z, Liu Y, Liu L, Chen Y, Li S, Jia Y. Purification and characterization of a novel β-glucosidase from Aspergillus flavus and its application in saccharification of soybean meal. Prep Biochem Biotechnol 2019; 49:671-678. [PMID: 30990111 DOI: 10.1080/10826068.2019.1599397] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Aspergillus flavus has been regarded as a potential candidate for its production of industrial enzymes, but the details of β-glucosidase from this strain is very limited. In herein, we first reported a novel β-glucosidase (AfBglA) with the molecular mass of 94.2 kDa from A. flavus. AfBglA was optimally active at pH 4.5 and 60 °C and is stable between pH 3.5 and 9.0 and at a temperature of up to 55 °C for 30 min remaining more than 90% of its initial activity. It showed an excellent tolerance to Trypsin, Pepsin, Compound Protease, and Flavourzyme and its activity was not inhibited by specific certain cations. AfBglA displayed broad substrate specificity, it acted on all tested pNP-glycosides and barley glucan, indicating this novel β-glucosidase exhibited a β-1, 3-1, 4-glucanase activity. Moreover, the AfBglA could effectively hydrolyze the soybean meal suspension into glucose and exhibit a strong tolerance to the inhibition of glucose at a concentration of 20.0 g/L during the saccharification. The maximum amount of the glucose obtained by AfBglA corresponded to 67.0 g/kg soybean meal. All of these properties mentioned above indicated that the AfBglA possibly attractive for food and feed industry and saccharification of cellulolytic materials.
Collapse
Affiliation(s)
- Zhou Chen
- a Lab of Enzyme Engineering, School of Food and Chemical Engineering , Beijing Technology and Business University , Beijing , China
| | - Yangliu Liu
- a Lab of Enzyme Engineering, School of Food and Chemical Engineering , Beijing Technology and Business University , Beijing , China
| | - Lu Liu
- a Lab of Enzyme Engineering, School of Food and Chemical Engineering , Beijing Technology and Business University , Beijing , China
| | - Yaoyao Chen
- a Lab of Enzyme Engineering, School of Food and Chemical Engineering , Beijing Technology and Business University , Beijing , China
| | - Siting Li
- a Lab of Enzyme Engineering, School of Food and Chemical Engineering , Beijing Technology and Business University , Beijing , China
| | - Yingmin Jia
- a Lab of Enzyme Engineering, School of Food and Chemical Engineering , Beijing Technology and Business University , Beijing , China
| |
Collapse
|