1
|
Gong F, Jing W, Jin W, Liu H, Zhang Y, Wang R, Wei Y, Tang K, Jiang Y, Gao J, Sun X. RhMYC2 controls petal size through synergistic regulation of jasmonic acid and cytokinin signaling in rose. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:459-472. [PMID: 39164914 DOI: 10.1111/tpj.16993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/05/2024] [Accepted: 07/27/2024] [Indexed: 08/22/2024]
Abstract
Petal size is determined by cell division and cell expansion. Jasmonic acid (JA) has been reported to be associated with floral development, but its regulatory mechanism affecting petal size remains unclear. Here, we reveal the vital role of JA in regulating petal size and the duration of the cell division phase via the key JA signaling component RhMYC2. We show that RhMYC2 expression is induced by exogenous treatment with methyl jasmonate and decreases from stage 0 to stage 2 of flower organ development, corresponding to the cell division phase. Furthermore, silencing RhMYC2 shortened the duration of the cell division phase, ultimately accelerating flowering opening and resulting in smaller petals. In addition, we determined that RhMYC2 controls cytokinin homeostasis in rose petals by directly activating the expression of the cytokinin biosynthetic gene LONELY GUY3 (RhLOG3) and repressing that of the cytokinin catabolism gene CYTOKININ OXIDASE/DEHYDROGENASE6 (RhCKX6). Silencing RhLOG3 shortened the duration of the cell division period and produced smaller petals, similar to RhMYC2 silencing. Our results underscore the synergistic effects of JA and cytokinin in regulating floral development, especially for petal size in roses.
Collapse
Affiliation(s)
- Feifei Gong
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Weikun Jing
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, 650205, Yunnan, China
| | - Weichan Jin
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Huwei Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yuanfei Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Rui Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yinghao Wei
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Kaiyang Tang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yunhe Jiang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiaoming Sun
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, 650205, Yunnan, China
| |
Collapse
|
2
|
Singhal C, Singh A, Sharma AK, Khurana P. Identification of CKX gene family in Morus indica cv K2 and functional characterization of MiCKX4 during abiotic stress. STRESS BIOLOGY 2024; 4:35. [PMID: 39136853 PMCID: PMC11322459 DOI: 10.1007/s44154-024-00173-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/06/2024] [Indexed: 08/16/2024]
Abstract
Cytokinin oxidase/dehydrogenase (CKX) is the key enzyme that has been observed to catalyze irreversible inactivation of cytokinins and thus modulate cytokinin levels in plants. CKX gene family is known to have few members which are, expanded in the genome mainly due to duplication events. A total of nine MiCKXs were identified in Morus indica cv K2 with almost similar gene structures and conserved motifs and domains. The cis-elements along with expression analysis of these MiCKXs revealed their contrasting and specific role in plant development across different developmental stages. The localization of these enzymes in ER and Golgi bodies signifies their functional specification and property of getting modified post-translationally to carry out their activities. The overexpression of MiCKX4, an ortholog of AtCKX4, displayed longer primary root and higher number of lateral roots. Under ABA stress also the transgenic lines showed higher number of lateral roots and tolerance against drought stress as compared to wild-type plants. In this study, the CKX gene family members were analyzed bioinformatically for their roles under abiotic stresses.
Collapse
Affiliation(s)
- Chanchal Singhal
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Arunima Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Arun Kumar Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Paramjit Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
3
|
Zheng X, Zhang S, Liang Y, Zhang R, Liu L, Qin P, Zhang Z, Wang Y, Zhou J, Tang X, Zhang Y. Loss-function mutants of OsCKX gene family based on CRISPR-Cas systems revealed their diversified roles in rice. THE PLANT GENOME 2023:e20283. [PMID: 36660867 DOI: 10.1002/tpg2.20283] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/08/2022] [Indexed: 06/17/2023]
Abstract
Cytokinin (CTK) is an important plant hormone that promotes cell division, controls cell differentiation, and regulates a variety of plant growth and development processes. Cytokinin oxidase/dehydrogenase (CKX) is an irreversible cytokinin-degrading enzyme that affects plant growth and development by regulating the dynamic balance of CTKs synthesis and degradation. There are presumed 11 members of the CKX gene family in rice (Oryza sativa L.), but limited members have been reported. In this study, based on CRISPR-Cas9 and CRISPR-Cas12a genome-editing technology, we established a complete set of OsCKX1-OsCKX11 single-gene mutants, as well as double-gene and triple-gene mutants of different OsCKXs gene combinations with high similarity. The results revealed that CRISPR-Cas12a outperformed Cas9 to generate biallelic mutations, multi-gene mutants, and more diverse genotypes. And then, we found, except the reported OsCKX2, OsCKX4, OsCKX9 and OsCKX11, OsCKX5, OsCKX6, OsCKX7, and OsCKX8 also had significant effects on agronomic traits such as plant height, panicle size, grain size, and grain number per panicle in rice. In addition, the different loss-of-function of the OsCKX genes also changed the seed appearance quality and starch composition. Interestingly, by comparing different combinations of multi-gene mutants, we found significant functional redundancy among OsCKX gene members in the same phylogenetic clade. These data collectively reveal the diversified regulating capabilities of OsCKX genes in rice, and also provide the valuable reference for further rice molecular breeding.
Collapse
Affiliation(s)
- Xuelian Zheng
- Dep. of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, Univ. of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Shuting Zhang
- Dep. of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, Univ. of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yanling Liang
- Dep. of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, Univ. of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Rui Zhang
- Dep. of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, Univ. of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Li Liu
- Dep. of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, Univ. of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Pengchen Qin
- Dep. of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, Univ. of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Zhe Zhang
- Dep. of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, Univ. of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yan Wang
- Dep. of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, Univ. of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jianping Zhou
- Dep. of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, Univ. of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xu Tang
- Dep. of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, Univ. of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yong Zhang
- Dep. of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, Univ. of Electronic Science and Technology of China, Chengdu, 610054, China
| |
Collapse
|
4
|
Sutton M, Roussel B, Chavez DJ, Malladi A. Synthesis of active cytokinins mediated by LONELY GUY is associated with cell production during early fruit growth in peach [ Prunus persica (L.) Batsch]. FRONTIERS IN PLANT SCIENCE 2023; 14:1155755. [PMID: 37152121 PMCID: PMC10157650 DOI: 10.3389/fpls.2023.1155755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023]
Abstract
Early fruit growth in peach is characterized by cell production. Cytokinins have established roles in regulating cell division and may regulate cell production during early fruit growth. However, the role of active cytokinins and regulation of their metabolism are not well characterized in the peach fruit. In this study, fruit growth parameters, concentrations of active cytokinin bases and a cytokinin riboside, and expression of three key cytokinin metabolism-related gene families were determined during early fruit growth. Early fruit growth was associated with intensive cell production until around 40 days after full bloom. During the early stages of this period, trans-zeatin (tZ), isopentenyladenine (iP), dihydrozeatin (DHZ) and tZ-riboside (tZR), displayed higher abundance which declined rapidly by 3.5- to 16-fold during the later stages. Changes in concentration of active cytokinin bases were consistent with roles for them in regulating cell production. Expression analyses of members of cytokinin biosynthesis-related gene families, ISOPENTENYL TRANSFERASE (IPT) and LONELY GUY (LOG), further indicated that mechanisms of synthesis of cytokinin metabolites and their activation are functional within the fruit pericarp. Changes in expression of multiple members of the LOG family paralleled changes in active cytokinin concentrations. Specifically, transcript abundance of LOG3 and LOG8 were correlated with concentrations of tZ, and iP and DHZ, respectively, suggesting that the direct activation pathway is an important route for active cytokinin base synthesis during early fruit development. Transcript abundance of two CYTOKININ OXIDASE (CKX) genes, CKX1 and CKX2, was consistent with roles in cytokinin catabolism during later stages of early fruit growth. Together, these data support a role for active cytokinins synthesized in the fruit pericarp in regulating early fruit growth in peach.
Collapse
Affiliation(s)
- Mary Sutton
- Department of Horticulture, University of Georgia, Athens, GA, United States
| | - Bayleigh Roussel
- Department of Horticulture, University of Georgia, Athens, GA, United States
| | - Dario J. Chavez
- Department of Horticulture, University of Georgia, Griffin, GA, United States
| | - Anish Malladi
- Department of Horticulture, University of Georgia, Athens, GA, United States
- *Correspondence: Anish Malladi,
| |
Collapse
|
5
|
Kumar S, Shah SH, Vimala Y, Jatav HS, Ahmad P, Chen Y, Siddique KHM. Abscisic acid: Metabolism, transport, crosstalk with other plant growth regulators, and its role in heavy metal stress mitigation. FRONTIERS IN PLANT SCIENCE 2022; 13:972856. [PMID: 36186053 PMCID: PMC9515544 DOI: 10.3389/fpls.2022.972856] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/17/2022] [Indexed: 05/06/2023]
Abstract
Heavy metal (HM) stress is threatening agricultural crops, ecological systems, and human health worldwide. HM toxicity adversely affects plant growth, physiological processes, and crop productivity by disturbing cellular ionic balance, metabolic balance, cell membrane integrity, and protein and enzyme activities. Plants under HM stress intrinsically develop mechanisms to counter the adversities of HM but not prevent them. However, the exogenous application of abscisic acid (ABA) is a strategy for boosting the tolerance capacity of plants against HM toxicity by improving osmolyte accumulation and antioxidant machinery. ABA is an essential plant growth regulator that modulates various plant growth and metabolic processes, including seed development and germination, vegetative growth, stomatal regulation, flowering, and leaf senescence under diverse environmental conditions. This review summarizes ABA biosynthesis, signaling, transport, and catabolism in plant tissues and the adverse effects of HM stress on crop plants. Moreover, we describe the role of ABA in mitigating HM stress and elucidating the interplay of ABA with other plant growth regulators.
Collapse
Affiliation(s)
- Sandeep Kumar
- Plant Physiology and Tissue Culture Laboratory, Department of Botany, Chaudhary Charan Singh University, Meerut, India
| | - Sajad Hussain Shah
- Plant Physiology and Tissue Culture Laboratory, Department of Botany, Chaudhary Charan Singh University, Meerut, India
| | - Yerramilli Vimala
- Plant Physiology and Tissue Culture Laboratory, Department of Botany, Chaudhary Charan Singh University, Meerut, India
| | - Hanuman Singh Jatav
- Soil Science and Agricultural Chemistry, Sri Karan Narendra Agriculture University Jobner, Jaipur, India
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama, Jammu and Kashmir, India
| | - Yinglong Chen
- The UWA Institute of Agriculture and School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture and School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
6
|
Sharma A, Prakash S, Chattopadhyay D. Killing two birds with a single stone-genetic manipulation of cytokinin oxidase/dehydrogenase ( CKX) genes for enhancing crop productivity and amelioration of drought stress response. Front Genet 2022; 13:941595. [PMID: 35923693 PMCID: PMC9340367 DOI: 10.3389/fgene.2022.941595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/29/2022] [Indexed: 12/02/2022] Open
Abstract
The development of high-yielding, bio-fortified, stress-tolerant crop cultivars is the need of the hour in the wake of increasing global food insecurity, abrupt climate change, and continuous shrinking of resources and landmass suitable for agriculture. The cytokinin group of phytohormones positively regulates seed yield by simultaneous regulation of source capacity (leaf senescence) and sink strength (grain number and size). Cytokinins also regulate root-shoot architecture by promoting shoot growth and inhibiting root growth. Cytokinin oxidase/dehydrogenase (CKX) are the only enzymes that catalyze the irreversible degradation of active cytokinins and thus negatively regulate the endogenous cytokinin levels. Genetic manipulation of CKX genes is the key to improve seed yield and root-shoot architecture through direct manipulation of endogenous cytokinin levels. Downregulation of CKX genes expressed in sink tissues such as inflorescence meristem and developing seeds, through reverse genetics approaches such as RNAi and CRISPR/Cas9 resulted in increased yield marked by increased number and size of grains. On the other hand, root-specific expression of CKX genes resulted in decreased endogenous cytokinin levels in roots which in turn resulted in increased root growth indicated by increased root branching, root biomass, and root-shoot biomass ratio. Enhanced root growth provided enhanced tolerance to drought stress and improved micronutrient uptake efficiency. In this review, we have emphasized the role of CKX as a genetic factor determining yield, micronutrient uptake efficiency, and response to drought stress. We have summarised the efforts made to increase crop productivity and drought stress tolerance in different crop species through genetic manipulation of CKX family genes.
Collapse
|
7
|
Zhang X, Cao H, Wang H, Zhao J, Gao K, Qiao J, Li J, Ge S. The Effects of Graphene-Family Nanomaterials on Plant Growth: A Review. NANOMATERIALS 2022; 12:nano12060936. [PMID: 35335748 PMCID: PMC8949508 DOI: 10.3390/nano12060936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/05/2023]
Abstract
Numerous reports of graphene-family nanomaterials (GFNs) promoting plant growth have opened up a wide range of promising potential applications in agroforestry. However, several toxicity studies have raised growing concerns about the biosafety of GFNs. Although these studies have provided clues about the role of GFNs from different perspectives (such as plant physiology, biochemistry, cytology, and molecular biology), the mechanisms by which GFNs affect plant growth remain poorly understood. In particular, a systematic collection of data regarding differentially expressed genes in response to GFN treatment has not been conducted. We summarize here the fate and biological effects of GFNs in plants. We propose that soil environments may be conducive to the positive effects of GFNs but may be detrimental to the absorption of GFNs. Alterations in plant physiology, biochemistry, cytological structure, and gene expression in response to GFN treatment are discussed. Coincidentally, many changes from the morphological to biochemical scales, which are caused by GFNs treatment, such as affecting root growth, disrupting cell membrane structure, and altering antioxidant systems and hormone concentrations, can all be mapped to gene expression level. This review provides a comprehensive understanding of the effects of GFNs on plant growth to promote their safe and efficient use.
Collapse
Affiliation(s)
- Xiao Zhang
- Key Laboratory of National Forest and Grass Administration for the Application of Graphene in Forestry, Institute of Carbon Materials Science, Shanxi Datong University, Datong 037009, China; (X.Z.); (J.Z.); (J.Q.); (J.L.); (S.G.)
| | - Huifen Cao
- College of Agriculture and Life Science, Shanxi Datong University, Datong 037009, China;
- Correspondence: (H.C.); (H.W.)
| | - Haiyan Wang
- College of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
- Correspondence: (H.C.); (H.W.)
| | - Jianguo Zhao
- Key Laboratory of National Forest and Grass Administration for the Application of Graphene in Forestry, Institute of Carbon Materials Science, Shanxi Datong University, Datong 037009, China; (X.Z.); (J.Z.); (J.Q.); (J.L.); (S.G.)
- College of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
| | - Kun Gao
- College of Agriculture and Life Science, Shanxi Datong University, Datong 037009, China;
| | - Jun Qiao
- Key Laboratory of National Forest and Grass Administration for the Application of Graphene in Forestry, Institute of Carbon Materials Science, Shanxi Datong University, Datong 037009, China; (X.Z.); (J.Z.); (J.Q.); (J.L.); (S.G.)
- College of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
| | - Jingwei Li
- Key Laboratory of National Forest and Grass Administration for the Application of Graphene in Forestry, Institute of Carbon Materials Science, Shanxi Datong University, Datong 037009, China; (X.Z.); (J.Z.); (J.Q.); (J.L.); (S.G.)
- College of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
| | - Sai Ge
- Key Laboratory of National Forest and Grass Administration for the Application of Graphene in Forestry, Institute of Carbon Materials Science, Shanxi Datong University, Datong 037009, China; (X.Z.); (J.Z.); (J.Q.); (J.L.); (S.G.)
- College of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
| |
Collapse
|
8
|
Hu Y, Liu B, Ren H, Chen L, Watkins CB, Gan SS. The leaf senescence-promoting transcription factor AtNAP activates its direct target gene CYTOKININ OXIDASE 3 to facilitate senescence processes by degrading cytokinins. MOLECULAR HORTICULTURE 2021; 1:12. [PMID: 37789454 PMCID: PMC10515059 DOI: 10.1186/s43897-021-00017-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/16/2021] [Indexed: 10/05/2023]
Abstract
Cytokinins (CKs) are a class of adenine-derived plant hormones that plays pervasive roles in plant growth and development including cell division, morphogenesis, lateral bud outgrowth, leaf expansion and senescence. CKs as a "fountain of youth" prolongs leaf longevity by inhibiting leaf senescence, and therefore must be catabolized for senescence to occur. AtNAP, a senescence-specific transcription factor has a key role in promoting leaf senescence. The role of AtNAP in regulating CK catabolism is unknown. Here we report the identification and characterization of AtNAP-AtCKX3 (cytokinin oxidase 3) module by which CKs are catabolized during leaf senescence in Arabidopsis. Like AtNAP, AtCKX3 is highly upregulated during leaf senescence. When AtNAP is chemically induced AtCKX3 is co-induced; and when AtNAP is knocked out, the expression of AtCKX3 is abolished. AtNAP physically binds to the cis element of the AtCKX3 promoter to direct its expression as revealed by yeast one-hybrid assays and in planta experiments. Leaves of the atckx3 knockout lines have higher CK concentrations and a delayed senescence phenotype compared with those of WT. In contrast, leaves with inducible expression of AtCKX3 have lower CK concentrations and exhibit a precocious senescence phenotype compared with WT. This research reveals that AtNAP transcription factor-AtCKX3 module regulates leaf senescence by connecting two antagonist plant hormones abscisic acid and CKs.
Collapse
Affiliation(s)
- Youzhen Hu
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, 14853, USA
- Current address: College of Food Science, Shihezi University, Xinjiang, 832000, China
| | - Bin Liu
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, 14853, USA
- College of Horticulture, China Agriculture University, Beijing, 100193, China
- Current address: Department of Plant Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, Spain
| | - Huazhong Ren
- College of Horticulture, China Agriculture University, Beijing, 100193, China
| | - Liping Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Christopher B Watkins
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, 14853, USA
| | - Su-Sheng Gan
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, 14853, USA.
| |
Collapse
|
9
|
Chiusano ML, Incerti G, Colantuono C, Termolino P, Palomba E, Monticolo F, Benvenuto G, Foscari A, Esposito A, Marti L, de Lorenzo G, Vega-Muñoz I, Heil M, Carteni F, Bonanomi G, Mazzoleni S. Arabidopsis thaliana Response to Extracellular DNA: Self Versus Nonself Exposure. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10081744. [PMID: 34451789 PMCID: PMC8400022 DOI: 10.3390/plants10081744] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 01/14/2023]
Abstract
The inhibitory effect of extracellular DNA (exDNA) on the growth of conspecific individuals was demonstrated in different kingdoms. In plants, the inhibition has been observed on root growth and seed germination, demonstrating its role in plant-soil negative feedback. Several hypotheses have been proposed to explain the early response to exDNA and the inhibitory effect of conspecific exDNA. We here contribute with a whole-plant transcriptome profiling in the model species Arabidopsis thaliana exposed to extracellular self- (conspecific) and nonself- (heterologous) DNA. The results highlight that cells distinguish self- from nonself-DNA. Moreover, confocal microscopy analyses reveal that nonself-DNA enters root tissues and cells, while self-DNA remains outside. Specifically, exposure to self-DNA limits cell permeability, affecting chloroplast functioning and reactive oxygen species (ROS) production, eventually causing cell cycle arrest, consistently with macroscopic observations of root apex necrosis, increased root hair density and leaf chlorosis. In contrast, nonself-DNA enters the cells triggering the activation of a hypersensitive response and evolving into systemic acquired resistance. Complex and different cascades of events emerge from exposure to extracellular self- or nonself-DNA and are discussed in the context of Damage- and Pathogen-Associated Molecular Patterns (DAMP and PAMP, respectively) responses.
Collapse
Affiliation(s)
- Maria Luisa Chiusano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (F.M.); (F.C.); (G.B.)
- Department of Research Infrastructures for Marine Biological Resources (RIMAR), Stazione Zoologica “Anton Dohrn”, 80121 Napoli, Italy;
- Correspondence: (M.L.C.); (S.M.)
| | - Guido Incerti
- Department of Agri-Food, Animal and Environmental Sciences, University of Udine, 33100 Udine, Italy;
| | - Chiara Colantuono
- Telethon Institute of Genetics and Medicine, via campi Flegrei, 34 Pozzuoli, 80078 Napoli, Italy;
| | - Pasquale Termolino
- Institute of Biosciences and Bioresources (IBBR), National Research Council of Italy (CNR), 80055 Portici, Italy;
| | - Emanuela Palomba
- Department of Research Infrastructures for Marine Biological Resources (RIMAR), Stazione Zoologica “Anton Dohrn”, 80121 Napoli, Italy;
| | - Francesco Monticolo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (F.M.); (F.C.); (G.B.)
| | - Giovanna Benvenuto
- Biology and Evolution of Marine Organisms Department (BEOM), Stazione Zoologica “Anton Dohrn”, 80121 Napoli, Italy;
| | - Alessandro Foscari
- Dipartimento di Scienze della Vita, University of Trieste, 34127 Trieste, Italy;
| | - Alfonso Esposito
- Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, 38123 Trento, Italy;
| | - Lucia Marti
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (L.M.); (G.d.L.)
| | - Giulia de Lorenzo
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (L.M.); (G.d.L.)
| | - Isaac Vega-Muñoz
- Departemento de Ingeniería Genética, CINVESTAV-Irapuato, Guanajuato 36821, Mexico; (I.V.-M.); (M.H.)
| | - Martin Heil
- Departemento de Ingeniería Genética, CINVESTAV-Irapuato, Guanajuato 36821, Mexico; (I.V.-M.); (M.H.)
| | - Fabrizio Carteni
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (F.M.); (F.C.); (G.B.)
| | - Giuliano Bonanomi
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (F.M.); (F.C.); (G.B.)
| | - Stefano Mazzoleni
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (F.M.); (F.C.); (G.B.)
- Correspondence: (M.L.C.); (S.M.)
| |
Collapse
|
10
|
Transcriptomic Analysis of Radish ( Raphanus sativus L.) Spontaneous Tumor. PLANTS 2021; 10:plants10050919. [PMID: 34063717 PMCID: PMC8147785 DOI: 10.3390/plants10050919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 11/16/2022]
Abstract
Spontaneous tumors can develop in different organs of various plant species without any pathogen infection and, as a rule, appear in plants with a certain genotype: Mutants, interspecific hybrids, etc. In particular, among the inbred lines of radish (Raphanus sativus L.), lines that form spontaneous tumors on the taproot during the flowering period were obtained many years ago. In this work, we analyzed the differential gene expression in the spontaneous tumors of radish versus the lateral roots using the RNA-seq method. Data were obtained indicating the increased expression of genes associated with cell division and growth (especially genes that regulate G2-M transition and cytokinesis) in the spontaneous tumor. Among genes downregulated in the tumor tissue, genes participating in the response to stress and wounding, mainly involved in the biosynthesis of jasmonic acid and glucosinolates, were enriched. Our data will help elucidate the mechanisms of spontaneous tumor development in higher plants.
Collapse
|
11
|
Nguyen HN, Kambhampati S, Kisiala A, Seegobin M, Emery RJN. The soybean ( Glycine max L.) cytokinin oxidase/dehydrogenase multigene family; Identification of natural variations for altered cytokinin content and seed yield. PLANT DIRECT 2021; 5:e00308. [PMID: 33644633 PMCID: PMC7887454 DOI: 10.1002/pld3.308] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 05/11/2023]
Abstract
Cytokinins (CKs) play a fundamental role in regulating dynamics of organ source/sink relationships during plant development, including flowering and seed formation stages. As a result, CKs are key drivers of seed yield. The cytokinin oxidase/dehydrogenase (CKX) is one of the critical enzymes responsible for regulating plant CK levels by causing their irreversible degradation. Variation of CKX activity is significantly correlated with seed yield in many crop species while in soybean (Glycine max L.), the possible associations between CKX gene family members (GFMs) and yield parameters have not yet been assessed. In this study, 17 GmCKX GFMs were identified, and natural variations among GmCKX genes were probed among soybean cultivars with varying yield characteristics. The key CKX genes responsible for regulating CK content during seed filling stages of reproductive development were highlighted using comparative phylogenetics, gene expression analysis and CK metabolite profiling. Five of the seventeen identified GmCKX GFMs, showed natural variations in the form of single nucleotide polymorphisms (SNPs). The gene GmCKX7-1, with high expression during critical seed filling stages, was found to have a non-synonymous mutation (H105Q), on one of the active site residues, Histidine 105, previously reported to be essential for co-factor binding to maintain structural integrity of the enzyme. Soybean lines with this mutation had higher CK content and desired yield characteristics. The potential for marker-assisted selection based on the identified natural variation within GmCKX7-1, is discussed in the context of hormonal control that can result in higher soybean yield.
Collapse
Affiliation(s)
| | - Shrikaar Kambhampati
- Department of BiologyTrent UniversityPeterboroughONCanada
- Donald Danforth Plant Science CenterSt. LouisMOUSA
| | - Anna Kisiala
- Department of BiologyTrent UniversityPeterboroughONCanada
| | - Mark Seegobin
- Department of BiologyTrent UniversityPeterboroughONCanada
| | | |
Collapse
|
12
|
Veselova SV, Nuzhnaya TV, Burkhanova GF, Rumyantsev SD, Khusnutdinova EK, Maksimov IV. Ethylene-Cytokinin Interaction Determines Early Defense Response of Wheat against Stagonospora nodorum Berk. Biomolecules 2021; 11:174. [PMID: 33525389 PMCID: PMC7911247 DOI: 10.3390/biom11020174] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 01/08/2023] Open
Abstract
Ethylene, salicylic acid (SA), and jasmonic acid are the key phytohormones involved in plant immunity, and other plant hormones have been demonstrated to interact with them. The classic phytohormone cytokinins are important participants of plant defense signaling. Crosstalk between ethylene and cytokinins has not been sufficiently studied as an aspect of plant immunity and is addressed in the present research. We compared expression of the genes responsible for hormonal metabolism and signaling in wheat cultivars differing in resistance to Stagonospora nodorum in response to their infection with fungal isolates, whose virulence depends on the presence of the necrotrophic effector SnTox3. Furthermore, we studied the action of the exogenous cytokinins, ethephon (2-chloroethylphosphonic acid, ethylene-releasing agent) and 1-methylcyclopropene (1-MCP, inhibitor of ethylene action) on infected plants. Wheat susceptibility was shown to develop due to suppression of reactive oxygen species production and decreased content of active cytokinins brought about by SnTox3-mediated activation of the ethylene signaling pathway. SnTox3 decreased cytokinin content most quickly by its activated glucosylation in an ethylene-dependent manner and, furthermore, by oxidative degradation and inhibition of biosynthesis in ethylene-dependent and ethylene-independent manners. Exogenous zeatin application enhanced wheat resistance against S. nodorum through inhibition of the ethylene signaling pathway and upregulation of SA-dependent genes. Thus, ethylene inhibited triggering of SA-dependent resistance mechanism, at least in part, by suppression of the cytokinin signaling pathway.
Collapse
Affiliation(s)
- Svetlana V. Veselova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 71, 450054 Ufa, Russia; (T.V.N.); (G.F.B.); (S.D.R.); (E.K.K.); (I.V.M.)
| | - Tatyana V. Nuzhnaya
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 71, 450054 Ufa, Russia; (T.V.N.); (G.F.B.); (S.D.R.); (E.K.K.); (I.V.M.)
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Guzel F. Burkhanova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 71, 450054 Ufa, Russia; (T.V.N.); (G.F.B.); (S.D.R.); (E.K.K.); (I.V.M.)
| | - Sergey D. Rumyantsev
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 71, 450054 Ufa, Russia; (T.V.N.); (G.F.B.); (S.D.R.); (E.K.K.); (I.V.M.)
| | - Elza K. Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 71, 450054 Ufa, Russia; (T.V.N.); (G.F.B.); (S.D.R.); (E.K.K.); (I.V.M.)
| | - Igor V. Maksimov
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 71, 450054 Ufa, Russia; (T.V.N.); (G.F.B.); (S.D.R.); (E.K.K.); (I.V.M.)
| |
Collapse
|
13
|
Moriyama A, Yamaguchi C, Enoki S, Aoki Y, Suzuki S. Crosstalk Pathway between Trehalose Metabolism and Cytokinin Degradation for the Determination of the Number of Berries per Bunch in Grapes. Cells 2020; 9:cells9112378. [PMID: 33138306 PMCID: PMC7693805 DOI: 10.3390/cells9112378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 11/16/2022] Open
Abstract
In grapes, the number of flowers per inflorescence determines the compactness of grape bunches. Grape cultivars with tight bunches and thin-skinned berries easily undergo berry splitting, especially in growing areas with heavy rainfall during the grapevine growing season, such as Japan. We report herein that grape cytokinin oxidase/dehydrogenase 5 (VvCKX5) determines the number of berries per inflorescence in grapes. The number of berries per bunch was inversely proportional to the VvCKX5 expression level in juvenile inflorescences among the cultivars tested. VvCKX5 overexpression drastically decreased the number of flower buds per inflorescence in Arabidopsis plants, suggesting that VvCKX5 might be one of the negative regulators of the number of flowers per inflorescence in grapes. Similarly, the overexpression of grape sister of ramose 3 (VvSRA), which encodes trehalose 6-phosphate phosphatase that catalyzes the conversion of trehalose-6-phosphate into trehalose, upregulated AtCKX7 expression in Arabidopsis plants, leading to a decrease in the number of flower buds per Arabidopsis inflorescence. VvCKX5 gene expression was upregulated in grapevine cultured cells and juvenile grape inflorescences treated with trehalose. Finally, injecting trehalose into swelling buds nearing bud break using a microsyringe decreased the number of berries per bunch by half. VvCKX5 overexpression in Arabidopsis plants had no effect on the number of secondary inflorescences from the main inflorescence, and similarly trehalose did not affect pedicel branching on grapevine inflorescences, suggesting that VvCKX5, as well as VvSRA-mediated trehalose metabolism, regulates flower formation but not inflorescence branching. These findings may provide new information on the crosstalk between VvSRA-mediated trehalose metabolism and VvCKX-mediated cytokinin degradation for determining the number of berries per bunch. Furthermore, this study is expected to contribute to the development of innovative cultivation techniques for loosening tight bunches.
Collapse
|
14
|
Tiwari S, Prasad SM. Regulation of insecticide toxicity by kinetin in two paddy field cyanobacteria: Physiological and biochemical assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113806. [PMID: 31891913 DOI: 10.1016/j.envpol.2019.113806] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
The imprudent agricultural practices are leading to an increasing load of pesticides in agricultural fields. Thus, there is a need to minimize the harmful effect of pesticides by adopting sustainable strategies. In the recent past decade, kinetin, a plant synthetic hormone, has been reported as a pesticide toxicity alleviator in higher plants. But its role in mitigating pesticide toxicity in cyanobacteria is still limited. Thus, in current study an attempt has been made to investigate the potential of kinetin in regulating cypermethrin, an insecticide, induced toxicity in Anabaena PCC 7120 and Nostoc muscorum ATCC 27893. Cypermethrin (Cyp1; 2 μg ml-1 and Cyp2; 4 μg ml-1) showed negative impact on growth, photosynthetic pigments, photosynthetic O2-evolution and primary photochemistry of PS II (Phi_P0, Psi_0, Phi_E0) resulting in decrease in performance index (PIABS). However, under similar conditions, increases in energy flux parameters (ABS/RC, TR0/RC, ET0/RC and DI0/RC) were noticed. Cypermethrin at both the doses enhanced the level of oxidative stress biomarkers (SOR, H2O2, and MDA equivalent contents) despite of increased antioxidant enzymatic activity (SOD, POD, CAT and GST).Under similar condition, cypermethrin at tested doses caused substantial decrease in non-enzymatic antioxidant contents (proline, cysteine and NP-SH). Nevertheless, kinetin treatment attenuated cypermethrin induced oxidative stress by further up-regulating the activity of enzymatic antioxidants and by enhancing the contents of non-enzymatic antioxidants. Thus, with the application of kinetin improved photochemistry of PS II and growth yield of both the cyanobacteria were observed even in the presence of cypermethrin. Current results establish that cypermethrin induces toxicity on photosynthesis, photosynthetic pigments and growth, and this effect was more pronounced in Anabaena PCC 7120 than Nostoc muscorum ATCC 27893. Furthermore, the potential role of kinetin in mitigating the toxicity of cypermethrin in both the cyanobacteria provides an insight to be used in paddy fields for sustainable agricultural practices.
Collapse
Affiliation(s)
- Santwana Tiwari
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad, 211002, India.
| | - Sheo Mohan Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad, 211002, India.
| |
Collapse
|
15
|
Wang X, Ding J, Lin S, Liu D, Gu T, Wu H, Trigiano RN, McAvoy R, Huang J, Li Y. Evolution and roles of cytokinin genes in angiosperms 2: Do ancient CKXs play housekeeping roles while non-ancient CKXs play regulatory roles? HORTICULTURE RESEARCH 2020; 7:29. [PMID: 32140238 PMCID: PMC7049301 DOI: 10.1038/s41438-020-0246-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/27/2019] [Accepted: 01/04/2020] [Indexed: 05/23/2023]
Abstract
Cytokinin oxidase/dehydrogenase (CKX) is a key enzyme responsible for the degradation of endogenous cytokinins. However, the origins and roles of CKX genes in angiosperm evolution remain unclear. Based on comprehensive bioinformatic and transgenic plant analyses, we demonstrate that the CKXs of land plants most likely originated from an ancient chlamydial endosymbiont during primary endosymbiosis. We refer to the CKXs retaining evolutionarily ancient characteristics as "ancient CKXs" and those that have expanded and functionally diverged in angiosperms as "non-ancient CKXs". We show that the expression of some non-ancient CKXs is rapidly inducible within 15 min upon the dehydration of Arabidopsis, while the ancient CKX (AtCKX7) is not drought responsive. Tobacco plants overexpressing a non-ancient CKX display improved oxidative and drought tolerance and root growth. Previous mutant studies have shown that non-ancient CKXs regulate organ development, particularly that of flowers. Furthermore, ancient CKXs preferentially degrade cis-zeatin (cZ)-type cytokinins, while non-ancient CKXs preferentially target N6-(Δ2-isopentenyl) adenines (iPs) and trans-zeatins (tZs). Based on the results of this work, an accompanying study (Wang et al. 10.1038/s41438-019-0211-x) and previous studies, we hypothesize that non-ancient CKXs and their preferred substrates of iP/tZ-type cytokinins regulate angiosperm organ development and environmental stress responses, while ancient CKXs and their preferred substrates of cZs play a housekeeping role, which echoes the conclusions and hypothesis described in the accompanying report (Wang, X. et al. Evolution and roles of cytokinin genes in angiosperms 1: Doancient IPTs play housekeeping while non-ancient IPTs play regulatory roles? Hortic Res7, (2020). 10.1038/s41438-019-0211-x).
Collapse
Affiliation(s)
- Xiaojing Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Jing Ding
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Shanshan Lin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Decai Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Tingting Gu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Han Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Robert N. Trigiano
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996-4560 USA
| | - Richard McAvoy
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT 06269 USA
| | - Jinling Huang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
- Department of Biology, East Carolina University, Greenville, NC 27858 USA
| | - Yi Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT 06269 USA
| |
Collapse
|
16
|
Hyoung S, Cho SH, Chung JH, So WM, Cui MH, Shin JS. Cytokinin oxidase PpCKX1 plays regulatory roles in development and enhances dehydration and salt tolerance in Physcomitrella patens. PLANT CELL REPORTS 2020; 39:419-430. [PMID: 31863135 DOI: 10.1007/s00299-019-02500-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/09/2019] [Indexed: 05/07/2023]
Abstract
PpCKX1 localizes to vacuoles and is dominantly expressed in the stem cells. PpCKX1 regulates developmental changes with increased growth of the rhizoid and enhances dehydration and salt tolerance. Cytokinins (CKs) are plant hormones that regulate plant development as well as many physiological processes, such as cell division, leaf senescence, control of shoot/root ratio, and reproductive competence. Cytokinin oxidases/dehydrogenases (CKXs) control CK concentrations by degradation, and thereby influence plant growth and development. In the moss Physcomitrella patens, an evolutionarily early divergent plant, we identified six putative CKXs that, by phylogenetic analysis, form a monophyletic clade. We also observed that ProPpCKX1:GUS is expressed specifically in the stem cells and surrounding cells and that CKX1 localizes to vacuoles, as indicated by Pro35S:PpCKX1-smGFP. Under normal growth conditions, overexpression of PpCKX1 caused many phenotypic changes at different developmental stages, and we suspected that increased growth of the rhizoid could affect those changes. In addition, we present evidence that the PpCKX1-overexpressor plants show enhanced dehydration and salt stress tolerance. Taken together, we suggest that PpCKX1 plays regulatory roles in development and adaptation to abiotic stresses in this evolutionarily early land plant species.
Collapse
Affiliation(s)
- Sujin Hyoung
- Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Sung Hyun Cho
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Joo Hee Chung
- Seoul Center, Korea Basic Science Institute, Seoul, 02841, Korea
| | - Won Mi So
- Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Mei Hua Cui
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, Shanghai, China
| | - Jeong Sheop Shin
- Division of Life Sciences, Korea University, Seoul, 02841, Korea.
| |
Collapse
|
17
|
Shoaib M, Yang W, Shan Q, Sajjad M, Zhang A. Genome-wide identification and expression analysis of new cytokinin metabolic genes in bread wheat ( Triticum aestivum L.). PeerJ 2019; 7:e6300. [PMID: 30723619 PMCID: PMC6360083 DOI: 10.7717/peerj.6300] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 12/13/2018] [Indexed: 12/19/2022] Open
Abstract
Cytokinins (CKs) are involved in determining the final grain yield in wheat. Multiple gene families are responsible for the controlled production of CKs in plants, including isopentenyl transferases for de novo synthesis, zeatin O-glucosyltransferases for reversible inactivation, β-glucosidases for reactivation, and CK oxidases/dehydrogenases for permanent degradation. Identifying and characterizing the genes of these families is an important step in furthering our understanding of CK metabolism. Using bioinformatics tools, we identified four new TaIPT, four new TaZOG, and 25 new TaGLU genes in common wheat. All of the genes harbored the characteristic conserved domains of their respective gene families. We renamed TaCKX genes on the basis of their true orthologs in rice and maize to remove inconsistencies in the nomenclature. Phylogenetic analysis revealed the early divergence of monocots from dicots, and the gene duplication event after speciation was obvious. Abscisic acid-, auxin-, salicylic acid-, sulfur-, drought- and light-responsive cis-regulatory elements were common to most of the genes under investigation. Expression profiling of CK metabolic gene families was carried out at the seedlings stage in AA genome donor of common wheat. Exogenous application of phytohormones (6-benzylaminopurine, salicylic acid, indole-3-acetic acid, gibberellic acid, and abscisic acid) for 3 h significantly upregulated the transcript levels of all four gene families, suggesting that plants tend to maintain CK stability. A 6-benzylaminopurine-specific maximum fold-change was observed for TuCKX1 and TuCKX3 in root and shoot tissues, respectively; however, the highest expression level was observed in the TuGLU gene family, indicating that the reactivation of the dormant CK isoform is the quickest way to counter external stress. The identification of new CK metabolic genes provides the foundation for their in-depth functional characterization and for elucidating their association with grain yield.
Collapse
Affiliation(s)
- Muhammad Shoaib
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenlong Yang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qiangqiang Shan
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,College of Agronomy/The Collaborative Innovation Center for Grain Crops in Henan, Henan Agricultural University, Zhengzhou, China
| | - Muhammad Sajjad
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,Department of Environmental Sciences, COMSATS University Islamabad (CUI), Vehari campus, Vehari, Pakistan
| | - Aimin Zhang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
von Schwartzenberg K, Lindner AC, Gruhn N, Šimura J, Novák O, Strnad M, Gonneau M, Nogué F, Heyl A. CHASE domain-containing receptors play an essential role in the cytokinin response of the moss Physcomitrella patens. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:667-79. [PMID: 26596764 PMCID: PMC4737067 DOI: 10.1093/jxb/erv479] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
While the molecular basis for cytokinin action is quite well understood in flowering plants, little is known about the cytokinin signal transduction in early diverging land plants. The genome of the bryophyte Physcomitrella patens (Hedw.) B.S. encodes three classical cytokinin receptors, the CHASE domain-containing histidine kinases, CHK1, CHK2, and CHK3. In a complementation assay with protoplasts of receptor-deficient Arabidopsis thaliana as well as in cytokinin binding assays, we found evidence that CHK1 and CHK2 receptors can function in cytokinin perception. Using gene targeting, we generated a collection of CHK knockout mutants comprising single (Δchk1, Δchk2, Δchk3), double (Δchk1,2, Δchk1,3, Δchk2,3), and triple (Δchk1,2,3) mutants. Mutants were characterized for their cytokinin response and differentiation capacities. While the wild type did not grow on high doses of cytokinin (1 µM benzyladenine), the Δchk1,2,3 mutant exhibited normal protonema growth. Bud induction assays showed that all three cytokinin receptors contribute to the triggering of budding, albeit to different extents. Furthermore, while the triple mutant showed no response in this bioassay, the remaining mutants displayed budding responses in a diverse manner to different types and concentrations of cytokinins. Determination of cytokinin levels in mutants showed no drastic changes for any of the cytokinins; thus, in contrast to Arabidopsis, revealing only small impacts of cytokinin signaling on homeostasis. In summary, our study provides a first insight into the molecular action of cytokinin in an early diverging land plant and demonstrates that CHK receptors play an essential role in bud induction and gametophore development.
Collapse
Affiliation(s)
| | - Ann-Cathrin Lindner
- Biozentrum Klein Flottbek, Universität Hamburg, Ohnhorststr. 18, D-22609 Hamburg, Germany
| | - Njuscha Gruhn
- Institute for Biology/ Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Albrecht-Thaer-Weg 6, D-14195 Berlin, Germany
| | - Jan Šimura
- Laboratory of Growth Regulators & Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University & Institute of Experimental Botany ASCR, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators & Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University & Institute of Experimental Botany ASCR, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators & Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University & Institute of Experimental Botany ASCR, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Martine Gonneau
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Route de St-Cyr, 78026 Versailles Cedex, France
| | - Fabien Nogué
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Route de St-Cyr, 78026 Versailles Cedex, France
| | - Alexander Heyl
- Institute for Biology/ Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Albrecht-Thaer-Weg 6, D-14195 Berlin, Germany Biology Department, Adelphi University, Science 116, 1 South Avenue, PO Box 701, Garden City, NY 11530-070, USA
| |
Collapse
|
19
|
Avalbaev A, Yuldashev R, Fedorova K, Somov K, Vysotskaya L, Allagulova C, Shakirova F. Exogenous methyl jasmonate regulates cytokinin content by modulating cytokinin oxidase activity in wheat seedlings under salinity. JOURNAL OF PLANT PHYSIOLOGY 2016; 191:101-10. [PMID: 26748373 DOI: 10.1016/j.jplph.2015.11.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 11/18/2015] [Accepted: 11/20/2015] [Indexed: 05/23/2023]
Abstract
The treatment of 4-days-old wheat seedlings with methyl jasmonate (MeJA) in concentration optimal for their growth (0.1 μM) resulted in a rapid transient almost two-fold increase in the level of cytokinins (CKs). MeJA-induced accumulation of CKs was due to inhibition of both cytokinin oxidase (CKX) (cytokinin oxidase/dehydrogenase, EC 1.5.99.12) gene expression and activity of this enzyme. Pretreatment of wheat seedlings with MeJA decreased the growth-retarding effect of sodium chloride salinity and accelerated growth recovery after withdrawal of NaCl from the incubation medium. We speculate that this protective effect of the hormone might be due to MeJA's ability to prevent the salinity-induced decline in CK concentration that was caused by inhibition of gene expression and activity of CKX in wheat seedlings. The data might indicate an important role for endogenous cytokinins in the implementation of growth-promoting and protective effects of exogenous MeJA application on wheat plants.
Collapse
Affiliation(s)
- Azamat Avalbaev
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, pr. Octyabrya, 71, Ufa 450054, Russia
| | - Ruslan Yuldashev
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, pr. Octyabrya, 71, Ufa 450054, Russia
| | - Kristina Fedorova
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, pr. Octyabrya, 71, Ufa 450054, Russia
| | - Kirill Somov
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, pr. Octyabrya, 71, Ufa 450054, Russia
| | - Lidiya Vysotskaya
- Ufa Institute of Biology, Russian Academy of Sciences, pr. Octyabrya, 69, Ufa 450054, Russia
| | - Chulpan Allagulova
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, pr. Octyabrya, 71, Ufa 450054, Russia
| | - Farida Shakirova
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, pr. Octyabrya, 71, Ufa 450054, Russia.
| |
Collapse
|