1
|
Headley CA, Gautam S, Olmo-Fontanez A, Garcia-Vilanova A, Dwivedi V, Schami A, Weintraub S, Tsao PS, Torrelles JB, Turner J. Mitochondrial Transplantation promotes protective effector and memory CD4 + T cell response during Mycobacterium tuberculosis infection and diminishes exhaustion and senescence in elderly CD4 + T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.577036. [PMID: 38328206 PMCID: PMC10849707 DOI: 10.1101/2024.01.24.577036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis (M.tb), remains a significant health concern worldwide, especially in populations with weakened or compromised immune systems, such as the elderly. Proper adaptive immune function, particularly a CD4+ T cell response, is central to host immunity against M.tb. Chronic infections, such as M.tb, as well as aging promote T cell exhaustion and senescence, which can impair immune control and promote progression to TB disease. Mitochondrial dysfunction contributes to T cell dysfunction, both in aging and chronic infections and diseases. Mitochondrial perturbations can disrupt cellular metabolism, enhance oxidative stress, and impair T-cell signaling and effector functions. This study examined the impact of mitochondrial transplantation (mito-transfer) on CD4+ T cell differentiation and function using aged mouse models and human CD4+ T cells from elderly individuals. Our study revealed that mito-transfer in naïve CD4+ T cells promoted the generation of protective effector and memory CD4+ T cells during M.tb infection in mice. Further, mito-transfer enhanced the function of elderly human T cells by increasing their mitochondrial mass and modulating cytokine production, which in turn reduced exhaustion and senescence cell markers. Our results suggest that mito-transfer could be a novel strategy to reestablish aged CD4+ T cell function, potentially improving immune responses in the elderly and chronic TB patients, with a broader implication for other diseases where mitochondrial dysfunction is linked to T cell exhaustion and senescence.
Collapse
Affiliation(s)
- Colwyn A. Headley
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, 43201, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305
| | - Shalini Gautam
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Angelica Olmo-Fontanez
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Andreu Garcia-Vilanova
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Varun Dwivedi
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Alyssa Schami
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Susan Weintraub
- Department of Biochemistry & Structural Biology, UT health San Antonio, TX, 78229, USA
| | - Philip S. Tsao
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305
| | - Jordi B. Torrelles
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
- Internaltional Center for the Advancement of Research & Education (I•CARE), Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Joanne Turner
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| |
Collapse
|
2
|
Geng Z, Guan S, Wang S, Yu Z, Liu T, Du S, Zhu C. Intercellular mitochondrial transfer in the brain, a new perspective for targeted treatment of central nervous system diseases. CNS Neurosci Ther 2023; 29:3121-3135. [PMID: 37424172 PMCID: PMC10580346 DOI: 10.1111/cns.14344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/08/2023] [Accepted: 06/24/2023] [Indexed: 07/11/2023] Open
Abstract
AIM Mitochondria is one of the important organelles involved in cell energy metabolism and regulation and also play a key regulatory role in abnormal cell processes such as cell stress, cell damage, and cell canceration. Recent studies have shown that mitochondria can be transferred between cells in different ways and participate in the occurrence and development of many central nervous system diseases. We aim to review the mechanism of mitochondrial transfer in the progress of central nervous system diseases and the possibility of targeted therapy. METHODS The PubMed databank, the China National Knowledge Infrastructure databank, and Wanfang Data were searched to identify the experiments of intracellular mitochondrial transferrin central nervous system. The focus is on the donors, receptors, transfer pathways, and targeted drugs of mitochondrial transfer. RESULTS In the central nervous system, neurons, glial cells, immune cells, and tumor cells can transfer mitochondria to each other. Meanwhile, there are many types of mitochondrial transfer, including tunneling nanotubes, extracellular vesicles, receptor cell endocytosis, gap junction channels, and intercellular contact. A variety of stress signals, such as the release of damaged mitochondria, mitochondrial DNA, or other mitochondrial products and the elevation of reactive oxygen species, can trigger the transfer of mitochondria from donor cells to recipient cells. Concurrently, a variety of molecular pathways and related inhibitors can affect mitochondrial intercellular transfer. CONCLUSION This study reviews the phenomenon of intercellular mitochondrial transfer in the central nervous system and summarizes the corresponding transfer pathways. Finally, we propose targeted pathways and treatment methods that may be used to regulate mitochondrial transfer for the treatment of related diseases.
Collapse
Affiliation(s)
- Ziang Geng
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
| | - Shu Guan
- Department of Surgical Oncology and Breast SurgeryThe First Hospital of China Medical UniversityShenyangChina
| | - Siqi Wang
- Department of Radiation OncologyThe First Hospital of China Medical UniversityShenyangChina
| | - Zhongxue Yu
- Department of Cardiovascular UltrasoundThe First Hospital of China Medical UniversityShenyangChina
| | - Tiancong Liu
- Department of OtolaryngologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Shaonan Du
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
| | - Chen Zhu
- Department of NeurosurgeryThe First Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
3
|
Zorov DB, Andrianova NV, Babenko VA, Zorova LD, Zorov SD, Pevzner IB, Sukhikh GT, Silachev DN. Isn't It Time for Establishing Mitochondrial Nomenclature Breaking Mitochondrial Paradigm? BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1487-1497. [PMID: 36717442 DOI: 10.1134/s0006297922120069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In this work, we decided to initiate a discussion concerning heterogeneity of mitochondria, suggesting that it is time to build classification of mitochondria, like the one that exists for their progenitors, α-proteobacteria, proposing possible separation of mitochondrial strains and maybe species. We continue to adhere to the general line that mitochondria are friends and foes: on the one hand, they provide the cell and organism with the necessary energy and signaling molecules, and, on the other hand, participate in destruction of the cell and the organism. Current understanding that the activity of mitochondria is not only limited to energy production, but also that these alternative non-energetic functions are unique and irreplaceable in the cell, allowed us to speak about the strong subordination of the entire cellular metabolism to characteristic functional manifestations of mitochondria. Mitochondria are capable of producing not only ATP, but also iron-sulfur clusters, steroid hormones, heme, reactive oxygen and nitrogen species, participate in thermogenesis, regulate cell death, proliferation and differentiation, participate in detoxification, etc. They are a mandatory attribute of eukaryotic cells, and, so far, no eukaryotic cells performing a non-parasitic or non-symbiotic life style have been found that lack mitochondria. We believe that the structural-functional intracellular, intercellular, inter-organ, and interspecific diversity of mitochondria is large enough to provide grounds for creating a mitochondrial nomenclature. The arguments for this are given in this analytical work.
Collapse
Affiliation(s)
- Dmitry B Zorov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia. .,Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Nadezda V Andrianova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Valentina A Babenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Ljubava D Zorova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Savva D Zorov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Irina B Pevzner
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Gennady T Sukhikh
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Denis N Silachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| |
Collapse
|
4
|
Calyeca J, Mora AL. Mitochondrial Transfer between Airway Cells: Helping the Neighbors, or Sending Them Trash? Am J Respir Cell Mol Biol 2022; 67:417-418. [PMID: 35881957 PMCID: PMC9564926 DOI: 10.1165/rcmb.2022-0265ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Jazmin Calyeca
- Division of Pulmonary, Critical Care and Sleep Medicine
- Dorothy M. Davis Heart and Lung Research Institute The Ohio State University Columbus, Ohio
| | - Ana L Mora
- Division of Pulmonary, Critical Care and Sleep Medicine
- Dorothy M. Davis Heart and Lung Research Institute The Ohio State University Columbus, Ohio
| |
Collapse
|
5
|
Zorova LD, Kovalchuk SI, Popkov VA, Chernikov VP, Zharikova AA, Khutornenko AA, Zorov SD, Plokhikh KS, Zinovkin RA, Evtushenko EA, Babenko VA, Pevzner IB, Shevtsova YA, Goryunov KV, Plotnikov EY, Silachev DN, Sukhikh GT, Zorov DB. Do Extracellular Vesicles Derived from Mesenchymal Stem Cells Contain Functional Mitochondria? Int J Mol Sci 2022; 23:ijms23137408. [PMID: 35806411 PMCID: PMC9266972 DOI: 10.3390/ijms23137408] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EV) derived from stem cells have become an effective complement to the use in cell therapy of stem cells themselves, which has led to an explosion of research into the mechanisms of vesicle formation and their action. There is evidence demonstrating the presence of mitochondrial components in EV, but a definitive conclusion about whether EV contains fully functional mitochondria has not yet been made. In this study, two EV fractions derived from mesenchymal stromal stem cells (MSC) and separated by their size were examined. Flow cytometry revealed the presence of mitochondrial lipid components capable of interacting with mitochondrial dyes MitoTracker Green and 10-nonylacridine orange; however, the EV response to the probe for mitochondrial membrane potential was negative. Detailed analysis revealed components from all mitochondria compartments, including house-keeping mitochondria proteins and DNA as well as energy-related proteins such as membrane-localized proteins of complexes I, IV, and V, and soluble proteins from the Krebs cycle. When assessing the functional activity of mitochondria, high variability in oxygen consumption was noted, which was only partially attributed to mitochondrial respiratory activity. Our findings demonstrate that the EV contain all parts of mitochondria; however, their independent functionality inside EV has not been confirmed, which may be due either to the absence of necessary cofactors and/or the EV formation process and, probably the methodology of obtaining EV.
Collapse
Affiliation(s)
- Ljubava D. Zorova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; (L.D.Z.); (V.A.P.); (S.D.Z.); (R.A.Z.); (V.A.B.); (I.B.P.); (E.Y.P.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia; (A.A.K.); (Y.A.S.); (K.V.G.); (G.T.S.)
| | - Sergei I. Kovalchuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia;
| | - Vasily A. Popkov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; (L.D.Z.); (V.A.P.); (S.D.Z.); (R.A.Z.); (V.A.B.); (I.B.P.); (E.Y.P.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia; (A.A.K.); (Y.A.S.); (K.V.G.); (G.T.S.)
| | | | - Anastasia A. Zharikova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119992, Russia;
| | - Anastasia A. Khutornenko
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia; (A.A.K.); (Y.A.S.); (K.V.G.); (G.T.S.)
| | - Savva D. Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; (L.D.Z.); (V.A.P.); (S.D.Z.); (R.A.Z.); (V.A.B.); (I.B.P.); (E.Y.P.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119992, Russia;
| | | | - Roman A. Zinovkin
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; (L.D.Z.); (V.A.P.); (S.D.Z.); (R.A.Z.); (V.A.B.); (I.B.P.); (E.Y.P.)
| | | | - Valentina A. Babenko
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; (L.D.Z.); (V.A.P.); (S.D.Z.); (R.A.Z.); (V.A.B.); (I.B.P.); (E.Y.P.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia; (A.A.K.); (Y.A.S.); (K.V.G.); (G.T.S.)
| | - Irina B. Pevzner
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; (L.D.Z.); (V.A.P.); (S.D.Z.); (R.A.Z.); (V.A.B.); (I.B.P.); (E.Y.P.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia; (A.A.K.); (Y.A.S.); (K.V.G.); (G.T.S.)
| | - Yulia A. Shevtsova
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia; (A.A.K.); (Y.A.S.); (K.V.G.); (G.T.S.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119992, Russia;
| | - Kirill V. Goryunov
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia; (A.A.K.); (Y.A.S.); (K.V.G.); (G.T.S.)
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; (L.D.Z.); (V.A.P.); (S.D.Z.); (R.A.Z.); (V.A.B.); (I.B.P.); (E.Y.P.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia; (A.A.K.); (Y.A.S.); (K.V.G.); (G.T.S.)
| | - Denis N. Silachev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; (L.D.Z.); (V.A.P.); (S.D.Z.); (R.A.Z.); (V.A.B.); (I.B.P.); (E.Y.P.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia; (A.A.K.); (Y.A.S.); (K.V.G.); (G.T.S.)
- Correspondence: (D.N.S.); (D.B.Z.); Tel.: +7-(495)939-59-44 (D.N.S.); +7-(495)939-59-44 (D.B.Z.)
| | - Gennady T. Sukhikh
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia; (A.A.K.); (Y.A.S.); (K.V.G.); (G.T.S.)
| | - Dmitry B. Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; (L.D.Z.); (V.A.P.); (S.D.Z.); (R.A.Z.); (V.A.B.); (I.B.P.); (E.Y.P.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia; (A.A.K.); (Y.A.S.); (K.V.G.); (G.T.S.)
- Correspondence: (D.N.S.); (D.B.Z.); Tel.: +7-(495)939-59-44 (D.N.S.); +7-(495)939-59-44 (D.B.Z.)
| |
Collapse
|
6
|
Valenti D, Vacca RA, Moro L, Atlante A. Mitochondria Can Cross Cell Boundaries: An Overview of the Biological Relevance, Pathophysiological Implications and Therapeutic Perspectives of Intercellular Mitochondrial Transfer. Int J Mol Sci 2021; 22:8312. [PMID: 34361078 PMCID: PMC8347886 DOI: 10.3390/ijms22158312] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 01/07/2023] Open
Abstract
Mitochondria are complex intracellular organelles traditionally identified as the powerhouses of eukaryotic cells due to their central role in bioenergetic metabolism. In recent decades, the growing interest in mitochondria research has revealed that these multifunctional organelles are more than just the cell powerhouses, playing many other key roles as signaling platforms that regulate cell metabolism, proliferation, death and immunological response. As key regulators, mitochondria, when dysfunctional, are involved in the pathogenesis of a wide range of metabolic, neurodegenerative, immune and neoplastic disorders. Far more recently, mitochondria attracted renewed attention from the scientific community for their ability of intercellular translocation that can involve whole mitochondria, mitochondrial genome or other mitochondrial components. The intercellular transport of mitochondria, defined as horizontal mitochondrial transfer, can occur in mammalian cells both in vitro and in vivo, and in physiological and pathological conditions. Mitochondrial transfer can provide an exogenous mitochondrial source, replenishing dysfunctional mitochondria, thereby improving mitochondrial faults or, as in in the case of tumor cells, changing their functional skills and response to chemotherapy. In this review, we will provide an overview of the state of the art of the up-to-date knowledge on intercellular trafficking of mitochondria by discussing its biological relevance, mode and mechanisms underlying the process and its involvement in different pathophysiological contexts, highlighting its therapeutic potential for diseases with mitochondrial dysfunction primarily involved in their pathogenesis.
Collapse
Affiliation(s)
- Daniela Valenti
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)-CNR, Via G. Amendola122/O, 70126 Bari, Italy; (R.A.V.); (L.M.)
| | | | | | - Anna Atlante
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)-CNR, Via G. Amendola122/O, 70126 Bari, Italy; (R.A.V.); (L.M.)
| |
Collapse
|
7
|
Fu A. Mitotherapy as a Novel Therapeutic Strategy for Mitochondrial Diseases. Curr Mol Pharmacol 2021; 13:41-49. [PMID: 31345157 DOI: 10.2174/1874467212666190920144115] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/07/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND The mitochondrion is a multi-functional organelle that is mainly responsible for energy supply in the mammalian cells. Over 100 human diseases are attributed to mitochondrial dysfunction. Mitochondrial therapy (mitotherapy) aims to transfer functional exogenous mitochondria into mitochondria-defective cells for recovery of the cell viability and consequently, prevention of the disease progress. OBJECTIVE The review summarizes the evidence on exogenous mitochondria that can directly enter mammalian cells for disease therapy following local and intravenous administration, and suggests that when healthy cells donate their mitochondria to damaged cells, the mitochondrial transfer between cells serve as a new mode of cell rescue. Then the transferred mitochondria play their roles in recipient cells, including energy production and maintenance of cell function. CONCLUSION Mitotherapy makes the of modulation of cell survival possible, and it would be a potential therapeutic strategy for mitochondrial diseases.
Collapse
Affiliation(s)
- Ailing Fu
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
8
|
Feng Y, Liu X, Pauklin S. 3D chromatin architecture and epigenetic regulation in cancer stem cells. Protein Cell 2021; 12:440-454. [PMID: 33453053 PMCID: PMC8160035 DOI: 10.1007/s13238-020-00819-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/05/2020] [Indexed: 12/29/2022] Open
Abstract
Dedifferentiation of cell identity to a progenitor-like or stem cell-like state with increased cellular plasticity is frequently observed in cancer formation. During this process, a subpopulation of cells in tumours acquires a stem cell-like state partially resembling to naturally occurring pluripotent stem cells that are temporarily present during early embryogenesis. Such characteristics allow these cancer stem cells (CSCs) to give rise to the whole tumour with its entire cellular heterogeneity and thereby support metastases formation while being resistant to current cancer therapeutics. Cancer development and progression are demarcated by transcriptional dysregulation. In this article, we explore the epigenetic mechanisms shaping gene expression during tumorigenesis and cancer stem cell formation, with an emphasis on 3D chromatin architecture. Comparing the pluripotent stem cell state and epigenetic reprogramming to dedifferentiation in cellular transformation provides intriguing insight to chromatin dynamics. We suggest that the 3D chromatin architecture could be used as a target for re-sensitizing cancer stem cells to therapeutics.
Collapse
Affiliation(s)
- Yuliang Feng
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences Old Road, University of Oxford, Oxford, OX3 7LD, UK
| | - Xingguo Liu
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences Old Road, University of Oxford, Oxford, OX3 7LD, UK.
| |
Collapse
|
9
|
Qin Y, Jiang X, Yang Q, Zhao J, Zhou Q, Zhou Y. The Functions, Methods, and Mobility of Mitochondrial Transfer Between Cells. Front Oncol 2021; 11:672781. [PMID: 34041035 PMCID: PMC8141658 DOI: 10.3389/fonc.2021.672781] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/20/2021] [Indexed: 12/31/2022] Open
Abstract
Mitochondria are vital organelles in cells, regulating energy metabolism and apoptosis. Mitochondrial transcellular transfer plays a crucial role during physiological and pathological conditions, such as rescuing recipient cells from bioenergetic deficit and tumorigenesis. Studies have shown several structures that conduct transcellular transfer of mitochondria, including tunneling nanotubes (TNTs), extracellular vesicles (EVs), and Cx43 gap junctions (GJs). The intra- and intercellular transfer of mitochondria is driven by a transport complex. Mitochondrial Rho small GTPase (MIRO) may be the adaptor that connects the transport complex with mitochondria, and myosin XIX is the motor protein of the transport complex, which participates in the transcellular transport of mitochondria through TNTs. In this review, the roles of TNTs, EVs, GJs, and related transport complexes in mitochondrial transcellular transfer are discussed in detail, as well as the formation mechanisms of TNTs and EVs. This review provides the basis for the development of potential clinical therapies targeting the structures of mitochondrial transcellular transfer.
Collapse
Affiliation(s)
- Yiming Qin
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, China
| | - Xin Jiang
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, China
| | - Qi Yang
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, China
| | - Jiaqi Zhao
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, China
| | - Qiong Zhou
- Department of Neurology, Yiyang Central Hospital, Yiyang City, China
| | - Yanhong Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, China
| |
Collapse
|
10
|
Yuan Y, Yuan L, Li L, Liu F, Liu J, Chen Y, Cheng J, Lu Y. Mitochondrial transfer from mesenchymal stem cells to macrophages restricts inflammation and alleviates kidney injury in diabetic nephropathy mice via PGC-1α activation. STEM CELLS (DAYTON, OHIO) 2021; 39:913-928. [PMID: 33739541 DOI: 10.1002/stem.3375] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/23/2021] [Indexed: 02/05/2023]
Abstract
Mesenchymal stem cells (MSCs) have fueled ample translation for treatment of immune-mediated diseases. Our previous study had demonstrated that MSCs could elicit macrophages (Mφ) into anti-inflammatory phenotypes, and alleviate kidney injury in diabetic nephropathy (DN) mice via improving mitochondrial function of Mφ, yet the specific mechanism was unclear. Recent evidence indicated that MSCs communicated with their microenvironment through exchanges of mitochondria. By a coculture system consisting of MSCs and Mφ, we showed that MSCs-derived mitochondria (MSCs-Mito) were transferred into Mφ, and the mitochondrial functions were improved, which contributed to M2 polarization. Furthermore, we found that MSCs-Mito transfer activated peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α)-mediated mitochondrial biogenesis. In addition, PGC-1α interacted with TFEB in high glucose-induced Mφ, leading to the elevated lysosome-autophagy, which was essential to removal of damaged mitochondria. As a result, in Mφ, the mitochondrial bioenergy and capacity to combat inflammatory response were enhanced. Whereas, the immune-regulatory activity of MSCs-Mito was significantly blocked in PGC-1α knockdown Mφ. More importantly, MSCs-Mito transfer could be observed in DN mice, and the adoptive transfer of MSCs-Mito educated Mφ (MφMito ) inhibited the inflammatory response and alleviated kidney injury. However, the kidney-protective effects of MφMito were abolished when the MSCs-Mito was impaired with rotenone, and the similar results were also observed when MφMito were transfected with sipgc-1α before administration. Collectively, these findings suggested that MSCs elicited Mφ into anti-inflammatory phenotype and ameliorated kidney injury through mitochondrial transfer in DN mice, and the effects were relied on PGC-1α-mediated mitochondrial biogenesis and PGC-1α/TFEB-mediated lysosome-autophagy.
Collapse
Affiliation(s)
- Yujia Yuan
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Department of Nephrology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Longhui Yuan
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Department of Nephrology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Lan Li
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Department of Nephrology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Fei Liu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Department of Nephrology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Jingping Liu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Department of Nephrology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Younan Chen
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Department of Nephrology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Jingqiu Cheng
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Department of Nephrology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Department of Nephrology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
11
|
Cocetta V, Ragazzi E, Montopoli M. Mitochondrial Involvement in Cisplatin Resistance. Int J Mol Sci 2019; 20:ijms20143384. [PMID: 31295873 PMCID: PMC6678541 DOI: 10.3390/ijms20143384] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 12/25/2022] Open
Abstract
Cisplatin is one of the worldwide anticancer drugs and, despite its toxicity and frequent recurrence of resistance phenomena, it still remains the only therapeutic option for several tumors. Circumventing cisplatin resistance remains, therefore, a major goal for clinical therapy and represents a challenge for scientific research. Recent studies have brought to light the fundamental role of mitochondria in onset, progression, and metastasis of cancer, as well as its importance in the resistance to chemotherapy. The aim of this review is to give an overview of the current knowledge about the implication of mitochondria in cisplatin resistance and on the recent development in this research field. Recent studies have highlighted the role of mitochondrial DNA alterations in onset of resistance phenomena, being related both to redox balance alterations and to signal crosstalk with the nucleus, allowing a rewiring of cell metabolism. Moreover, an important role of the mitochondrial dynamics in the adaptation mechanism of cancer cells to challenging environment has been revealed. Giving bioenergetic plasticity to tumor cells, mitochondria allow cells to evade death pathways in stressful conditions, including chemotherapy. So far, even if the central role of mitochondria is recognized, little is known about the specific mechanisms implicated in the resistance. Nevertheless, mitochondria appear to be promising pharmacological targets for overcoming cisplatin resistance, but further studies are necessary.
Collapse
Affiliation(s)
- Veronica Cocetta
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo Egidio Meneghetti 2, 35131 Padua, Italy
| | - Eugenio Ragazzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo Egidio Meneghetti 2, 35131 Padua, Italy
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo Egidio Meneghetti 2, 35131 Padua, Italy.
- Venetian Institute of Molecular Medicine (VIMM), Via Orus 2, 35129 Padua, Italy.
| |
Collapse
|
12
|
Alavi MV. Targeted OMA1 therapies for cancer. Int J Cancer 2019; 145:2330-2341. [PMID: 30714136 DOI: 10.1002/ijc.32177] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/20/2019] [Accepted: 01/23/2019] [Indexed: 12/12/2022]
Abstract
The mitochondrial inner membrane proteins OMA1 and OPA1 belong to the BAX/BAK1-dependent apoptotic signaling pathway, which can be regulated by tumor protein p53 and the prohibitins PHB and PHB2 in the context of neoplastic disease. For the most part these proteins have been studied separate from each other. Here, I argue that the OMA1 mechanism of action represents the missing link between p53 and cytochrome c release. The mitochondrial fusion protein OPA1 is cleaved by OMA1 in a stress-dependent manner generating S-OPA1. Excessive S-OPA1 can facilitate outer membrane permeabilization upon BAX/BAK1 activation through its membrane shaping properties. p53 helps outer membrane permeabilization in a 2-step process. First, cytosolic p53 activates BAX/BAK1 at the mitochondrial surface. Then, in a second step, p53 binds to prohibitin thereby releasing the restraint on OMA1. This activates OMA1, which cleaves OPA1 and promotes cytochrome c release. Clearly, OMA1 and OPA1 are not root causes for cancer. Yet many cancer cells rely on this pathway for survival, which can explain why loss of p53 function promotes tumor growth and confers resistance to chemotherapies.
Collapse
|
13
|
Herst PM, Dawson RH, Berridge MV. Intercellular Communication in Tumor Biology: A Role for Mitochondrial Transfer. Front Oncol 2018; 8:344. [PMID: 30211122 PMCID: PMC6121133 DOI: 10.3389/fonc.2018.00344] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/06/2018] [Indexed: 01/16/2023] Open
Abstract
Intercellular communication between cancer cells and other cells in the tumor microenvironment plays a defining role in tumor development. Tumors contain infiltrates of stromal cells and immune cells that can either promote or inhibit tumor growth, depending on the cytokine/chemokine milieu of the tumor microenvironment and their effect on cell activation status. Recent research has shown that stromal cells can also affect tumor growth through the donation of mitochondria to respiration-deficient tumor cells, restoring normal respiration. Nuclear and mitochondrial DNA mutations affecting mitochondrial respiration lead to some level of respiratory incompetence, forcing cells to generate more energy by glycolysis. Highly glycolytic cancer cells tend to be very aggressive and invasive with poor patient prognosis. However, purely glycolytic cancer cells devoid of mitochondrial DNA cannot form tumors unless they acquire mitochondrial DNA from adjacent cells. This perspective article will address this apparent conundrum of highly glycolytic cells and cover aspects of intercellular communication between tumor cells and cells of the microenvironment with particular emphasis on intercellular mitochondrial transfer.
Collapse
Affiliation(s)
- Patries M Herst
- Malaghan Institute of Medical Research, Wellington, New Zealand.,Department of Radiation Therapy, University of Otago, Wellington, New Zealand
| | - Rebecca H Dawson
- Malaghan Institute of Medical Research, Wellington, New Zealand.,School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
14
|
Mitochondrial therapy promotes regeneration of injured hippocampal neurons. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3001-3012. [PMID: 29913215 DOI: 10.1016/j.bbadis.2018.06.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/12/2018] [Accepted: 06/13/2018] [Indexed: 11/20/2022]
Abstract
Due to the inhibitory microenvironment and reduced intrinsic growth capacity of neurons, neuronal regeneration of central nervous system remains challenging. Neurons are highly energy demanding and require sufficient mitochondria to support cellular activities. In response to stimuli, mitochondria undergo fusion/fission cycles to adapt to environment. It is thus logical to hypothesize that the plasticity of mitochondrial dynamics is required for neuronal regeneration. In this study, we examined the role of mitochondrial dynamics during regeneration of rat hippocampal neurons. Quantitative analysis showed that injury induced mitochondrial fission. As mitochondrial dysfunction has been implicated in neurodegenerative diseases, we tested the possibility that the mitochondrial therapy may promote neuronal regeneration. Supplying freshly isolated mitochondria to the injured hippocampal neurons not only significantly increased neurite re-growth but also restored membrane potential of injured hippocampal neurons. Together, our findings support the importance of mitochondrial dynamics during regeneration of injured hippocampal neurons and highlight the therapeutic prospect of mitochondria to the injured central nervous system.
Collapse
|
15
|
Han Y, Cho U, Kim S, Park IS, Cho JH, Dhanasekaran DN, Song YS. Tumour microenvironment on mitochondrial dynamics and chemoresistance in cancer. Free Radic Res 2018; 52:1271-1287. [PMID: 29607684 DOI: 10.1080/10715762.2018.1459594] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mitochondria, evolutionally acquired symbionts of eukaryotic cells, are essential cytoplasmic organelles. They are structurally dynamic organelles that continually go through fission and fusion processes in response to various stimuli. Tumour tissue is composed of not just cancer cells but also various cell types like fibroblasts, mesenchymal stem and immune cells. Mitochondrial dynamics of cancer cells has been shown to be significantly affected by features of tumour microenvironment such as hypoxia, inflammation and energy deprivation. The interactions of cancer cells with tumour microenvironment like hypoxia give rise to the inter- and intratumoural heterogeneity, causing chemoresistance. In this review, we will focus on the chemoresistance by tumoural heterogeneity in relation to mitochondrial dynamics of cancer cells. Recent findings in molecular mechanisms involved in the control of mitochondrial dynamics as well as the impact of mitochondrial dynamics on drug sensitivity in cancer are highlighted in the current review.
Collapse
Affiliation(s)
- Youngjin Han
- a Biomodulation, Department of Agricultural Biotechnology , Seoul National University , Seoul , Republic of Korea.,b Cancer Research Institute , Seoul National University College of Medicine , Seoul , Republic of Korea
| | - Untack Cho
- b Cancer Research Institute , Seoul National University College of Medicine , Seoul , Republic of Korea.,c Interdisciplinary Program in Cancer Biology , Seoul National University College of Medicine , Seoul , Republic of Korea
| | - Soochi Kim
- b Cancer Research Institute , Seoul National University College of Medicine , Seoul , Republic of Korea.,d Seoul National University Hospital Biomedical Research Institute , Seoul , Republic of Korea
| | - In Sil Park
- b Cancer Research Institute , Seoul National University College of Medicine , Seoul , Republic of Korea.,e Department of Agricultural Biotechnology , Seoul National University , Seoul , Republic of Korea
| | - Jae Hyun Cho
- f Department of Obstetrics and Gynecology , Seoul National University College of Medicine , Seoul , Republic of Korea
| | - Danny N Dhanasekaran
- g Stephenson Cancer Center , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - Yong Sang Song
- a Biomodulation, Department of Agricultural Biotechnology , Seoul National University , Seoul , Republic of Korea.,b Cancer Research Institute , Seoul National University College of Medicine , Seoul , Republic of Korea.,c Interdisciplinary Program in Cancer Biology , Seoul National University College of Medicine , Seoul , Republic of Korea.,f Department of Obstetrics and Gynecology , Seoul National University College of Medicine , Seoul , Republic of Korea
| |
Collapse
|
16
|
Babenko VA, Silachev DN, Popkov VA, Zorova LD, Pevzner IB, Plotnikov EY, Sukhikh GT, Zorov DB. Miro1 Enhances Mitochondria Transfer from Multipotent Mesenchymal Stem Cells (MMSC) to Neural Cells and Improves the Efficacy of Cell Recovery. Molecules 2018; 23:molecules23030687. [PMID: 29562677 PMCID: PMC6017474 DOI: 10.3390/molecules23030687] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/13/2018] [Accepted: 03/17/2018] [Indexed: 01/08/2023] Open
Abstract
A recently discovered key role of reactive oxygen species (ROS) in mitochondrial traffic has opened a wide alley for studying the interactions between cells, including stem cells. Since its discovery in 2006, intercellular mitochondria transport has been intensively studied in different cellular models as a basis for cell therapy, since the potential of replacing malfunctioning organelles appears to be very promising. In this study, we explored the transfer of mitochondria from multipotent mesenchymal stem cells (MMSC) to neural cells and analyzed its efficacy under normal conditions and upon induction of mitochondrial damage. We found that mitochondria were transferred from the MMSC to astrocytes in a more efficient manner when the astrocytes were exposed to ischemic damage associated with elevated ROS levels. Such transport of mitochondria restored the bioenergetics of the recipient cells and stimulated their proliferation. The introduction of MMSC with overexpressed Miro1 in animals that had undergone an experimental stroke led to significantly improved recovery of neurological functions. Our data suggest that mitochondrial impairment in differentiated cells can be compensated by receiving healthy mitochondria from MMSC. We demonstrate a key role of Miro1, which promotes the mitochondrial transfer from MMSC and suggest that the genetic modification of stem cells can improve the therapies for the injured brain.
Collapse
Affiliation(s)
- Valentina A Babenko
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia.
- V. I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia.
| | - Denis N Silachev
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia.
- V. I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia.
| | - Vasily A Popkov
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia.
- V. I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia.
| | - Ljubava D Zorova
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia.
- V. I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia.
| | - Irina B Pevzner
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia.
- V. I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia.
| | - Egor Y Plotnikov
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia.
- V. I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia.
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia.
| | - Gennady T Sukhikh
- V. I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia.
- Department of obstetrics, gynecology, perinatology and reproduction, Sechenov First Moscow State Medical University, 119991 Moscow, Russia.
| | - Dmitry B Zorov
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia.
- V. I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia.
| |
Collapse
|
17
|
Berridge MV, Neuzil J. The mobility of mitochondria: Intercellular trafficking in health and disease. Clin Exp Pharmacol Physiol 2017; 44 Suppl 1:15-20. [DOI: 10.1111/1440-1681.12764] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 12/16/2022]
Affiliation(s)
| | - Jiri Neuzil
- School of Medical Science Griffith University Southport Australia
- Institute of Biotechnology Czech Academy of Sciences Prague‐West Czech Republic
| |
Collapse
|
18
|
Caicedo A, Aponte PM, Cabrera F, Hidalgo C, Khoury M. Artificial Mitochondria Transfer: Current Challenges, Advances, and Future Applications. Stem Cells Int 2017; 2017:7610414. [PMID: 28751917 PMCID: PMC5511681 DOI: 10.1155/2017/7610414] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/30/2017] [Accepted: 05/15/2017] [Indexed: 12/18/2022] Open
Abstract
The objective of this review is to outline existing artificial mitochondria transfer techniques and to describe the future steps necessary to develop new therapeutic applications in medicine. Inspired by the symbiotic origin of mitochondria and by the cell's capacity to transfer these organelles to damaged neighbors, many researchers have developed procedures to artificially transfer mitochondria from one cell to another. The techniques currently in use today range from simple coincubations of isolated mitochondria and recipient cells to the use of physical approaches to induce integration. These methods mimic natural mitochondria transfer. In order to use mitochondrial transfer in medicine, we must answer key questions about how to replicate aspects of natural transport processes to improve current artificial transfer methods. Another priority is to determine the optimum quantity and cell/tissue source of the mitochondria in order to induce cell reprogramming or tissue repair, in both in vitro and in vivo applications. Additionally, it is important that the field explores how artificial mitochondria transfer techniques can be used to treat different diseases and how to navigate the ethical issues in such procedures. Without a doubt, mitochondria are more than mere cell power plants, as we continue to discover their potential to be used in medicine.
Collapse
Affiliation(s)
- Andrés Caicedo
- Colegio de Ciencias de la Salud, Escuela de Medicina, Universidad San Francisco de Quito (USFQ), 170901 Quito, Ecuador
- Colegio de Ciencias Biológicas y Ambientales, Instituto de Microbiología, Universidad San Francisco de Quito (USFQ), 170901 Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
| | - Pedro M. Aponte
- Mito-Act Research Consortium, Quito, Ecuador
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito (USFQ), 170901 Quito, Ecuador
| | - Francisco Cabrera
- Mito-Act Research Consortium, Quito, Ecuador
- Colegio de Ciencias de la Salud, Escuela de Medicina Veterinaria, Universidad San Francisco de Quito (USFQ), 170901 Quito, Ecuador
- Institute for Regenerative Medicine and Biotherapy (IRMB), INSERM U1183, 2 Montpellier University, Montpellier, France
| | - Carmen Hidalgo
- Mito-Act Research Consortium, Quito, Ecuador
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile
| | - Maroun Khoury
- Mito-Act Research Consortium, Quito, Ecuador
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile
- Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile
- Cells for Cells, Santiago, Chile
| |
Collapse
|
19
|
Berridge MV, McConnell MJ, Grasso C, Bajzikova M, Kovarova J, Neuzil J. Horizontal transfer of mitochondria between mammalian cells: beyond co-culture approaches. Curr Opin Genet Dev 2016; 38:75-82. [PMID: 27219870 DOI: 10.1016/j.gde.2016.04.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 03/23/2016] [Accepted: 04/05/2016] [Indexed: 12/21/2022]
Abstract
Current dogma holds that genes are the property of individual mammalian cells and partition between daughter cells during cell division. However, and rather unexpectedly, recent research has demonstrated horizontal cell-to-cell transfer of mitochondria and mitochondrial DNA in several mammalian cell culture systems. Furthermore, unequivocal evidence that mitochondrial DNA transfer occurs in vivo has now been published. While these studies show horizontal transfer of mitochondrial DNA in pathological settings, it is also possible that intercellular mitochondrial transfer is a fundamental physiological process with a role in development and tissue homeostasis.
Collapse
Affiliation(s)
- Michael V Berridge
- Cancer Cell and Molecular Biology Group, Malaghan Institute of Medical Research, Wellington 6012, New Zealand.
| | - Melanie J McConnell
- Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Carole Grasso
- Cancer Cell and Molecular Biology Group, Malaghan Institute of Medical Research, Wellington 6012, New Zealand
| | - Martina Bajzikova
- Molecular Therapy Group, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic
| | - Jaromira Kovarova
- Molecular Therapy Group, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic
| | - Jiri Neuzil
- Molecular Therapy Group, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic; Mitochondria, Apoptosis and Cancer Research Group, School of Medical Science and Griffith Health Institute, Griffith University, Southport, QLD 4222, Australia.
| |
Collapse
|
20
|
Hsu YC, Wu YT, Yu TH, Wei YH. Mitochondria in mesenchymal stem cell biology and cell therapy: From cellular differentiation to mitochondrial transfer. Semin Cell Dev Biol 2016; 52:119-31. [PMID: 26868759 DOI: 10.1016/j.semcdb.2016.02.011] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/03/2016] [Accepted: 02/05/2016] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) are characterized to have the capacity of self-renewal and the potential to differentiate into mesoderm, ectoderm-like and endoderm-like cells. MSCs hold great promise for cell therapies due to their multipotency in vitro and therapeutic advantage of hypo-immunogenicity and lower tumorigenicity. Moreover, it has been shown that MSCs can serve as a vehicle to transfer mitochondria into cells after cell transplantation. Mitochondria produce most of the energy through oxidative phosphorylation in differentiated cells. It has been increasingly clear that the switch of energy supply from glycolysis to aerobic metabolism is essential for successful differentiation of MSCs. Post-translational modifications of proteins have been established to regulate mitochondrial function and metabolic shift during MSCs differentiation. In this article, we review and provide an integrated view on the roles of different protein kinases and sirtuins in the maintenance and differentiation of MSCs. Importantly, we provide evidence to suggest that alteration in the expression of Sirt3 and Sirt5 and relative changes in the acylation levels of mitochondrial proteins might be involved in the activation of mitochondrial function and adipogenic differentiation of adipose-derived MSCs. We summarize their roles in the regulation of mitochondrial biogenesis and metabolism, oxidative responses and differentiation of MSCs. On the other hand, we discuss recent advances in the study of mitochondrial dynamics and mitochondrial transfer as well as their roles in the differentiation and therapeutic application of MSCs to improve cell function in vitro and in animal models. Accumulating evidence has substantiated that the therapeutic potential of MSCs is conferred not only by cell replacement and paracrine effects but also by transferring mitochondria into injured tissues or cells to modulate the cellular metabolism in situ. Therefore, elucidation of the underlying mechanisms in the regulation of mitochondrial metabolism of MSCs may ultimately improve therapeutic outcomes of stem cell therapy in the future.
Collapse
Affiliation(s)
- Yi-Chao Hsu
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City 252, Taiwan
| | - Yu-Ting Wu
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City 252, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
| | - Ting-Hsien Yu
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City 252, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
| | - Yau-Huei Wei
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City 252, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan.
| |
Collapse
|