1
|
Morokuma J, Gárriz A, Toribio D, Pagni S, Zoukhri D. Interleukin-1β activates matrix metalloproteinase-2 to alter lacrimal gland myoepithelial cell structure and function. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1415002. [PMID: 38984107 PMCID: PMC11182216 DOI: 10.3389/fopht.2024.1415002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/20/2024] [Indexed: 07/11/2024]
Abstract
The aim of the present study is to investigate the role of c-Jun N-terminal kinase (JNK) and matrix metalloproteinase-2 (MMP-2) in mediating the effects of interleukin-1β (IL-1β) on the function of lacrimal gland myoepithelial cells (MECs). MECs isolated from an α-smooth muscle actin-green fluorescent protein (SMA-GFP) transgenic mouse were treated with IL-1β alone or in the presence of SP600125, a JNK inhibitor, or ARP100, an MMP-2 inhibitor. The GFP intensity and the cell size/area were measured, and on day 7, the SMA, calponin, and pro-MMP-2 protein levels and the MEC contraction were assessed. At baseline, the control and treated cells showed no differences in GFP intensity or cell size. Starting on day 2 and continuing on days 4 and 7, the GFP intensity and cell size were significantly lower in the IL-1β-treated samples, and these effects were alleviated following inhibition of either JNK or MMP-2. Compared with the control, the levels of SMA and calponin were lower in the IL-1β-treated samples, and both the JNK and MMP-2 inhibitors reversed this trend. The pro-MMP-2 protein level was elevated in the IL-1β-treated samples, and this effect was abolished by the JNK inhibitor. Finally, oxytocin-induced MEC contraction was diminished in the IL-1β-treated samples, and both the JNK and MMP-2 inhibitors reversed this effect. Our data suggest that IL-1β uses the JNK/MMP-2 pathways to alter MEC functions, which might account for the diminished tears associated with aqueous-deficient dry eye disease.
Collapse
Affiliation(s)
- Junji Morokuma
- Department of Comprehensive Care, Tufts University School of Dental Medicine, Boston, MA, United States
| | - Angela Gárriz
- Department of Comprehensive Care, Tufts University School of Dental Medicine, Boston, MA, United States
| | - Danny Toribio
- Department of Comprehensive Care, Tufts University School of Dental Medicine, Boston, MA, United States
| | - Sarah Pagni
- Department of Public Health and Community Service, Tufts University School of Dental Medicine, Boston, MA, United States
| | - Driss Zoukhri
- Department of Comprehensive Care, Tufts University School of Dental Medicine, Boston, MA, United States
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
2
|
Plekhova NG, Brodskaya TA, Nevzorova VA, Repina NI, Eliseeva VS. Single nucleotide substitutions in the matrix metalloproteinase 9 gene in hypertensive individuals of European and South Asian ethnicity in the Far Eastern Federal District. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2022. [DOI: 10.15829/1728-8800-2022-2874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Aim. To determine the association of single nucleotide polymorphism (SNP) -1562C>T (rs3918242) in the matrix metalloproteinase 9 (MMP-9) gene in hypertensive (HTN) in individuals of European and South Asian ethnicity of Primorsky Krai and Sakhalin Oblast.Material and methods. The analysis of conventional and additional risk factors for cardiovascular diseases (35 parameters) in 377 people as a part of regional stage of the Epidemiology of Cardiovascular Diseases and their Risk Factors in Regions of Russian Federation (ESSE-RF) study (2014-2019), of whom 240 people of European (Slavic) and 137 people of South Asian (Korean, second- and third-generation immigrants) ethnicity. Substitutions in the MMP-9 gene -1562C>T (rs3918242) was identified by real-time polymerase chain reaction using TaqMan technology.Results. Compared to Koreans, the Slavs have a higher blood pressure (p=0,002). There were no significant differences between ethnic groups (p=0,07) in cardiovascular risk levels using the Systematic Coronary Risk Evaluation (SCORE). Significant differences (p=0,003) were determined in cardiovascular risk levels for healthy Koreans and HTN patients. It was shown that among patients with HTN, the pulse wave velocity exceeded the recommended values in 22,2% of Europeans and in 46,6% of Koreans (p=0,003). The number of hypertensive Europeans and minor MMP-9 rs3918242 T allele exceeded 2,6 times the number of healthy persons (odds ratio, 4,7; 95% confidence interval: 1,1 -7,8 (p=0,03)). MMP-9 rs3918242 T allele in Koreans of the Sakhalin Oblast was not associated with HTN (odds ratio, 0,81; 95% confidence interval: 0,12-5,54 (p=0,83)). Moreover, in South Asian population, heterozygous carriers of T allele prevailed, which significantly (p=0,002) differed from Europeans, who, in general, had a homozygous CC genotype.Conclusion. In Far Eastern Federal District, SNPs in the MMP-9 C-1562T gene were found mainly in hypertensive patients of European ethnicity, while in Koreans, a significant relationship between the carriage of minor T allele in this gene and the presence of HTN was not established.
Collapse
|
3
|
Bildyug N. Integrins in cardiac hypertrophy: lessons learned from culture systems. ESC Heart Fail 2021; 8:3634-3642. [PMID: 34232557 PMCID: PMC8497369 DOI: 10.1002/ehf2.13497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 05/16/2021] [Accepted: 06/16/2021] [Indexed: 12/21/2022] Open
Abstract
Heart growth and pathological changes are accompanied by extracellular matrix‐dependent alterations in integrins and integrin‐associated proteins, suggesting their role in heart development and disease. Most of our knowledge on the involvement of integrins in heart pathology is provided by the in vivo experiments, including cardiac hypertrophy models. However, in vivo studies are limited by the complex organization of heart tissue and fail to discern cell types and particular integrins implicated in hypertrophic signalling. This problem is being addressed by isolated cardiomyocyte primary cultures, which have been successfully used in different in vitro disease models. This review aimed to analyse the general approaches to studying integrins and integrin‐associated signalling pathways in cardiac hypertrophy focusing on the in vitro systems. The lessons learned from culture experiments on the models of hypertrophy induced by stretch, stimulating factors, and/or extracellular matrix components are summarized, demonstrating the major involvement of integrin‐mediated signalling in cardiac hypertrophic response and its apparent crosstalk with signal pathways induced by stretch or hypertrophy stimulating factors. The benefits and perspectives of using cardiomyocyte primary culture as a hypertrophy model are discussed.
Collapse
Affiliation(s)
- Natalya Bildyug
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, 194064, Russia
| |
Collapse
|
4
|
Hearst S, Bednářová A, Draughn B, Johnson K, Mills D, Thomas C, Scales J, Keenan ET, Welcher JV, Krishnan N. Expression of Drosophila Matrix Metalloproteinases in Cultured Cell Lines Alters Neural and Glial Cell Morphology. Front Cell Dev Biol 2021; 9:610887. [PMID: 34055768 PMCID: PMC8155609 DOI: 10.3389/fcell.2021.610887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 04/23/2021] [Indexed: 11/13/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are zinc- and calcium- dependent endopeptidases that play pivotal roles in many biological processes. The expression of several MMPs in the central nervous system (CNS) have been shown to change in response to injury and various neurological/neurodegenerative disorders. While extracellular MMPs degrade the extracellular matrix (ECM) and regulate cell surface receptor signaling, the intracellular functions of MMPs or their roles in CNS disorders is unclear. Around 23 different MMPs are found in the human genome with overlapping function, making analysis of the intracellular role of human MMPs a daunting task. However, the fruit fly Drosophila melanogaster genome encodes only two MMPs: dMMP1 and dMMP2. To better understand the intracellular role of MMPs in the CNS, we expressed Green Fluorescent Protein (GFP)- tagged dMMPs in SH-SY5Y neuroblastoma cells and C6 glioblastoma cell lines. Lipofection of GFP-dMMPs in SH-SY5Y cells enhanced nuclear rupture and reduced cell viability (coupled with increased apoptosis) as compared to GFP alone. In non-liposomal transfection experiments, dMMP1 localizes to both the cytoplasm and the nucleus whereas dMMP2 had predominantly cytoplasmic localization in both neural and glial cell lines. Cytoplasmic localization demonstrated co-localization of dMMPs with cytoskeleton proteins which suggests a possible role of dMMPs in cell morphology. This was further supported by transient dMMP expression experiments that showed that dMMPs significantly increased neurite formation and length in neuronal cell lines. Inhibition of endogenous MMPs decreased neurite formation, length and βIII Tubulin protein levels in differentiated SH-SY5Y cells. Further, transient expression experiments showed similar changes in glial cell morphology, wherein dMMP expression increased glial process formation and process length. Interestingly, C6 cells expressing dMMPs had a glia-like appearance, suggesting MMPs may be involved in intracellular glial differentiation. Inhibition or suppression of endogenous MMPs in C6 cells increased process formation, increased process length, modulated GFAP protein expression, and induced distinct glial-like phenotypes. Taken together, our results strongly support the intracellular role that dMMPs can play in apoptosis, cytoskeleton remodeling, and cell differentiation. Our studies further reinforce the use of Drosophila MMPs to dissect out the precise mechanisms whereby they exert their intracellular roles in CNS disorders.
Collapse
Affiliation(s)
- Scoty Hearst
- Department of Biology, Tougaloo College, Tougaloo, MS, United States.,Department of Chemistry and Biochemistry, Mississippi College, Clinton, MS, United States
| | - Andrea Bednářová
- Department of Biochemistry and Physiology, Institute of Entomology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia.,Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - Benjamin Draughn
- Department of Chemistry and Biochemistry, Mississippi College, Clinton, MS, United States
| | - Kennadi Johnson
- Department of Biology, Tougaloo College, Tougaloo, MS, United States
| | - Desiree Mills
- Department of Biology, Tougaloo College, Tougaloo, MS, United States
| | - Cendonia Thomas
- Department of Biology, Tougaloo College, Tougaloo, MS, United States
| | - Jendaya Scales
- Department of Biology, Tougaloo College, Tougaloo, MS, United States
| | - Eadie T Keenan
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - Jewellian V Welcher
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - Natraj Krishnan
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
| |
Collapse
|
5
|
Watson C, Spiers JP, Waterstone M, Russell-Hallinan A, Gallagher J, McDonald K, Ryan C, Gilmer J, Ledwidge M. Investigation of association of genetic variant rs3918242 of matrix metalloproteinase-9 with hypertension, myocardial infarction and progression of ventricular dysfunction in Irish Caucasian patients with diabetes: a report from the STOP-HF follow-up programme. BMC Cardiovasc Disord 2021; 21:87. [PMID: 33579197 PMCID: PMC7879511 DOI: 10.1186/s12872-021-01860-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/07/2021] [Indexed: 01/08/2023] Open
Abstract
Background Hypertension and/or myocardial infarction are common causes of heart failure in Type 2 diabetes. Progression to heart failure is usually preceded by ventricular dysfunction, linked to matrix metalloproteinase (MMP) mediated extracellular matrix changes. We hypothesise that the minor allele of genetic variant rs3918242 in the promoter region of the MMP-9 gene is associated with hypertension and/or myocardial infarction, with resultant progression of dysfunctional cardiac remodelling in patients with diabetes without symptomatic heart failure.
Methods We genotyped 498 diabetes patients participating in the St Vincent’s Screening TO Prevent Heart Failure (STOP-HF) follow-up programme for the rs3918242 single nucleotide polymorphism and investigated associations with the co-primary endpoints hypertension and/or myocardial infarction using a dominant model. We also evaluated resulting cardiometabolic phenotype and progression of ventricular dysfunction and cardiac structural abnormalities over a median follow-up period of 3.5 years. Results The CT/TT genotype comprised 28.1% of the cohort and was associated with a twofold higher risk of myocardial infarction (17.9% vs 8.4%), a reduction in ejection fraction and greater left ventricular systolic dysfunction progression [adjusted OR = 2.56 (1.09, 6.01), p = 0.026] over a median follow-up of 3.5 years [IQR 2.6, 4.9 years]. Conversely, rs3918242 was not associated with hypertension, blood pressure, pulse pressure or left ventricular mass index at baseline or over follow up. Conclusions Diabetes patients with the minor T allele of rs3918242 in the STOP-HF follow up programme have greater risk of myocardial infarction, lower ejection fraction and greater progression of left ventricular systolic abnormalities, a precursor to heart failure. These data may support further work on MMP-9 as a biomarker of ventricular dysfunction and the investigation of MMP-9 inhibitors for heart failure prevention in diabetes, particularly in the post-infarction setting. ClinicalTrials.gov Identifier: NCT00921960
Collapse
Affiliation(s)
- Chris Watson
- STOP-HF Unit, St. Vincent's University Healthcare Group, Dublin, Ireland.,Wellcome-Wolfson Institute for Experimental Medicine, Queen's University , Belfast, Northern Ireland.,School of Medicine, University College Dublin, Dublin, Ireland
| | - J Paul Spiers
- Department of Pharmacology and Therapeutics, Trinity College Dublin, Dublin, Ireland
| | - Max Waterstone
- Department of Pharmacology and Therapeutics, Trinity College Dublin, Dublin, Ireland
| | - Adam Russell-Hallinan
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University , Belfast, Northern Ireland
| | - Joseph Gallagher
- STOP-HF Unit, St. Vincent's University Healthcare Group, Dublin, Ireland.,School of Medicine, University College Dublin, Dublin, Ireland
| | - Kenneth McDonald
- STOP-HF Unit, St. Vincent's University Healthcare Group, Dublin, Ireland.,School of Medicine, University College Dublin, Dublin, Ireland
| | - Cristin Ryan
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin, Ireland
| | - John Gilmer
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin, Ireland
| | - Mark Ledwidge
- STOP-HF Unit, St. Vincent's University Healthcare Group, Dublin, Ireland. .,School of Medicine, University College Dublin, Dublin, Ireland.
| |
Collapse
|
6
|
Köse O, Kurt Bayrakdar S, Akyıldız K, Altın A, Arabacı T, Yemenoglu H, Zihni Korkmaz M, Köse TE, Türker Sener L, Mercantepe T, Tümkaya L, Yılmaz A. Melatonin ameliorates periodontitis-related inflammatory stress at cardiac left ventricular tissues in rats. J Periodontol 2020; 91:1486-1494. [PMID: 32279321 DOI: 10.1002/jper.19-0685] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/28/2020] [Accepted: 03/15/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND The aim of this experimental rat study was to investigate the potential inflammatory effects of periodontitis on cardiac left ventricular tissue and the therapeutic activity of melatonin on these effects. METHODS Twenty-four male Sprague-Dawley rats were randomly divided into three groups: control, experimental periodontitis (Ep), and Ep-melatonin (Ep-Mel). Experimental periodontitis was induced by placing and maintaining 3.0 silk ligatures at a peri marginal position on the left and right mandibular first molars for 5 weeks. Afterward, following the removal of ligatures, melatonin (10 mg/body weight) to Ep-Mel group, and vehicle (saline) to Ep and control groups were administered intraperitoneally for 14 days. On the first day of the eighth week, mandibular and cardiac left ventricular tissue samples were obtained following the euthanasia of the rats in all groups. Alveolar bone loss measurements were made on histological and microcomputed tomographic slices. Cardiac tissue levels of malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), matrix metalloproteinase-9 (MMP-9), and cardiac Troponin-T (cTnT) were evaluated by appropriate biochemical methods. RESULTS Measurements made on the histological and microcomputed tomographic slices showed that melatonin significantly limits the ligature-induced periodontal tissue destruction (P <0.01). In addition, melatonin was detected to cause a significant decrease of MDA, MMP-9, and cTnT levels which were found to be significantly higher on rats with Ep (P <0.05) while having no significant effect on antioxidant levels (GSH, SOD, and CAT) (P >0.05). CONCLUSION Melatonin might be regarded as an important supportive therapeutic agent to reduce the early degenerative changes and possible hypertrophic remodeling at cardiac left ventricular tissues provoked by periodontitis-related bacteria and/or periodontal inflammation.
Collapse
Affiliation(s)
- Oğuz Köse
- School of Dentistry, Department of Periodontology, Recep Tayyip Erdogan University, Rize, Turkey
| | - Sevda Kurt Bayrakdar
- School of Dentistry, Department of Periodontology, Eskişehir Osmangazi University, Eskisehir, Turkey
| | - Kerimali Akyıldız
- School of Healh Care Services Vocational, Department of Medical Services and Techniques, Recep Tayyip Erdogan University, Rize, Turkey
| | - Ahmet Altın
- School of Dentistry, Department of Periodontology, Recep Tayyip Erdogan University, Rize, Turkey
| | - Taner Arabacı
- School of Dentistry, Department of Periodontology, Ataturk University, Erzurum, Turkey
| | - Hatice Yemenoglu
- School of Dentistry, Department of Periodontology, Recep Tayyip Erdogan University, Rize, Turkey
| | - Meltem Zihni Korkmaz
- School of Dentistry, Department of Periodontology, Recep Tayyip Erdogan University, Rize, Turkey
| | - Taha Emre Köse
- School of Dentistry, Department of Dentomaxillofacial Radiology, Recep Tayyip Erdogan University, Rize, Turkey
| | - Leyla Türker Sener
- School of Medicine, Department of Biophysics, Istanbul University, Istanbul, Turkey
| | - Tolga Mercantepe
- School of Medicine, Department of Histology and Embryology, Recep Tayyip Erdogan University, Rize, Turkey
| | - Levent Tümkaya
- School of Medicine, Department of Histology and Embryology, Recep Tayyip Erdogan University, Rize, Turkey
| | - Adnan Yılmaz
- School of Medicine, Department of Biochemistry, Recep Tayyip Erdogan University, Rize, Turkey
| |
Collapse
|
7
|
Jensen L, Neri E, Bassaneze V, De Almeida Oliveira NC, Dariolli R, Turaça LT, Levy D, Veronez D, Ferraz MSA, Alencar AM, Bydlowski SP, Cestari IA, Krieger JE. Integrated molecular, biochemical, and physiological assessment unravels key extraction method mediated influences on rat neonatal cardiomyocytes. J Cell Physiol 2018; 233:5420-5430. [PMID: 29219187 DOI: 10.1002/jcp.26380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/04/2017] [Indexed: 12/29/2022]
Abstract
Neonatal cardiomyocytes are instrumental for disease modeling, but the effects of different cell extraction methods on basic cell biological processes remain poorly understood. We assessed the influence of two popular methods to extract rat neonatal cardiomyocytes, Pre-plating (PP), and Percoll (PC) on cell structure, metabolism, and function. Cardiomyocytes obtained from PP showed higher gene expression for troponins, titin, and potassium and sodium channels compared to PC. Also, PP cells displayed higher levels of troponin I protein. Cells obtained from PC displayed higher lactate dehydrogenase activity and lactate production than PP cells, indicating higher anaerobic metabolism after 8 days of culture. In contrast, reactive oxygen species levels were higher in PP cells as indicated by ethidium and hydroxyethidium production. Consistent with these data, protein nitration was higher in PP cells, as well as nitrite accumulation in cell medium. Moreover, PP cells showed higher global intracellular calcium under basal and 1 mM isoprenaline conditions. In a calcium-transient assessment under electrical stimulation (0.5 Hz), PP cells displayed higher calcium amplitude than cardiomyocytes obtained from PC and using a traction force microscope technique we observed that PP cardiomyocytes showed the highest relaxation. Collectively, we demonstrated that extraction methods influence parameters related to cell structure, metabolism, and function. Overall, PP derived cells are more active and mature than PC cells, displaying higher contractile function and generating more reactive oxygen species. On the other hand, PC derived cells display higher anaerobic metabolism, despite comparable high yields from both protocols.
Collapse
Affiliation(s)
- Leonardo Jensen
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Elida Neri
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Vinicius Bassaneze
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Nathalia C De Almeida Oliveira
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Rafael Dariolli
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Lauro T Turaça
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Débora Levy
- Laboratory of Genetics and Molecular Hematology/LIM 31, Clinics Hospital (HC), University of São Paulo Medical School, São Paulo, Brazil
| | - Douglas Veronez
- Bioengineering Division, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Mariana S A Ferraz
- Laboratory of Microrheology and Molecular Physiology, Institute of Physics, University of São Paulo, São Paulo, Brazil
| | - Adriano M Alencar
- Laboratory of Microrheology and Molecular Physiology, Institute of Physics, University of São Paulo, São Paulo, Brazil
| | - Sérgio P Bydlowski
- Laboratory of Genetics and Molecular Hematology/LIM 31, Clinics Hospital (HC), University of São Paulo Medical School, São Paulo, Brazil
| | - Idágene A Cestari
- Bioengineering Division, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - José Eduardo Krieger
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|
8
|
Bildyug N. Matrix metalloproteinases: an emerging role in regulation of actin microfilament system. Biomol Concepts 2017; 7:321-329. [PMID: 27763882 DOI: 10.1515/bmc-2016-0022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/20/2016] [Indexed: 12/13/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are implicated in many physiological and pathological processes, including contraction, migration, differentiation, and proliferation. These processes all involve cell phenotype changes, known to be accompanied by reorganization of actin cytoskeleton. Growing evidence indicates a correlation between MMP activity and the dynamics of actin system, suggesting their mutual regulation. Here, data on the influence of MMPs on the actin microfilament system, on the one hand, and the dependence of MMP expression and activation on the organization of actin structures, on the other hand, are reviewed. The different mechanisms of putative actin-MMP regulation are discussed.
Collapse
|
9
|
Meschiari CA, Ero OK, Pan H, Finkel T, Lindsey ML. The impact of aging on cardiac extracellular matrix. GeroScience 2017; 39:7-18. [PMID: 28299638 PMCID: PMC5352584 DOI: 10.1007/s11357-017-9959-9] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/05/2017] [Indexed: 12/24/2022] Open
Abstract
Age-related changes in cardiac homeostasis can be observed at the cellular, extracellular, and tissue levels. Progressive cardiomyocyte hypertrophy, inflammation, and the gradual development of cardiac fibrosis are hallmarks of cardiac aging. In the absence of a secondary insult such as hypertension, these changes are subtle and result in slight to moderate impaired myocardial function, particularly diastolic function. While collagen deposition and cross-linking increase during aging, extracellular matrix (ECM) degradation capacity also increases due to increased expression of matrix metalloproteinases (MMPs). Of the MMPs elevated with cardiac aging, MMP-9 has been extensively evaluated and its roles are reviewed here. In addition to proteolytic activity on ECM components, MMPs oversee cell signaling during the aging process by modulating cytokine, chemokine, growth factor, hormone, and angiogenic factor expression and activity. In association with elevated MMP-9, macrophage numbers increase in an age-dependent manner to regulate the ECM and angiogenic responses. Understanding the complexity of the molecular interactions between MMPs and the ECM in the context of aging may provide novel diagnostic indicators for the early detection of age-related fibrosis and cardiac dysfunction.
Collapse
Affiliation(s)
- Cesar A Meschiari
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State Street, Room G351-04, Jackson, MS, USA
| | - Osasere Kelvin Ero
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State Street, Room G351-04, Jackson, MS, USA
| | - Haihui Pan
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Toren Finkel
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Merry L Lindsey
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State Street, Room G351-04, Jackson, MS, USA.
- G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS, 39216-4505, USA.
| |
Collapse
|
10
|
Iyer RP, Jung M, Lindsey ML. MMP-9 signaling in the left ventricle following myocardial infarction. Am J Physiol Heart Circ Physiol 2016; 311:H190-8. [PMID: 27208160 PMCID: PMC4967202 DOI: 10.1152/ajpheart.00243.2016] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 05/17/2016] [Indexed: 12/11/2022]
Abstract
Following myocardial infarction (MI), the left ventricle (LV) undergoes a series of cardiac wound healing responses that involve both the stimulation of robust inflammation to clear necrotic myocytes and tissue debris and the induction of extracellular matrix (ECM) protein synthesis to generate an infarct scar. The collective changes in myocardial structure and function are termed LV remodeling, and matrix metalloproteinase-9 (MMP-9) is a key instigator of post-MI LV remodeling. Through direct molecular effects on ECM and inflammatory protein turnover as well as indirect effects on major cell types that coordinate cardiac wound healing, namely the infiltrating leukocytes and the cardiac fibroblasts, MMP-9 coordinates multiple aspects of LV remodeling. In this review, we will discuss recent research that has expanded our understanding of post-MI LV remodeling, including recent proteomic advances focused on the ECM compartment to provide novel functional and translational insights. This overview will summarize how our understanding of MMP-9 has evolved over the last decade and will provide insight into future directions that will drive our understanding of MMP-9-directed cardiac ECM turnover in the post-MI LV.
Collapse
Affiliation(s)
- Rugmani Padmanabhan Iyer
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Mira Jung
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Merry L Lindsey
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi; and Research Service, G. V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, Mississippi
| |
Collapse
|