1
|
Meng P, Zhu L, Guo J, Li Y, Wei Y, Sun J, Zhu J. Preparation of recombinant neuritin protein. Protein Expr Purif 2024; 223:106554. [PMID: 39002828 DOI: 10.1016/j.pep.2024.106554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Neuritin plays an important role in promoting nerve injury repair and maintaining synaptic plasticity, making it a potential therapeutic target for the treatment of nerve injury and neurodegenerative diseases. The present study aimed to obtain an active, unlabeled neuritin protein. Initially, a neuritin protein expression system with an enterokinase site was constructed in Escherichia coli. After optimizing induction conditions and screening for high expression, a neuritin recombinant protein with purity exceeding 85 % was obtained through Ni-affinity chromatography. Subsequently, unlabeled neuritin with a molecular weight of 11 kDa was obtained through the enzymatic cleavage of the His label using an enterokinase. Furthermore, a neuritin recombinant protein with purity exceeding 95 % was obtained using gel chromatography. Functional investigations revealed that neurite outgrowth of PC12 cells was stimulated by the isolated neuritin. This study establishes a method to obtain active and unlabeled neuritin protein, providing a foundation for subsequent research on its biological functions.
Collapse
Affiliation(s)
- Pingping Meng
- The Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Liyan Zhu
- The Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Jiatong Guo
- The Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Yuanyuan Li
- Shawan City People's Hospital, Shawan, Xinjiang, 832100, China
| | - Yu Wei
- The First Affiliated Hospital of Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Jiawei Sun
- The Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Jingling Zhu
- The Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China.
| |
Collapse
|
2
|
Prusty JS, Kumar A, Kumar A. Anti-fungal peptides: an emerging category with enthralling therapeutic prospects in the treatment of candidiasis. Crit Rev Microbiol 2024:1-37. [PMID: 39440616 DOI: 10.1080/1040841x.2024.2418125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
Candida infections, particularly invasive candidiasis, pose a serious global health threat. Candida albicans is the most prevalent species causing candidiasis, and resistance to key antifungal drugs, such as azoles, echinocandins, polyenes, and fluoropyrimidines, has emerged. This growing multidrug resistance (MDR) complicates treatment options, highlighting the need for novel therapeutic approaches. Antifungal peptides (AFPs) are gaining recognition for their potential as new antifungal agents due to their diverse structures and functions. These natural or recombinant peptides can effectively target fungal virulence and viability, making them promising candidates for future antifungal development. This review examines infections caused by Candida species, the limitations of current antifungal treatments, and the therapeutic potential of AFPs. It emphasizes the importance of identifying novel AFP targets and their production for advancing treatment strategies. By discussing the therapeutic development of AFPs, the review aims to draw researchers' attention to this promising field. The integration of knowledge about AFPs could pave the way for novel antifungal agents with broad-spectrum activity, reduced toxicity, targeted action, and mechanisms that limit resistance in pathogenic fungi, offering significant advancements in antifungal therapeutics.
Collapse
Affiliation(s)
- Jyoti Sankar Prusty
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, India
| | - Ashwini Kumar
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, India
| |
Collapse
|
3
|
Jiang R, Yuan S, Zhou Y, Wei Y, Li F, Wang M, Chen B, Yu H. Strategies to overcome the challenges of low or no expression of heterologous proteins in Escherichia coli. Biotechnol Adv 2024; 75:108417. [PMID: 39038691 DOI: 10.1016/j.biotechadv.2024.108417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
Protein expression is a critical process in diverse biological systems. For Escherichia coli, a widely employed microbial host in industrial catalysis and healthcare, researchers often face significant challenges in constructing recombinant expression systems. To maximize the potential of E. coli expression systems, it is essential to address problems regarding the low or absent production of certain target proteins. This article presents viable solutions to the main factors posing challenges to heterologous protein expression in E. coli, which includes protein toxicity, the intrinsic influence of gene sequences, and mRNA structure. These strategies include specialized approaches for managing toxic protein expression, addressing issues related to mRNA structure and codon bias, advanced codon optimization methodologies that consider multiple factors, and emerging optimization techniques facilitated by big data and machine learning.
Collapse
Affiliation(s)
- Ruizhao Jiang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Industrial Biocatalysis (Tsinghua University), the Ministry of Education, Beijing 100084, China
| | - Shuting Yuan
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Industrial Biocatalysis (Tsinghua University), the Ministry of Education, Beijing 100084, China
| | - Yilong Zhou
- Tanwei College, Tsinghua University, Beijing 100084, China
| | - Yuwen Wei
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Industrial Biocatalysis (Tsinghua University), the Ministry of Education, Beijing 100084, China
| | - Fulong Li
- Beijing Evolyzer Co.,Ltd., 100176, China
| | | | - Bo Chen
- Beijing Evolyzer Co.,Ltd., 100176, China
| | - Huimin Yu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Industrial Biocatalysis (Tsinghua University), the Ministry of Education, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
4
|
Jiao M, Shi X, Han Y, Xu R, Zhao S, Jia P, Zheng X, Li X, Xiao C. The screened compounds from Ligustri Lucidi Fructus using the immobilized calcium sensing receptor column exhibit osteogenic activity in vitro. J Pharm Biomed Anal 2024; 245:116192. [PMID: 38703747 DOI: 10.1016/j.jpba.2024.116192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/18/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Calcium sensing receptor (CaSR) has become the novel target of treating osteoporosis with herbal medicine Ligustri Lucidi Fructus (LLF), however, the bioactive compounds responsible for anti-osteoporosis are hard to clarify due to the complexity and diversity of chemical constituents in it. Herein, the immobilized CaSR column was packed with stationary phase materials, which were derived from integrating CLIP-tagged CaSR directly out of crude cell lysates onto the surface of silica gels (5.83 mg/g) in a site-specific covalent manner. The column had a great specificity of recognizing agonists and kept a good stability for at least 3 weeks. The two compounds from LLF extract were screened and identified as olenuezhenoside and ligustroflavone using the immobilized CaSR column in conjunction with mass spectrometry. Molecular docking predicted that both compounds were bound in venus flytrap (VFT) domain of CaSR by the formation of hydrogen bonds. Cellular results showed that both compounds exhibited the distinct osteogenic activity by enhancing the proliferation, differentiation and mineralization of osteoblastic cells. Our study demonstrated that, the immobilized protein column enables to screen the bioactive compounds rapidly from herbal extract, and the newly discovered natural product ligands towards CaSR, including olenuezhenoside and ligustroflavone, will be the candidates for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Meizhi Jiao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Xiangang Shi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Yaokun Han
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Ru Xu
- Xi'an International University, Xi'an 710077, PR China
| | - Shoucheng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Pu Jia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Xiaohui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Xia Li
- Shaanxi Institute for Food and Drug Control, Xi'an 710065, PR China
| | - Chaoni Xiao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, PR China.
| |
Collapse
|
5
|
Mišković MZ, Wojtyś M, Winiewska-Szajewska M, Wielgus-Kutrowska B, Matković M, Domazet Jurašin D, Štefanić Z, Bzowska A, Leščić Ašler I. Location Is Everything: Influence of His-Tag Fusion Site on Properties of Adenylosuccinate Synthetase from Helicobacter pylori. Int J Mol Sci 2024; 25:7613. [PMID: 39062851 PMCID: PMC11276676 DOI: 10.3390/ijms25147613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
The requirement for fast and dependable protein purification methods is constant, either for functional studies of natural proteins or for the production of biotechnological protein products. The original procedure has to be formulated for each individual protein, and this demanding task was significantly simplified by the introduction of affinity tags. Helicobacter pylori adenylosuccinate synthetase (AdSS) is present in solution in a dynamic equilibrium of monomers and biologically active homodimers. The addition of the His6-tag on the C-terminus (C-His-AdSS) was proven to have a negligible effect on the characteristics of this enzyme. This paper shows that the same enzyme with the His6-tag fused on its N-terminus (N-His-AdSS) has a high tendency to precipitate. Circular dichroism and X-ray diffraction studies do not detect any structural change that could explain this propensity. However, the dynamic light scattering, differential scanning fluorimetry, and analytical ultracentrifugation measurements indicate that the monomer of this construct is prone to aggregation, which shifts the equilibrium towards the insoluble precipitant. In agreement, enzyme kinetics measurements showed reduced enzyme activity, but preserved affinity for the substrates, in comparison with the wild-type and C-His-AdSS. The presented results reinforce the notion that testing the influence of the tag on protein properties should not be overlooked.
Collapse
Affiliation(s)
- Marija Zora Mišković
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia;
| | - Marta Wojtyś
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland; (M.W.); (M.W.-S.); (B.W.-K.)
| | - Maria Winiewska-Szajewska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland; (M.W.); (M.W.-S.); (B.W.-K.)
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Beata Wielgus-Kutrowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland; (M.W.); (M.W.-S.); (B.W.-K.)
| | - Marija Matković
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia;
| | - Darija Domazet Jurašin
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia; (D.D.J.); (Z.Š.)
| | - Zoran Štefanić
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia; (D.D.J.); (Z.Š.)
| | - Agnieszka Bzowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland; (M.W.); (M.W.-S.); (B.W.-K.)
| | - Ivana Leščić Ašler
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia; (D.D.J.); (Z.Š.)
| |
Collapse
|
6
|
Ngo HTT, Nguyen DH, You SH, Van Nguyen K, Kim SY, Hong Y, Min JJ. Reprogramming a Doxycycline-Inducible Gene Switch System for Bacteria-Mediated Cancer Therapy. Mol Imaging Biol 2024; 26:148-161. [PMID: 38017353 DOI: 10.1007/s11307-023-01879-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023]
Abstract
PURPOSE Attenuated Salmonella typhimurium is a potential biotherapeutic antitumor agent because it can colonize tumors and inhibit their growth. The present study aimed to develop a doxycycline (Doxy)-inducible gene switch system in attenuated S. typhimurium and assess its therapeutic efficacy in various tumor-bearing mice models. PROCEDURES A Doxy-inducible gene switch system comprising two plasmids was engineered to trigger the expression of cargo genes (Rluc8 and clyA). Attenuated S. typhimurium carrying Rluc8 were injected intravenously into BALB/c mice bearing CT26 tumors, and bioluminescence images were captured at specified intervals post-administration of doxycycline. The tumor-suppressive effects of bacteria carrying clyA were evaluated in BALB/c mice bearing CT26 tumors and in C57BL/6 mice bearing MC38 tumors. RESULTS Expression of the fimE gene, induced only in the presence of Doxy, triggered a unidirectional switch of the POXB20 promoter to induce expression of the cargo genes. The switch event was maintained over a long period of bacterial culture. After intravenous injection of transformed Salmonella into mice bearing CT26 tumors, the bacteria transformed with the Doxy-inducible gene switch system for Rluc8 targeted only tumor tissues and expressed the payloads 2 days after Doxy treatment. Notably, bacteria carrying the Doxy-inducible gene switch system for clyA effectively suppressed tumor growth and prolonged survival, even after just one Doxy induction. CONCLUSIONS These results suggest that attenuated S. typhimurium carrying this novel gene switch system elicited significant therapeutic effects through a single induction triggering and were a potential biotherapeutic agent for tumor therapy.
Collapse
Affiliation(s)
- Hien Thi-Thu Ngo
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
- Department of Molecular Medicine (BrainKorea21 Plus), Chonnam National University Graduate School, Gwangju, 61469, Republic of Korea
- Department of Biochemistry, Hanoi Medical University, No 1, Ton That Tung St., Dong Da, Hanoi, 100000, Vietnam
| | - Dinh-Huy Nguyen
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
- Department of Molecular Medicine (BrainKorea21 Plus), Chonnam National University Graduate School, Gwangju, 61469, Republic of Korea
| | - Sung-Hwan You
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
- CNCure Biotech, Hwasun, 58128, Republic of Korea
| | - Khuynh Van Nguyen
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
- Department of Molecular Medicine (BrainKorea21 Plus), Chonnam National University Graduate School, Gwangju, 61469, Republic of Korea
| | - So-Young Kim
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
- CNCure Biotech, Hwasun, 58128, Republic of Korea
| | - Yeongjin Hong
- CNCure Biotech, Hwasun, 58128, Republic of Korea.
- Department of Microbiology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea.
| | - Jung-Joon Min
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea.
- Department of Molecular Medicine (BrainKorea21 Plus), Chonnam National University Graduate School, Gwangju, 61469, Republic of Korea.
- CNCure Biotech, Hwasun, 58128, Republic of Korea.
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Gwangju, 61469, Republic of Korea.
| |
Collapse
|
7
|
Cheng P, Meng K, Shi X, Jiao M, Han Y, Li X, Liu P, Xiao C. Solid-phase extraction with the functionalization of calcium-sensing receptors onto magnetic microspheres as an affinity probe can capture ligands selectively from herbal extract. Mikrochim Acta 2023; 191:34. [PMID: 38108923 DOI: 10.1007/s00604-023-06092-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/06/2023] [Indexed: 12/19/2023]
Abstract
Magnetic solid phase extraction with the functionalization of protein onto micro- or nano-particles as a probe is favorable for the discovery of new drugs from complicated natural products. Herein, we aimed to develop a rapid method by immobilizing halogenated alkane dehalogenase (Halo)-tagged calcium-sensing receptor (CaSR) directly out of crude cell lysates onto the surface of magnetic microspheres (MM) with no need to purify protein. Thereby we achieved CaSR-functionalized MM for revealing adsorption characteristics of agonist neomycin and screening ligands from herbal medicine Radix Astragali (RA). About 43.87 mg CaSR could be immobilized per 1 g MM within 30 min, and the acquired CaSR-functionalized MM showed good stability and activity for 4 weeks. The maximum adsorption capacity of neomycin on CaSR-functionalized MM was determined as 4.70 × 10-4 ~ 3.96 × 10-4 mol/g within 277 ~ 310 K, and its adsorption isotherm characteristics described best by the Temkin model were further validated using isothermal titration calorimetry. It was inferred that CaSR's affinity for neomycin was driven by electrostatic forces in a spontaneous process when the system reached an equilibrium state. Moreover, the ligands from the RA extract were screened, three of which were assigned as astragaloside IV, ononin, and calycosin based on HPLC-MS. Our findings demonstrated that the functionalization of a receptor onto magnetic materials designed as an affinity probe has the capability to recognize its agonist and capture the ligands selectively from complex matrices like herbs.
Collapse
Affiliation(s)
- Peixuan Cheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, People's Republic of China
| | - Kaili Meng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, People's Republic of China
| | - Xiangang Shi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, People's Republic of China
| | - Meizhi Jiao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, People's Republic of China
| | - Yaokun Han
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, People's Republic of China
| | - Xia Li
- Shaanxi Institute for Food and Drug Control, Xi'an, 710065, People's Republic of China
| | - Pei Liu
- Shaanxi Institute for Food and Drug Control, Xi'an, 710065, People's Republic of China
| | - Chaoni Xiao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, People's Republic of China.
| |
Collapse
|
8
|
Li L, Li H, Tian Q, Ge B, Xu X, Chi Y, Zhao H, Liu Y, Jia N, Zhou T, Zhu Y, Zhou Y. Expression and purification of soluble recombinant β-lactamases using Escherichia coli as expression host and pET-28a as cloning vector. Microb Cell Fact 2022; 21:244. [PMID: 36419169 PMCID: PMC9686023 DOI: 10.1186/s12934-022-01972-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Background Due to its high expression capability, recombination of Escherichia coli and pET vector has become the bioengineering preferred expression system. Because β-lactamases mediate bacterial antimicrobial resistance, these enzymes have a substantial clinical impact. Using the E. coli expression system, several kinds of β-lactamases have been produced. However, previous studies have been focused on characterizing target β-lactamases, and the effects of cultivation and induction conditions on the expression efficiency of target enzymes were not addressed. Results Using pET-28a as the cloning vector and E. coli BL21(DE3) as the expression host, this study originally elucidated the effects of IPTG concentration, culture temperature, induction time, and restriction sites on recombinant β-lactamase expression. Moreover, the effects of the target protein length and the 6 × His-tag fusion position on enzyme purification were also explored, and consequently, this study yielded several important findings. (i) Only the signal peptide–detached recombinant β-lactamase could exist in a soluble form. (ii) Low-temperature induction was beneficial for soluble β-lactamase expression. (iii) The closer to the rbs the selected restriction site was, the more difficult it was to express soluble β-lactamase. (iv) The short-chain recombinant protein and the protein with His-tag fused at its C-terminus showed high affinity to the Ni2+ column. Conclusions Based on our findings, researchers can easily design an effective program for the high production of soluble recombinant β-lactamases to facilitate other related studies.
Collapse
Affiliation(s)
- Lele Li
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.,Department of Laboratory Medicine, The Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China
| | - Hui Li
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Qingwu Tian
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Xiaotong Xu
- Department of Pediatric Emergency, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Yuanyuan Chi
- Qingdao Women and Children's Hospital, Qingdao, 266034, Shandong, China
| | - Huaizhi Zhao
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Yanfei Liu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Nan Jia
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Tingting Zhou
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Yuanqi Zhu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Yusun Zhou
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
| |
Collapse
|
9
|
Zuma LK, Gasa NL, Makhoba XH, Pooe OJ. Protein PEGylation: Navigating Recombinant Protein Stability, Aggregation, and Bioactivity. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8929715. [PMID: 35924267 PMCID: PMC9343206 DOI: 10.1155/2022/8929715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/28/2022] [Accepted: 07/14/2022] [Indexed: 12/02/2022]
Abstract
Enzymes play a powerful role as catalysts with high specificity and activity under mild environmental conditions. Significant hurdles, such as reduced solubility, reduced shelf-life, aggregate formation, and toxicity, are still ongoing struggles that scientists come across when purifying recombinant proteins. Over the past three decades, PEGylation techniques have been utilized to significantly overcome low solubility; increased protein stability, shelf-life, and bioactivity; and prevented protein aggregate formation. This review seeks to highlight the impact of PEG-based formulations that are significantly utilized to obtain favourable protein physiochemical properties. The authors further discuss other techniques that can be employed such as coexpression studies and nanotechnology-based skills to obtaining favourable protein physiochemical properties.
Collapse
Affiliation(s)
- Lindiwe Khumbuzile Zuma
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Westville, 3629 KwaZulu-Natal, South Africa
| | - Nothando Lovedale Gasa
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Westville, 3629 KwaZulu-Natal, South Africa
| | - Xolani Henry Makhoba
- Department of Biochemistry and Microbiology, University of Fort Hare, Alice Campus, Alice, 5700 Eastern Cape, South Africa
| | - Ofentse Jacob Pooe
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Westville, 3629 KwaZulu-Natal, South Africa
| |
Collapse
|
10
|
Boyd RJ, Olson TL, Zook JD, Stein D, Aceves M, Lin WH, Craciunescu FM, Hansen DT, Anastasiadis PZ, Singharoy A, Fromme P. Characterization and computational simulation of human Syx, a RhoGEF implicated in glioblastoma. FASEB J 2022; 36:e22378. [PMID: 35639414 PMCID: PMC9262375 DOI: 10.1096/fj.202101808rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 12/04/2022]
Abstract
Structural discovery of guanine nucleotide exchange factor (GEF) protein complexes is likely to become increasingly relevant with the development of new therapeutics targeting small GTPases and development of new classes of small molecules that inhibit protein‐protein interactions. Syx (also known as PLEKHG5 in humans) is a RhoA GEF implicated in the pathology of glioblastoma (GBM). Here we investigated protein expression and purification of ten different human Syx constructs and performed biophysical characterizations and computational studies that provide insights into why expression of this protein was previously intractable. We show that human Syx can be expressed and isolated and Syx is folded as observed by circular dichroism (CD) spectroscopy and actively binds to RhoA as determined by co‐elution during size exclusion chromatography (SEC). This characterization may provide critical insights into the expression and purification of other recalcitrant members of the large class of oncogenic—Diffuse B‐cell lymphoma (Dbl) homology GEF proteins. In addition, we performed detailed homology modeling and molecular dynamics simulations on the surface of a physiologically realistic membrane. These simulations reveal novel insights into GEF activity and allosteric modulation by the plekstrin homology (PH) domain. These newly revealed interactions between the GEF PH domain and the membrane embedded region of RhoA support previously unexplained experimental findings regarding the allosteric effects of the PH domain from numerous activity studies of Dbl homology GEF proteins. This work establishes new hypotheses for structural interactivity and allosteric signal modulation in Dbl homology RhoGEFs.
Collapse
Affiliation(s)
- Ryan J Boyd
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona, USA
| | - Tien L Olson
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona, USA
| | - James D Zook
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona, USA
| | - Derek Stein
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona, USA
| | - Manuel Aceves
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona, USA
| | - Wan-Hsin Lin
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Felicia M Craciunescu
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona, USA
| | - Debra T Hansen
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona, USA.,Center for Innovations in Medicine, Arizona State University, Tempe, Arizona, USA
| | | | - Abhishek Singharoy
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona, USA
| | - Petra Fromme
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
11
|
Comparison of Periplasmic and Cytoplasmic Expression of Bovine Enterokinase Light Chain in E. coli. Protein J 2022; 41:157-165. [PMID: 35091895 DOI: 10.1007/s10930-021-10033-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2021] [Indexed: 10/19/2022]
Abstract
Enterokinase enzyme is widely used in production of recombinant proteins. This enzyme is isolated from the intestine and recognizes a specific cleavage site (X↓LYS-ASP4). Several studies have been performed to produce recombinant active enterokinase. In this study, the coding sequence of bovine enteropeptidase light chain (bEKL) was isolated from Iranian Sarabi cattle and its expression was investigated in the periplasm and cytoplasm of E. coli by two different expression vectors, pET22 and pET32RH. RNA was extracted from the duodenum part of cattle, cDNA was amplified, the enterokinase light chain coding fragment was cloned and the expression was examined by SDS-PAGE analysis. The higher amounts of soluble enterokinase as a fusion with thioredoxin (Trx) were detected in cytoplasmic expression. The functional enterokinase was purified with a yield of 45 mg per litter by two-steps Ni2+ affinity chromatography. The effective activity of the enzyme implies that it can be produced in large scale for biotechnological applications.
Collapse
|
12
|
Improved yield, stability, and cleavage reaction of a novel tobacco etch virus protease mutant. Appl Microbiol Biotechnol 2022; 106:1475-1492. [DOI: 10.1007/s00253-022-11786-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 11/02/2022]
|
13
|
Ortega C, Oppezzo P, Correa A. Overcoming the Solubility Problem in E. coli: Available Approaches for Recombinant Protein Production. Methods Mol Biol 2022; 2406:35-64. [PMID: 35089549 DOI: 10.1007/978-1-0716-1859-2_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Despite the importance of recombinant protein production in the academy and industrial fields, many issues concerning the expression of soluble and homogeneous products are still unsolved. Several strategies were developed to overcome these obstacles; however, at present, there is no magic bullet that can be applied for all cases. Indeed, several key expression parameters need to be evaluated for each protein. Among the different hosts for protein expression, Escherichia coli is by far the most widely used. In this chapter, we review many of the different tools employed to circumvent protein insolubility problems.
Collapse
Affiliation(s)
- Claudia Ortega
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Pablo Oppezzo
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Agustín Correa
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay.
| |
Collapse
|
14
|
Abstract
Biochemical analysis is crucial for determining protein functionality changes during various conditions, including oxidative stress conditions. In this chapter, after giving brief guidelines for experimental design, we provide step-by-step instructions to purify recombinant plant proteins from E. coli, to prepare reduced and oxidized proteins for activity assay, and to characterize the protein under reducing and oxidizing conditions, with a focus on thiol-based oxidative modifications, like S-sulfenylation and disulfide formations.
Collapse
Affiliation(s)
- Zeya Chen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Jingjing Huang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- Center for Plant Systems Biology, VIB, Ghent, Belgium.
| |
Collapse
|
15
|
Xu T, Li M, Wang C, Yuan M, Chang X, Qian Z, Li B, Sun M, Wang H. Codon Optimization, Soluble Expression and Purification of PE_PGRS45 Gene from Mycobacterium tuberculosis and Preparation of Its Polyclonal Antibody Protein. J Microbiol Biotechnol 2021; 31:1583-1590. [PMID: 34489370 PMCID: PMC9705950 DOI: 10.4014/jmb.2106.06006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022]
Abstract
Studies have demonstrated that PE_PGRS45 is constitutively expressed under various environmental conditions (such as nutrient depletion, hypoxia, and low pH) of the in vitro growth conditions examined, indicating that PE_PGRS45 protein is critical to the basic functions of Mycobacterium tuberculosis. However, there are few reports about the biochemical function and pathogenic mechanism of PE_PGRS45 protein. The fact that this M. tuberculosis gene is not easily expressed in E. coli may be mainly due to the high content of G+C and the use of unique codons. Fusion tags are indispensable tools used to improve the soluble expression of recombinant proteins and accelerate the characterization of protein structure and function. In the present study, His6, Trx, and His6-MBP were used as fusion tags, but only MBP-PE_PGRS45 was expressed solubly. The purification using His6-MBP tag-specific binding to the Ni column was easy to separate after the tag cleavage. We used the purified PE_PGRS45 to immunize New Zealand rabbits and obtained anti- PE_PGRS45 serum. We found that the titer of polyclonal antibodies against PE_PGR45 was higher than 1:256000. The result shows that purified PE_PGRS45 can induce New Zealand rabbits to produce high-titer antibodies. In conclusion, the recombinant protein PE_PGRS45 was successfully expressed in E. coli and specific antiserum was prepared, which will be followed by further evaluation of these specific antigens to develop highly sensitive and specific diagnostic tests for tuberculosis.
Collapse
Affiliation(s)
- Tao Xu
- Department of Clinical Laboratory, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Anhui Key Laboratory of Infection and Immunity, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Minying Li
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Anhui Key Laboratory of Infection and Immunity, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Chutong Wang
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Anhui Key Laboratory of Infection and Immunity, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Meili Yuan
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Anhui Key Laboratory of Infection and Immunity, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Xianyou Chang
- The Infectious Disease Hospital of Bengbu City, Bengbu, Anhui 233000, P.R. China
| | - Zhongqing Qian
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Anhui Key Laboratory of Infection and Immunity, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Baiqing Li
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Anhui Key Laboratory of Infection and Immunity, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Meiqun Sun
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Anhui Key Laboratory of Infection and Immunity, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China,Department of Histology and Embryology, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Hongtao Wang
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Anhui Key Laboratory of Infection and Immunity, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China,Corresponding author Phone: +86-0552-3171086 Fax: +86-0552-3171086 E-mail:
| |
Collapse
|
16
|
Cheng J, Ahmat M, Guo H, Wei X, Zhang L, Cheng Q, Zhang J, Wang J, Si D, Zhang Y, Zhang R. Expression, Purification and Characterization of a Novel Hybrid Peptide CLP with Excellent Antibacterial Activity. Molecules 2021; 26:7142. [PMID: 34885732 PMCID: PMC8659006 DOI: 10.3390/molecules26237142] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 01/10/2023] Open
Abstract
CLP is a novel hybrid peptide derived from CM4, LL37 and TP5, with significantly reduced hemolytic activity and increased antibacterial activity than parental antimicrobial peptides. To avoid host toxicity and obtain high-level bio-production of CLP, we established a His-tagged SUMO fusion expression system in Escherichia coli. The fusion protein can be purified using a Nickel column, cleaved by TEV protease, and further purified in flow-through of the Nickel column. As a result, the recombinant CLP with a yield of 27.56 mg/L and a purity of 93.6% was obtained. The purified CLP exhibits potent antimicrobial activity against gram+ and gram- bacteria. Furthermore, the result of propidium iodide staining and scanning electron microscopy (SEM) showed that CLP can induce the membrane permeabilization and cell death of Enterotoxigenic Escherichia coli (ETEC) K88. The analysis of thermal stability results showed that the antibacterial activity of CLP decreases slightly below 70 °C for 30 min. However, when the temperature was above 70 °C, the antibacterial activity was significantly decreased. In addition, the antibacterial activity of CLP was stable in the pH range from 4.0 to 9.0; however, when pH was below 4.0 and over 9.0, the activity of CLP decreased significantly. In the presence of various proteases, such as pepsin, papain, trypsin and proteinase K, the antibacterial activity of CLP remained above 46.2%. In summary, this study not only provides an effective strategy for high-level production of antimicrobial peptides and evaluates the interference factors that affect the biological activity of hybrid peptide CLP, but also paves the way for further exploration of the treatment of multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yueping Zhang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (J.C.); (M.A.); (H.G.); (X.W.); (L.Z.); (Q.C.); (J.Z.); (J.W.); (D.S.)
| | - Rijun Zhang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (J.C.); (M.A.); (H.G.); (X.W.); (L.Z.); (Q.C.); (J.Z.); (J.W.); (D.S.)
| |
Collapse
|
17
|
Cong M, Tavakolpour S, Berland L, Glöckner H, Andreiuk B, Rakhshandehroo T, Uslu S, Mishra S, Clark L, Rashidian M. Direct N- or C-Terminal Protein Labeling Via a Sortase-Mediated Swapping Approach. Bioconjug Chem 2021; 32:2397-2406. [PMID: 34748323 PMCID: PMC9595177 DOI: 10.1021/acs.bioconjchem.1c00442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Site-specific protein labeling is important in biomedical research and biotechnology. While many methods allow site-specific protein modification, a straightforward approach for efficient N-terminal protein labeling is not available. We introduce a novel sortase-mediated swapping approach for a one-step site-specific N-terminal labeling with a near-quantitative yield. We show that this method allows rapid and efficient cleavage and simultaneous labeling of the N or C termini of fusion proteins. The method does not require any prior modification beyond the genetic incorporation of the sortase recognition motif. This new approach provides flexibility for protein engineering and site-specific protein modifications.
Collapse
Affiliation(s)
- Min Cong
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Soheil Tavakolpour
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Lea Berland
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Université Côte d'Azur, CNRS, INSERM, IRCAN, 06100 Nice, France
| | - Hannah Glöckner
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Bohdan Andreiuk
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Taha Rakhshandehroo
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Safak Uslu
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Medical Scientist Training Program, Hacettepe University Faculty of Medicine, Ankara, 06230, Turkey
| | - Shruti Mishra
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Louise Clark
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Mohammad Rashidian
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, United States
| |
Collapse
|
18
|
Mital S, Christie G, Dikicioglu D. Recombinant expression of insoluble enzymes in Escherichia coli: a systematic review of experimental design and its manufacturing implications. Microb Cell Fact 2021; 20:208. [PMID: 34717620 PMCID: PMC8557517 DOI: 10.1186/s12934-021-01698-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/22/2021] [Indexed: 02/06/2023] Open
Abstract
Recombinant enzyme expression in Escherichia coli is one of the most popular methods to produce bulk concentrations of protein product. However, this method is often limited by the inadvertent formation of inclusion bodies. Our analysis systematically reviews literature from 2010 to 2021 and details the methods and strategies researchers have utilized for expression of difficult to express (DtE), industrially relevant recombinant enzymes in E. coli expression strains. Our review identifies an absence of a coherent strategy with disparate practices being used to promote solubility. We discuss the potential to approach recombinant expression systematically, with the aid of modern bioinformatics, modelling, and ‘omics’ based systems-level analysis techniques to provide a structured, holistic approach. Our analysis also identifies potential gaps in the methods used to report metadata in publications and the impact on the reproducibility and growth of the research in this field.
Collapse
Affiliation(s)
- Suraj Mital
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Graham Christie
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Duygu Dikicioglu
- Department of Biochemical Engineering, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
19
|
Rauwolf S, Steegmüller T, Schwaminger SP, Berensmeier S. Purification of a peptide tagged protein via an affinity chromatographic process with underivatized silica. Eng Life Sci 2021; 21:549-557. [PMID: 34690628 PMCID: PMC8518568 DOI: 10.1002/elsc.202100019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/06/2021] [Accepted: 05/25/2021] [Indexed: 11/11/2022] Open
Abstract
Silica is widely used for chromatography resins due to its high mechanical strength, column efficiency, easy manufacturing (i.e. controlled size and porosity), and low-cost. Despite these positive attributes to silica, it is currently used as a backbone for chromatographic resins in biotechnological downstream processing. The aim of this study is to show how the octapeptide (RH)4 can be used as peptide tag for high-purity protein purification on bare silica. The tag possesses a high affinity to deprotonated silanol groups because the tag's arginine groups interact with the surface via an ion pairing mechanism. A chromatographic workflow to purify GFP fused with (RH)4 could be implemented. Purities were determined by SDS-PAGE and RP-HPLC. The equilibrium binding capacity of the fusion protein GFP-(RH)4 on silica is 450 mg/g and the dynamic binding capacity around 3 mg/mL. One-step purification from clarified lysate achieved a purity of 93% and a recovery of 94%. Overloading the column enhances the purity to >95%. Static experiments with different buffers showed variability of the method making the system independent from buffer choice. Our designed peptide tag allows bare silica to be utilized in preparative chromatography for downstream bioprocessing; thus, providing a cost saving factor regarding expensive surface functionalization. Underivatized silica in combination with our (RH)4 peptide tag allows the purification of proteins, in all scales, without relying on complex resins.
Collapse
Affiliation(s)
- Stefan Rauwolf
- Department of Mechanical EngineeringTechnical University of MunichMunichGermany
| | - Tobias Steegmüller
- Department of Mechanical EngineeringTechnical University of MunichMunichGermany
| | | | - Sonja Berensmeier
- Department of Mechanical EngineeringTechnical University of MunichMunichGermany
| |
Collapse
|
20
|
An JU, Kim SE, Oh DK. Molecular insights into lipoxygenases for biocatalytic synthesis of diverse lipid mediators. Prog Lipid Res 2021; 83:101110. [PMID: 34144023 DOI: 10.1016/j.plipres.2021.101110] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 12/31/2022]
Abstract
Oxylipins derived mainly from C20- and C22-polyunsaturated fatty acids (PUFAs), termed lipid mediators (LMs), are essential signalling messengers involved in human physiological responses associated with homeostasis and healing process for infection and inflammation. Some LMs involved in the resolution of inflammation and infection are termed specialized pro-resolving mediators (SPMs), which are generated by human M2 macrophages or polymorphonuclear leukocytes and have the potential to protect and treat hosts from bacterial and viral infections by phagocytosis activation. Lipoxygenases (LOXs) biosynthesize regio- and stereoselective LMs. Thus, understanding the regio- and stereoselectivities of LOXs for PUFAs at a molecular level is important for the biocatalytic synthesis of diverse LMs. Here, we elucidate the catalytic mechanisms and discuss regio- and stereoselectivities and their changes of LOXs determined by insertion direction and position of the substrate and oxygen at a molecular level for the biosynthesis of diverse human LMs. Recently, the biocatalytic synthesis of PUFAs to human LMs or analogues has been conducted using microbial LOXs. Such microbial LOXs involved in the biosynthesis of LMs are expected to exert significantly higher activity and stability than human LOXs. Diverse regio- and stereoselective LOXs can be obtained from microorganisms, which represent a wealth of genomic sources. We reconstruct the biosynthetic pathways of LOX-catalyzed LMs in humans and other organisms. Furthermore, we suggest the effective methods of biocatalytic synthesis of diverse human LMs from PUFAs or glucose by using microbial LOXs, increasing the stability and activity of LOXs, combining the reactions of LOXs, and constructing metabolic pathways.
Collapse
Affiliation(s)
- Jung-Ung An
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Seong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
21
|
Active Human and Murine Tumor Necrosis Factor α Cytokines Produced from Silkworm Baculovirus Expression System. INSECTS 2021; 12:insects12060517. [PMID: 34199525 PMCID: PMC8230043 DOI: 10.3390/insects12060517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/14/2022]
Abstract
The tumor necrosis factor α (TNFα) has been employed as a promising reagent in treating autoimmunity and cancer diseases. To meet the substantial requirement of TNFα proteins, we report in this study that mature types of recombinant human and murine TNFα proteins are successfully expressed in the baculovirus expression system using silkworm larvae as hosts. The biological activities of purified products were verified in culture murine L929 cells, showing better performance over a commercial Escherichia coli-derived murine TNFα. By comparing the activity of purified TNFα with or without the tag removal, it is also concluded that the overall activity of purified TNFα cytokines could be further improved by the complete removal of C-terminal fusion tags. Collectively, our current attempt demonstrates an alternative platform for supplying high-quality TNFα products with excellent activities for further pharmaceutical and clinical trials.
Collapse
|
22
|
Fatima K, Naqvi F, Younas H. A Review: Molecular Chaperone-mediated Folding, Unfolding and Disaggregation of Expressed Recombinant Proteins. Cell Biochem Biophys 2021; 79:153-174. [PMID: 33634426 DOI: 10.1007/s12013-021-00970-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/01/2021] [Indexed: 12/26/2022]
Abstract
The advancements in biotechnology over time have led to an increase in the demand of pure, soluble and functionally active proteins. Recombinant protein production has thus been employed to obtain high expression of purified proteins in bulk. E. coli is considered as the most desirable host for recombinant protein production due to its inexpensive and fast cultivation, simple nutritional requirements and known genetics. Despite all these benefits, recombinant protein production often comes with drawbacks, such as, the most common being the formation of inclusion bodies due to improper protein folding. Consequently, this can lead to the loss of the structure-function relationship of a protein. Apart from various strategies, one major strategy to resolve this issue is the use of molecular chaperones that act as folding modulators for proteins. Molecular chaperones assist newly synthesized, aggregated or misfolded proteins to fold into their native conformations. Chaperones have been widely used to improve the expression of various proteins which are otherwise difficult to produce in E. coli. Here, we discuss the structure, function, and role of major E. coli molecular chaperones in recombinant technology such as trigger factor, GroEL, DnaK and ClpB.
Collapse
Affiliation(s)
- Komal Fatima
- Department of Biochemistry, Kinnaird College for Women, Lahore, Punjab, Pakistan
| | - Fatima Naqvi
- Department of Biochemistry, Kinnaird College for Women, Lahore, Punjab, Pakistan
| | - Hooria Younas
- Department of Biochemistry, Kinnaird College for Women, Lahore, Punjab, Pakistan.
| |
Collapse
|
23
|
Gravdal A, Xiao X, Cnop M, El Jellas K, Johansson S, Njølstad PR, Lowe ME, Johansson BB, Molven A, Fjeld K. The position of single-base deletions in the VNTR sequence of the carboxyl ester lipase (CEL) gene determines proteotoxicity. J Biol Chem 2021; 296:100661. [PMID: 33862081 PMCID: PMC8692231 DOI: 10.1016/j.jbc.2021.100661] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023] Open
Abstract
Variable number of tandem repeat (VNTR) sequences in the genome can have functional consequences that contribute to human disease. This is the case for the CEL gene, which is specifically expressed in pancreatic acinar cells and encodes the digestive enzyme carboxyl ester lipase. Rare single-base deletions (DELs) within the first (DEL1) or fourth (DEL4) VNTR segment of CEL cause maturity-onset diabetes of the young, type 8 (MODY8), an inherited disorder characterized by exocrine pancreatic dysfunction and diabetes. Studies on the DEL1 variant have suggested that MODY8 is initiated by CEL protein misfolding and aggregation. However, it is unclear how the position of single-base deletions within the CEL VNTR affects pathogenic properties of the protein. Here, we investigated four naturally occurring CEL variants, arising from single-base deletions in different VNTR segments (DEL1, DEL4, DEL9, and DEL13). When the four variants were expressed in human embryonic kidney 293 cells, only DEL1 and DEL4 led to significantly reduced secretion, increased intracellular aggregation, and increased endoplasmic reticulum stress compared with normal CEL protein. The level of O-glycosylation was affected in all DEL variants. Moreover, all variants had enzymatic activity comparable with that of normal CEL. We conclude that the longest aberrant protein tails, resulting from single-base deletions in the proximal VNTR segments, have highest pathogenic potential, explaining why DEL1 and DEL4 but not DEL9 and DEL13 have been observed in patients with MODY8. These findings further support the view that CEL mutations cause pancreatic disease through protein misfolding and proteotoxicity, leading to endoplasmic reticulum stress and activation of the unfolded protein response.
Collapse
Affiliation(s)
- Anny Gravdal
- The Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway; Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Xunjun Xiao
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Washington University School of Medicine, St Louis, Missouri, USA
| | - Miriam Cnop
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium; Division of Endocrinology, ULB Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Khadija El Jellas
- The Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway; Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Stefan Johansson
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Pål R Njølstad
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Pediatrics and Adolescent Medicine, Haukeland University Hospital, Bergen, Norway
| | - Mark E Lowe
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Washington University School of Medicine, St Louis, Missouri, USA
| | - Bente B Johansson
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Pediatrics and Adolescent Medicine, Haukeland University Hospital, Bergen, Norway
| | - Anders Molven
- The Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway; Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Pathology, Haukeland University Hospital, Bergen, Norway.
| | - Karianne Fjeld
- The Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway; Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
24
|
Schmidt TGM, Eichinger A, Schneider M, Bonet L, Carl U, Karthaus D, Theobald I, Skerra A. The Role of Changing Loop Conformations in Streptavidin Versions Engineered for High-affinity Binding of the Strep-tag II Peptide. J Mol Biol 2021; 433:166893. [PMID: 33639211 DOI: 10.1016/j.jmb.2021.166893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/25/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023]
Abstract
The affinity system based on the artificial peptide ligand Strep-tag® II and engineered tetrameric streptavidin, known as Strep-Tactin®, offers attractive applications for the study of recombinant proteins, from detection and purification to functional immobilization. To further improve binding of the Strep-tag II to streptavidin we have subjected two protruding loops that shape its ligand pocket for the peptide - instead of D-biotin recognized by the natural protein - to iterative random mutagenesis. Sequence analyses of hits from functional screening assays revealed several unexpected structural motifs, such as a disulfide bridge at the base of one loop, replacement of the crucial residue Trp120 by Gly and a two-residue deletion in the second loop. The mutant m1-9 (dubbed Strep-Tactin XT) showed strongly enhanced affinity towards the Strep-tag II, which was further boosted in case of the bivalent Twin-Strep-tag®. Four representative streptavidin mutants were crystallized in complex with the Strep-tag II peptide and their X-ray structures were solved at high resolutions. In addition, the crystal structure of the complex between Strep-Tactin XT and the Twin-Strep-tag was elucidated, indicating a bivalent mode of binding and explaining the experimentally observed avidity effect. Our study illustrates the structural plasticity of streptavidin as a scaffold for ligand binding and reveals interaction modes that would have been difficult to predict. As result, Strep-Tactin XT offers a convenient reagent for the kinetically stable immobilization of recombinant proteins fused with the Twin-Strep-tag. The possibility of reversibly dissociating such complexes simply with D-biotin as a competing ligand enables functional studies in protein science as well as cell biology.
Collapse
Affiliation(s)
| | - Andreas Eichinger
- Lehrstuhl für Biologische Chemie, Technische Universität München, 85354 Freising, Germany
| | - Markus Schneider
- Lehrstuhl für Biologische Chemie, Technische Universität München, 85354 Freising, Germany
| | - Lidia Bonet
- IBA GmbH, Rudolf-Wissell-Str. 28, 37079 Göttingen, Germany
| | - Uwe Carl
- IBA GmbH, Rudolf-Wissell-Str. 28, 37079 Göttingen, Germany
| | | | - Ina Theobald
- Lehrstuhl für Biologische Chemie, Technische Universität München, 85354 Freising, Germany
| | - Arne Skerra
- Lehrstuhl für Biologische Chemie, Technische Universität München, 85354 Freising, Germany.
| |
Collapse
|
25
|
Henke NA, Krahn I, Wendisch VF. Improved Plasmid-Based Inducible and Constitutive Gene Expression in Corynebacterium glutamicum. Microorganisms 2021; 9:204. [PMID: 33478126 PMCID: PMC7835838 DOI: 10.3390/microorganisms9010204] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 01/18/2023] Open
Abstract
Corynebacterium glutamicum has been safely used in white biotechnology for the last 60 years and the portfolio of new pathways and products is increasing rapidly. Hence, expression vectors play a central role in discovering endogenous gene functions and in establishing heterologous gene expression. In this work, new expression vectors were designed based on two strategies: (i) a library screening of constitutive native and synthetic promoters and (ii) an increase of the plasmid copy number. Both strategies were combined and resulted in a very strong expression and overproduction of the fluorescence protein GfpUV. As a second test case, the improved vector for constitutive expression was used to overexpress the endogenous xylulokinase gene xylB in a synthetic operon with xylose isomerase gene xylA from Xanthomonas campestris. The xylose isomerase activity in crude extracts was increased by about three-fold as compared to that of the parental vector. In terms of application, the improved vector for constitutive xylA and xylB expression was used for production of the N-methylated amino acid sarcosine from monomethylamine, acetate, and xylose. As a consequence, the volumetric productivity of sarcosine production was 50% higher as compared to that of the strain carrying the parental vector.
Collapse
Affiliation(s)
| | | | - Volker F. Wendisch
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, 33615 Bielefeld, Germany; (N.A.H.); (I.K.)
| |
Collapse
|
26
|
Eche S, Gordon ML. Recombinant expression of HIV-1 protease using soluble fusion tags in Escherichia coli: A vital tool for functional characterization of HIV-1 protease. Virus Res 2021; 295:198289. [PMID: 33418026 DOI: 10.1016/j.virusres.2020.198289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 10/22/2022]
Abstract
HIV-1 protease expression in the laboratory is demanding because of its high cytotoxicity, making it difficult to express in bacterial expression systems such as Escherichia coli. To overcome these challenges, HIV-1 protease fusion with solubility enhancing tags helps to mitigate its cytotoxic effect and drive its expression as a soluble protein. Therefore, this review focuses on the expression of bioactive HIV-1 protease using solubility-enhancing fusion tags in Escherichia coli and summarises the characteristic features of the different common fusion tags that have been used in the expression of HIV-1 protease. This review will assist researchers with their choice of protein fusion tag for HIV-1 protease expression.
Collapse
Affiliation(s)
- Simeon Eche
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa.
| | - Michelle L Gordon
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa.
| |
Collapse
|
27
|
Liu W, Wang L, Zhang J, Qiao L, Liu Y, Yang X, Zhang J, Zheng W, Ma Z. Purification of recombinant human chemokine CCL2 in E. coli and its function in ovarian cancer. 3 Biotech 2021; 11:8. [PMID: 33442507 DOI: 10.1007/s13205-020-02571-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/27/2020] [Indexed: 10/22/2022] Open
Abstract
Chemokine (CC-motif) ligand 2 (CCL2) is an inflammatory cytokine that regulates the infiltration and migration of monocytes. It is highly expressed by both tumor and stromal cells and has been associated with tumorigenesis. However, the effect of the exogenous administration of CCL2 on ovarian cancer remains largely unknown. In this report, we attempted to establish an expression system in Escherichia coli to produce recombinant hCCL2. The recombinant plasmid containing the hCCL2 cDNA was prepared using the prokaryotic-expression plasmid pGEX-5X-3 and transformed into E. coli BL21. GST-hCCL2 was successfully induced by 0.1 mmol/L IPTG at 20 °C for 6 h, and the recombinant protein was purified using affinity chromatography. The purified protein was identified by SDS-PAGE and Western Blot. In vitro experiments revealed that rhCCL2 promoted the proliferation of ovarian cancer cells and increased the levels of phosphorylation of MEK and ERK1/2, and the levels of JUN, RELB and NF-κB2 mRNA. Furthermore, inhibition of ERK signaling by treatment with PD98059 decreased ovarian cancer cell proliferation and levels of JUN, RELB, and NF-κB2 mRNA, indicating that exogenous rhCCL2 increased the proliferation of ovarian cancer cells, partially by activating the MAPK/ERK pathway, and by targeting JUN, RELB, and NF-κB2. Our study uncovered a promoting role of exogenous CCL2 on ovarian cancer cell proliferation through the MAPK/ERK signaling pathway, which may facilitate the discovery of more potential roles of CCL2 in ovarian cancer. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-020-02571-0.
Collapse
|
28
|
Nowrouzi B, Li RA, Walls LE, d'Espaux L, Malcı K, Liang L, Jonguitud-Borrego N, Lerma-Escalera AI, Morones-Ramirez JR, Keasling JD, Rios-Solis L. Enhanced production of taxadiene in Saccharomyces cerevisiae. Microb Cell Fact 2020; 19:200. [PMID: 33138820 PMCID: PMC7607689 DOI: 10.1186/s12934-020-01458-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/17/2020] [Indexed: 12/30/2022] Open
Abstract
Background Cost-effective production of the highly effective anti-cancer drug, paclitaxel (Taxol®), remains limited despite growing global demands. Low yields of the critical taxadiene precursor remains a key bottleneck in microbial production. In this study, the key challenge of poor taxadiene synthase (TASY) solubility in S. cerevisiae was revealed, and the strains were strategically engineered to relieve this bottleneck. Results Multi-copy chromosomal integration of TASY harbouring a selection of fusion solubility tags improved taxadiene titres 22-fold, up to 57 ± 3 mg/L at 30 °C at microscale, compared to expressing a single episomal copy of TASY. The scalability of the process was highlighted through achieving similar titres during scale up to 25 mL and 250 mL in shake flask and bioreactor cultivations, respectively at 20 and 30 °C. Maximum taxadiene titres of 129 ± 15 mg/L and 127 mg/L were achieved through shake flask and bioreactor cultivations, respectively, of the optimal strain at a reduced temperature of 20 °C. Conclusions The results of this study highlight the benefit of employing a combination of molecular biology and bioprocess tools during synthetic pathway development, with which TASY activity was successfully improved by 6.5-fold compared to the highest literature titre in S. cerevisiae cell factories.
Collapse
Affiliation(s)
- Behnaz Nowrouzi
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom.,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, EH9 3BD, United Kingdom
| | - Rachel A Li
- DOE Joint BioEnergy Institute, Emeryville, CA, 94608, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Laura E Walls
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom.,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, EH9 3BD, United Kingdom
| | - Leo d'Espaux
- DOE Joint BioEnergy Institute, Emeryville, CA, 94608, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Koray Malcı
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom.,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, EH9 3BD, United Kingdom
| | - Lungang Liang
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom.,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, EH9 3BD, United Kingdom
| | - Nestor Jonguitud-Borrego
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom.,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, EH9 3BD, United Kingdom
| | - Albert I Lerma-Escalera
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Apodaca, Mexico
| | - Jose R Morones-Ramirez
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Apodaca, Mexico
| | - Jay D Keasling
- DOE Joint BioEnergy Institute, Emeryville, CA, 94608, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Departments of Chemical & Biomolecular Engineering and of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA.,Center for Biosustainability, Danish Technical University, Lyngby, Denmark.,Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institutes for Advanced Technologies, Shenzhen, China
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom. .,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, EH9 3BD, United Kingdom.
| |
Collapse
|
29
|
López-Laguna H, Sánchez J, Unzueta U, Mangues R, Vázquez E, Villaverde A. Divalent Cations: A Molecular Glue for Protein Materials. Trends Biochem Sci 2020; 45:992-1003. [PMID: 32891514 DOI: 10.1016/j.tibs.2020.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023]
Abstract
Among inorganic materials, divalent cations modulate thousands of physiological processes that support life. Their roles in protein assembly and aggregation are less known, although they are progressively being brought to light. We review the structural roles of divalent cations here, as well as the novel protein materials that are under development, in which they are used as glue-like agents. More specifically, we discuss how mechanically stable nanoparticles, fibers, matrices, and hydrogels are generated through their coordination with histidine-rich proteins. We also describe how the rational use of divalent cations combined with simple protein engineering offers unexpected and very simple biochemical approaches to biomaterial design that might address unmet clinical needs in precision medicine.
Collapse
Affiliation(s)
- Hèctor López-Laguna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Julieta Sánchez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain; Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT) (CONICET-Universidad Nacional de Córdoba), ICTA & Cátedra de Química Biológica, Departamento de Química, FCEFyN, X 5016GCA, Córdoba, Argentina
| | - Ugutz Unzueta
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain; Biomedical Research Institute Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; Josep Carreras Research Institute, 08041 Barcelona, Spain.
| | - Ramón Mangues
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain; Biomedical Research Institute Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; Josep Carreras Research Institute, 08041 Barcelona, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.
| |
Collapse
|
30
|
Jin X, Li Q, Wang Y, Zhang W, Xu R, Li J, Du G, Kang Z. Optimizing the sulfation-modification system for scale preparation of chondroitin sulfate A. Carbohydr Polym 2020; 246:116570. [PMID: 32747242 DOI: 10.1016/j.carbpol.2020.116570] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 11/29/2022]
Abstract
Chondroitin sulfate (CS) extracted from animal tissues has been widely used as nutraceutical and pharmaceutical products for osteoarthritis treatment. Here we developed an efficient sulfation-modification system for large scale preparation of CSA in vitro. First, the expression level of C4ST was improved by 30 times with fusion of the chaperone SUMO. Then, glycerol as a protein stabilizer was found to improve rat AST IV stability during the regeneration of cofactor PAPS. Then peptide linkers or protein scaffolds were employed to assemble AST IV and C4ST into artificial complexes to bring the enzymes and PAPS spatially closer and enhance the catalytic efficiency of chondroitin sulfation. Eventually, the system was scaled up to 1 L system and 15 g chondroitin was converted to CSA in 24 h, with a 98 % conversion. The present study made a step further towards the industrial production of CSA with different sulfation degrees.
Collapse
Affiliation(s)
- Xuerong Jin
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Qing Li
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yang Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Weijiao Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Ruirui Xu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
31
|
Fernández de Ullivarri M, Arbulu S, Garcia-Gutierrez E, Cotter PD. Antifungal Peptides as Therapeutic Agents. Front Cell Infect Microbiol 2020; 10:105. [PMID: 32257965 PMCID: PMC7089922 DOI: 10.3389/fcimb.2020.00105] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/27/2020] [Indexed: 12/17/2022] Open
Abstract
Fungi have been used since ancient times in food and beverage-making processes and, more recently, have been harnessed for the production of antibiotics and in processes of relevance to the bioeconomy. Moreover, they are starting to gain attention as a key component of the human microbiome. However, fungi are also responsible for human infections. The incidence of community-acquired and nosocomial fungal infections has increased considerably in recent decades. Antibiotic resistance development, the increasing number of immunodeficiency- and/or immunosuppression-related diseases and limited therapeutic options available are triggering the search for novel alternatives. These new antifungals should be less toxic for the host, with targeted or broader antimicrobial spectra (for diseases of known and unknown etiology, respectively) and modes of actions that limit the potential for the emergence of resistance among pathogenic fungi. Given these criteria, antimicrobial peptides with antifungal properties, i.e., antifungal peptides (AFPs), have emerged as powerful candidates due to their efficacy and high selectivity. In this review, we provide an overview of the bioactivity and classification of AFPs (natural and synthetic) as well as their mode of action and advantages over current antifungal drugs. Additionally, natural, heterologous and synthetic production of AFPs with a view to greater levels of exploitation is discussed. Finally, we evaluate the current and potential applications of these peptides, along with the future challenges relating to antifungal treatments.
Collapse
Affiliation(s)
- Miguel Fernández de Ullivarri
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Food Bioscience Department, Teagasc Food Research Centre, Fermoy, Ireland
| | - Sara Arbulu
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Food Bioscience Department, Teagasc Food Research Centre, Fermoy, Ireland
| | - Enriqueta Garcia-Gutierrez
- Food Bioscience Department, Teagasc Food Research Centre, Fermoy, Ireland.,Gut Microbes and Health, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Paul D Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Food Bioscience Department, Teagasc Food Research Centre, Fermoy, Ireland
| |
Collapse
|
32
|
Molugu TR, Oita RC, Chawla U, Camp SM, Brown MF, Garcia JGN. Nicotinamide phosphoribosyltransferase purification using SUMO expression system. Anal Biochem 2020; 598:113597. [PMID: 31982408 DOI: 10.1016/j.ab.2020.113597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 02/08/2023]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is a rate-limiting enzyme in the salvage pathway required for nicotinamide adenine dinucleotide synthesis. The secreted NAMPT protein serves as a master regulatory cytokine involved in activation of evolutionarily conserved inflammatory networks. Appreciation of the role of NAMPT as a damage-associated molecular pattern protein (DAMP) has linked its activities to several disorders via Toll-like receptor 4 (TLR4) binding and inflammatory cascade activation. Information is currently lacking concerning the precise mode of the NAMPT protein functionality due to limited availability of purified protein for use in in vitro and in vivo studies. Here we report successful NAMPT expression using the pET-SUMO expression vector in E. coli strain SHuffle containing a hexa-His tag for purification. The Ulp1 protease was used to cleave the SUMO and hexa-His tags, and the protein was purified by immobilized-metal affinity chromatography. The protein yield was ~4 mg/L and initial biophysical characterization of the protein using circular dichroism revealed the secondary structural elements, while dynamic light scattering demonstrated the presence of oligomeric units. The NAMPT-SUMO showed a predominantly dimeric protein with functional enzymatic activity. Finally, we report NAMPT solubilization in n-dodecyl-β-d-maltopyranoside (DDM) detergent in monomeric form, thus enhancing the opportunity for further structural and functional investigations.
Collapse
Affiliation(s)
- Trivikram R Molugu
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
| | - Radu C Oita
- Department of Medicine, University of Arizona Health Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Udeep Chawla
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
| | - Sara M Camp
- Department of Medicine, University of Arizona Health Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Michael F Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA; Department of Physics, University of Arizona, Tucson, AZ, 85721, USA.
| | - Joe G N Garcia
- Department of Medicine, University of Arizona Health Sciences, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
33
|
Abstract
Escherichia coli is the workhorse of the structural biology lab. In addition to routine cloning and molecular biology, E. coli can be used as a factory for the production of recombinant membrane proteins. Purification of homogeneous samples of membrane protein expressed in E. coli is a significant bottleneck for researchers, and the protocol we present here for the overexpression and purification of membrane proteins in E. coli will provide a solid basis to develop lab- and protein-specific protocols for your membrane protein of interest. We additionally provide extensive notes on the purification process, as well as the theory surrounding principles of purification.
Collapse
Affiliation(s)
- Benjamin C McIlwain
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Ali A Kermani
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
34
|
Ren C, Wen X, Mencius J, Quan S. Selection and screening strategies in directed evolution to improve protein stability. BIORESOUR BIOPROCESS 2019. [DOI: 10.1186/s40643-019-0288-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractProtein stability is not only fundamental for experimental, industrial, and therapeutic applications, but is also the baseline for evolving novel protein functions. For decades, stability engineering armed with directed evolution has continued its rapid development and inevitably poses challenges. Generally, in directed evolution, establishing a reliable link between a genotype and any interpretable phenotype is more challenging than diversifying genetic libraries. Consequently, we set forth in a small picture to emphasize the screening or selection techniques in protein stability-directed evolution to secure the link. For a more systematic review, two main branches of these techniques, namely cellular or cell-free display and stability biosensors, are expounded with informative examples.
Collapse
|
35
|
Sannikova EP, Cheperegin SE, Kozlov DG. Ubiquitin-Specific E. coli Proteinase Does Not Require the Obligatory Presence of Dipeptide GlyGly at Processing Site. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819090060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Mahmoodi S, Pourhassan-Moghaddam M, Wood DW, Majdi H, Zarghami N. Current affinity approaches for purification of recombinant proteins. ACTA ACUST UNITED AC 2019. [DOI: 10.1080/23312025.2019.1665406] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Sahar Mahmoodi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Pourhassan-Moghaddam
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - David W. Wood
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Hasan Majdi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
37
|
Silva FSR, Santos SPO, Meyer R, Alcantara-Neves NM, Pinheiro CS, Pacheco LGC. Single-Input Regulatory Cascade for in vivo Removal of the Solubility Tag in Fusion Recombinant Proteins Produced by Escherichia coli. Front Bioeng Biotechnol 2019; 7:200. [PMID: 31482090 PMCID: PMC6710347 DOI: 10.3389/fbioe.2019.00200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 08/06/2019] [Indexed: 12/16/2022] Open
Abstract
Solubility tags are commonly fused to target recombinant proteins to enhance their solubility and stability. In general, these protein tags must be removed to avoid misfolding of the partner protein and to allow for downstream applications. Nevertheless, in vitro tag removal increases process complexity and costs. Herein, we describe a synthetic biology-based strategy to permit in vivo removal of a solubility tag (EDA, KDPG aldolase), through co-expression of the fusion recombinant protein (EDA-EGFP) and the tag-cleaving protease (TEVp), in a controlled manner. Basically, the system uses three repressor proteins (LacI, cI434, and TetR) to regulate the expressions of EDA-EGFP and TEVp, in a regulatory cascade that culminates with the release of free soluble target protein (EGFP), following a single chemical induction by IPTG. The system worked consistently when all biological parts were cloned in a single plasmid, pSolubility(SOL)A (7.08 Kb, AmpR), and transformed in Escherichia coli Rosetta (DE3) or BL21(DE3) strains. Total soluble recombinant protein yield (EDA-EGFP + free EGFP) was ca. 272.0 ± 60.1 μg/mL of culture, following IMAC purification; free EGFP composed great part (average = 46.5%; maximum = 67.3%) of the total purified protein fraction and was easily separated from remaining fusion EDA-EGFP (53 KDa) through filtration using a 50 KDa cut-off centrifugal filter.
Collapse
Affiliation(s)
- Filipe S R Silva
- Post-graduate Program in Biotechnology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Sara P O Santos
- Post-graduate Program in Biotechnology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Roberto Meyer
- Post-graduate Program in Biotechnology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Neuza M Alcantara-Neves
- Post-graduate Program in Biotechnology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Carina S Pinheiro
- Post-graduate Program in Biotechnology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Luis G C Pacheco
- Post-graduate Program in Biotechnology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| |
Collapse
|
38
|
Microscopy examination of red blood and yeast cell agglutination induced by bacterial lectins. PLoS One 2019; 14:e0220318. [PMID: 31344098 PMCID: PMC6657890 DOI: 10.1371/journal.pone.0220318] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/12/2019] [Indexed: 01/01/2023] Open
Abstract
Lectins are a group of ubiquitous proteins which specifically recognize and reversibly bind sugar moieties of glycoprotein and glycolipid constituents on cell surfaces. The mutagenesis approach is often employed to characterize lectin binding properties. As lectins are not enzymes, it is not easy to perform a rapid specificity screening of mutants using chromogenic substrates. It is necessary to use different binding assays such as isothermal titration calorimetry (ITC), surface plasmon resonance (SPR), microscale thermophoresis (MST), enzyme-linked lectin assays (ELLA), or glycan arrays for their characterization. These methods often require fluorescently labeled proteins (MST), highly purified proteins (SPR) or high protein concentrations (ITC). Mutant proteins may often exhibit problematic behaviour, such as poor solubility or low stability. Lectin-based cell agglutination is a simple and low-cost technique which can overcome most of these problems. In this work, a modified method of the agglutination of human erythrocytes and yeast cells with microscopy detection was successfully used for a specificity study of the newly prepared mutant lectin RS-IIL_A22S, which experimentally completed studies on sugar preferences of lectins in the PA-IIL family. Results showed that the sensitivity of this method is comparable with ITC, is able to determine subtle differences in lectin specificity, and works directly in cell lysates. The agglutination method with microscopy detection was validated by comparison of the results with results obtained by agglutination assay in standard 96-well microtiter plate format. In contrast to this assay, the microscopic method can clearly distinguish between hemagglutination and hemolysis. Therefore, this method is suitable for examination of lectins with known hemolytic activity as well as mutant or uncharacterized lectins, which could damage red blood cells. This is due to the experimental arrangement, which includes very short sample incubation time in combination with microscopic detection of agglutinates, that are easily observed by a small portable microscope.
Collapse
|
39
|
Zhao W, Liu S, Du G, Zhou J. An efficient expression tag library based on self-assembling amphipathic peptides. Microb Cell Fact 2019; 18:91. [PMID: 31133014 PMCID: PMC6535861 DOI: 10.1186/s12934-019-1142-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 05/17/2019] [Indexed: 11/10/2022] Open
Abstract
Background Self-assembling amphipathic peptides (SAPs) may improve protein production or induce the formation of inclusion bodies by fusing them to the N-terminus of proteins. However, they do not function uniformly well with all target enzymes and systematic research on how the composition of SAPs influence the production of fusion protein is still limited. Results To improve the efficiency of SAPs, we studied factors that might be involved in SAP-mediated protein production using S1 (AEAEAKAK)2 as the original SAP and green fluorescent protein (GFP) as the reporter. The results indicate that hydrophobicity and net charges of SAPs play a key role in protein expression. As hydrophobicity regulation tend to cause the formation of insoluble inclusion bodies of protein, an expression tag library composed of SAPs, which varied in net charge (from + 1 to + 20), was constructed based on the random amplification of S1nv1 (ANANARAR)10. The efficiency of the library was validated by polygalacturonate lyase (PGL), lipoxygenase (LOX), l-asparaginase (ASN) and transglutaminase (MTG). To accelerate preliminary screening, each enzyme was fused at the C-terminus with GFP. Among the four enzyme fusions, the SAPs with + 2 – + 6 net charges were optimal for protein expression. Finally, application of the library improved the expression of PGL, LOX, ASN, and MTG by 8.3, 3.5, 2.64, and 3.68-fold relative to that of the corresponding wild-type enzyme, respectively. Conclusions This is the first report to study key factors of SAPs as an expression tag to enhance recombinant enzyme production. The SAP library could be used as a novel plug-and-play protein-engineering method to screen for enzymes or proteins with enhanced production. Electronic supplementary material The online version of this article (10.1186/s12934-019-1142-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Weixin Zhao
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China.,School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Song Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China. .,School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Guocheng Du
- School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China.,School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
40
|
Abd Elhameed HAH, Hajdu B, Balogh RK, Hermann E, Hunyadi-Gulyás É, Gyurcsik B. Purification of proteins with native terminal sequences using a Ni(II)-cleavable C-terminal hexahistidine affinity tag. Protein Expr Purif 2019; 159:53-59. [PMID: 30905870 DOI: 10.1016/j.pep.2019.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 11/26/2022]
Abstract
The role of the termini of protein sequences is often perturbed by remnant amino acids after the specific protease cleavage of the affinity tags and/or by the amino acids encoded by the plasmid at/around the restriction enzyme sites used to insert the genes. Here we describe a method for affinity purification of a metallonuclease with its precisely determined native termini. First, the gene encoding the target protein is inserted into a newly designed cloning site, which contains two self-eliminating BsmBI restriction enzyme sites. As a consequence, the engineered DNA code of Ni(II)-sensitive Ser-X-His-X motif is fused to the 3'-end of the inserted gene followed by the gene of an affinity tag for protein purification purpose. The C-terminal segment starting from Ser mentioned above is cleaved off from purified protein by a Ni(II)-induced protease-like action. The success of the purification and cleavage was confirmed by gel electrophoresis and mass spectrometry, while structural integrity of the purified protein was checked by circular dichroism spectroscopy. Our new protein expression DNA construct is an advantageous tool for protein purification, when the complete removal of affinity or other tags, without any remaining amino acid residue is essential. The described procedure can easily be generalized and combined with various affinity tags at the C-terminus for chromatographic applications.
Collapse
Affiliation(s)
- Heba A H Abd Elhameed
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720, Szeged, Hungary
| | - Bálint Hajdu
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720, Szeged, Hungary
| | - Ria K Balogh
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720, Szeged, Hungary
| | - Enikő Hermann
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720, Szeged, Hungary
| | - Éva Hunyadi-Gulyás
- Laboratory of Proteomics Research, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Béla Gyurcsik
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720, Szeged, Hungary.
| |
Collapse
|
41
|
An efficient thermostabilization strategy based on self-assembling amphipathic peptides for fusion tags. Enzyme Microb Technol 2019; 121:68-77. [DOI: 10.1016/j.enzmictec.2018.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 11/20/2022]
|
42
|
Ke C, Xiong H, Zhao C, Zhang Z, Zhao X, Rensing C, Zhang G, Yang S. Expression and purification of an ArsM-elastin-like polypeptide fusion and its enzymatic properties. Appl Microbiol Biotechnol 2019; 103:2809-2820. [DOI: 10.1007/s00253-019-09638-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 11/25/2022]
|
43
|
Panahi Chegini P, Nikokar I, Tabarzad M, Faezi S, Mahboubi A. Effect of Amino Acid Substitutions on Biological Activity of Antimicrobial Peptide: Design, Recombinant Production, and Biological Activity. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2019; 18:157-168. [PMID: 32802096 PMCID: PMC7393060 DOI: 10.22037/ijpr.2019.112397.13734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recently, antimicrobial peptides have been introduced as potent antibiotics with a wide range of antimicrobial activities. They have also exhibited other biological activities, including anti-inflammatory, growth stimulating, and anti-cancer activities. In this study, an analog of Magainin II was designed and produced as a recombinant fusion protein. The designed sequence contained 24 amino acid residues (P24), in which Lys, His, Ser residues were substituted with Arg and also, hydrophobic Phe was replaced with Trp. Recombinant production of P24 in Escherichia coli (E. coli) BL21 using pTYB21, containing chitin binding domain and intein sequence at the N-terminus of the peptide gene, resulted in 1 μg mL-1 product from culture. Chitin column chromatography, followed by online peptide cleavage with thiol reducing agent was applied to purify the peptide. Antimicrobial activity was evaluated using five bacteria strains including Staphylococcus aureus, Enterococcus faecalis, Klebsiella pneumonia, E. coli, and Pseudomonas aeruginosa. Designed AMP exhibited promising antimicrobial activities with low minimum inhibitory concentration, in the range of 64-256 µg/mL. P24 showed potent antimicrobial activity preferably against Gram-positive bacteria, and more potent than pexiganan as a successful Magainin II analog for topical infections. In general, further modification can be applied to improve its therapeutic index.
Collapse
Affiliation(s)
- Parvaneh Panahi Chegini
- Department of Medicinal Biotechnology, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran.
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Iraj Nikokar
- Department of Medicinal Biotechnology, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran.
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Maryam Tabarzad
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sobhan Faezi
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Arash Mahboubi
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
44
|
Zhao W, Liu L, Du G, Liu S. A multifunctional tag with the ability to benefit the expression, purification, thermostability and activity of recombinant proteins. J Biotechnol 2018; 283:1-10. [DOI: 10.1016/j.jbiotec.2018.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 06/01/2018] [Accepted: 07/03/2018] [Indexed: 10/28/2022]
|
45
|
Fontes KFLP, Silva-Júnior LC, Nascimento SA, Chaves DP, Pinheiro-Júnior JW, Freitas AC, Castro RS, Jesus ALS. Enzyme-linked immunosorbent assay and agar gel immunodiffusion assay for diagnosis of equine infectious anemia employing p26 protein fused to the maltose-binding protein. Arch Virol 2018; 163:2871-2875. [DOI: 10.1007/s00705-018-3923-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/17/2018] [Indexed: 11/30/2022]
|
46
|
Trivedi-Parmar V, Jorgensen WL. Advances and Insights for Small Molecule Inhibition of Macrophage Migration Inhibitory Factor. J Med Chem 2018; 61:8104-8119. [PMID: 29812929 DOI: 10.1021/acs.jmedchem.8b00589] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is an upstream regulator of the immune response whose dysregulation is tied to a broad spectrum of inflammatory and proliferative disorders. As its complex signaling pathways and pleiotropic nature have been elucidated, it has become an attractive target for drug discovery. Remarkably, MIF is both a cytokine and an enzyme that functions as a keto-enol tautomerase. Strategies including in silico modeling, virtual screening, high-throughput screening, and screening of anti-inflammatory natural products have led to a large and diverse catalogue of MIF inhibitors as well as some understanding of the structure-activity relationships for compounds binding MIF's tautomerase active site. With possible clinical trials of some MIF inhibitors on the horizon, it is an opportune time to review the literature to seek trends, address inconsistencies, and identify promising new avenues of research.
Collapse
Affiliation(s)
- Vinay Trivedi-Parmar
- Department of Chemistry , Yale University , New Haven , Connecticut 06520-8107 , United States
| | - William L Jorgensen
- Department of Chemistry , Yale University , New Haven , Connecticut 06520-8107 , United States
| |
Collapse
|
47
|
Photomixotrophic chemical production in cyanobacteria. Curr Opin Biotechnol 2018; 50:65-71. [DOI: 10.1016/j.copbio.2017.11.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/11/2017] [Accepted: 11/13/2017] [Indexed: 11/19/2022]
|
48
|
Siegemund M, Beha N, Müller D. Production, Purification, and Characterization of Antibody-TNF Superfamily Ligand Fusion Proteins. Methods Mol Biol 2018; 1827:351-364. [PMID: 30196506 DOI: 10.1007/978-1-4939-8648-4_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Antibody-fusion proteins with ligands, e.g., of the TNF superfamily (TNFSF) can be adequately produced in mammalian expression systems. Here, we describe the transient production in adherent and suspension human embryonic kidney cells at laboratory scale, followed by purification procedures applying protein A and immobilized metal affinity chromatography for proteins with Fc domain and 6 × histidine-tag, respectively. In addition, characterization of the purified proteins by size exclusion chromatography is described.
Collapse
Affiliation(s)
- Martin Siegemund
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Nadine Beha
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Dafne Müller
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
49
|
Zhang A, Carroll AL, Atsumi S. Carbon recycling by cyanobacteria: improving CO2 fixation through chemical production. FEMS Microbiol Lett 2017; 364:4058408. [DOI: 10.1093/femsle/fnx165] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/29/2017] [Indexed: 11/14/2022] Open
|
50
|
Liang F, Lindblad P. Synechocystis PCC 6803 overexpressing RuBisCO grow faster with increased photosynthesis. Metab Eng Commun 2017; 4:29-36. [PMID: 29468130 PMCID: PMC5779733 DOI: 10.1016/j.meteno.2017.02.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/28/2016] [Accepted: 02/17/2017] [Indexed: 12/21/2022] Open
Abstract
The ribulose-1,5-bisphosphate (RuBP) oxygenation reaction catalyzed by Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is competing with carboxylation, being negative for both energy and carbon balances in photoautotrophic organisms. This makes RuBisCO one of the bottlenecks for oxygenic photosynthesis and carbon fixation. In this study, RuBisCO was overexpressed in the unicellular cyanobacterium Synechocystis PCC 6803. Relative RuBisCO levels in the engineered strains FL50 and FL52 increased 2.1 times and 1.4 times, respectively, and both strains showed increased growth, photosynthesis and in vitro RuBisCO activity. The oxygen evolution rate increased by 54% and 42% on per chlorophyll basis, while the in vitro RuBisCO activity increased by 52% and 8.6%, respectively. The overexpressed RuBisCO were tagged with a FLAG tag, in strain FL50 on the N terminus of the large subunit while in strain FL52 on the C terminus of the small subunit. The presence of a FLAG tag enhanced transcription of the genes encoding RuBisCO, and, with high possibility, also enhanced the initiation of translation or stability of the enzyme. However, when using a streptavidin-binding tag II (strep-tag II), we did not observe a similar effect. Tagged RuBisCO offers an opportunity for further studying RuBisCO expression and stability. Increased levels of RuBisCO can further improve photosynthesis and growth in the cyanobacterium Synechocystis PCC 6803 under certain growth conditions.
Collapse
Affiliation(s)
- Feiyan Liang
- Microbial Chemistry, Department of Chemistry-Ångström, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry-Ångström, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden
| |
Collapse
|